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Introduction.

The group of diffeomorphisms preserving a certain structure of a manifold
is often a Lie transformation group. For example,

(1) the group of holomorphic transformations of a bounded domain in $C^{n}$

(or of a compact complex manifold),
(2) the group of isometries of a Riemannian manifold,
(3) the group of affine transformations on a manifold with an affine connec-

tion, and
(4) the group of automorphisms of a compact almost complex manifold are

all Lie transformation groups.
The purpose of this paper is to give a generalization of the example (2).

The main results are Theorem 2 and Theorem 3 which will be stated in Sec-
tion 1.

Let $G$ be a group of diffeomorphisms of a connected manifold $M$. To see
that $G$ is a Lie transformation group, it is, in general, enough to apply the fol-
lowing Theorem A or $B$ (on the above examples see [4]). For our case we apply
Theorem A to prove Theorem 2 and Theorem $B$ to prove Theorem 3.

THEOREM A [6, p. 208]. If $G$ is a locally compact topologjcal transformation
group of $M$, then $G$ , with the compact-open topology, is a Lie transformation
group of $M$.

THEOREM $B$ [ $8$ , p. 103]. Let $S$ be the set of all vector fields $X$ on Mwhich
generate global one-parameter groups $\{\varphi_{X.t}\}_{t\in R}$ of transformations of $M$ such that
$\varphi_{X,t}\in G$ for all $t\in R$ . If $S$ generates a finite dimenstonal Lie algebra, then the
group $G$ is a Lie transformation group of $M$ and $S$ is the Lie algebra of $G$ .

In our case the underlying manifold must be compact, and it is rather easy
to show the finite dimensionality of the given group. It seems interesting that
the eigenfunction-expansion theorem for elliptic operators can be applied to prove
the compactness of the group.



154 K. FURUTANI

\S 1. Statement of theorems.

Throughout this note $M$ denotes an n-dimensional compact connected smooth
manifold without boundary, and $P:C^{\infty}(M)arrow C^{\infty}(M)$ an elliptic differential operator
of order $m>0$ with smooth coefficients, where $C^{\infty}(M)$ is the space of all complex-
valued smooth functions on the manifold $M$.

Let $G(P)$ be the group of all diffeomorphisms of $M$ commuting with the
elliptic operator $P$, i.e., it consists of diffeomorphisms $\varphi$ such that $\varphi^{*0}P(f)=$

$P\circ\varphi^{*}(f)$ for all $f\in C^{\infty}(M)$ , where $(\varphi^{*}f)(x)=f(\varphi(x))$ . Let $X(P)$ be the Lie algebra
of all smooth vector fields on $M$ commuting with $P$, i.e., it consists of smooth
vector fields $X$ such that $X\circ P=P\circ X$, where we regard the vector field $X$ as a
first order differential operator on $M$.

We prove in this note the following theorems.
THEOREM 1. If a smooth map $\varphi:Marrow M$ commutes with $P$, then $\varphi$ must be a

diffeomorphism.
THEOREM 2. (i) The group $G(P)$ , with the compact-open topology, is a

compact Lie transformation group of $M$.
(ii) The Lie algebra $X(P)$ is finite dimensional and contains the Lie algebra

of $G(P)$ .
(iii) If the pnncipal symbol $\sigma(P)$ of the operatOr $P$ is real (in this case $P$

must be of even order), then the Lie algebra of $G(P)$ is isomorphic with $X(P)$ .
Let $M$ be endowed with a Riemannian metric and $P$ its Laplace operator,

then it is well known that $P$ is an elliptic differential operator of order two
with real principal symbol. Also in this case it turns out that the group $G(P)$

coincides with the group of isometries and the Lie algebra $X(P)$ consists of all
Killing vector fields. These can be proved by a similar way as the proof of
Proposition 3 below. The principal symbol in this case is the metric tensor on
$T^{*}(M)$ . As a corollary of Theorem 2 we have

COROLLARY. The group of isometnes of a compact Riemannian manifold is
a compact Lie transformation group.

Thus our Theorem 2 may be regarded as a generalization of the example (2).

THEOREM 3. Let $\{Y_{i}\}(1\leqq i\leqq])$ be a finite set of smooth vector fields on $M$

such that at any point $x\in M$ the tangent space $T_{x}(M)$ is spanned by $\{(Y_{i})_{x}\}i_{=1}$ ,

then the group of diffeomorphjsms of $M$ commuting with all $Y_{i}$ , with the com-
pact-open toPology, is a comPact Lie transfornation group of M. Its Lie algebra
conststs of all vector fields $Y$ such that $[Y, Y_{i}]=0(1\leqq i\leqq])$ .

\S 2. Completeness of eigenfunctions.

In this section we review several properties of elliptic differential operators

on compact manifolds, which are needed later.
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Let $P$ be as in \S 1. Put

$E_{\lambda}(P)=$ { $f\in C^{\infty}(M):(P-\lambda)^{f}f=0$, for some integer $1>0$}.

An element $f\in E_{\lambda}(P),$ $f\neq 0$, is said to be a generalized eigenfunction of $P$ cor-
responding to the eigenvalue $\lambda$ , and the space $E_{\lambda}(P),$ $E_{\lambda}(P)\neq\{0\}$ , the generalized
eigenspace corresponding to an eigenvalue $\lambda$ . All the spaces $E_{\lambda}(P)$ are finite
dimensional because of the compactness of the manifold $M$.

Let $H_{k}(M)$ be the Sobolev space on $M$ of order $k\geqq 0$ with a suitably chosen
inner product, and denote the norm by $\Vert\cdot\Vert_{k}$ . For the definition of Sobolev spaces
on manifolds, see [7]. In particular, the space $H_{0}(M)$ consists of all square-
integrable complex-valued functions on $M$ with respect to a smooth measure.
We denote by Sp $(P)$ the spectrum of the closed extension of $P$ in $H_{0}(M)$ . The
set Sp $(P)$ does not depend on the choice of an inner product in $H_{0}(M)$ , and is
closed in $C$.

PROPOSITION 1. Let $m>0$ be the order of P. For any integer $k>0$, there
exists a constant $C_{k}>0$ such that

$\Vert u\Vert_{mk}\leqq C_{k}(\Vert P^{k}u\Vert_{0}+\Vert u\Vert_{0})$ , $u\in H_{mk}(M)$ .
PROPOSITION 2. If the pnncipal symbol of $P$ is real, then
(i) the spectrum Sp $(P)$ conststs only of countably many isolated eigenvalues

of finite multiplicrties: Sp $(P)=\{\lambda\in C:E_{\lambda}(P)\neq\{0\}\}$ ,
(ii) the algebraic sum $\sum_{\lambda\in Sp(P)}$

$E_{\lambda}(P)$ is dense in the Sobolev space $H_{k}(M)$ for
any $k\geqq 0$ . Consequently by means of the Sobolev lemma, the space

$\sum_{\lambda\in Sp(P)}$
$E_{\lambda}(P)$

is dense in $C^{\infty}(M)$ with respect to $C^{\infty}$-topology.
(The Sobolev lemma says that $H_{k+[n/2]+1}(M)\subset B^{k}(M)$ and the inclusion map

is continuous, where $B^{k}(M)$ is the Banach space of $C^{k}$ -functions on $M$ with
sup-norm up to k-th derivatives. Especially this implies that $\bigcap_{k\not\geqq 0}H_{k}(M)=C^{\infty}(M).)$

The proofs of these propositions can be found, for instance, in [2] in a more
general framework. In our case the proof of the propositions are simpler, be-
cause no boundary conditions are taken into account. It should, however, be
noticed that for any integer $l>0$

$\sum_{\lambda\in Sp(P)}$
$E_{\lambda}(P)=$

$\sum_{\lambda\in Sp(P^{l})}$

$E_{\lambda}(P^{t})$ ,

if the principal symbol of $P$ is real. This equality implies the second part of
Proposition 2 for any $k\geqq 0$ . (In [2], the second part of Proposition 2 follows in
case of $k=0$ or the order of $P.$ )

Let $\overline{P}$ be an elliptic operator dePned by $(\overline{P}f)(x)=\overline{(P\overline{f})(x)}$, where ‘ in the right
hand side means the complex conjugate.

Then $A=\overline{P}\circ P$ is also elliptic, of order $2m$ , and satisfies the assumption in
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Proposition 2. From the dePnitions of $G(P)$ and $X(P)$ we have at once
LEMMA 1. (i) $G(P)$ is a subgroup of $G(A)$ and $X(P)$ is a subalgebra of

$X(A)$ ,
(ii) each space $E_{\lambda}(A)$ is invanant under $G(P)$ and $X(P)$ .

\S 3. Smooth mapping and elliptic operator.

We denote the value of the principal symbol $\sigma(P)$ of the differential operator
$P$ at a cotangent vector $\xi\in T_{x}^{*}(M)$ by $\sigma(P)_{x}(\xi)$ . It is dePned by

$\sigma(P)_{x}(\xi)=\frac{1}{m!}P(f^{m})(x)$ ,

where $m$ is the order of $P$ and $f$ is a smooth function on $M$ such that $f(x)=0$

and $(df)_{x}=\xi$.
Before proving our theorems, we give a more general result than Theorem 1:
PROPOSITION 3. Let $M,$ $P$ be as above. Also let $N$ be a connected manifold,

and $Q:C^{\infty}(N)arrow C^{\infty}(N)$ an elliptic differential operator on $N$ with smooth $coeJficients$.
If there exists a smooth map $\varphi:Marrow N$ such that for any $f\in C^{\infty}(N)$

$P\circ\varphi^{*}(f)=\varphi^{*}\circ Q(f)$ ,

then,
(i) the orders of $P$ and $Q$ are equal, and
(ii) the map $\varphi$ is a submersion.
PROOF. Let $m$ and $m’$ be the order of $P$ and $Q$ , respectively. Given a point

$x\in M$ and a cotangent vector $0\neq\xi\in T_{\varphi^{(x)}}^{*}(N)$, we can take a smooth function
$f\in C^{\infty}(N)$ such that $f(\varphi(x))=0$ and $(df)_{\varphi^{(x)}}=\xi$ . Then from the assumption we
have

$0=P((\varphi^{*}f)^{m+1})(x)=P\circ\varphi^{*}(f^{m+1})(x)=\varphi^{*}\circ Q(f^{m+1})(x)=Q(f^{m+1})(\varphi(x))$ .
This shows that $m\geqq m’$ .

Assume that $m>m’$ . Then the following equality holds:

$0=Q(f^{m})(\varphi(x))=P((\varphi^{*}f)^{m})(x)=m1\sigma(P)_{x}(d(\varphi^{*}f)_{x})$ .
From this and the ellipticity of the operator $P$ we see that the map $\varphi^{*}:$ $T_{\varphi^{(x)}}^{*}(N)arrow$

$T_{x}^{*}(M)$ must be identically zero. Hence $d\varphi=0$ , so that $\varphi$ is a constant map.
Let $\varphi(x)\equiv y_{0}$ , and take an $f\in C^{\infty}(N)$ such that $f(y_{0})=0$ and $df_{y_{0}}\neq 0$ . Then, we
have

$0=P((\varphi^{*}f)^{m^{J}})(x)=\varphi^{*}\circ Q(f^{m’})(x)=m’$ ! $\sigma(Q)_{y_{0}}(df_{y_{0}})$ ,

which contradicts the ellipticity of the operator $Q$ . Hence the orders of $P$ and
$Q$ must be equal.

Let $x\in M$ and $f\in C^{\infty}(N),$ $f(\varphi(x))=0$ and $df_{\varphi^{(x)}}\neq 0$ . As before we have
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$\sigma(P)_{x}((d\varphi^{*}f)_{x})=\sigma(Q)_{\varphi^{(x)}}(df_{\varphi^{(x)}})\neq 0$ ,

which shows together with the ellipticity of the operator $P$ that the map
$\varphi^{*}:$ $T_{\varphi^{(x)}}^{*}(N)arrow T_{x}^{*}(M)$ is injective. Hence $\varphi$ is a submersion.

Concerning this proposition, see [5] and [10]. In these, the case that the
operators $P$ and $Q$ are Laplace operators is discussed. The map $\varphi$ , there, is a
Riemannian submersion.

\S 4. Proof of theorems.

4.1. Proof of Theorem 1. By Proposition 3 the map $\varphi$ is an open mapping,
and the compactness and connectedness of $M$ imply that $\varphi$ is surjective. Hence
the map $\varphi^{*}:$ $C^{\infty}(M)arrow C^{\infty}(M)$ is injective, and so from Lemma 1 $\varphi^{*}(C^{\infty}(M))$ contains
all generalized eigenspaces $E_{\lambda}(A)$ of $A=\overline{P}\circ P$. Consequently by Proposition 2
$\varphi^{*}(C^{\infty}(M))$ separates any pair of points of $M$. This shows that the map $\varphi$ is
injective.

4.2. To prove Theorem 2 we shall here recall some well-known facts about
the compact-open topology for a group of homeomorphisms in the form of prop-
ositions (see [8, Appendix]):

PROPOSITION 4. Let $X$ be a locally compact Hausdorff space and $G$ its
homeomorphism group, then the compact-open top0l0gy for the group $G$ is the
weakest topology making the map $(\varphi, P)\text{ト}arrow\varphi(P)$ of $G\cross Xarrow X$ continuous. If,
furthermore, $X$ is locally connected, then $G$ becomes a topologjcal group with the
compact-open topolOgy.

PROPOSITION 5. Let $X$ be a compact metric space, then,
(i) the compact-open top0l0gy for the group of homeomorphisms of $X$ coincides

with the top0l0gy $cf$ the uniform convergence,
(ii) a sequence $\{\varphi_{n}\}_{n\geqq 1}$ of homeomorphisms of $X$ converges uniformly to a

homeomorphism $\varphi$ of $X$, if and only if for every continuous function $f$ on $X$ the
sequence $\{\varphi_{n}^{*}(f)\}$ converges to the function $\varphi^{*}(f)$ uniformly on $X$.

PROPOSITION 6. Let $M$ be a compact smooth manifold and $\{\varphi_{n}\}_{n\geq 1}$ a sequence
of diffeomorphisms of $M$, then the sequence $t\varphi_{n}$ } converges uniformly to a dif-
feomorphism $\varphi$ , if and only if for every $f\in C^{\infty}(M)$ the sequence $\{\varphi_{n}^{*}(f)\}$ converges
to $\varphi^{*}(f)$ unifomly on $M$.

4.3. Proof of Theorem 2, (i). According to Propositions 4, 5 and 6, the
group $G(P)$ becomes a topological transformation group of $M$ with the compact-
open topology. If we can conclude that the group $G(P)$ is compact, then the
proof of the first part of Theorem 2 reduces to Theorem A in Introduction.
So we shall show this below.

4.4. Compactness of $G(P)$ . The proof is accomplished by showing the
following Lemmas.
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Let $\Vert\circ\Vert_{k.k’}$ denote the norm of linear operators from $H_{k}(M)$ to $H_{k^{r}}(M)$ .
LEMMA 2. Let $k_{0}$ be an integer such that $2mk_{0}>[n/2]+1$ , where $n=\dim M$

and $m=order$ of P. Then for each integer $k\geqq 0$ ,

$\sup_{\varphi\in G(A)}\Vert\varphi^{*}\Vert_{2mCk+k_{0}),2mk}<+\infty$ ,

where $\varphi^{*}$ is regarded as an operator from $H_{2m(k+k_{0})}(M)$ to $H_{2mk}(M)$ , and $A=\overline{P}\circ P$.
PROOF. By Proposition 1 and the Sobolev lemma we have the following

inequalities:

$\Vert\varphi^{*}(f)\Vert_{2mk}\leqq C_{1}$ ( $\Vert$ A $\circ\varphi^{*}(f)\Vert_{0}+\Vert\varphi^{*}(f)\Vert_{0}$)

$=C_{1}(U\varphi^{*}\circ A^{k}(f)\Vert_{0}+\Vert\varphi^{*}(f)\Vert_{0})$

$\leqq C_{2}(\sup_{x\in K}|(A^{k}f)(x)|+\sup_{x\in M}|f(x)|)$

$\leqq C_{8}(\Vert A^{k}f\Vert_{2mk_{0}}+\Vert f\Vert_{2mk_{0}})\leqq C_{4}\Vert f\Vert_{2m(k+k_{0})}$ .
Here the constants $C_{i}$ depend neither on $f\in H_{2m(k+k_{0})}(M)$ nor on $\varphi\in G(A)$ , and
this shows the lemma.

As the manifold $M$ is compact, the compact-open topology for the group
$G(P)$ is metrizable. Therefore it is sufficient to show that $G(P)$ is sequencially
compact. To prove this we use the following

LEMMA 3. Let $\{T_{n}\}$ be a sequence of bounded linear operatOrs defined on a
normed space $H$ into a normed space $H’$ . SuppOse that $\{T_{n}\}$ is uniformly bounded
and $\{T_{n}\}$ converges Pmntwisely on a dense subspace, then $\{T_{n}\}$ converges pointwisely
on all of $H$ to a bounded operator $T:Harrow H’$ .

This is a standard fact in functional analysis, so the proof is omitted.
Let $\{\varphi_{i}\}_{i\geqq 1}$ be a sequence in $G(P)$ . For each fixed integer $k\geqq 0$ we regard

$\{\varphi_{i}^{*}\}$ as a sequence of bounded operators from $H_{2m(k+k_{0})}(M)$ to $H_{2mk}(M)$ . Then
we have

LEMMA 4. There exists a subsequence $\{\psi_{i}\}$ of the sequence $\{\varphi_{i}\}$ such that
$\{\psi_{i}^{*}\}$ converges p0intwisely to a bounded operat0r $\psi:H_{2m(k+k_{0})}(M)arrow H_{2mk}(M)$ .

PROOF. By Lemma 2 we see that $\{\varphi_{i}^{*}\}$ is uniformly bounded as operators
from $H_{2m(k+k_{0})}(M)$ to $H_{2mk}(M)$ . Also we see that each space $E_{\lambda}(A)(A=\overline{P}\circ P)$

is invariant under the operators $\varphi_{i}^{*}$ . As each space $E_{\lambda}(A)$ is finite dimensional,
the sequence $t\varphi_{i}^{*}$ } is a bounded set in the finite dimensional space Hom $(E_{\lambda}(A)$ ,
$E_{\lambda}(A))$ . Therefore, by applying the diagonal process of choice to the sequence
$\{\varphi_{i}^{*}\}$ , we can obtain a subsequence $\{\psi_{i}\}$ of $\{\varphi_{i}\}$ such that $\{\psi_{i}^{*}\}$ converges
pointwisely on the subspace $\sum_{\lambda\in Sp(A)}$

$E_{2}(A)$ . Here we use the fact that the set

Sp $(A)$ consists of countably many elements. Therefore, by Lemma 3 the subse-
quence $\{\psi_{t}^{*}\}$ actually converges pointwisely to a bounded operator $\psi:H_{2m(k+k_{0})}(M)$

$arrow H_{2mk}(M)$ .
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By using Lemma 4 one after another for $k=0,1,2,$ $\cdots$ we again apply the
diagonal process of choice to get a subsequence $\{\sigma_{i}\}$ of $\{\varphi_{i}\}$ such that $\{\sigma_{i}^{*}\}$

converges on the space $\bigcap_{k\geq 0}H_{k}(M)=C^{\infty}(M)$. For $f\in C^{\infty}(M)$ put $\sigma(f)=\lim\sigma_{i}^{*}(f)$ .
Then we can easily show the following

LEMMA 5. (i) For any $f\in C^{\infty}(M)$ the function $\sigma(f)$ is also smooth, and the
sequence $\{\sigma_{i}^{*}(f)\}$ converges to $\sigma(f)$ with respect to $C^{\infty}- fopology$ ,

(ii) for any $f,$ $g\in C^{\infty}(M)\sigma(fg)=\sigma(f)\sigma(g)$ ,
(iii) $\sigma\circ P=P\circ\sigma$ .
By the same argument for $\{\sigma_{i}^{-1}\}$ as for $\{\varphi_{i}\}$ , we see that the map $\sigma$ is an

isomorphism of the ring $C^{\infty}(M)$ . Therefore, there exists a diffeomorphism $\varphi\in G(P)$

such that $\sigma=\varphi^{*}$ (see the remark below), and $\sigma_{i}$ converges to $\varphi$ with respect
to the compact-open topology. This shows, together with Proposition 6, the
compactness of $G(P)$ .

REMARK. The diffeomorphism $\varphi$ in the above proof is obtained as follows:
let $I_{x}=\{f\in C^{\infty}(M):f(x)=0\}$ , then $I_{x}$ is a maximal ideal of the ring $C^{\infty}(M)$ .
Conversely, any maximal ideal of $C^{\infty}(M)$ coincides with an $I_{x}$ for some $x\in M$.
Also $\sigma(I_{x})$ is a maximal ideal of $C^{\infty}(M)$ , so that there exists a unique point
$y\in M$ such that $\sigma(I_{x})=I_{y}$ . The desired map $\varphi$ is defined by $\varphi(x)=y$ . (For

details see [1, 11-14].)

4.5. Proof of Theorem 2, (ii) and (iii). For a vector Peld $X$ on $M$ we denote
by $\{\varphi_{X.t}\}_{t\in R}$ the one-parameter group of transformations of $M$ generated by $X$.

LEMMA 6. Let $X\in X(A)$ , then $(\varphi_{X,t})^{*}\circ A=A\circ(\varphi_{X,t})^{*}$ for any $t\in R$ .
PROOF. Let $\{u_{t}\}(1\leqq i\leqq\dim E_{\lambda}(A))$ be a base of $E_{\lambda}(A)$ and $X(u_{i})= \sum_{J}c_{ij}u_{j}$ .

Put

$h_{i}(t, x)=(A\circ(\varphi_{X.t})^{*}-(\varphi_{X,t})^{*}\circ A)u_{i}(x)=[A, (\varphi_{X.t})^{*}]u_{i}(x)$ ,

then

$( \frac{d}{dt}h_{i})(t, x)=[A, (\varphi_{X.t})^{*}]X(u_{i})(x)=\sum_{j}c_{tj}h_{j}(t, x)$ .

Since $h_{i}(0, x)=0(1\leqq i\leqq\dim E_{\lambda}(A))$ , all $h_{i}$ must be identically zero. Therefore, $A$

commutes with $(\varphi_{X.t})^{*}$ for any $t\in R$ on all eigenspaces $E_{\lambda}(A)$ . Hence by Prop-
osition 2 the operator $A$ commutes with $(\varphi_{X.t})^{*}$ for any $t\in R$ on the space
$C^{\infty}(M)$ .

Lemma 6 and the first part of Theorem 2 imply the second part of Theorem
2 at once. The third part of Theorem 2 follows also from Lemma 6, because
the same argument as for $A=\overline{P}\circ P$ holds for $P$ itself in the proof of Lemma 6.

4.6. Proof of Theorem 3. The principal symbol of the differential operator
$D= \sum_{1\leq i\leq j}Y_{i}^{2}$ is $\sigma(D)_{x}(\xi)=\sum_{i}\langle\xi, (Y_{i})_{x}\rangle^{2},$

$\xi\in T_{x}^{*}(M)$ . Hence, by the assumption, $D$

is elliptic. So the group is a subgroup of the compact Lie group $G(D)$ , and in
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fact we can show that the group is a closed subgroup of $G(D)$ by the same
argument as the proof of the compactness of $G(D)$ . Finally, it is immediate
from Theorem $B$ to determine the Lie algebra of this group.

4.7. Finally we give a proposition which implies the finite dimensionality
of the Lie algebra $X(A)$ .

PROPOSITION 7. The representation of $X(A)$ in the finite dimenstonal space
$\sum_{|\lambda|\leqq s}E_{\lambda}(A)$ is faithful for a sufficiently large $s>0$ .

PROOF. Let $\{s_{t}\}_{i=1}^{n}$ be a smooth local frame of the cotangent bundle $T^{*}(M)$

defined on an open set $U\subset M$. Also let $\{f_{i}\}_{i=1}^{n}$ be a family of smooth functions
on $M$ such that $(df_{i})_{x_{0}}=s_{i}(x_{0})$ at a point $x_{0}\in U$ . Then $\{df_{i}\}_{i=1}^{n}$ is also a local
frame of $T^{*}(M)$ on an open set $V\subset U$ . If we take a number $s>0$ sufficiently
large, then by Proposition 2 there exist generalized eigenfunctions $f_{\lambda,i}\in E_{\lambda}(A)$

$(i=1, \cdots , n, |\lambda|\leqq s)$ such that I $df_{i}- \sum_{|\lambda|\leq s}df_{\lambda.t}\Vert<\delta$ for any $\delta>0$, where $\Vert\cdot\Vert$ is an

arbitrarily taken norm on $T^{*}(M)$ . Therefore, if $\delta$ is sufficiently small, then
$\{\sum$

1 $\lambda|\leqq s$

$X\in X(A)$ satisfying $X( \sum_{I\lambda|SS}f_{\lambda,i})=0$ on $M$ ($i=1,$ $\cdots$ , n) vanishes on $W$ . Therefore,

owing to the compactness of $M$ we can take a positive $s$ as desired.

\S 5. Some special cases.

5.1. Let $M$ and $N$ be compact Riemannian manifolds, and we denote by $\Delta_{M}$

and $\Delta_{N}$ the Laplace operators of $M$ and $N$, respectively. Also we denote by $\Delta$

the Laplace operator of $M\cross N$ with the product metric: $\Delta=\Delta_{M}+\Delta_{N}$ . Let us
consider an operator $P$ on $M\cross N$ such that

$P=\Delta_{M}^{2}+\Delta_{N}^{2}$ : $C^{\infty}(M\cross N)arrow C^{\infty}(M\cross N)$ .

We can see that the operator $P$ is elliptic and positive definite in $H_{0}(M\cross N)$ ,

here the inner product is taken with respect to the volume element of the product
metric on $M\cross N$.

PROPOSITION 8. Assume that for any $\lambda_{i},$ $\lambda_{j}\in Sp(\Delta_{M})$ and $\mu_{k},$
$\mu_{t}\in Sp(\Delta_{N})$ ,

$\lambda 3+\mu_{k}^{2}=\lambda\S+\mu_{l}^{2}$ implies $\lambda_{i}=\lambda_{j}$ and $\mu_{k}=\mu_{l}$ .
Then,

$G(P)\subset G(\Delta)$ .
This follows from the fact that $E_{\nu}(P)=E_{\lambda}(\Delta_{M})\otimes E_{\mu}(\Delta_{N})(\lambda^{2}+\mu^{2}=\nu)$ and the

following lemma.
LEMMA 7. Let an ellipfic differential operator $Q$ on a compact manifold $M$

be selfadjoint with respect to some inner prOduct in $H_{0}(M)$ . If a diffeomorphism
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$\phi$ of $M$ leaves each eigensPace $E_{\lambda}(Q)$ of the operatOr $Q$ invariant, then $\phi\in G(Q)$ .
This is proved by using Proposition 2. Notice that in this case all the

generalized eigenfunctions are eigenfunctions.
EXAMPLE. We give an example satisfying the assumption of Proposition 8.

Let $\omega_{1}$ and $\omega_{2}$ be real numbers such that 1, $\omega_{1}^{4},$ $\omega_{2}^{4}$ and $\omega_{1}^{2}\omega_{2}^{2}$ are linearly inde-

pendent over $Z$. Let $\Gamma=\{\frac{1}{2\pi}(n_{1}\omega_{1}, n_{2}\omega_{2})\in R^{2}$ : $n_{i}\in z\}$ be a lattice in $R^{2}$, and

denote by $\Gamma^{*}$ the dual lattice of $\Gamma,$ $i.e.,$ $\Gamma^{*}=\{(x_{1}, x_{2}):\frac{1}{2\pi}\sum_{\dot{l}}n_{i}x_{i}\omega_{i}\in Z$, for any

$n_{i}\in Z\}$ .
We take $M=S^{n}= \{(x_{1}, \cdots , x_{n+1})\in R^{n+1} : \sum x_{t}^{2}=1\}$ with the standard metric,

and $N=R^{2}/\Gamma*$ with the metric induced from the Euclidean metric. Then it is
well known that

Sp $(\Delta_{S^{n}})=\{k(k+n-1):k=0,1, 2, \}$

and
Sp $(\Delta_{R2/\Gamma}.)=\{n_{1}^{2}\omega_{1}^{2}+n_{2}^{2}\omega_{2}^{2} ; n_{i}\in Z\}$ .

Therefore, if

$k^{2}(k+n-1)^{2}+(n_{1}^{2}\omega_{1}^{2}+n_{2}^{2}\omega_{2}^{2})^{2}=l^{2}(l+n-1)^{2}+(m_{1}^{2}\omega_{1}^{2}+m_{2}^{2}\omega_{2}^{2})^{2}$ ,

then $k=l,$ $n_{1}^{2}=m_{1}^{2}$ and $n_{2}^{2}=m_{2}^{2}$ . This implies that the assumption of Proposition 8
is satisfied in this case.

5.2. It seems difficult to see what properties of an elliptic operator $P$ imply
the non-triviality of $G(P)$ or $X(P)$ . But in a certain sense, for generic $P’ s$ in
the space of all elliptic operators on compact manifolds, $X(P)=\{0\}$ . That is,
we have

PROPOSITION 9. Assume that an elliptic operaior $P$ satisfies the following
three conditions, then $X(P)=\{0\}$ , and $G(P)$ is at most a finite group:

(i) the pnncipal symbol of $P$ is real,
(ii) for any $\lambda\in Sp(P)$ , dim $E_{\lambda}(P)=1$ ,
(iii) each eigenspace $E_{\lambda}(P)(\lambda\in Sp(P))$ contains a non-zero real-valued func-

tion.
PROOF. Let $X\in X(P)$ and $u\in E_{\lambda}(P)$ , real-valued, then there exists a constant

$c$ such that $u(\varphi_{X.t}(x))=e^{ct}u(x)$ , which means that the constant $c$ must be real
and pure imaginary, hence $c=0$ . Therefore, $X(u)=cu=0$ on every eigenspace.
So $X=0$ .

REMARK. On the meaning of ’generic’ see [3] er [9].
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