A condition for holomorphic maps of \mathbb{C}^{2} into C^{2} to be algebraic

By Syoshi TOKUNAGA

(Received Sept. 3, 1980)

1. In this paper we shall give a condition for holomorphic maps of C^{2} into C^{2} to be algebraic.

DEFINITION. A polynomial $P(X, Y)$ is said to be of type (g, n) , if the level curve P_{c} : = { $(X, Y) \in C^{2} |P(X, Y)=c\}$ is of genus g and has n boundary points in the two dimensional projective space P^{2} for almost every $c\!\in\!C.$ In particular $P(X, Y)$ is said to be of general type, if $g \geq 1$ or $n \geq 3$.

THEOREM. Let

$$
\Phi: X = f(x, y), \qquad Y = g(x, y)
$$

be a holomorphic map of C^{2} into C^{2} , where $f(x, y)$ and $g(x, y)$ are entire functions. If there exists a polynomial $P(X, Y)$ of general type such that the composite function

$$
q(x, y) := P[f(x, y), g(x, y)]
$$

is a polynomial, then $f(x, y)$ and $g(x, y)$ are polynomials.

REMARK. For a polynomial $P(X, Y)$ of type $(0, 1)$ or $(0, 2)$ the theorem is incorrect. In fact, we have the following counterexamples:

1) $P(X, Y)=X$ when $f(x, y)$ is a polynomial and $g(x, y)$ is a transcendental entire function.

2) $P(X, Y)=XY$ when $f(x, y)=e^{x}$ and $g(x, y)=e^{-x}$.

REMARK. T. Kizuka [\(\[1\]\)](#page-2-0) proved the above theorem under the condition that \varPhi is an automorphism of $C^{2}.$

The author would like to thank Professor T. Nishino for suggesting him the problem and for continuous encouragement.

2. Key lemma.

We introduce a lemma which is essential in this oaper.

LEMMA (Nishino [2], see also [1]). Let (V, π, Γ) be an analytic family of compact analytic curves of genus g on the disc $\Gamma:|z|<1$. Suppose every fibre on $z\neq 0$ is irreducible, non-singular and of genus g. If an unramified finitely many-valued analytic section η on the punctured disc $\Gamma^{\prime} : 0<|z|<1$ satisfies one

of the following conditions (1), (2) and (3), then η can be extended to Γ : 1) $g \geq 2$.

2) $g=1$. There exists on Γ a finitely many-valued analytic section ξ which is unramified on \varGamma^{\prime} , and each branch of ξ doesn't intersect any branch of η on \varGamma^{\prime} .

3) $P=0$. There exists on Γ a finitely many-valued analytic section ξ which satisfies the same condition of 2), and the number of sheets is greater than or equal to 3.

3. Construction of an analytic family.

Let $P(X, Y)$ be a polynomial and suppose $P_{c} := \{(X, Y) \in C^{2} | P(X, Y)=c\}$ is irreducible for almost every $c \in C$. Let M be the hypersurface $\{(X, Y, Z) \in$ C^{3} | $Z = P(X, Y)$. We regard M as the union of P_{c} 's.

LEMMA. There exist a compactification \tilde{M} of M, (*c* denotes the embedding $M\rightarrow\tilde{M}$) and a holomorphic map $\pi:\tilde{M}\rightarrow C^{1}\cup\{\infty\}$ such that

1) $\pi^{-1}(c)$ is a non-singular compact curve for all but finite c .

2) ι , restricted on P_{c} , induces an embedding $P_{c} \subset \pi^{-1}(c)$, $c \neq \infty$, which gives the compactification of P_{c} .

Proof. Let $(U:V:W)$ be a homogeneous coordinate of $P^{2}.$ We understand (X, Y) an inhomogeneous coordinate $(U/W, V/W)$ of the affine part $\{(U:V:W)$ $\in P^{2}|W\neq 0\}$ of P^{2} . Let m be a degree of $P(X, Y)$. We can obtain the rational surface \tilde{P}^{2} such that the closure of P_{c} in P^{2} is non-singular for all but finite c , by making use of blowing-ups at indeterminations of the rational function $W^{\mathit{m}}P(U/W, \ V/W)$ on $P^{2}.$ Let M denote the closure of M in $P^{1}\times P^{2}$ and π the restriction on \tilde{M} of the first projection $P^{1}\times\widetilde{P}^{2}\rightarrow P^{1}.$ Then we can easily check that \tilde{M} and π satisfy the conditions of the lemma.

NOTE. When $P(X, Y)$ is of type $(g, n), \pi^{-1}(c)-P_{c}$ consists of n points for all but finite $c \neq \infty$, and

$$
\bigcup_{c \in C} \left(\pi^{-1}(c) - P_c \right) = \widetilde{M} - \pi^{-1}(\infty) - M.
$$

Hence the closure $\overline{\bigcup_{c\in C}(\pi^{-1}(c)-P_{c})}$ is an algebraic curve in \tilde{M} and defines n-valued analytic section ξ on P^{1} .

4. Proof of the theorem.

It is known that for every polynomial $Q(X, Y)$ there exist a polynomial $P(X, Y)$ and a polynomial $g(z)$ of one variable such that $Q(X, Y)=q[P(X, Y)]$ and that, P_{c} : = { $(X, Y) \in C^{2}$ | $P(X, Y)=c\}$ is irreducible for almost every $c\in C$ (cf. Stein [\[3\]\)](#page-2-1). Hence we may suppose that the level curve P_{c} is irreducible for almost every c .

Suppose $f(x, y)$ is a transcendental entire function. Then there exist a line

$$
l_{a_0} := \{(x, y) \in C^2 \mid y = a_0 x\}
$$

and an analytic curve

$$
\nu_{\alpha_0} := \{(x, y) \in C^2 \mid f(x, y) = \alpha_0\}
$$

such that $l_{a_{0}}\not\subset\nu_{\alpha_{0}}$ and $l_{a_{0}}$ intersects $\nu_{\alpha_{0}}$ at infinitely many points.

We identify C^{2} with M and obtain the following diagram:

Put $q_{c} := \{(x, y) \in C^{2} | q(x, y)=P[f(x, y), g(x, y)]=c\}$. We conclude that $\pmb{\varPhi}(l_{a_{0}})\cap P_{c}=\pmb{\varPhi}(l_{a_{0}}\cap q_{c}).$ In fact, if $\pmb{\varPhi}(l_{a_{0}})\cap P_{c}\supsetneq\pmb{\varPhi}(l_{a_{0}}\cap q_{c}),$ then there exists a point t_{1} in $\Phi^{-1}(\Phi(l_{a_{0}}))\cap q_{c}-l_{a_{0}}\cap q_{c}$ such that $\Phi(t_{1})\notin\Phi(l_{a_{0}}\cap q_{c})$. Hence $\Phi^{-1}(\Phi(t_{1}))$ $\bigcap l_{a_{0}}-q_{c}$ is not empty, because $\varPhi(t_{1})\!\in\!\varPhi(l_{a_{0}}).$ This contradicts the fact that $\Phi^{-1}(P_{c})=q_{c}$. Since $q(x, y)$ is a polynomial, q_{c} and $l_{a_{0}}$ intersect at finitely many points. Hence the curves P_{c} and $\Phi(l_{a_{0}})$ intersect at finitely many points in M, and $\Phi(l_{\alpha_{0}})$ defines a finitely many-valued analytic section η of M on $P^{1}-\{\infty\}$.

Put $V=\tilde{M}$ and $\Gamma=\{c\in C\cup\{\infty\}||c|\gg 1\}$ and recall that $P(X, Y)$ is of general type. Then we see that η , in the neighborhood of ∞ , satisfies one of the three conditions in the lemma in § 2. Therefore the closure $\overline{\eta}$ of η in M is a compact analytic curve. Note that the closure of $\Phi(\nu_{\alpha_{0}})=\{(X, Y)\in C^{2}|X=\alpha_{0}\}$ in \tilde{M} is also a compact analytic curve. This contradicts the fact that $\Phi(l_{a_{0}})$ and $\Phi(\nu_{\alpha_{0}})$ intersect at infinitely many points. This completes the proof.

References

- [1] T. Kizuka, Analytic automorphisms and algebraic automorphisms of C^{2} , Tohoku Math. J., ³¹ (1979), 553-565.
- [2] T. Nishino, Nouvelles recherches sur les fonctions entieres de plusieurs variables complexes (V), J. Math. Kyoto Univ., 15 (1975), 527-553.
- [3] K. Stein, Analytische Projektion Komplexer Mannigfaltigkeiten, Colloque Bruxell, 1953.

292 S. TOKUNAGA

Syoshi TOKUNAGA Department of Mathematics Kyusyu University Fukuoka 812 Japan

 \sim

 $\sim 10^7$

 $\frac{1}{\sqrt{2}}$