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1. Introduction.

It is our aim in this paper to give some refinements of theorems proved by
Hall [6] and the first author [9] on some sums involving Farey fractions.

Let F, (neN) be the Farey series of order n, that is, the set of all irre-
ducible fractions between 0 and 1 with denominators <n and arranged in the
increasing order of magnitude: F,={h/k|0<h<k=n, (h, k)=1}; for any term
h/k (<1) of F, we denote by h’/k’ its successor in F, and by @, the set of
all pairs (k, k') of the denominators of such consecutive fractions in F,. For
any function f: NXN—C, writing

Sa= 2 f(k, k),

Ck, k")EQy

Lehner and Newman proved the sum formula (see also Mitsui [14], pp.
106-109)

(n Se=f(L D+ 3 5 Uk, N1, k)= f (b, r—h).
(k,T)=1

The interest in this formula arises due to the fact that a sum involving
Farey fractions is transformed into one which does not. Lehner-Newman
and the first author [9] discussed, among other things, the applications of the
sum formula (1) to the evaluation of certain infinite series. Recently, the second
and third named authors made use of an extension of the sum formula (1)
(to be found in Apostol [1], p. 111) to proving several identities involving Rie-
mann’s zeta-function and, in particular, those of Briggs, Chowla, Kempner and
Mientka [2], Gupta [5], Hans and Dumir and Williams [2I] In section 2
of this paper we state refinements of the first author’s sharpenings of Hall’s
results and establish some preliminary results for the proofs of these results.
The preliminary results obtained in section 2 also enable us to sharpen various

1) This author was supported in part by Grant-in-Aid for Scientific Research (No.
474032), Ministry of Education.
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results due to Lehner-Newman and Mikolas [13], which will be carried out
in our forthcoming paper with the same title. In section 3 proofs of theorems
are given.

2. Statement of theorems and prerequisites.

Hall considered sums defined by

Salmy= B (kk)™

k'YEQp

for integral m=2 and established the following
THEOREM (Hall). As n—oo, we have

_ 1 0@y, o logn

) Su@=—5 5 {log n+C+ 5 — 2o 4+ 0(25s),
{(m—1) log? n

®) Sum=2 S O( ), for m=3,

where 6 is 0 or 1 according as m=4 or m=3, C is Euler’s constant, { is the
Riemann zeta-function and {’ its derivative.

Recently, the first author refined Hall’s result (2) above by proving that
the O-estimate for the error term could be reduced to O.n3**"(n)u***(n)) for
each ¢>0, where ¢t and u are abbreviations for log and log log of the variables
considered, and the meaning of 7 will be clarified in the proof of its
best known value being 2/3. Also he noted that Hall’s result is best possible
in the sense that the error estimate is given by O(n-™-'t%) by proving that

Lm—1) = 36t 1 -
Salm=2-5 =+ C(Z)n4+0<n"‘“ ), for m=3.
In section 3 we establish the following sharper results:
THEOREM 1. For each ¢>0, we have, as n—oo
12 1 @ 4U(n)t tut*e
Sui@=—{+C 5~ ) b o (M),

where t=t(n)=log n, u=u(n)=loglogn and U(n) is given by (7).
THEOREM 2. For each ¢>0, we have, as n—oo

5= BB BB e L ED o)
UM | [
+ T n Oe< ";{'5 “) )

where for 2>1
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@ camy= 3 1 p(1),

m

and ¢, u have the same meanings as in [Theorem 1.

Now we fix some notation, recall some known results and establish neces-
sary lemmas. Let p(n) denote the Mobius function, ¢(n) the Euler totient func-
tion and for ne N, P, (v) the periodic Bernoulli polynomial of degree n, so that,
in particular, P,(v)={v} —1/2 and P,(v)={v}?>— {v} +1/6 ({v} being the fractional
part of v). Further, we write

— X

o« ) x
© Ho=27, O

o« M) L x
(7) U(X)——néw n Pl(;;) '

In order to make the error estimates as good as possible appearing in the
lemmas below we shall use the following two best known estimates concerning
U(x) and the average of the Mobius function due, respectively, to Saltykov [17]
and Walfisz [20], although we do not need such deeper results for the proofs
of our theorems: For each ¢>0, as x—oo

® U(x)=0.2(x)),
where

©) A0)=2L)=tTute,
and

(10) M(x)= 3 p(n)=0(xd(x)),

as x—oo, where

an O4(x)=exp (—At¥/5u~1/%),

A being a positive constant, not necessarily the same at each occurrence
(Walfisz [207, p. 191 and also p. 181).

What we actually need is, as far as the order estimate is concerned, that
Ax)=0(x%) for some a<[0, 17,

and
o(x)=0"%), xo(x)11.

We make good use of the following
LEMMA 1 (Euler-Maclaurin’s summation formula, cf. Rademacher [16], p. 14).
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Let a<b be integers, n a positive integer and f€C™[a, b]). Then

(= l)Bk

3 ri =] fodx+ B P04 a)

+(_—711)F1S1Pn(x)f‘"’(X)dx :

where B, is the k-th Bernoulli number determined by z/(ez—l)::éz(Bk/k Nz*.

The following result should be compared with that of Pillai and Chowla [15]:

LEMMA 2. Let {a,}5-1 be a complex sequence such that |a,| <K< and
7 :[3, 00)—=R* be a function decreasing to zero, with xn(x) increasing for large
x. For x=3, 1Q=x, write

X 2
0x, Q= T anl>} -
If Zan O(xn(x)) as x—oo, then 6(x, Q)=0(xn(x)) uniformly in x and Q,

where 1:(x)=(n(x N34+ (n(x)) 22 p(x((x))**).
ProoF. Let ;=[(5(x))"!/*] and suppose that Q=x7,(x) since otherwise the
lemma is trivial. We have

0x, Q=( T + = >+ = afif

nsxf/t jtlsksi-1 T/(k+D)<nsx/k  2/(G+1)<nsQ

where j=[x/Q]. Noting that {x/n}=(x/n)—k for n satisfying x/(k+1)<n
=x/k, we have

12 0, Q<F+x* B [Sx,Dl+2x 3 kIS B+ 2 kIS B,
jsksi-1

Jsksi-1 jsksi-1
where
an an,
Sl(x, k): T SZ(x) k): E R SS(X; k): 2 an,
nEly N nElp N nEly

with I,=(x/(k+1), x/k] for j<k=i—1 and I;=(x/(+1), Q1.
Since xxn(x) is increasing and x(x) is decreasing for large x, clearly for
jsk=si—1

(13) Si(x, B)< %7](}5—)

Since 2 a,=0(xn(x)) as x—oo, we deduce, by partial summation, that for
J<k=i—1

Sux, B)<n(5),

while for ;=%
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So(x, k)=

x/(J+1)<nsQ n 7]( )

so that for j=<k=<i—1
X
14) Sux, B<y().

Again, by partial summation, we have for j<k=i—1

(~J

Six, B)K

while for j==#k

(F)
x/i

so that for j<k<i—1

x
7(5)
x/t
Collecting (12) through we obtain

(15) Silx, )X

X | ., (X
(16) 0(x, DK +xi 7y<7—).

Since i=[(n(x))"'/*], the lemma follows from
LEMMA 3. As x—

a7 E(x)=—xU(x)+0(x0 4x))
and ‘
(18) H(x)=—U(x)+0(04x)),

where E(x), H(x), U(x) and 04(x) are as given in (5), (6), (7) and (11), respectively.
PrROOF. Using the well-known identity o(n)= > wp(d)d, we have
do=n

O(x)= 3 g(m)= 3 pld), 3 9)

X

- Bl r()HE -54[)

(19) —2(5 4D 5 MOV o
>z
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by (7) and the well-known dZ p(d)x/d]=1 for x=1.
=T
Now by partial summation and we obtain dg 1(d)/d*=0(x"04(x)) and
Spd))d== 3 p(d)/d=0@4(x)). Further by and we find

Z,‘,u(d){x/a’}z O(xd4(x)). Using these in [19) and noting (5), we obtain
Further, we have

(n) _ » d) [ﬂ

nsxr N T dss d
=247 G-(3)2)
(20) C(Z) —U(x)+004x)),

so that (6) implies This completes the proof of

REMARK 1. From follows a refinement over Pillai and Chowla’s
result [15], namely, that E(x)—xH(x)=o0(x). Using different arguments, and, in
particular, the fact that F(x)+o(x log ) due to Pillai and Chowla [15], Surya-
narayana has recently deduced this refinement.

LEMMA 4.

S 20 3

More precisely, as x—o0

@1) Sl E(t)

dt= —+O(5A(x)) .

Proor. In fact, by partial summation, together with (5)

y #)_ Br \ EG) 3 (D

nsz N T X T

E<t) ——=dt.

1

Comparing this with and using (18), we obtain the lemma.
LEMMA 5. For positive integral n and each ¢>0, we have as x—oo

Bu0= 3 Hmm_ 5

mnsx MN - 2¢(

+05(25(x))

uniformly in x and n, where ¢(n) is the Dedekind -function defined by ¢(n)=
> pHd)Y0=nTIL(1+1/p), the product ranging over all prime factors of n and

do=n pin
A(x) is given by (9).
PROOF. Let p be a prime such that (p, n)=1 and a€N. Then
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@(mn)

asx Mn mnplsx MN
=1 m

S0y B 5 gy, s gl
mnp

p sz mn mnpaszr WH mnpasz MH
rim pim

O e IR T NE B

Taking a=1 in we get inductively

6usr=(1- 1) E )

where c¢=[log x/log p]. Thus, by again
B=(= D)o 2 )= 1) S )

23) (1—;) 500 (pw).

The lemma is true for n=1 by (8) and Suppose the result to be true
for 1=N=n—1 (n=2). There exists a prime p such that n=Np¢, (p, N)=1
and 1=N=n—1. By induction hypothesis, we have

6x

D y(x)=——~ (N +0(A(x))

uniformly in x and N. Thus by

6x(1—p7") &

P ()=, o(x)= 2 (N ) pa 27 +00— P'I)X(X)Z;b ")

6x
=——+0(A(x)),
(ORI
which proves the lemma.
COROLLARY 1. For positive integral n and each ¢>0

On()=_ 3 glmm=— s +0(xA(x)

2gb( d(n)

uniformly in x and n.
ProOF. This follows from the theorem of partial summation and [Lemma 5.
LEMMA 6. For s>1, we have, as x—co
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fr HOlogt 4, YOG+ L s
1 AR sC¥(s+1) sC(s+1) s¥(s+1)
_ 1 log x
e o

PRrROOF. For an integer n>0 and real s>1, we have, by the Euler-Maclaurin
sum formula

PN 1 1 s 1
m ““C(S) (S__l)ns—l + zns 12n3+1 + O( ns+3 )’

so that for real x=1 and s>1

I 1 1 s 1
I | % S L 1) S o )
N S £ R {x}ye
=)= e\ o)t 2xs\ )
—*12”;3:1( {x}) Oz
B 1 Pl | o PA®) 1
@4 = et T e +- L e+ 0( 5 =)

on simplification. Similarly we have for real x=1 and real s>1

10g n , Pi(x)logx 1 _ t 1
@) == G—Ipx 1 (s—Dx* +O(?{5)'

Now we have on the one hand, by (6) and partial summation

pm)logn 1 (= HO) H(t) logt
I (s—1%E(2) gl g dits S g
26) e H(x) logx 1 log x

x* L@ (s—1px* T (s—DE@)xs T

H(t)
Sx,f_lgt it 0(~—~1—9fs" )

ts+1

after simplification, where in the above the integrals converge in view of the
trivial estimate H(x)=0O(log x).
On the other hand, we have
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z fnogn _ 5 mdled 5 5
n=T asx sz/d
+ 3 B8 3 5 10g )
(27) :Sl+S2:

say.
By using we find

EAYD
simp M DTy

E*(s+1) (s—DC(s)x**  «x*
+0(x"*log x),
where in the above we used dgd‘s")u(d)logd = (0(x*log x) and that
dgl d=*p(d)log d=C'(s)%(s) (s>1).
Similarly, by using (25), we get

(28) — C(S)C’(S+1) _ C/(z) 1 ; /l(d) logd P1( )

_ e log x 1 e 1
(29) ST T D =@t T (s~1)x“1(CZ(2) (s—l)C(Z))

_U_(x)lfgx Zﬂ(d)logdpl(d>+0<logx>’

x x%dsz d

where in the above we used i;lp(n)n -5=1/{(s). Thus by [27), (28] and [(29), we
obtain B

gmlogn  LXGHD | () logx
(30) 2w T B GetD | Go1e@
1 U(x)logx log x
T @x +0(=%").

Comparing the right sides of and and letting x—co, we find, for
s>1 ’

L Ht) H(t) logt
(s—1)¢(2) Sl g dEFs S et
(31) _ LT+ L)

CA(s+1) Cs+1) -
Again comparing the right sides of and [(30) and on using together



134 S. KanEMmiTsu, R.S.R.C. Rao and A.S.R. SarmA

with we deduce

(32) | H®)logt ;, =0('%*).

z ts+1

According to and to prove the lemma it is sufficient to show that
for s>1

@ H@) . sy 1
(33) S i U ) T =)

In fact, on using (6) and partial summation, we get

o(n) s _ 1 = H(t) log x
2 T G102 =D “Sl pre 4t of X )

By letting x—oo in the above, we get in view of i o(n)/n**=L(s)/{(s+1)
n=1

(s>1). This completes the proof of
REMARK 2. Since H()=0(logt), the integrals ST ﬁgtl) = H@) log t

dt and {508 4y

both converge absolutely and uniformly on every compact subset of the half-
plane {s€C|Res>0} and hence define analytic functions. Thus by
and analytic continuation we obtain: For any s=C with Re s>0,

S“H(t)logtdt: CX(s+1)  L(s) &s) 1

T A sC(s+1) sC(s+1) = s¥(s+1)  (s—=DX(@2)°
[0 gy SO L
A sCs+1)  (s—1)X2)’

so that, in particular, STH(t)t‘zdt::C‘l(Z)(C-—1—C‘1(2)C’(2)).

LEMMA 7. There exist positive constants ¢ and d such that for any a<[0, 1]
and any reN

log p r\
< S _ <
¢ log r_pér ’ (log ) =dlogvr,

where the sum ranges over all primes =r.
Proor. It is well-known that #(x)= ; log p=0(x) (Hardy and Wright
psx

[8], Theorem 414). Hence oo
S log p log—r—zgrﬁ(t)t'ldz‘:O(r) ,
pET p 0

which in turn yields by partial summation

r\1
pZé)T log ;b(log E)—‘; =0(ogr).
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This together with the known p‘:"‘ (log p)/p=log r+0O(1) (Hardy and Wright
Theorem 425) shows that for a=[0, 1]

logp T\ logp( T logp
> ) <log p> éngT/e (log p)+ > Llogr.

psr b rie<psr D
Further

log p \® logp
z" <10g ﬁ) z, 3 — F=logrtow).

This completes the proof of the lemma.

LEMMA 8. Let k=N, t(k)z%(y(d)/d)log(k/d) and T(x)zk‘é} k). Then
for each >0, we have, as x—oo

_ '@ 1+e
Tw=¢, ){ —1— Sl L Ho log x-+0.(tu ).
Proor. Firstly, we note that
_ k d)logd  logp
(34) ak)=— B(k) 2 4 T At p—17

the extreme sum on the right extending over all the distinct prime factors of k.
We remark parenthetically that Davenport was the first to discuss system-
atically the function a(k). follows on noting that the functions involved
on both sides are additive and coincide with each other at arbitrary prime

powers. Secondly, we note that by [17), and the fact that ()
=((logt)™?) as t—oo

Sl H() dt_o(ng E(t) dit O(S 940 )
(35) =0(1).
Now by we obtain
(36 Ty= 3 thy=3 FOLBE, 5 $RE) g 15,
say. By the theorem of partial summation and [(35), we have
(37) Si= g — gy H() log x+0(1).

Further by [34)

¢(pd) logp

¢(0) log p

Hpas.r 0 o pés
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Now using successively (6), the fact that H(x)=0.(41.(x)) for each
¢>0 (which is an easy consequence of (8) and and we find

=70 (2 o) o (205 ee 5) (o 10s 5))

/ Iog ;b Iog x
_L@) 14e
(38) ) £+ 0 (tu*e).

Collecting and (38), we conclude the assertion.
LEMMA 9. For x=3 and 1=Q=x, write

(39) Ux, Q=3 #0) p(Z),

Then for each ¢>0
(40) Ux, @)=04(x))

uniformly in x and Q, where A(x) is given by (9).

Before establishing Lemma 9 we shall explain the meaning of y. Consider
the polynomial f(y)=a,y+ -+ +a,+:y""* part of whose coefficients are rational,
say a,=a,/q (v=s+2, -+, 3s; 1=s=(n+1)/3) and by 4; we mean the determinant

det ((S+;+] )as+i+j)l - of order s. Assume that if 6 is a fixed number in
FYAVEY

the interval 0<6=<1/3; 0n<s<(n-+1)/3; s+1=r=<2s5(1—0); g=p"; (4;, ¢9)=1, then
the following estimate holds:

@1) 3) exp (2rif(y)<exp Con )P0,
p3

where 7,=0, 7,=1, 1+7.>7, and the constants C; and C, depend possibly on 0,
71 and 7,. With these 7;s we define y=(r1+7.)/(71+7.+1). It is known due to
Korobov [10] that (41) is valid for the choice 7,=0 and 7,=2, thus yielding the
best known value y=2/3.

ProOOF OF LEMMA 9. First let x be an integer. If Q=exp (BA(x)), B being
a constant depending on d, 7; and 7, then (40) follows trivially. If exp (BA(x))
<Q=xexp(—+/t), then we write

Ur, @=( 3 4 % H8p ()
n

nsexp(BA(x))  exp(BA(TNnsQ n

and divide the range of n of the second sum into O(t) subintervals of the form
(2¢'M, 2°M7]. Now Saltykov’s result (eqn (55), p. 49)
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@ 3 #1 p(X)=00,

n=M N

valid for M, M’ satisfying the conditions M<M’'=2M, exp (BAx)=EM<M'<
x exp (—/1 ), will prove

Finally, if xexp(—+/)<Q=x, then in view of the above it is enough to
consider

0 p(BNevr,

r2xp(-~t)<nsQ N n

which proves the contention.
If x is not an integer, we note that

Ulx, Q=U(x], @)+0Q1),

which completes the proof of the Lemma.

3. Proofs of theorems.

PrOOF OF THEOREM 1. Taking f(x, y)=(xy)™® in the sum formula (1), we

obtain as in [9],
S.(2)=1—4 227’ N kl=1—4 ﬁzr—w,

k=1
(k,T)=1

say. Since, by definition, S,(2)=0(1) as n—oo, we have
43) Su(2)=4 ilr—as;.
r=n+

It may be noted that the above argument also proves the identity > 7% > £
r=1

=5/4 to be found in (Corollary 1) and (eqn. (1.10)).

(k,T)=1
Now using the formula

-

s 1 1
-1 -
3 k=log rtCt o+ o( =

which readily follows from Lemma 1, we deduce that

Sp=2Z k7, 2 p(d)

= 3 ud)d R

air

(44) =t(r)+Co(r)r 1+ 0@ *a(r)),
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where t(r) is as given in r>1 and o(r) is the sum of all the divisors
of . Now if we put for a>1, S{*¥= i r~%(r) and S{¥= i r~*"'¢(r), then
r=n+1

r=n+l1
(45) S@= 3 Sre=S@®+CS®+0(n)

by virtue of the estimate ‘:_,‘ o(r)=0(n?) and partial summation. Also, by partial
Tan
summation and we get

w0 (" 188, (1 SN L (7 ey, (v HOlogt
55 = C(Z) Sn+1 A dt <l+ C(2)>C(2> Sn+1t dH—aSnH ta+1 dt

(1+ﬂgl>
__nlogn 4 {(2) __H(n)logn 1. ( log n(log log n)!+e )
C@)(n+1* " C@)Xn+1)* (n+1) )

na
Since
Sw logt .1 log(n+l) , 1
w1 12 l—a (n+1)°t T (1—a)(n+1)*t’

~ dt 1 1
bovite = =Dt i s (et D=log et 0()

and (n+1)"2=n"%+04,(n %) for any a< R, using and we obtain

o 1T Unlogn
(46) e =T 1>c<2> R N A

log n(log log n)'*e
+0.( 55 )

Also, we have, by

) — 5 MO 5 5

da+1 dsnid

=3 G-I () =A@ ()
Un)
- cgi)n <a—1>é<2>na-1" i 0(g),

r<n ¥V

so that

o & 9 _ 1 U 1
D S“iﬁmw“wqmmm+na+dw)

Thus from [45), [46) and [[47), we get for any a>1




Sums involving Farey fractions | 139

o 1 e
48 S =t 1>c<2> jlog G~ — o
L Un)log U(n)logn 1o, ( log n(logiog n)t+e ) .
n n

By taking ¢=3 in follows by virtue of [43)
REMARK 3. In the course of proof of [Theorem 1, in case m=2, in [9], eqn
should be as:

(49) 3 udrdp (- ~)log d= SU(r, Ox-tdx+U@) logr,

and as such, eqn in could not be used; however, and eqn (8)
(of this paper) show that the right side of is indeed O.((log »)'*"(log log r)'**).
REMARK 4. In a private communication Hall raised the problem of estimat-

N
ing T":Zl (l,+1,+1)% where [,=p,—p,-;, p, being the vy-th fraction appearing in
the Farey series of order n, N= __Zn)lgzi(z') and expected T,~T(log n)/n? with T<

24/7%. The authors are, as yet, unable to obtain an asymptotic formula for T,,
but note that for all large n

24< logn)-l _48

n.Z - nZ

This readily follows from above on noting that for large n
N-1 N-1
2(Su@)— ) ST=2 3 1425 1,1, S45,02),

where the last inequality is a consequence of the Cauchy-Schwarz inequality.
PrROOF OF THEOREM 2. Taking f(x, y)=(xy)"® in the sum formula (1), we
find easily

n T n
Sn(3):1—62]2r‘4 > k*2—1222r‘5 ;
T= k=1 r=
k,T)=1 (&,

g

k1.

1

1

<

)
Since S,(3)=S5,.(2)—0 as n—oco, we obtain

(50) Sn(3)=65;+125®,

r

where S;= r™* ¥ k7% and S® is given by
r=n+l k=1
(&, 7)=1

Writing ¢.(r)= X p(d)é* (a special case of Jordan’s totient function, cf.
dd=r

p. 149) and using we find
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=3 r{Srt 3 ud)
k=1 dick,r)

:F% 73 pld)d- (C(2)~—+ + O<d3))

1) =@ § 0 % I 10,

r=n+1

Also by (with s=4) and (4) (with 1=2)

5 $0) o s

i=n ¥ dizn d° B(n/dO

=34 (o5 (5P o)

=76 T x@n | + (% " ).

so that by (with a=5) and we obtain

S:=L(@)] 3C(3)n + Czn(? )} 4@(2) R G 105 ")

(52) _ C(Z) C(Z)Cza(n) 1 + O(_log_n) .

Y6 5

T 3L(@)nd nt 4L2)n* n
Hence by (with a=5), and

_al €@ | L2en) 1 logn
Sn(S)_G{ 3E@B)n® - nt 422)n* T O( n® )}

1 1 @\, Umn)logn log n(log log n)t*®
-I—IZ{W(log n-i—C—l——4-—* C(2> )+ n5 +Oe( 7157‘ )}
X2 ., 3nt 1 _§7’(2) s
= s {log ntC— ORE: @esm}

14+
i 12U(n2 log n Lo, (Iog n(log log n) >
n n

This completes the proof of [Theorem 2.

REMARK 5. The sequence {c,(n)}%., appearing in above clearly
satisfies: For fixed A>1, |ci(n)] Z(1/2){(1). However, it is of interest to note
that c;(n)+0(1) as n—oo which readily follows from

.. 1
(53) lmT}_};lf cl(n)§*~2m)—.
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To see this, let » denote a square-free integer in what follows; p, the »-th

prime and n,=p, - p, for rN. Then to each v& N, there exists an ry=ryv)
such that n,=0(mod u) for all u=<v, and so we have

ealnn= 2 %‘I;")* Pl(%r- +0@'*)

1
B
28(4)

as v—oo. This proves
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