A condition for holomorphic maps of C^2 into C^2 to be algebraic

By Syoshi TOKUNAGA

(Received Sept. 3, 1980)

1. In this paper we shall give a condition for holomorphic maps of C^2 into C^2 to be algebraic.

DEFINITION. A polynomial P(X, Y) is said to be of type (g, n), if the level curve $P_c := \{(X, Y) \in C^2 \mid P(X, Y) = c\}$ is of genus g and has n boundary points in the two dimensional projective space P^2 for almost every $c \in C$. In particular P(X, Y) is said to be of general type, if $g \ge 1$ or $n \ge 3$.

THEOREM. Let

$$\boldsymbol{\Phi}: X = f(x, y), \qquad Y = g(x, y)$$

be a holomorphic map of C^2 into C^2 , where f(x, y) and g(x, y) are entire functions. If there exists a polynomial P(X, Y) of general type such that the composite function

$$q(x, y) := P[f(x, y), g(x, y)]$$

is a polynomial, then f(x, y) and g(x, y) are polynomials.

REMARK. For a polynomial P(X, Y) of type (0, 1) or (0, 2) the theorem is incorrect. In fact, we have the following counterexamples:

1) P(X, Y) = X when f(x, y) is a polynomial and g(x, y) is a transcendental entire function.

2) P(X, Y)=XY when $f(x, y)=e^x$ and $g(x, y)=e^{-x}$.

REMARK. T. Kizuka ([1]) proved the above theorem under the condition that Φ is an automorphism of C^2 .

The author would like to thank Professor T. Nishino for suggesting him the problem and for continuous encouragement.

2. Key lemma.

We introduce a lemma which is essential in this paper.

LEMMA (Nishino [2], see also [1]). Let (V, π, Γ) be an analytic family of compact analytic curves of genus g on the disc $\Gamma: |z| < 1$. Suppose every fibre on $z \neq 0$ is irreducible, non-singular and of genus g. If an unramified finitely many-valued analytic section η on the punctured disc $\Gamma': 0 < |z| < 1$ satisfies one

of the following conditions (1), (2) and (3), then η can be extended to Γ : 1) $g \ge 2$.

2) g=1. There exists on Γ a finitely many-valued analytic section ξ which is unramified on Γ' , and each branch of ξ doesn't intersect any branch of η on Γ' .

3) P=0. There exists on Γ a finitely many-valued analytic section ξ which satisfies the same condition of 2), and the number of sheets is greater than or equal to 3.

3. Construction of an analytic family.

Let P(X, Y) be a polynomial and suppose $P_c := \{(X, Y) \in C^2 \mid P(X, Y) = c\}$ is irreducible for almost every $c \in C$. Let M be the hypersurface $\{(X, Y, Z) \in C^3 \mid Z = P(X, Y)\}$. We regard M as the union of P_c 's.

LEMMA. There exist a compactification \tilde{M} of M, (ι denotes the embedding $M \subseteq \tilde{M}$) and a holomorphic map $\pi : \tilde{M} \rightarrow C^1 \cup \{\infty\}$ such that

1) $\pi^{-1}(c)$ is a non-singular compact curve for all but finite c.

2) c, restricted on P_c , induces an embedding $P_c \subseteq \pi^{-1}(c)$, $c \neq \infty$, which gives the compactification of P_c .

PROOF. Let (U:V:W) be a homogeneous coordinate of P^2 . We understand (X, Y) an inhomogeneous coordinate (U/W, V/W) of the affine part $\{(U:V:W) \in P^2 \mid W \neq 0\}$ of P^2 . Let *m* be a degree of P(X, Y). We can obtain the rational surface \tilde{P}^2 such that the closure of P_c in \tilde{P}^2 is non-singular for all but finite *c*, by making use of blowing-ups at indeterminations of the rational function $W^m P(U/W, V/W)$ on P^2 . Let \tilde{M} denote the closure of *M* in $P^1 \times \tilde{P}^2$ and π the restriction on \tilde{M} of the first projection $P^1 \times \tilde{P}^2 \to P^1$. Then we can easily check that \tilde{M} and π satisfy the conditions of the lemma.

NOTE. When P(X, Y) is of type (g, n), $\pi^{-1}(c)-P_c$ consists of n points for all but finite $c \neq \infty$, and

$$\bigcup_{c\in C} (\pi^{-1}(c) - P_c) = \tilde{M} - \pi^{-1}(\infty) - M.$$

Hence the closure $\overline{\bigcup_{c \in C} (\pi^{-1}(c) - P_c)}$ is an algebraic curve in \tilde{M} and defines *n*-valued analytic section ξ on P^1 .

4. Proof of the theorem.

It is known that for every polynomial Q(X, Y) there exist a polynomial P(X, Y) and a polynomial g(z) of one variable such that Q(X, Y)=q[P(X, Y)] and that, $P_c := \{(X, Y) \in C^2 \mid P(X, Y)=c\}$ is irreducible for almost every $c \in C$ (cf. Stein [3]). Hence we may suppose that the level curve P_c is irreducible for almost every c.

290

Suppose f(x, y) is a transcendental entire function. Then there exist a line

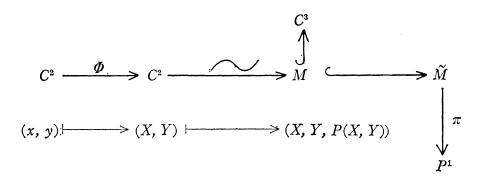
$$l_{a_0} := \{(x, y) \in C^2 \mid y = a_0 x\}$$

and an analytic curve

$$\nu_{\alpha_0} := \{ (x, y) \in C^2 \mid f(x, y) = \alpha_0 \}$$

such that $l_{a_0} \not\subset \nu_{a_0}$ and l_{a_0} intersects ν_{a_0} at infinitely many points.

We identify C^2 with M and obtain the following diagram:



Put $q_c := \{(x, y) \in C^2 \mid q(x, y) = P[f(x, y), g(x, y)] = c\}$. We conclude that $\Phi(l_{a_0}) \cap P_c = \Phi(l_{a_0} \cap q_c)$. In fact, if $\Phi(l_{a_0}) \cap P_c \supseteq \Phi(l_{a_0} \cap q_c)$, then there exists a point t_1 in $\Phi^{-1}(\Phi(l_{a_0})) \cap q_c - l_{a_0} \cap q_c$ such that $\Phi(t_1) \notin \Phi(l_{a_0} \cap q_c)$. Hence $\Phi^{-1}(\Phi(t_1)) \cap l_{a_0} - q_c$ is not empty, because $\Phi(t_1) \in \Phi(l_{a_0})$. This contradicts the fact that $\Phi^{-1}(P_c) = q_c$. Since q(x, y) is a polynomial, q_c and l_{a_0} intersect at finitely many points. Hence the curves P_c and $\Phi(l_{a_0})$ intersect at finitely many points in M, and $\Phi(l_{a_0})$ defines a finitely many-valued analytic section η of M on $P^1 - \{\infty\}$.

Put $V = \tilde{M}$ and $\Gamma = \{c \in C \cup \{\infty\} \mid |c| \gg 1\}$ and recall that P(X, Y) is of general type. Then we see that η , in the neighborhood of ∞ , satisfies one of the three conditions in the lemma in §2. Therefore the closure $\bar{\eta}$ of η in M is a compact analytic curve. Note that the closure of $\Phi(\nu_{\alpha_0}) = \{(X, Y) \in C^2 \mid X = \alpha_0\}$ in \tilde{M} is also a compact analytic curve. This contradicts the fact that $\Phi(l_{\alpha_0})$ and $\Phi(\nu_{\alpha_0})$ intersect at infinitely many points. This completes the proof.

References

- T. Kizuka, Analytic automorphisms and algebraic automorphisms of C², Tohoku Math. J., 31 (1979), 553-565.
- [2] T. Nishino, Nouvelles recherches sur les fonctions entieres de plusieurs variables complexes (V), J. Math. Kyoto Univ., 15 (1975), 527-553.
- [3] K. Stein, Analytische Projektion Komplexer Mannigfaltigkeiten, Colloque Bruxell, 1953.

S. Tokunaga

Syoshi TOKUNAGA Department of Mathematics Kyusyu University Fukuoka 812 Japan

.