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1. Introduction.

Let S' be the circle group. In and [16], Montgomery and Yang
introduced the notion of pseudofree St-action (see §2) and classified all pseudo-
free S'-actions on homotopy seven-spheres. Recently, Petrie constructed many
pseudofree S'-actions on homotopy (4m--3)-spheres with different isotropy groups
and slice representations ([18], [19].

In this paper, we construct infinitely many pseudofree S*-actions on homotopy
(4m+-1)-spheres with the following properties: (i) they are S'-homotopy equiva-
lent to some fixed linear pseudofree S'-action ¢ on S*™*!, (ii) their isotropy
groups and slice representations coincide with those of (S*™*!, ¢), (iii) their
equivariant Pontrjagin classes of the tangent bundles are different from one
another.

The method of our construction is due to Petrie [18], and Hsiang [7]

The paper is organized as follows:

In §2, we state our main theorem precisely. In §3, we prove a preliminary
lemma. In §§4 and 5 we consider a quasi-equivalence and Si-transversality
respectively. In §6, we construct an S'-normal map. In §7, we consider a
signature of an orbit manifold, which is an obstruction to performing equivariant
surgery. In §8, we prove the main theorem.

2. Notations and the main theorem.

In and [16], a differentiable action of the circle group S* on a compact
smooth manifold is said to be pseudofree if it is an effective action for which
every isotropy group is finite and the set of exceptional orbits is finite but not
void. Let M be a compact pseudofree S'-manifold. Let S'/Z, be a singular
orbit of M and let V, be the slice representation space of the isotropy group
Z, at x&S'/Z,, where Z, denotes the cyclic group of order n. We remark
that the equivalent class {V,} is independent of the choice of x=5'/Z,. So
we can define an invariant I(M) of M by
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IM)={(S*/Z,, {V.})| SY/Z,: a singular orbit of M, x=S'/Z,}.

Let S* be the circle group consisting of complex numbers of absolute value
one. For a sequence p=(pi, ps, -+, pm) Of positive integers, we define the S'-
action ¢, on the complex m-dimensional vector space C™ by

GDP(S) (21, 22: Tty Zm)):(splzly szZz, tty Smem).

Denote by S®™ pi, ps, -+, Pm) the unit sphere in C™ with this action ¢,.

Here we remark that the S*-action on S®*™(p,, ps, '+, pm) iS pseudofree (resp.
free) if (ps, p))=1 for i#j and p;>1 for some 1=i<m (resp. p1=p,= " =pm
=1).

Denote by G; (:=1) the stable homotopy group 7,+:(S™) (n=:+2). We put
s(k)= lfll |G;| where |G;| denotes the order of the group G..

Let ES® be a universal S'-space.

In this paper, we shall show the following theorem :

MAIN THEOREM. Let m=3 be an integer and let pi, bs, ***, Dem+1 be positive
odd integers such that (pi, pj)=1 for i#j, p>1 for some 1=i=2m+1 and
(pi, sUm—1))=1 for 1=i<2m+1. Then there are infinitely many closed pseudo-
free S'-manifolds X with the following properties:

(i) 2 is S*-homotopy equivalent to S*™(py, ps, =, Dem+1)s

(i) I2)=I(S*"™(p1, P2y *** Dam+1))s

(iii) the total Pontrjagin classes

PES'XTY)e HXNES'X Y ; Z)
1 St
%H*(ESI§<154’”“(P1, Do s Damer) s Z)
are different from one another, where T2 denotes the tangent bundle of .
REMARK 2.1. By Lemma 4.8 of Kakutani [9], we have
H*(E51><12;Z)EH*(E51><IS“"“(I>1, be = Damer); £)
N S
=Z[c]/(ge*™*),

2m+1
where g= JI p; and deg c=2. It follows from the properties (i) and (ii) of the

=1

main theorem that
p(ESlxlTZ)Ezﬁl(l—}—p%&) mod g.
s i=

REMARK 2.2. When p,=p,= - =psn+1=1, similar result has been obtained
in Hsiang [7].
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3. A preliminary lemma.

Let n be a positive integer. Let V and W be orthogonal representation spaces
of Z, with dimp V=dimg W==Fk and let S(V) (resp. D(V)) denote the unit sphere
(resp. the unit disk) in V. Let

Pv, Pw . Z, —> O(k)

be the representations of Z, afforded by V, W respectively. Then a Z,-action
on O(k) is given by

seA=pw(s)Apy(s)™ for seZ,, A=O0(k).

We denote by O(V, W) this Z,-space.

Let F(S*-1, S¥-1) denote the space of homotopy equivalences of S*-! with
the compact-open topology. It is well-known that F(S*-!, S*-!) has two con-
nected components F*(S*~!, S*-*) and F~(S*-!, S¥-!) representing maps of degree
+1 and —1 respectively. A Z,-action on F(S*-!, S*-!) is given by

(se W)= pw(s)f(pv(s) ™)  for seZ, feF(S*? Sk, pveSk

Denote by F(S(V), S(W)) this Z,-space.
If n is odd, then we have

ov(Zy), pw(Z)CTSO(k).

Therefore SO(k) (resp. F*(S*-1, S*-') is a Z,-subspace of O(V, W) (resp.
F(S(V), SV))). Denote by SOV, W) (resp. F*(S(V), S(W))) this Z,-subspace
of OV, W) (resp. F(S(V), SW))). Remark that we have the natural inclusion

SOV, W)CF*S(V), SW)).

Let [V, Z] denote the homotopy classes of maps of ¥ to Z.

LEMMA 3.1. Let n be a positive odd integer and let U be a complex Z,-
representation space such that Z, acts freely on S(U) and dimg U=2m. Let V
and W be orthogonal Z,.-representation spaces such that dimp V=dimp W=
k=2m-+2. Assume that

(i) (n, s@m—1)=1,

(ii) there is a Z,-map

f:S(U) —> F*(S(V), SW))

such that [ f1=0€[S*™, F*(S(V), SW))] (Zmem-:(F*(S(V), SV))),
(iii) SOV, W)Zr=0.
Let ¢ be an arbitrary element of SO(V, W)%n.  Then there is a Z,-map

F: DU) — F*S(V), SW))
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such that F|S(U)=f and F(BU))={¢}, where B(U)={ve DU)||v|<1/2}.
Proor. Define a constant Z,-map f’:S(U)—F*(S(V), SW)) by f'(v)=¢
for all veS(U). Then we have

LA1=L/"]=0e[S*™ 1, FH(S(V), SW)].

It follows from Kakutani [9; Theorem 2.1, Proposition 3.4] that there exists a
Z ,-map
F7: S(UYx[0, 1] — F*(S(V), S(W))

such that F’|S(U)X {0} =f" and F’|S(U)X {1} =f. We define a Z,-map

F: DU) — F*(S(V), S))
by putting
{ F'w/lvl, 2lv|—1) it 1/2=][v],
F)=

o i [uI=1/2.

It is clear that this map F is well-defined and satisfies the required properties.
Q.E.D.

4. A nice quasi-equivalence.

Let G be a compact Lie group and let X be a compact G-space. Let & and
7 be real G-vector bundles of the same dimension over X. In and a
G-map w:§&—y which is proper, fiber-preserving and degree one on fibers is
called a quasi-equivalence. Let a=7n—&c KOs(X) and define a=0 to mean there
exist a G-vector bundle # over X and a quasi-equivalence w: §PI—7P0.
Denote by S(§) (resp. S(7)) the sphere bundle associated with & (resp. ) with
respect to some G-invariant metric. A G-map : S(§)—S(») which is fiber-
preserving and degree one on fibers is said to be a quasi-equivalence of G-sphere
bundles. Let V be a G-representation space. We denote by V the G-vector
bundle

V—> XXV — X.

Let M be an oriented closed smooth (2m-1)-dimensional manifold with a
pseudofree S'-action. Then there are only finite singular orbits, say

Sl/pr SI/ZP2) ttt Sl/ZkaAi.

Let v; be the normal bundle of S'/Z,, in M and let N; be an open invariant
tubular neighborhood of S'/Z,, in M mutually disjoint for 1=</<k. By the
differentiable slice theorem (see Bredon [5; VI §27]), there is an S'-diffeo-
morphism ¢, : v;—N; such that ¢;|S'/Z,, is the inclusion of S'/Z, in M. We
often identify y; with N; by this S'-diffeomorphism ¢;. The unit disk bundle
D(v;) is also identified with a closed invariant tubular neighborhood of S'/Z,,
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in M. Let x,€8'/Z,, for 1=/<k. Denote by U; the fiber of y; over x;. Then
U; is regarded as an orthogonal Z, -representation space. Since M is a (2m+1)-
dimensional pseudofree S'-manifold, Z,, acts freely on S(U;) and dimgU,=2m.
Moreover if p; is odd, then U; has a canonical complex structure (see Atiyah-
Singer [4; §3]). The canonical map
hi St X Ui —>Y;
Zpi
defined by h;([s, v])=sv is an isomorphism of smooth orthogonal S*-vector
bundles.
Let »r>0. We put

{ DWU;; r={veUllvl=r},

SWq; n=1{veU;llv|=r},
and
{ D(s; 1)=hi(S* X DUy; ),
pi

Si; N=hy(S*' X SU;; 7).
Zp4

Here we remark that D(;,)=D(v;; 1) and S(v)=S(;; 1.

DEFINITION 4.1. Let & and 7 be oriented smooth S'-vector bundles over M.
A quasi-equivalence w:&— is said to be a nice quasi-equivalence if w is an
orientation-preserving map and there is »>0 such that the restrictions

ol {€IDW;; )} E| D v) —> 9| D(vy; ) for 1=Zisk

are isomorphisms of smooth S!-vector bundles.

PROPOSITION 4.2. Assume that p; (1=<i<Pk) are positive odd integers with
(ps, sSCm—1)=1 for 1=i=<k. Let V and W be complex S'-representation spaces
with the following properties:

(i) dimg V=dimp W=2m,

(ii) V and W are equivalent as orthogonal Zp-representation spaces for
1=i<k,

(iii) there is a quasi-equivalence

@: MXV — MxW.
Then there is a nice quasi-equivalence
@: MXVPC' — MxXWPHC*.

PROOF. It is easy to see that w induces an orientation-preserving quasi-
equivalence of S*'-sphere bundles

0: MXS(VPCH) —> MXSWPHCH.
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Remark that D(U;; 2) (CD(v;; 2)CM) is a Zpinvariant subspace of M. We
consider the restriction

0:=0|DWU;; 2)xXS(VDCY): DWU;; 2)xS(VDC) —> DWU;; 2)xX SWPHCH).

Then 6; is an orientation-preserving quasi-equivalence of Zj,-sphere bundles
over D(U;; 2). The map 6; yields the following Z;,-map
0:: DU;; 2) —> FH(S(VEECH, SWDHCH)

by putting 6,(d)v)==(0:(d, v)) for deDU;; 2), ve S(VHC*), where = : D(U;; 2)
XSWHCH—SWEPBC*) denotes the projection on the second factor. On the
other hand, by the assumption (ii), we have

SO(VPC, WPC*)?ri #0.

Let 0;eSO(VPC!, WHC*)?ri. It follows from that there exists a
Z p,-map
@;: DU;; 2) —> FH(S(VEDCY), SWPCH)
such that @;|S(U;; 2)=60,|SWU;; 2) and @,(DWU;; 1))={¢:}.
We define
w;: DWU;; 2)XS(VEBCYH) — DU, ; 2) X SWEPCH)

by putting wi(d, v)=(d, @,(d)®)) for deDU;; 2), veS(VPC*). Then the map
w; is an orientation-preserving quasi-equivalence of Zp -sphere bundles such that

@;|SWU;; 2)XS(VDCH=0:1SWU;; 2)XS(VDCY)
and
;| DU ; HXS(VPHCH=id X ¢; .

Furthermore, we define

wi: D;; 2)XS(VBCY) —> D(y;; 2) X SWEPHCH)
by putting wi(d, v)=sw;(s'd, s"'v) where s&S* is chosen as s *deDU;; 2). It
is easy to see that w; is a well-defined S'-map and satisfies the following :

(a) w; is an orientation-preserving quasi-equivalence of S-sphere bundles over
D(v;; 2),

(b)) wi|Ski; 2)XS(VHCH=0|S(v;; 2)XS(VEDBC),

(c) the restriction wi| D(v;; 1)XS(VEC?) is an isomorphism of smooth orthogonal
St-sphere bundles.

Then we can define
o MXS(VPCYH —> MXSWEPHCH
by
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. {0(x) it xe _]f[lD(vi;Z)xS(V@Cl),
w(x)= =
wi(x) if x€D;; 2)XS(VHCH for 1=5iLk.
Let p: MXSWHCH-SWPHC?) be the projection on the second factor. We
define
@: MXVPC* — MXWPHCH
by
{ (v, vl ple’(y, v/lIlvl))) if v=+0,
a(y, v)=

(,0) if v=0,

for yeM, veVEPC*. 1t is clear that @ is a well-defined nice quasi-equivalence.
Q.E.D.

5. Si-transversality.

Let M be as in §4. Let V and W be complex S!-representation spaces.
We assume that there is a nice quasi-equivalence

wo. MXV — MXW.

By definition, there is >0 such that the restrictions w,| {D(v;; )XV} (1Zi<k)
are isomorphisms of smooth S'-vector bundles. Let »; (1=:/=<3) be real numbers
such that 0<r,<r,<w;<r.

LEmMMA 5.1. There is a smooth proper S'-map

@ MXV —> MXW

with the following properties:
(1) o {D;; 7)) X V= {D(v;; r) XV} for 1<i<k,
(ii) w, and w, are properly S*-homotopic rel ﬁD(vi; ry9) XV,
=1

(iii) @7 (D;; r)XW)=D(v;; r)XV for 1=i<k.

Proor. The proof is an easy generalization of Wasserman [22; Corollary
1.127. So we omit it.

PROPOSITION 5.2. There is a smooth proper S'-map

@yt MXV —> MXW

with the following properties:
(1) @[ {D:i; r)XVi=awo| {D(vi; r) XV} for 15i<k,

k
(ii) o, and wy are properly S'-homotopic rel ]:IID(W; ro) XV,

() @D r)XW)=D(;; r)XV for 1=i<k,
(iv) o, is transverse to the zero-section MX {0} CMXW.
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PROOF. Let w, be as in Lemma 5.0. Since M is compact and w,; is proper,
there exists n>2 such that

w7 (M X {0})CTMXD(V; n—2).
We put

C=Mx {V—Int DV ; n—1)} U \2 {D(v,; r) X V.

Then C is a closed invariant subset of M XV and w, is transverse to M X {0}
along C. We also put

U=Mx{V—D(V : n—2)} U Q {Int D(vs; 7) X V).

Then U is an open invariant subset of M XV such that CCU and w, is trans-
verse to Mx {0} along U. Since the S'-action on MXV—C is free, it follows
from Thom Transversality Theorem (see Milnor [14; 1.35]) and the differenti-
able slice theorem that there exists an S*'-map

Wyt MXV —> MXW
such that

(a) w, is transverse to the zero-section M X {0},
(b) w:|C=w, ] C,

(¢) w, and w, are S'-homotopic rel C,

(d) @' (D;i; r)XW)=D(v;; r)XV for 1=i=k,

(cf. Petrie [19; Chapter II. §17], Lee-Wasserman [11; Proposition 2.2]). Since
w; satisfies the properties (i), (ii), (iii) of Lemma 5.1, w. has our required prop-
erties. Q.E.D.

6. An S'-normal map.

Let M be as in §4. In this section, we assume that p; (1=:/=<k) are positive
odd integers such that (p;, s@m—1))=1 for 1=/=<k. Let V and W be complex
Sl-representation spaces with the following properties :

(6.1) dimg V=dimg W=2m,

(6.2) V and W are equivalent as orthogonal Z,-representation spaces for
1=5i<Zk,

(6.3) there is a quasi-equivalence
®: MXV — MXW.

By Propositions 4.3 and there are »>0 and a smooth proper S!-map
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0: MXVEC — MXWEPC?
such that

64) 07D ; NXWDCH)=D(v;; )XVPC* for 1=i=k,

(6.5) the restrictions €| {D;; r)XVEBC} : Dly;; »nXVPBC*—-D,;; ) XWPHC*
(1=:=Fk) are isomorphisms of smooth S!-vector bundles,

(6.6) @ is properly S'-homotopic to some nice quasi-equivalence,
(6.7) @ is transverse to the zero-section MX {0} CMXWPC*.

We set
{ X=0"'(MX{0}))cMxXVEPC,

6=0|X: X — M,
and

N=11I D, ; NCM.
=1

Then, by (6.6) and (6.7), X is a compact smooth (2m—-1)-dimensional S*-manifold
and § is a smooth S'-map. It follows from (6.4) and (6.5) that

NCXNMX{0}cMxVPC,
and

§-(N)=N.
This shows that the S'-action on X is pseudofree and I(X)=I(M) (see §2).
Moreover §|N: N-NCM is the identity. Let X:_]f[Xi and each X; is con-
1=1

nected. Then, by (6.6), each X; has a canonical orientation. Define an S'-map

0,=01X,: X;—> M.
By (6.6), we have

LEMMA 6.8. Zi)l deg 0,=+1.

If X;DN, then 6; is not surjective. Hence deg #;=0. Therefore it follows
from that there exists a unique 7, (1=/,=<t) such that X; DN and
deg 0;,=-+1. Moreover it follows from Petrie [19; Chapter II. §7] that

TX;=0%TM-W+V) in KOsi(X;).

Thus we have proved

PROPOSITION 6.9. Let V and W be complex S'-representation spaces which
satisfy the properties (6.1), (6.2) and (6.3). Then there are an oriented closed
(2m~+1)-dimensional psendofree S*-manifold X, and a smooth Smap 6,: Xe—M
with the following properties:
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(i) degb,=-+1,

(i) I(Xo)=I(M),

(i) TX,=0XTM—W+V) in KOu(Xy).

REMARK 6.10. In [19], the map 6,: X,—M is called an S'-normal map.

7. A signature of an orbit manifold.

First we require some notations and definitions. Let Y be an oriented
closed (4m-+1)-dimensional pseudofree S*-manifold (m>0). Denote by N a closed
invariant tubular neighborhood of the singular orbits in Y. We put Z=Y —Int N.
Let 7:(Z, 0Z2)—(Z/S*, 0Z/S") be the natural projection. Since the S!-action on
Z is free, & is a projection of a principal bundle with group S*. Thus we can
consider the Gysin homomorphism (see Ozeki-Uchida [17; §47):

m: H™NZ,0Z; Z) —> H*™(Z/S', 0Z/S'; Z).
It is easy to see that x, is an isomorphism. Let #;: (Y, ¢)—(, N), i,:(Z, 0Z)

-, N), j::(Z/S",0Z/S")—~(Y/S*, N/SY) and j,:(Y/S', ¢)—(Y/S', N/S*) be
the natural inclusions. Then they induce the following isomorphisms:

if: H'" WY, N; Z) — H'"™*(Y ; Z),
if: H™WY, N; Z) — H*™*NZ, 07 ; Z),
j¥: H™(Y /S, N/S*; Z) — H*™(Z/S', 0Z/S*; Z),
j¥.H™Y/SY, N/S*; Z) — H*™(Y/S'; Z).
Now we define an isomorphism
Q: H™YY ; Z)—> H*™Y/S*; Z)

by putting @=jF<(j¥) o csfe(¢¥)1 It is easy to see that @ is independent of
the choice of N. It is well-known that Y /S* is an orientable rational homology
manifold. Let [Y1€Hm(Y ; Z) be the fundamental homology class. Then
we define a fundamental homology class [Y/S*1e H,,(Y /S*; Z) by {®(w), [Y /S*]>
=1 where weH*™* (Y ;Z) is chosen as <w, [Y1>=1. Then the cap-product
r—7NLY/S'] gives an isomorphism HYY /S'; @ —Hn-Y /S*; Q). It follows
that the cup-product defines a non-degenerate quadratic form on H*™(Y'/S'; Q);
the signature of Y /S! is by definition the signature of this quadratic form and
is denoted by Sign(Y/S*).

Let £ be an S'-vector bundle over Y. The natural projection ¢: ES'XY —
Y /S! induces an isomorphism s

o*: HXY/S'; @) — H*(ES'XY ; Q),
St
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(see Bredon [5; p.372]). Then we define

piE/SHEH™(Y/S'; Q)  for 1=/=[(dim§)/2]
by
go*(pi(E/S‘))—;pi(ES‘;ié)eH”(ES‘?lY ; Q)

where p,(ES! X;E) denotes the 7-th Pontrjagin class of the vector bundle ES'X¢&
S s1
—ES'xY. We also define
s1

pE/SH=14pu(E/SH+ - +pu(§/SHEHKY /S'; @),

where k=[(dim &)/2].

REMARK 7.1. Since Y/S!' is an oriented rational homology manifold, we
can define the rational Pontrjagin class in the sense of Thom: p(Y/SHe
H*(Y/S'; Q). But p(Y/S') does not coincide with p(TY/S?) in general.

Let M, X,, 8o,, V and W be as in [Proposition 6.9 In the following, we
assume that

M=S4m+l(p1, pz, Ty p2m+1>’

where p; (1=/<2m-+1) are positive odd integers such that p,>1 for some
1<i<2m+1, (ps, pj)=1 for i#j and (p;, sdm—1))=1 for all 1=:/=2m+41. We
also assume that m=2.

By Petrie [19; Chapter II, Theorem 11.1] and Iberkleid [8; Corollary 3.5],
we have

PROPOSITION 7.2. If Sign(X,/S")=Sign(M/S"), then we can perform equi-
variant surgery on (X, 0o) to get (2, 0,) such that X is an oriented closed
(dm-+1)-dimensional pseudofree S-manifold and 6,: X—M is an S*-map with the
following properties:

(i) @, is an S'-homotopy equivalence and deg 60,=+1,

(i) IX)=I(M),

(i) TZ=0KTM-W+YV) in KOgs(2).

We give a simple proof of [Proposition 7.2 in §9, where we use only the
Browder-Novikov theory [6].

Next we consider the condition Sign(X,/S*)=Sign(M/S*) of [Proposition 7.2

If p>1 is an integer and if ¢, g5, **, ¢2m are integers prime to p, then we
define

def(p; qu, =+, gem)=(=D™ i’; cot(mqij/p) -+ cot(mqamj/p) -
We put

1 -
d=p]2>1'p—]def<pj; pl’ Ty pj’ Ty p2m+1) .
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By Atiyah [2; Corollary‘9.12, Theorem 10.3], Atiyah-Bott [3; p.473] and
Atiyah-Singer [4; § 3], we obtain
LEMMA 7.3. We have

{ Sign(M/SH)=<L(p(TM/SY), IM/S*H+d,
Sign(Xo/SH={L(p(T Xo/SY), [Xo/S'D+d,

where L(—) denotes the Hirzebruch’s L-polynomial.
COROLLARY 7.4. The following twe conditions are equivalent:
(i) Sign(X,/S")=Sign(M/SY),
(i) <L(p(TXo/S), [Xo/S*D=LL(p(TM/S"), LM/S*D.
Moreover we have
COROLLARY 7.5. The following two conditions are equivalent:
(i) Sign(M/S"H)=Sign(X,/S"),
(i) <L(p(TM/SY), IM/S*D=LLp(TM—-W+YV)/S), LM/S*]).
PROOF. Since TX,=05(TM—-W+YV) in KOz (X,), we have

P(TXo/SH=p((OHTM—-W+V))/SH
=(00/SHY*(p(TM-W+V)/S),
where 6,/S': X,/S'—M/S* denotes the induced map of the orbit spaces. Remark
that (6,/SY)«([Xo/S*'])=[M/S*]. We obtain
CL(P(T X,/ SY), [Xo/S'H=K(0o/SH*(L(PpATM—-W+V)/SY), [Xe/S* D,
=L LPUTM—=W+V)/SM), (8/SH+([Xe/S* D>,
={L(p(TM—-W+V)/SY), [M/S']>.

Therefore the result follows from Q.E.D.

8. Proof of the main theorem.

In this section, we use the same notations as in §7. We assume that m=3
2m+1

and we put ¢g= ,131 pi-

LEMMA 8.1. Let & be an arbitrary element of KO(CP®*™). Then there is
velff\é(CPm) such that ny (n=1, 2, --+) satisfy the following:

(1) Jnn)=0 in JCP?™),

(ii) <L(pEDnn)), [CP*™]>=<L(p&), [CP*™ 1),

(iii) the total Pontrjagin classes p(EPny) (n=1, 2, ---) are different from
one another.

PROOF. By the same argument as in §4 of Hsiang [7], there exists neE
KO(CP*™) such that
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(@ J(p)=0 in j(CP*™),
(b) <(L(p(EDn), [CP*™H>=<L(p(&)), [CP*™]>,

pi(n)=0 for 1=i<[m/2],
© { Pi(7)#0 for some [m/2]<iy=m.
It is easy to see that ny (n=1, 2, --) satisfy the conditions (i) and (ii). Let j,
([m/2]<j,<m) be an integer such that p,(p)=0 for 1=<j<j, and p,,(n)#0.
Then we have

p3EDnn)=p;E)+nps(nEH(CP™; Z).

Therefore p(EPBny) (n=1, 2, --+) are different from one another. Q.E.D.
Let R(G) (resp. RO(G)) denote the complex representation ring (resp. the
real representation ring) of G. Let V be a complex S'-representation space;

then S*™*(1, ---, 1)XV is a complex vector bundle over CP?*™. The assignment
St

Vs Stm+(l ... 1)XV is additive, so it induces a homomorphism
s1

a,: R(SY) — K(CP*™).
Similarly, we obtain a homomorphism
oyt R(Zy) —> K(L*™(g),

where L*™(q) denotes the lens space S*™*'(1, ---, 1)/Z, It is well-known that
the homomorphisms «, and «, are surjective (see Atiyah [1: §2.7], Mahammed
[12; Lemma 3.3]).

LEMMA 8.2. Let 5 be an arbitrary element of K(CP*™). Then there are
x€R(SY) and an integer n>0 such that a(x)=nn and *(x)=0 in R(Z,) where
i: Z,—S" is the natural inclusion.

ProOoOF. Let z: L?™(q)—CP*™ be the natural projection. Consider the fol-
lowing commutative diagram :

0 — > Ker i* — = RSY) —b s RZ —=0

| \l/do \Laq

0 — > Ker = ——= K(CP™) — " o K(L™(g) — = 0
0 0
It is easy to see that a,(Ker i*)=Ker z*. Hence we have
KCP™)/a,Ker i*)=K(CP*™)/Ker z*=K(L*™(4)).

Since it is well-known that l?(LZm(q)) is a finite group, there exists an integer
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n>0 such that nypeay(Kers*). This shows the result. Q.E.D.
Define r: I?(CPZ"‘)——J/{\O/(CPW) to be induced by taking the underlying real

structure of a complex vector bundle. Then it is well-known that the homo-

morphism # is surjective (see Sanderson [20; Theorem 3.97). Define an S'-map

h: S4m+1(1: "ty 1> — M

by
Y31 Pam+1
Z cea Z
h(Zl, Tty 32m+1): ( lpl’ : ;Tgn::l °
. IGz1% -+ 5 zemsd DI

Let p: KOgi(S*™*'(1, -+, 1))=KO(CP*™) be the isomorphism defined by Segal
[21; Proposition 2.17.

LEMMA 8.3. There is x< R(S*) such that nx (n=1, 2, ---) satisfy the follow-
ing:

(i) nx|Z,=01in RO(Z)),

(ii)  J((h*(MXnx))=0 in JICP?™),

(i) <L(p(u(h*(T M—nx)))), [CP*™ D=L L(p(p(h*(T M)))), [CP*™]>,

(iv) the total Pontrjagin classes p(u(h*(TM—nx))) (n=1, 2, ---) are different
from one another. o

PROOF. Since the homomorphism 7 : I?(CP”)——»[?@(CPM) is surjective, the
result follows from Lemmas and

PROOF OF THE MAIN THEOREM. In order to prove the main theorem, by

IProposition 7.2 and [Corollary 7.5, it suffices to show that there are infinitely
many y< R(S') such that

8.4) 91Zp,=0 in RO(Zp) for 1=i=2m-+1,
8.9) Mxy=0,
(8.6) SL(PpUTM—y)/S), [M/S' D=LL(p(TM/S"), [M/S*]>,

(8.7) the total Pontrjagin classes p(ESl>§(T M—y)) are different from one
4 4

another.

Let x€R(SY) be as in We shall show that nx (n=1, 2, ---)
satisfy [8.4), [8:5), [8.6) and (8.7). It is obvious that nx satisfies [8.4). It follows
from Kakutani [9; Theorem 6.2] that nx satisfies [8.5) Therefore we shall
show that nx satisfies and (8.7). Let h/S':CP?*™—M/S' be the induced
map of the orbit spaces. We remark that

p(p(h (T M—nx))=(h/SH*(p(T M—nx)/S")) -

Hence (8.7) follows from the condition (iv) of Moreover it follows
from Kawasaki that (h/SYH«([CP*™])=¢[M/S*]. Hence we have
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CL(p(phHT M))), [CP*™ 1= (h/SY(L(p(T M/SY)), [CP*™])
={L(p(TM/SY), (h/SHx([CP*™]))

=q{L(p(TM/S"), [M/S*]>.
Similarly, we have

(L(p(p(h(T M—nx)))), [CP*™ 1)=q{L(p((T M—nx)/S")), LM/S*D>.

Thus follows from the condition (iii) of This completes the
proof of the main theorem.

9. Appendix.

In this section, we give a simple proof of Proposition 7.2 by making use of
the Browder-Novikov theory. Before beginning the proof of [Proposition 7.2, we
require some notations and lemmas.

Let M, X,, 6,, V and W be as in [Proposition 7.2l Denote by N a closed
invariant tubular neighborhood of the singular orbits in M. Then, by the dis-
cussion in §6, a closed invariant tubular neighborhood of the singular orbits in
X, is identified with N and we see that

{ 0y|N=id: N—> NCM,

071 (N)=N.
We put
P=M-Int N, Q=X,—IntN.

Then P and @ are oriented compact smooth manifolds with free S'-actions and
0P=0Q=0N. Since 0;(N)=N, we can define an S'-map

fe=0,|Q: Q —P.

Then f,|0Q : 0Q—0P is the identity and deg fo=-+1.
Moreover we have

TQ=f¥TP—-£|P) in KOs(Q),

where TQ (resp. TP) denotes the tangent bundle of @ (resp. P) and §=V—-W
e KO s1(M).
We put
P=P/S', Q=Q/S*
and
fo———‘fo/sli Q'—>ﬁ,

where f,/S* denotes the induced map of the orbit spaces. Then P and § are
compact smooth manifolds and have canonical orientations determined by those
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of P, Q (see §7), and f, is a smooth map such that

deg fo=+1, f.|dQ=the identity.
and
(TQ)/S*=f¥(TP)/S*—(|P)/SY) in KO@).

The following lemma is well-known.
LEMMA 9.1. Let B be a compact smooth manifold with a free S'-action.
Then there is an isomorphism of vector bundles:

(TB)/S'=T(B/SHDOR",

where T B (vesp. T(B/SY)) denotes the tangent bundle of B (resp. B/S").
It follows from Segal [21; Proposition 2.1] that the natural projection
pr: B—B/S* induces an isomorphism of rings:

pr¥: KO(B/SY) — KOg(B).
By Lemma 9.1, we have
{pr’“(T(B/Sl)):TB—LE1 in KOgsi(B),
(TB)/S'=T(B/SY)+R"! in KO(B/SY.
Therefore we obtain
TQ=f{TP-&) in KOQ),
where &’=(&|P)/S"
LEMMA 9.2. The following two conditions are equivalent:
i) Sign(X,/S")=Sign(M/S?),
ii) Sign(Q, 00)=Sign(P, 0P).
The proof is easy.

PROOF OF PROPOSITION 7.2. Let us assume that n>4m, and that (J, Q)
is embedded in (D®, S*-!) with normal bundle v,. Then we have

v=R"—TQ=R"—F{TP—¢
=f¥B"—TP+&) in KOQ).
Then there exist an integer >0 and a vector bundle 7, over P such that

m=R"—TP+&+R* in KO(P)
and
VOGEEEJ?B"(W .

Hence f,: (Q, 8Q)—(P, dP) is a normal map in the sense of Browder [6] We
remark that z,(P)={0} and dim P>5. Moreover, by the assumption of Propo-
sition 7.2 and we have
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Sign(Q, 8Q)=Sign(P, 3P).
Therefore it follows from Fundamental Surgery Theorem of Browder [6; II. §1]
that (Q, f,) is normally cobordant reloQ to a homotopy equivalence
]?1: Z_ —> ﬁ .
Here we remark that Z is an oriented compact smooth manifold and fiis a
smooth map such that

0Z=0Q (=0N/SY),
f110Z=Ff,|0Q=the identity,
deg fi=+1.
Denote by v, the normal bundle of (Z, 3Z) in (D"**, S*+#-1), Then we have

]?ik(ﬂl) .

IR

Y1
Thus we see that

TZ_:En+k_D1:En+k_f>lk(771)
=fKTP—¢) in KOZ),

where TZ denotes the tangent bundle of Z.
Let B denote the smooth principal S*-bundle:

S'—>P—> P,

Then, the total space Z of f¥®B is an oriented compact smooth manifold with
a free S'-action such that

Z/S'=27, 8Z=0Q=0N.

Let f,: Z—P denote the induced bundle map covering f;; that is, f, is an

St-map of Z to P such that f,/S'=f,. It is easy to see that f; is a homotopy
equivalence such that

deg fi=++1, f.|0Z=the identity.
On the other hand, by Lemma 9.1, we have
TZ=fXTP—¢|P) in KOu(Z).
Since 0Z=0N, we can construct a smooth manifold
2=Z\UN,

by identifying points of 0Z and 0N under the identity, where X has a smooth-
ness structure so that each inclusion Z—2%, N—2Y is a diffeomorphism onto its
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image. Then 2 is an oriented closed smooth manifold with a pseudofree
St-action, and we see that I(X)=I(M).
We also define an S'-map

6,: 2 —M
by
f1(x) if xeZ,
61(76):{ .
x if xeN.

Then 6, is a well-defined S'-map such that

deg 6,=-+1, 0,)N=the identity.
Moreover we have

ASSERTION 9.3. #,: 2X—M is an S*-homotopy equivalence.

PrOOF. Remark that 6;|N=the identity. If #, is a homotopy equivalence,
then it follows from Iberkleid [8; Corollary 3.5] that &, is an S*-homotopy
equivalence. Therefore we shall show that #, is a homotopy equivalence.

It is easy to see that

O Hy(S ; Z) —> H(M; Z)

is an isomorphism for all 4.
On the other hand, we see that

%1(2)=7r1(M)‘= {0}.

Since Y and M are finite CW-complexes, it follows from the theorem of J. H. C.
Whitehead that @, is a homotopy equivalence. This completes the proof of
Assertion 9.3.

In order to complete the proof of Proposition 7.2, in the remainder of this
section, we shall show that

94) TY=0¥TM-&) in KOgu(d).

Let #,: M—2X be an S'-homotopy inverse of #;. Then is equivalent to
the following:

(9.5) OF(TX)=TM—-¢ in KOgs(M).

Therefore we shall show [9.5)] instead of [9.4). Consider the following two
conditions :

(9.6) (0;*(TZ))ei:(TM—E)ei in RO(Zpi) for 1=/=2m+1,
9.7 p(ES? §< 03(T2))=p«(ES* x (TM—-&))
1 s

in H“(ESU?M;Z) for 1<i<m,
S
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where e; €M (=S*™*(py, ps, =, Pems+) i the i-th unit vector.

It follows from Kakutani [9; Theorem 4.12] that and imply [9.5).
Thus we shall show and [9.7).

Since I(Z)=I(M) and & (=V—W) satisfies (6.2), we obtain [9.6).

Let j: P—M be the natural inclusion.

ASSERTION 9.8, There exists an S'-map

h: Sy, e, 1) —> P

such that the following diagram is S'-homotopy commutative:

S5(1, er 1) = S, e, 1)
iﬁ h
P ] > M,

where 7 1s the natural inclusion and h is as in §8.
PROOF. (cf. Iberkleid [8; Theorem 3.47].) The obstructions to constructing
an Sl-map A lie in

HYCP*™2%; mqi(P)) for 1=¢=<4m—4.

Since P is (4m—2)-connected, all groups are zero. Hence we have an S'-map h.
The obstructions to constructing an S'-homotopy between h-7 and joﬁ lie in

HYCP*™%; 7 (M) for 1=¢=4m—4.

Since M is 4m-connected, all groups are zero. Hence we have an S!'-homotopy
between he; and j oh. This completes the proof of Assertion 9.8.
ASSERTION 9.9. Let &, neKOs:(M). If j*6=j*p in KOs(P), then we have

pi(ESlXIE):pz(ESle??) for 1=i<m-—1.
S S

PROOF. Assertion 9.9 will follow from Assertion 9.8 by the same argument
as in the proof of Lemma 4.11 in [9]
It is easy to see that

JHOFT2Y)N=%(TM—-§) in KOu(P).
Hence it follows from Assertion 9.9 that
(9.10) m(ES‘Xl0’2"(T2))=pi(E51§<1(TM—E))

S

in H“(ESlle;Z) for 1=/=m—1.
s
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ASSERTION 9.11.

palES? ><16;k(T2)):pm(E51 X(TM=§)) in H*"(ES'XM; Z).
S st s1

ProoF. By the assumption of [Proposition 7.2 and [Corollary 7.5, we have
L(p(TM—8£)/SY), IM/S*D>=LL(p((TM)/S")), [M/S*])> .
On the other hand, by the same argument as in §7, it is easy to see that

CL(pUT 2)/SY), [2/S D=<L(p(TM)/SY), [M/S*]>.

Thus we have
CL(p((TM—E)/S"), [M/S'D=LL(p((T2)/S*), [2/S*D
={L(pUT2)/SY), (02/SH(LM/S* D>
={(0:/SH*L(p(T2)/SH), [M/S'T
=<L(p((0F(T 2))/SY), [M/S*]>.

We remark that the coefficient of p,, in the polynomial L, (p;, **, pm) iS non-
zero. Hence it follows from that

pu((0F(T2)/SH=pn(TM—E)/S)  in H"™(M/S"; Q).
Therefore we have
Pu(ES X OXT IN=pu(ES'X(TM—E)  in H™ES'XM;Z).
st s s
This completes the proof of Assertion 9.11.

Combining [9.10) and Assertion 9.11, we have [9.7). This makes the proof
of [Proposition 7.2 complete.
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