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0. Introduction.

This paper is concerned with the solutions to the problem

n —a%u—A,B(u)=f(x, ) on £2X(0, o)

ulao=0,  ulx, 0)=u.(x)

where B is a (smooth) monotone increasing function admitting 5’(0)=0, 2 is a
bounded domain in n-dimensional Euclidean space R™ with smooth boundary 02
and A is the Laplacian. A typical example of S(u) is |u|*u (a>0).

This equation is a typical model of nonlinear degenerate parabolic equations
and has been studied by many authors from various points of view (Oleinik,
Kalashnikov and Yui-Lin [16], Dubinskii [7], Raviart Brezis [4, 5], Lions
[12], Crandall [6], Konishi [9, 10] etc.; see also Aronson [1], Peletier [17],
Atkinson and Peletier [2], Boillet, Saravia and Villa etc. for related topics).
Thus interesting existence-uniqueness theorems have been established.

However, the asymptotic behavior of the solutions to the problem (1) seems
not to be so much investigated. And in the present paper we shall study some
decay property of the solutions as t—co. More precisely, we are interested in

the decay of ||B(u(-, Dz, (and also Siﬂggﬁ’(u)lutlzdde) which seems to be

the most natural quantity as the potential energy to the equation.
Concerning decay of solutions, Brezis [5] has already showed that

1Bu(-, Nz, w=ct™* as t—oo

under appropriate conditions on f, while here we shall give a preciser estimate
on the rate of decay. Our assumption on the smoothness of 8(u) is somewhat
stronger than Brezis’ one, but the interesting example S(u)=|u|%u (a>0) is
contained in our case.
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Most of recent works approach to the problem (1) by the theory of monotone
operators or nonlinear semi-groups, while here we shall employ a rather classical
method, i.e., an elliptic regularization method and some energy inequalities are
used. By this we can show the existence and the decay property of solutions at
the same time. Existence part of our result is related to Lions [12].

As another typical example of nonlinear degenerate parabolic equations we
know the problem:

0 %0 0
@) —a—t—u—zz:l axi< axiu

uloe=0, ulx, 0)=uy(x).

L )=fn i QX0 ), p>2,

The decay property of the solutions to (2) was discussed in our previous paper
(see also [15]) and our method of the present paper is related to the one
used there.

1. Assumptions and result.

First we state our precise assumptions on 3, u, and f.
A. 1. B(u) is in C*(R—{0})NC*(R) with 8”(u) (locally) Holder continuous on
R—{0}, B(0)=0, B’'(u)>0 if u=+0 and
Rolul® = 1B8w)|, kol B)|=p"w)ul =k (| f) [/ P +1) | u|

for some positive constants k,, 2; and «.
For 0<e<1 we take a smooth function #.(u) such that

1 if julz=e
65(u):{ 0<6.(u)=1 and 6OL(uw)u=0.
0 if |u|=Ze/2

Setting
fuw=|"B0.5)ds,
B.(u) belongs to C*R) and S/(u) is (locally) Holder continuous on K. Moreover
it is easily verified from A.1 that
A1 kolu|*—kiBe)=|B(u)|,

0=Blu)=ky(| B(u)| 24P +1),
and

lim B.(u)=p(u) and lirgl Bi(u)=pF"(u) uniformly on R.

g t] E—
The functions B.(x) will be used for construction of approximate solutions.

A.2. u,eV={ue LXQ)| fw) e Hy(2Q)} .
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A.3. fe L (RY; Lrerbicesn(Qy)  (R*=[0, o0)).

We set
t+1 1/2
5@)—:_(32 “f(S)Hi4<a+1>/<a+z><_o)d5> , 1=0.

Now we give our definition of solutions to the problem (1).
DEFINITION. A function ue L} . (R*; L*()) is said to be a solution of the
problem (1) if S(u)e Lk (R*; Hy(2)) and it holds that

STSQ{‘“W Du(x, t>+§lgi—_ﬁ(u>~a%¢<x, )
(3) g i
—f(x, Hp(x, t)}dXdl‘_SQuo(x)qS(x, 0)dx=0

for Vo Ci(&2X R*).

REMARK. By a standard way (Lions [12]) we see that if u is a solution
defined above, u’e L (R*; HX(2)) (HX(£) is the dual space of H,(2) with re-
spect to L2-inner product) and

. {u’(t)——A,Bu(t):f(~,t) in H Q) a.e. t
1y

H(O):uo .

Then, our results read as follows.
THEOREM 1. Under the assumptions A.1-A.3 the problem (1) admits a unique
solution u such that

ue Lz (R*; LYQ), Bwe Lp.(R+; H(Q)), S:«/B”(Wpemoc(w;fhcg»
and
a (» 705y 2 2
SAIVB G dne Lic(RY; LX@)),
and moreover, if 0=6@)=<const.(1+#)"*-? (§>1/2+1/a), we have

(1,2 (1 Ve an)| dxds) ™ +iswc, )i
< CBua) o) (L-ED 1107

THEOREM 2. In addition to A.1-A.3 suppose that u,=0 and f=0. Then the
problem (1) has a unique nonnegative solution w satisfying the same properties as
Theorem 1.

Finally in this section we state a lemma which is used to prove the decay

rate of solutions.
LEMMA 1. Let ¢(t) be a nonnegative function on R* satisfying

@
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sup @()'=Col{pt)—p(t+D}+gt)+e, 0<e=l

tssst+1
for some v, C,>0. Then, if 0<g(t)<const.(1+#)1"% (§>1/r) we have
SWO=Ci(gONA+1)Y"  for 0<t<Coe M0 (C,>0).

For a proof see Appendix.

2. Proof of Theorem 1.

First we assume u,=C}(£2) and f=Cy{L2 X R*). Let 0<e<1 and let us con-
sider the regularized problem

0
—~u—A(eu+B(u)=f on LXR*
(P.) ot g
ulae=0,  ulx, 0)=uy(x).
Then, by of Ladyzhenskaya, Solonnikov and Ural’tseva [11, Chap.
V], the problem (P.) admits a unique classical solution u. with

2

_* L 1.0 ..
3taxi usELloc(R L (Q)) » Z-——l, 2; » .

In the sequel we shall estimate u. by the desired norms.
Multiplying (P.) by —gt—(ﬁs(us)—[—eu) (e Li . (R*; Hi(£2))) and integrating over
02x[t, t+1] we have

s:HSQ (ﬁé(ueH—e)‘%ue

®
=B Eudet D+ f(e 2wt 2 puwo)dxds

where we set u(t)=u(-, f) for simplicity and

© Ee<u<t>>=—;—||ﬁs<u<z>>u‘;31+e§ ﬁ;@(z»é 2wt e Sl

(e =({, 2, “ax)").

ax,
Now,
(L% pawsasa]
@ <[, 1 1VBHw) - VB | 5w dxds

10 1 (us)dxds-i-ls (g =

IA
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and

SZ+1SQ | f12B:(us) dxds

=c{;"( 1715 B /v 1) dxds
®)
<15 hacan sl Bulu I 1) ds

=CO0{ sup, Edluds)e 1)

where C denotes positive constants.
From (6)-(8) we have

SZHSQ(‘B;(uEH—e) l%u *dxds

9) S2{E(u () —E(u.(t+1)} +Co)? {1+t§§151t111 E (u.(s))a/2@+}
=D@)?.

On the other hand, multiplying (P.) by eu.+S(u.) and integrating, we get

|, ulias+]" | fee 3 i

2 n 2
4 }dxds
1=1

0
ey el

9
axi Ue
(10) t+1 0 P

:S SQ{—ﬁs(us)*a?ue—SEus-ue—l—f(eu5+‘85(ue))}dxds )

t

Each term of the right hand side of (10) is estimated as follows;
t+1
J b
t+1 -
= NIAON
t (Z | 1ug(x,8)I>E/2}

éCD(t)(SZHSQ{lﬁe(us)l‘“*2”(““’+,B(e)<“+2’“““’}dxds)m (by (9 and A.19)

0
‘Be(ug)*aTus dxds

L 1Be(us)]
IV Blue)

dxds

a
ot !

1Be(ua)|® _
Beus) =

(note that ue B b if |u|>)

2
<cpa([, 18wl 4 payernrads)

<CD() {‘gggl Ee(us(s))“’“)/“(““) +‘8(€)Ca+2)/2(zx+l)} ,

ES?-ISQiBituE'uS dxds
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;ds>1/2<sgz+l gguidxdsy/z

0

54

ot

IA

U,

1/4

gD(t)(&Si“ N (s)]32 ds>1/4<gi+l Sgﬁs(us)w(aﬂ) + Ble)?/catn dxds)
=CDW(e sup Jlus)ly{ sup 18wl >+ B(e) >t v)
=CD({) {t<S‘<1PHEe(ue(s))(“”’“‘““) + Ble) arnrzain)

and

Si+lggf<sus+ﬁ:(us>)dxds§C5<t)tsssli%3+l’\/Es(u:(s)) .
Thus we have

|7 Euus) ds=C1DO sup Eous)yenincesn gleyasnrzasy)

(11) +6(t) sup VE(u.(s)}

tsssi+1
=A()
which implies that there exists t*<[t, t+1] such that
E (u(t*)=A() .

Now, using a similar equality as (6) and the inequalities just above we obtain

sup Ee) =B+ (7 (e 2wt 2pn)

tssst+1 [

+(ﬁ§(lta)+e)\g?us laxds

=C{D@)*+ A1)},
by virtue of (11) and Young's inequality,

§C{D(t)z-f—D(t)“a“)/(M”)+5(f)2+ﬂ(8)(a+2)/(a+])}

1
“I” “2— sup Es(us(s)>
t=sst+1

and consequently

(12) sup E.(uu(s))SC{D@)*+ D@/« 45(2)*+ Ble)+/ D},

tss<

From we can show first the boundedness of E.(u.(f)) by a constant in-
dependent of e. Indeed, if E.(u.(t))<FE.(u.(t+1)) for some ¢, we have
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sup I (u(s)SC{o(0*(1+ sup Ei(u(s)*/*™?)

tssst+
Fa(pLr Il sup Eyu(s)" )
t<8st+1
+5(t>2+ﬁ(5)(a+2)/(0{+1)}
and hence

SUP B (uo(5)SC{F(0)+3(t) <+ 0/ g(p)tcarnGass . f(e)cardicarb)

tsssi+
=C,, (1) .
Therefore we can conclude, if 0=¢t<T,
(13) E(u.®) =max( sup E.(u.s), sup Co..(1))

< sup, {Co. O+ E.u0)}

A U

<C(T, 1Bl ., |V B’ (o) woll 2, lutoll i)

<o,
In particular, ifo§?<pm 0(t)<co, we have
(14) E(u()=C A E(u,) for teR*
where C, .= sup C,,.(1).
teR+

Using we shall derive further estimate of u.. We denote by C. various
constants which depend on E.(u,)+ 3(c)*®/¢*D continuously.

By and we have
SUD1Es(us(s))écs{D(f)“““”““”)+5(l‘)2+/3(5)‘“+2”(““’}

tssst+

(note that 4(a+1)/(Ba—+2)<2).
Recalling the definition of D(t) we can derive from above

Sup Es(us(s))(3a+2)/2(a+l)
tssst+1

“l‘cs {5(”2+5<t)2t<5‘;£1 E€<us(s>)a/2(a+1)+5(t>(3a+2)/(a'+1)+ﬁ(e)(a+2)/(a+l)}
and

sup E.(u(s))@at» /2D
(15) tssst+

SCAE(u(t) = E(u(t+ 1)} +CAG@) +0(p) Carp/arh 4 B(g)asmicatny

We have now arrived at the desired difference inequality concerning the energy
E (u(1).
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Applying to (15) with r=a/2(a+1) and g(t)=C3(t)* we obtain
(16) E.(u()=C(1+)2eviajf 0<t=C.B(e) 2@+D/0Ga+D

under the assumption 0=<d()=const. (1+1)"*® (§>1/2+1/a).
The estimate (16) is equivalent to the following ones;

7 H[ge(us<t))|ll°{léce(l+t)—l—”a ’
(18) ellu. )l a, SC1+1)711e,
(19) [ vsid | 2w} ds=catpe-ve.

Moreover, multiplying (P.) by u. we see immediately

s uls)| dedst Ol ([] 1 O ads + et

t n
( ’
(20) SOSQ{EI,BE(UQ
Also we note that by and

S:HSQ!'%‘BEWS)
cgj“ gvza’z@;>’ VKO

([, e
<C.1+pve,

dxds

IIA

at dxds

or e

IA

S aas) ([ o1 as 1)

(21)

When the decay assumption on d(t) is not made we should replace the right
hand sides of [17}-(21) by C(T). Needless to say, such estimates are valid for

0=t=T.

In any way, on the basis of above estimates we can choose a converging

subsequence from {u.(t)} as ¢—0.

First, from and [21), with the aid of Aubin’s compactness theorem (see

Lions [12]) we see

(22) Be(u () —> AUt) strongly in LE.(RY; L*(2)), p>0,as ¢—0

(more precisely, along a subsequence). By we may asssume also
Be(u.(x, 1)) — Ax, 1) a.e.on QxR

and hence we have

(23) ulx, t) — ulx, H)=5"U(x, 1)) a.e.on QXR+.

By this fact and (20) we have
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(24) Be(ue) —> B(u) weakly* in L (R*; Hy(2))

and

(25) U —> U weakly* in L. (R*; L¥(Q)).

Furthermore, by and (20),

(26) —é%(gs“\/ﬁmdy) — *(%(S:\/ﬁv’mdp) weakly in L. (R*; LX)
and

@7 S:‘«/B’;mday—»g:«/ﬁfmdn weakly in L (R*: ).

Thus, taking the limit as e—0 along a subsequence in the variational equation

Sjgg{“ue(", ¢:(x, t)+§1aimﬂ(us)5?c—i¢(x’ H—eu.Ad(x, t)

—f(x, Dp(x, t)}dxdt—sguu(x)gb(x, 0)dx=0

which is valid for ¢=C3(2X R*), we see that u(x, ¢) is a solution of the prob-
lem (1). We know from [17)-(20)
1B 2, =CUI Blugll )L 4-1)1"1=,

(5O vEman)), as) scupetayao-e,

and
[l vEm |, dstlumii<(ludi | 17©lkds)e:

which are the required estimates.

Next we consider the case u,=V. In this case we can choose a sequence
{tom} CCHR)NCYR) such that Bluem)—Buo) in H,(2) (cf. [8). We may assume
also ugm—ue in L%*(2). Let {f,}CCL{L2XR*) be a sequence such that }Zifgofm:f

in L2 (R*; Ltetdita+n(0)) Then we can define un(x, t) as a solution of (1)
with u,(x, 0)=u,, and f=f,. By almost the same arguments used just above
we can obtain the desired solution u(x, t) as a limit of {u,}.

Finally we must prove the uniqueness. For this we note that if u() is a
solution of (1) the equation (1)’ in H™* holds. Let us introduce a new inner-
product of H! as follows:

{uy vyg-1=<H, Vy,xg-1 for u,veH™?

where #€H, is determined by —Afi=u, and {u, v)p .x-1 is the pairing of uc H,
and ve H! such that



80 M. Nakao

{u, v>i11xH—1=Spu(x)v(x)dx if vel®.

Then it is easy to see —AB(u) is a monotone operator from D= {uc Lzlﬁ(u)EFlz}
to H™* (cf. Brezis [5], Lions [12]). The uniqueness follows immediately from
this fact.

REMARK 2. By the proof of we know that the left hand side of
(4) is bounded (tends to 0 as t—co) if sup 6(t)<co (6(t)—0 as t—oo) (cf. [13]).
teRt

3. Proof of Theorem 2.

The proof of is essentially included in the previous section.
However, we consider here somewhat different approximate equations (cf. [16]),
i.e.,

By { ﬂaatfu—ﬁl(su—%—ﬁ(u)):f on £2XR*

ulao=ce, ulx, 0)=u,(x)+e 0<e<]).
First we assume u,=C}(2) and fCy{L2 X R*) (this assumption is finally re-

moved as in the preceding section). Then, the problem (P.) is equivalent to

ot

ulso=e, ulx, 0)=uyx)+e

(P.)” {a u_A(5u+‘8(u>0a(u>):f on NXR*

as long as u=e, where 0.(u) is a smooth function such that

1 if u=e
0.(u)= 1 and 6.(u)=0.

2

Since (P,)” has a unique classical solution u, with 73?2& u.c L (2% R* ([T}

and u=e¢ (by the maximum principle), the problem (P.)’ has also the same solu-
tion u.. To estimate u. we rewrite (P.)’ as follows.

- Uu
ot ¢

ia0=0, #.(x, 0)=uy(x)

~ ’a'~ _A<€ﬁe+,§s(ﬁe)):f on QXR+)
(Po)

where #i.(x, )=u.lx, {)—e (=0) and

Be(s)=PB(s+e)—ple).

Then it is easy to see
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Bus)z kil s|**—Be) and O0=Fus)=ki{lfu(s)[*/ P +1}, O=s.

Thus we can obtain almost the same estimates [(17)-(21) for #. with . replaced
by B.. Consequently, using almost the same compactness argument, we obtain

REMARK 3. Using we can give a direct proof of

Indeed, if we set x~=min{u, 0} and B(u‘)zS:— B(y)dy for the solution u we

have easily | B(u~)(x, dx=0, 120, i.e, u=(x, )=0 a.e.x.

Appendix.
is a variant of Lemma in (see also [15]). Here we sketch the

outline of the proof for completeness.
Setting

Pt)y=¢(t)+rt~?

we know for large v and for a certain 7,>0

sup H()T=CPN)—P+1))+Coe if 12T,

tssst+1

with some C,, C,;>0.
Next, setting y({)=¢(#)"", we have

y(t +1)—y(t)=5:—j7 {04t+1D+1—0)p1)}"do
=7, (06+D+(1—= 000} -7 dB (O —(t+D+Co/Crc)

—Cu/Cier| 109(-+1)+1—0)p(0) 70
=Cy—Cytf+me
g%>0 if To<t<Ceemfa+n
with certain C,, C, and C;>0. From this we obtain
y#= min ]y(s)—%-—czi(t—To——l), To+1=t=<Cye 00+

$E€[Ty, To+1

which implies easily
PO=C(HONA+)Y"  for 0=t=Cse /00,
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Added in proof.
1) Modifying our method we can prove that if S(u)=|u|“u the right-hand

side of (4) is replaced by Ct~'-'/* with a constant C independent of u,.

2) After the submittal of the paper we learned some papers which treat
the estimates for |u(t)||-; a) N.D. Alikakos, L? bounds of solutions of reaction-
diffusion equations, Comm. Partial Differential Equations, 4 (1979), 827-868, b)
L. Véron, Effets regularisants de semi-groupes non-linéaires dans les espaces de
Banach, Ann. Fac. Sci. Toulouse, 1 (1979), 171-200, ¢) D.G. Aronson and L. A.
Peletier, Large time behavior of solutions of the porous medium equation in
bounded domain, J. Differential Equations, 39 (1981), 378-412, etc. By a) we see
that our estimate (4) is sharp if f=0 and S(u)=|u|%u.
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