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Let K be the Kummer variety of an abelian variety X over the complex
number field, i.e., the quotient of X by the inverse morphism ¢: X—X, and let
M be an ample invertible sheaf on K. Let 7 : X—K be the canonical surjection.
Then (*M is of the form L? for some ample symmetric invertible sheaf L on
X. Here L is said to be symmetric if ¢*L=L. We denote by P the Poincaré
invertible sheaf on the product of X and its dual X. For a point « in X, we
denote by P, the restriction P|y.w. If a is contained in the subgroup (X),
consisting of two division points in X, then L*®QP, is symmetric. For a sec-
tion s in I'(X, L"®P,) with a=(X),, we denote by § the image of s via the
canonical involution of I'(X, L®*®P,) induced by the inversion ¢ If we put
I'X, LM*={sel'(X, L™)|s=35}, then we can identify I'(K, M") with I'(X, L*")*
through the canonical map z*: (K, M™)—I(X, L**). For a point a in (X),
and sections sy, Ss, S; and s, in I'(X, L*Q®P,), we define an element

g“(s1, Sz, S5, SO=[(51F51) * ($2+352)1®[(s3+53) * (54454
(5131 * (5:—8)1®[(s3—55) * (54—354)]
—[(s1+31) « (54+5)I®[(s2+53) « (55+35)]
—[(5:—51) + (54— 5)1®@[(5,—55) * ($5—5)]
in the symmetric product S*([(X, L?™")")=&*I'(K, M™), where s-t denotes the
image of st via the canonical map

I'(X, L"QP)QI(X, L"QPs) —> I'(X, L*")

and the symbol ® denotes the symmetric product. Then our first result (Theo-
rem 4.1) is as follows.

Assume n=2. Then the kernel of the canonical map
SQ[F(X’ LZn)+] —>F(X, L4n)+

is spanned by {g(s, Sa, Ss, SO)la€(X), and s;e'(X, L*QP.)}.
Using this result, we shall show the following which is the second result
in this paper.
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Let I™ be the kernel of the canonical graded ring homomorphism
S= @ SHI(K, M™) —> I(K, M™).
et =0
Assume n=4. If J denotes the ideal S-1{™ generated by I5™, then we have
) — [

for almost all meZ. Here J3» and 13 denote the m-th homogeneous part of
J™ and I, respectively.

We notice here that the ring homomorphism in the statement is surjective
for n=>2 (cf. Theorem 14 in [7)), and that the result stated above is finer than
that of Theorem 2.1 in in the case when n=4.

In Section 1, we recall some fundamental facts from the theory of theta
functions. Section 2 is devoted to preparations for proving our first result stated
above and we prove it in Section 3. The second result is proved in the last
section 4. The content of this section is similar to that of §2 in [8].

Notation.

For a vector space V over a field F, we denote by S*V the n-th symmetric
power of V. The image, in S™V, of an element a;x --- Qa, in the space
VR - ®V of the n-th tensor product of V, is denoted by ¢,® --- ®@g,. LetV,;
(=0, 1, ---, n) be an F-space and f:V,Q - QV,—V, an F-linear map. If no
confusion occurs, we write v;-vy- -+ -v, for the image f(v:Qv,&Q - Quv,) of
1@ - QuaEVi® - @V

Let ¢ be a diagonal g-matrix with coefficients in Z and dete+#0. For a
positive integer a, we denote by R(ae) a complete set of representatives of
(ae)*Z* modulo Z%#. In particular we write R(a) instead of R(a-1,) in which
1, is the identity matrix of size g. G(ae) and G(a) denote the groups (ae)'Z%/Z*
and a~'Z%/Z*, respectively. For an element p in R(ae) or R(a), we denote by
p the equivalence class in G(ae) or G(a) defined by p. Conversely, for an ele-
ment ¢ in G(ae) or G(a), we denote by § the element in R(ae) or R(a) which
induces q.

For a commutative group G, we denote by G* the character group of G.
For a finite set S, we denote by Card S the cardinality of S.

§1. Preliminaries.

In this section we recall some formulas of theta series and give some ele-
ky
ke
R?*¢ with k&, and %k, in R%. By the classical theta series with characteristic %,
we understand the series

mentary results of even or odd theta functions. Let kz( ) be a vector in
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(1.0) OLEN D)= 5 el Ont kelmt k) + ot ke + RO},

which defines a function holomorphic on both variables x in C¢ and z in the
Siegel upper half space H,={zeM,(C)|'z=z, Imz>0}. Here e(a) for acC
means exp (2r+/—1a). The following four formulas are fundamental ([1]7pp.
49-50 and p. 139):

(L.1) LRIzl x)=0[—k](z]|—x),
1.2) OLk+s](zlx)=e(’s;s,)0[ k](z|x) - for s:(SI>EZ“,
Se
(1.3) ok +zJ<z|x>=e{—§~tzlzzl+tzl<x+k2+zz>}0[kj<z1x+<z, 1,)0)
for l:<§1>eR2g and
QA2 (k4 1)+p
(1.4) OLk1(z|x)-0L](zly)= 2 0[ }(ZZIXJFJ/)
DPER) 2_‘_12
[(1/2)(k1—11)+11]
X 6 (2z|x—y)

for £ and /= R*¢. The following immediately comes from [L.4):

ki+p]

- Litp
(1.5) > X(p)ﬂ[ (ZIX>-0[ ; ](zly)

PER(
2

Q2R+ 1)+
=( > X(pe ](22176—1—3’))
PERE) L kotls

/2 ki—1)+p
X EX(p)al ](Zzlx—y)

PER(2)

2 2

for a character X in G(2)*. We define even and odd theta functions by use of
6[k](z]x) in the following manner:

(1.6) pLk](z|x)=0[k1(z| x)+0[—k1(z| x)
and '
(1.7) CLR1(z| x)=0Lk)(z]|x)—O0[—k1(z]| x)

Then we have easily the following :
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(1.8)  ylklzlx)-nlid(zlx)  (resp. {LkI(z|x)-L[1](z]x))

[(1/2)(k1—11)+19] [(1/2)(k1+11)+1>]
= > 6@ (22]10) -9 2z|2x)
PER™ k2— 2 2 2
[(1/2)(k1+iD)+p (1/2)(ky—1)+p
+(resp. —) X2 0 (2210) -7 (2z]|2x)
PERE) | k2+12 27 b2
and
_ k1+p- ll+p
(1.9 pezﬁl(z)l(p)nl b, _(zlx)-p . (z|x)

_ [kt L+
resp. > ApX (z]x)-C (z]x)
PER®) ks Ly

_ [@/2)(ky—1)+p
= 2 Xp)o (2210)

DPER(2)

2 12

_ [Q/2)(ks+1)+p
><( > X(p)r/[ }(22|2x)
PER®) k2+12

_[Q/2)Xka+1)+p
X(p)ﬁ[ }(2210)

2+2

_ [@/2)ks—1)+p
x| = X(p)v[ A }(221296)

PER(2)

+(resp. —)( >

PER(2)

2 2

for vectors £ and [/ in R?%f and a character X in G(2)*.

§2. Even theta functions.

Throughout this section, we fix a point z in H, and a diagonal g-matrix ¢
with coefficients in Z and dete+0. For a non-negative integer n and a vector

kz(?) in R*%, an entire function f(x) on C*® is called a theta function of type
2

{(z, @), k), if the functional equation

fx+(z, e)s):e{n(—~%‘slzsl—‘slx—ktsk)}f(x)

holds for any s:(zl) in Z*4, We denote by 0,((z, ¢), k) the totality of theta

2
functions of type ((z, ¢), k),. It is well known that
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'—@kz k1+a
0.l (z, o), = B C-0 ](nzlnx)
ekl acR(ne) nekz
_ekz _el2
@n<(2) e)) ( ))'@m((zy 8), ( ))
ek, el,

9 (( ) 1 (—e(nkg—{—mlg)))
C n+m Z’ e ’ .
' n+m\ o(nky--miy)

and that

For simplicity we write @, instead of @,((z, ¢), 0). We denote by @; (resp.
67) the subspace of @, consisting of even (resp. odd) theta functions of type
((z, ), O)n.

We say that a and b in G(2ne) are equivalent if b=-—ga, and denote by
G(2ne)* a complete set of representatives of G(2ne) modulo this equivalence.
Then we have the following which is easily seen.

LEMMA 2.1. Under the above notation, we have

(i) Ofh= & C-v[g](ZnZIan),

acsGzneyt

(i) Om= & C-C[g]@nzian),

aEG2ene)T-G(2)
(iii) dim @3,=2%"'(n¢|dete|+1) and dim ©;,=24"*(n®|det e| —1)
and
(iv) 65,=0%,503,.

For a=G{dne) and X=G(2)*, we put

s
2.1) NaX; a)= 2 X(p)y (4nz|4nx)
PEG(2) L 0 ]
and
o [G@+p ]
2.2) 6’4,1(36,a)~p6%)(2)7((p)1;L 0 —(4nz[0).

Let a and b be elements in G4)—G(2). If a and b are congruent modulo G(2),
then we write a~b. We denote by S(4) a complete set of representatives of
G@)—G(2) with respect to the equivalence relation “~”. Moreover, for a and
b in G{dne)—G(4), we write a=b if either a+b or a—b is contained in G(2),
and we denote by T(4n) a complete set of representatives of G(4dne)—G(4)
modulo the equivalence relation “~”. Under the notation above, we define three

subspaces of ©F, in the following way :
V(2)={9:xx(X; 0) | XeG(2)*} ¢,
V)= 1{n:x; a) | X, a) eG(2)**XS4) with X(2a)=1}¢
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and
W4n)={nX; a) | &, a)eG2)*XTdn)}c.
LEMMA 2.2. Let a be an element in G(4) and X a character of G(2) with
X(2a)=—1. Then we have nuX; a)=0.
Proor. It is obvious that 7., X; a)=79.,»(X; —a). On the other hand, we
have ,

p
Nan(X; ~—a>:pe%3(2)x(ﬁ)7;[ }(4712[4%)
a+p

ZPE%)@)X(‘D)X(ZGM [ 0

}(4712[471 x)

=X2a)n(X; a).

Therefore, if X(2a)=—1, then we have 7,,(X; a)=0. Q.E.D.
LEMMA 2.3. Notation being as above, we have ’
(i) dim V(2)=2¢,
(ii) dim V(4)=2¢"%2¢—1),
(ili) dim W(dn)=225"*(n%|det ¢|—1)
and
(iv) OL=VQ2)PV)DW4n).
Proor. If p is an element in G(2), then we have

XEG(2) XEG(2)* ¢€G(2)

q
> X5 00= > > X(;D+q)77[0}(4nz]4nx)
I:ﬁ]
=24y (4nz|dnx)
0
=2g“t9[;g}(4nz]4nx).

Therefore we have dim V(2)=24. Since p[g](llnzlélnx), asS’(4), are linearly

independent and Card S(4)=2¢-1(2¢—1), it is sufficient for proving (ii) to show

that V(4):{77[g}(4nz]4nx)laES’(4)}C. By the definition of V(4), we see that

V(&) is contained in {5 § | @nzl4n2) |ec 5@}

0 For any a =S5’(4), we have, by
Lemma 2.2,

C.

> X a)= X 905 a)
1EG(2)* xeG(2)* .
1(2a)=1

a+p

](4n2]4nx)
0

=2 > X(P)’?[

pEG(2) XEG(2)*
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d . .
:2g7][ 0 ](4nz|4nx) .

This shows the converse. As for (iii), let a and b be elements in G(4ne)—G(4).
Then we write a<b if b=—a. We denote by T(4n)’ a complete set of repre-
sentatives of G(4ne)—G(4) modulo the equivalence relation “<”. Then we have
Card T(4n) =2%¢-(n%|dete| —1). We easily see that W(4n) is contained in the

space {77[g](élnzlélnx)laeT(zln)’}c. Conversely let a be an élement in T(4n)’.

Then we have a=a,+p, or a=—a,+p, for some a,=T(4n) and p,=G(2), and
have '
> X(Po)774n<x; ao):x 2 x(l)())?%n(x; —a,)

1eq @ cG(2)*

c k do+5
= > X X(Po—l—p)n[ . ](4nz[4nx)

PEG(2) XEG(2)*

do+DPo
:2377[ 0 :l(4nzl4nx)

a
=2g7][ 0 :|(4nz|4nx) .

Thus we have ‘shown (iii). The (iv) is an immediate consequence of (i), (ii) and
(iii). Q.E.D.

§3. Quadratic relations of even theta functions.

Throughout this section, as in §2, we fix a diagonal g-matrix ¢ with co-
efficients in Z and det e+#0, and a point z in H,. For a and b in G(2ne) and
a character X of G(2), we put

(a+5 b+p
3.1 N2a(X; @, b)= > AUp)y (2nz|2nx)®y (2nz|2nx)
pEG) | 0 | 0
and
[@+p b+p
3.2) O..(X; a, b)= > X(p)o (2nz|0)-6 (2nz]0).
PEG(2) | 0 ] 0

Then we have the following which can be proved by the same method as the
proof of Lemma 2.2, so we shall omit its proof.

LEMMA 3.1. Let a be an element of G(4) and X a character of G(2) with
X(2a)=—1. Then we have 1:,(X; a+b, a—b)=0 for any b in G(4ne) with a=b
mod G(2ne).

The following lemma will be used in the proof of and was
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proved by Koizumi ([3] Corollary 1.3).
LEMMA 3.2. Assume n=2. Then, for any (X, a) G(2)* X G(dne), there exists

an element £, a) in G(4ne) such that £, a)=a mod G(2ne) and 0,,(X; EX, a))
#0.

For a character X of G(2) and four elements a, b, ¢ and d in G(4ne) with
a=b=c=d mod G(2ne), we put

3.3) PX;a,b,c, A)=05X; c+d, c—d)nnX; a+b, a—D)
+0:2((; a+b, a—b)neaX; c+d, c—d)
—0:(X; atc, a—)nX; b+-d, b—4d)
—03.X; b+d, b—d)ns(X; a+c, a—c).

Then we have the following :

THEOREM 3.3. Let ¢: S$*OF,—07, be the canonical mapping. Assume n=2.
Then the kernel of ¢ is the linear closure of {P(X; a, b, ¢, d)|X=G(2)*, a,b,c,d
eG@ne) with a=b=c=d mod G(2ne)}.

PrROOF. We denote by I the linear closure in the statement. First of all

we shall show that I is contained in ker ¢. By [L.5) (1.9}, (3.I)] and [3.2), we
have

$PX; a, b, ¢, D)=0:,X; )0inX; A){0:2X; A)un(X; b)+ 042X ; D)0an(X; @)}
005 )05 DI{O:n(X; O)7in; A)+0:2X 5 A)an(X; €O}
— 00X a)04n(X5 {045 D)X 5 )+ 0105 d)pun(X; b))
—0:in(X; D)0 (X5 {01 (X; A)7an(X; )+042(X; €)7an(X; @)}
=0.

Next we shall show that /Dker ¢. We denote by R the disjoint union of G(2)*,
(G2Y*XS@)Y ={X, a)|(X, a)=G2)**x S4), X(2a)=1} and G2)*X T (4n). Then we
define a map F: R—&20%, in the following manner: For each (X, a)=G(2)*
X G(4ne), by we have an element £, a) in G@ne) such that a=
E(X, a) mod G(2ne) and 6,X; X, a))+0. We take a as &, a) if 0,,(X; a)+#0
and may assume that §(X, —a)=—&X, a). Then we put F((X, a)=7:.X; a+
EX, a), a—&Q, a)) for (A, a)= R. We denote by W the linear subspace of $2603,
spanned by the set {F((X, a)) | X, a)eR}. Then we see that ¢|y: W—0%, is
an isomorphism. In fact we have

PFX, a)=0:; a)naX; X, a)+ 00 EX, @)1 ; a)

{ 2:0,,,X; a)nanX; a) if 0.,,&; a)+0
T 0.0 B ) pen®; @) i 0,a(X; @)=0.
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Since {74X; a) | (X, a)=R} is a basis of @, we see that ¢|w is an isomor-
phism. Now we shall show that S$*@;,=WEBI. It is easily seen that S$2@jF, is
spanned by {7..(X; a, b) | X&€G(2)*, a, beG(2ne)} ; hence by {9..(X; a+b, a—0b)|
1eG@)* and a, beG(dne) with a=b mod G(2ne)}. Let a and b be elements in
G(4ne) with a=bmod G2ne) and X a character of G(2). Set a=a,+p, and
b=be+qo with py, go=G(2). Then we have

PX; a, b, &X, ao)+po, X, bo)+qo)

=05 EX, ao)t+po)0in; EX, bo)+qo)nealX; a+b, a—D)
0.5 @)04n(5 B)N2n(X; X, @o)+potEX, bo)+Go, X, ao)+ po—EX, bo)—4go)
— 0.5 )04n (X5 XL, @o)t po)nan(X; bo+EX, bo), bo—EX, bo))
—0:a(; 0)0.15(X; X, bo)+q0) ek ; a0 t+£X, ao), ae—EQX, ay))

=1 (resp. 2)X0,a(X; EX, ao)+p0)0in(X; EX, bo)+qo)nsn(X ; a+b, a—b)
— 0K a)0n(X5 EX, @o)+ po)nen(X s bo+EX, bo), by—EX, bo))
— 0.5 0)0.n (X5 EX, bo)+qo)n2n(X; ao+EX, ao), as—EX, ao))

if 04(; a)8.,(X; b)=0 (resp. 8.,,(X; a)0.,,(X; b)+0). If X, a,) or (X, —a,) is con-

tained in R, it follows that F((X, a,) or F((X, —ao¢)=729a; ao+EX, ao), ao

—&(X, ay). 1If a, is contained in S4) and %(2¢,)=—1, then we have, by Lemma

3.1, e aot+EX, ao), as—EQ, a,))=0. Similar results hold for b,. These argu-

ments show that 7,,(X; a-+b, a—D) is contained in WPI. Q.E.D.
Now we shall give another system of generators of the space ker ¢. For

s; and s, in R(2), we write 6@,(s) instead of @n((z, e), L(——52)) in which s=

n\ s
(Sl). Then we see that
Sg

@n(s)'@n(s)C@zn:@m((Z, e), 0).

If f=f(x) is contained in @,(s), then f=f(—x) is also contained in @,(s). For
f:€0,(s) (=1, 2, 3, 4), we define the element

(3.4) 9(f1, for for [O=LAFTD) « FotFIIOL fot-Fo) » (fat o]
L f—T) + (fo—FIOLfs—F) + (fa—FD)]
—[fih D)« (f AT fot Fo) + (fotFo)]
—[(fi—=F) « (fe—=FOIOL( fo—To) * (fo—T)]

in the 2-th symmetric power S20;,. Then we have the following:
THEOREM 34. Assume n=2. Then the kernel of the canonical map ¢ :*S*O3,
—Of, is the linear closure of
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{6 for £ £

sz(:) with R and f;£6,(5)} .

PROOF. It is obvious that ¢(¢*(fs, fa, fs, fe))=0. Leta, b, c and d be ele-
ments in R(4ne) such that ¢=b=:¢=d mod G(2ne), and let X be a character of
G(2) and s,, s, elements in R(2). Then four even theta series

[a+D+c+d+s,T fa+b—c—d-+s,

7 (nz|nx), 9 }(nZInx%
| Sg | L Sa
fa—b+c—d+s,] fa—b—c+d-+s;]

Ui (nzlnx), i (nz|nx)

Sa ] L Sz i

and four odd theta series

[a+b+c+d+s,] 'a+b—c—d—l—sq
£ (nz|nx), ¢ (nz|nx)
L Sa i L Sy i
—a-—-b—i—(;'—d—’rslﬁ -a"—b"“C“}_d“l"Sl-
¢ (nzinx), ¢ (nz|nx)
Ss i L S |

4

are contained in @nCl), in which §,=ne(a+b-+c+d-+5,)=G@2). We have easily
2 .

the following: for p and ¢ in R(2),

> )e(—4‘asz)e(2ts2(a+b+p+s1>)e(2‘sz(a—b+q+sl))

3261.3(2
= 2 e'sy(ptq)
$2ER(2)
=2% (resp. 0)
if p=gq (resp. p#q). Therefore we have
a-+btct+d-+s, a+b—c—d+s,
> Xy 826%me(—él‘asg) v/ (nzlnx)y (nzlnx)

$1ER(2) S5 Ss

a—b+c—d+s; a—b—c+d+s,
@{77[ ](nzl nx)p[ }(nzlnx)}]

32 SZ

S1ER(2) $2ER(2) pPER(

ct+d+p a+b+p-+s;
(0[ 0 ](2112!0)7][ 0 ](2nz[2nx)

= 2 U5 X e(*4‘asz){ §Zje(2‘sz(a+b+p+sl))
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a+b+p+s, ct+d-+p
+0{ 0 :|(2nz[0)7][ 0 ](2nz|2nx)}

c—d+q
]<2nzlo>rz

a—b+q+s; c—d-+gq
—I—B[ 0 }(2nz|0)7][ 0 :|(2nz|2nx)>}

c+d-+p c—d+p
=2¢ 3 X(§1){0[ 0 }(2712]0)0" }(2112]0)
0

{a—b+q+31

@{ e(2‘sz(a—b+q—i—sl))<0[ (2nz|2nx)
qeRT®)

D,81€ER(2)

X7 (2nz|2nx)®y

[(1 +b+f)+31:|
(2nz|2nx)

[a_b+p+31}

r+d+p a—b+p+s, a+b+p+s;
+6 ](271210)49 (2nz|0)y (2nz|2nx)
0 0 0
c—d+p a+b+p+s, c—d+p
@77[ ](anIan)—}—ﬁ{ }(2712[0)0 }(271210)
0 0 0
c+d+p a—b+p+s;
Xn[ 0 }(2nz|2nx)@77[ 0 }(2nz[2nx)
a+b+p+s, a—b+p+s; ct+d+p
—}-0[ 0 ](ZnZIO)ﬁl 0 }(2712[0)7)[ 0 ](anIan)

c—d+p
@77[ 0 }(2nz|2nx)}

=2g{02n<x; c+d, e—dneall; G+b, a—0)+00n(X; a+b, a—b)pen(X; ¢-+d,c—d)

_ Jet+d+p c—d+p

+ 2%(1))0[ 0 j|(2nz|0)77[ 0 ](2nz|2nx)
_ [a—b+p a+b+p

@( > X(p)ﬁ[ 0 ](2712[0)77[ 0 }(anlan))

DPER(2)

_ Je—d+p ct+d+p
+(pEZR)(2)X(p)0[ 0 jl(an]O);yli 0 ](anIan))

_ [a+d+p “Ta—b+p
@(pe%z))((p)ﬁ{ 0 }(2112]0)[ 0 ](2nz]2nx)>}.
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By similar calculations, we have the following:

a+b+c+d+s, a+b—c—d+s;
> 1(51)8 6%(2)8('—4%182){(:[ }(nzlnx)C[ }(nzlnx)}

S1ER(2) SZ 32

a—b+c—d—+s, a—b—c+d+s;
@{C[ ](nz]nx)C{ ](nzlnx)}

S S

:28{0”(%; c+d, c—d)nen(X; @+b, a—b)+ 0005 a+b, a—b)1ea(X; ¢+d,i—d)

_ [et+d+p c—d+p
—( > X(p)ﬁ[ ](2?12]0)7][ }(2112[2nx)>
PER(2) 0 O

_ [a—b+p a-t+b+p
@(EZ(p)ﬁ[ 0 }(27@2[0)77{ 0 ](2712[271)6)

DPER(2)

_ [e—d+p c+d+p
——( > X(p)ﬁ[ }(2712[0)7][ }(anlan))
PER(2) 0 0

a-+b+p a—b+p
@( > X(ﬁ)ﬂ[ 0 }(2712[0)77{ 0 }(2nz|2nx)>}

PER(2)

and

at+b+t+ct+d+s;
> XE) X e(—4'asy)|{y
$1€ER(2) SoER(2)

}(nzlnx)

a—b+c—d+s,
X;;[ (nz|nx)

Se

a+b—c—d+s, a—b—c+d-+s;
@{77[ }(nz}nx)n{ ](nzlnx)}

Se Se

a+b+ct+d-+s, a—b+tc—d+s;
+{C[ ](nZInx)C[ }(nz{nx)}

So S2

a+b—c—d+s, a—b—c+d+s,;
@{C[ }(nzlnx)Cl ](nzlnx)}}

Se Se

Sg

:2g+1{62n(x; b-+d, E—a)ﬁzna; a+:c, a—c)

+0onl; G+E, G—E)nan(t; b+, 5—5)}.
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Therefore we have
1

'2‘5,1‘31,32263&2)%(51%(—4‘6132)4“"
a-+b+tct+d+s; at+b—c—d-+s;
g ](nz nx), 0 (nz|nx),
Sy So
a—b—c+d-+s; a—b+tc—d+s;
7 ](nzlnx), g (nzlnx)
Sg Sz

=0,0(L; ¢+d, E—d)9enl; @+, a—b)+0en(X; a+b, a—b)7ea(X; ¢+d, c—d)
— 050X ; b+d, b—d)nenX; G+C, a—0)—00n(X; G+C, G—E)en(X; b+d, b—d)

=P(X;a,b,¢ d).
Here s'=("@ TV ECHETI) hence, by we see that (((fi, fo
2
f3, fo | $i€R(2), f;€0,(s)} spans the kernel of ¢. Q.E.D.

§4. The structure of the homogeneous coordinate ring
of a Kummer variety.

Let X be an abelian variety over the complex number field C. We denote
by P the Poincaré invertible sheaf on the product of X and its dual X and by
P, the restriction P|x.a for acX. Let ¢: X—X be the inverse morphism
defined by x——x. An invertible sheaf L on X is said to be symmetric if
¢*L>=[. We may then assume that an isomorphism f:(*L—L is normalized,
i.e., f(0): L(0)=¢*L(0)—L(0) is the identity, where L(0) is the fiber of L at the
origin. We denote by [—1] the canonical involution of I'(X, L%) (a=Z.) in-
duced by f and ¢. We put I'(X, L®)*={sel'(X, L*) | [—1]s=s}. Then we
have the following lemma:

LEMMA 4.1. Let L be an ample symmetric invertible sheaf on an abelian
variety X. If a=3, then the canonical map

I X, LY*QI'(X, L*®P,) —> ['(X, L**QP,)

is surjective for any acX.

The proof of this lemma is given by Koizumi (2] Appendix) in the case
where dim I'(X, L)=1 and the general case is proved by the same method as
the proof of Theorem 1.4 in [7].

Let K be the Kummer variety of X, i.e., the quotient of X by the group
{1, ¢}, and n: X—K the canonical surjection. Let M be an ample invertible
sheaf on K and L==*M. Then it is well-known that L is of the form (L,)?
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for some ample symmetric invertible sheaf L,. If « is contained in the sub-
group (X), of X consisting of 2-division points, then L*Q@P, (n€Z) is also
symmetric. For ae()'(\')2 and s;€I'(X, L?®P,) (1=1, 2, 3, 4), we define the ele-
ment

g0 (s1, Sa, Sg, S)=L(81151) ($2+52) J®[(5+53) (s4+5,)]
+L(51—51) (52— 52)I®[(55—54) (s4—5.)]
— (1451 (54+5)1®[(s2+352) - ($5+35)]
—[(51—581) (54— 5)1®[(s2—32)* (55—355)]

in the symmetric product S*(I'(X, Li")")=&*(I(X, L™)*), where §;=[—1]s;. We
here notice that I'(X, L™* can be identified with I'(X, M™) via the natural
injection n*: I'(K, M™)—I'(X, L™). Then the following is just algebro-geometric
translation of

THEOREM 4.2. Assume n=2. Then the kernel of the canonical map:

SX, LM — I'(X, L*)*

is the linear closure of {9“(si, Sz, Ss, S4) | acs(X), and s,elX, L'QP,)
(=1,2, 3, 4).
Let s;, sz, s; and s, be sections in I'(K, M™). Then we define the element

7(S1, S, S5, SO=(81°$) (S5 $0)—(81°5)@(85° 55)
in SEI'(K, M*™).
LEMMA 4.3. Assume n=4. Then the kernel of the canonical map:

SH(K, M*™) — I'(K, M*™)

is the linear closure of {r(si, Ss, Ss, Su) | Ss€I'(K, M™) (i=1, 2, 3, 4)}.
Proor. We identify I'(K, M™) with I'(X, L™*. For t;, t,=l'(X, L?)*; s, S;
el'(X, L**Q@P,); t,, tie'(X, L™ 2*; s, s,eI'(X, L*QP,) (a=(X),), we have

G ®(t1° Sy, ta* Sa, t3* Sg, 14 Sy)

=[t1-(51F351) 12 ($2+52) @[ty (55155) - 14+ (54+54)]
F L (51—51) 1o+ (52— 52) J@[ts- (55— 55) £4* (54—5,)]
=t (51480 14 (54 8)IO, - (554 55) - 15+ (551 55)]
—[t1-(51—31) 14+ (54— 512, (55— 55) 25 (55— 53)]

=[t1-ts(51+31) (S2+32)J®ts- tar (S5+55) - (54+5,)]
—[tirta-ts 8 I@L(s1+51) (52+50)* (857+55) (54+5,)]
+ [t te 251 J®OL(s1451) (So+32)* (S5+30) - (s4+5,)]
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—[t1- 24 (5150 (84 +5)1®[ts 5+ (527+52) - (554 355)]
+ L1ty (51—581) (52— 352) @[t 2+ (55— 55) (5,—5,)]
—[t1tats- 2 J®[(s1—351)*(S2—54)* ($5—54) - (s4~5)]
Lt tats £ JOL(s1—51) (52— 52)* (55— 353)* (54—54)]
— [t 24 (51—581) (54—8)1®[ty 15 (52—52)* (S5—55)]
=7(t1+ta, (S50 (S2+52), (Sa+5a)- (84+34), ts-20)
+r(tiely, tor by, (S2+52)(S5135), (51+81)(s4+54))
+r(ti-tyy (S1—51)(Sa—352), (S3—54):(S4—350), ts-t,)
+r(ty-ty, tortsy (S2—52) (S5—353), (51—51)-(54—54)) .
Since L=(L,)?, by Lemma 4.1, we see that the canonical maps:

I'(X, LY*QI'(X, L**QP,) —> I'(X, L*QP.,)
and

I'X, L™ **QI'(X, L*QP.) —> I'(X, L"QP.,)
are surjective for any a=X. Let uy, us, us and u, be any sections in I'(L*"®P,)
(as(X),). Then, by the above surjectivity, we see that each u; (i=1, 2, 3, 4)

takes the form of
ue= St s

J
in which t, tPel(X, L)*; tP, tPel(X, L*»)*; s, sPel(X, L"*QP,);
s, sshel(X, L*QP,). Therefore we have

— j k ! l
q(a)(uly uZ; uﬂr u4>_j kzl]mq<a)(tfj)31(j), ték)Sé ): t3( )Sé )7 tim)sim)) .

Hence by and the above arguments, we see that {r(s;, Ss, Ss, So)|
s;eI’'(K, M™)} spans the kernel of the map: S2['(K, M*")—»I'(K, M**). Q.E.D.
Let 7™ be the kernel of the canonical map:

SE(K, M™) —> I'(K, M™%).

Then we have the following which is the essential part of [Theorem 4.5
LEMMA 44. If n=4, then we have

Im=Im™. ST (K, M™).
Proor. It is known that
ST(K, MM/I{™-SPT(K, M™)=S¥S*T'(K, M™)/I{™)/],
where [ is the linear closure of {r(si, Ss, Ss, sO|s;€l'(K, M™)} (cf. [1], Chapter
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IV Lemma 9). On the other hand, we have

SH(K, MM/ I =T'(K, M**)
and

STT(K, M™/I™=T'(K, M*").
By we have

SET(K, M2/ J=T'(K, M*").

Thus we have the equation in the statement. Q. E.D.
Let I be the kernel of the canonical graded ring homomorphism :

ST(K, M™= @OSkF(K, M™) —> ’§_§0F<K, Mmhy.

If n=2, this is surjective (cf. Corollary 1.5); hence SI'(K, M™)/I®™ is the
homogeneous coordinate ring of the projective variety @q.(K) where @y :
K—P(I'(K, M™)) is the closed immersion associated with the linear system
'K, M™). Let J* be the homogeneous ideal I{®-SI'(K, M™) generated by I{™.
J& denotes the homogeneous part of degree k2. Then our second result of this
paper is the following :

THEOREM 4.5. If n=4, then we have

(1) w=IP for any positive integer r,

(ii) Jim=Im for almost all k.

Proor. It is known that (ii) comes from (i) (cf. Chapter IV Lemma 3).
Using [Lemma 44, we can prove (i) by the same method as the proof of Theo-
rem 4 in Chapter IV. Q.E.D.

DEFINITION. A subvariety XCP" is said to be idealtheoretically an inter-
section of hypersurfaces H,, ---, H, if set-theoretically

X=HN - NHn

and every x<X has an affine neighborhood U in P™ such that the ideal I(X)
of XNU in U is generated by the affine equations fy, ---, fn of Hy, ---, Hp.
By means of this definition, we can restate the above theorem in the fol-
lowing form:
COROLLARY 4.6. Let M be an ample invertible sheaf on a Kummer variety.

If n=4, then the projective variety @ya(K) is ideal-theoretically the intersection
of quadrics.
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