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Introduction.

M. Berger proposed a problem: Is it possible to determine whether a
complex hermitian manifold is Kaehler making use of the data of the spectrum
of the (complex) Laplacian?

Let (M, g) be a compact hermitian manifold of complex dimension #n. Let
45 , (resp. 4,,,) be the complex (resp. real) Laplacian acting on the space A?%(M)
of all complex valued forms of type (p, q) (cf. §1). Denote the spectrum of
43,4 (resp. 4, ,) on AP Y(M) by Spec (43, (resp. Spec(d, ). It is known that
4y ,=1/2)4,,, it (M, g) is Kaehler (cf. [IL]). Conversely, P.B. Gilkey [6],
showed that a compact hermitian manifold is Kaehler if Spec (4% ,) coincides
with Spec ((1/2) 4,,,) for (p, ¢)=(0, 0), (1, 0) and (0, 1). Moreover he showed (cf.
[6] that (M, g)is Kaehler if n <2 and Spec (4{ ,)=Spec ((1/2) 4,,,), and constructed
a hermitian metric on a complex torus C"/Z*" (n=3) which is not Kaehler and
satisfies Spec (47 ,)=Spec ((1/2) 4, ,). But it would be perhaps significant to ask
which geometric conditions are necessary for the existence of a hermitian metric
satisfying the condition Spec (4{ ,)=Spec ((1/2) 4,.,).

Now it is well known (cf. [12]) that a Kaehler manifold has the positive
second Betti number b,(M). So let us consider the following problem: Does a
compact hermitian manifold with the condition 47 ,=(1/2)d,  have the positive
second Betti number b,(M)?

1
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The purpose of this paper is to give a partial answer to this problem.

THEOREM 2.1. Let (M, g) be a compact, simply connected hermitian manifold.
Suppose that the group of all holomorphic and isometric transformations of (M, g) ~
acts transitively on M. If 4y ,=(1/2) 4y, or d5,0=(1/2) 4,0, then the second Betti
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number b,(M) of M is positive.

Moreover, we shall show that on certain compact complex manifolds admit-
ting no Kaehler metric and the positive second Betti number, there are hermitian
metrics satisfying 47 ,=(1/2) 4,,, (cf. Theorem 3.1).

The author wishes to thank Professor S. Murakami for his helpful advice.

§1. Preliminaries.

1.1. Let M be a compact complex manifold of complex dimension n. Let
g be a hermitian metric on M. For 0=r=2n, let A"(M) be the space of all
complex valued smooth » forms on M. The exterior differentiation of A"(M)
into A™!(M) is denoted by d. For 0=p, g=n, let A»%M) be the space of
complex valued smooth (p+q)-forms of type (p, ¢). Let d’; AP YM)—AP*+ (M)
denote the differentiation with respect to complex coordinates, and let d”;
AP YM)— AP 1" (M) denote the differentiation with respect to the conjugates of
complex coordinates. Let ¥; A?%M)—A"?-*~4 M) be the complex star operator
on (M, g). Then the inner product ( . ) on A"(M) can be defined by

(@, 77)-:_\Mw/\*77,

for w, n€ A"(M). Then A"(M)= Y A?%YM) is the orthogonal decomposition of
y/

+g=r
A7(M) with respect to this inner product.
Put 0=—%d¥ 0’=—%d’¥ and "=—*d”*. Then it holds that (dw, 7)=(w, d7),
(d'w, P)=(w, 6’y), and (d"w, p)=(w, 6"7) for w, n= A"(M), and 0=0"4+0". We
define the operators 4, , 45, and 45 , on A? M) by

4, ,=do+add, 4y ,=d’0’+d’d’, and 4] =d"5"+8"d" .

The operator 4, , is called the real Laplacian and the operators 45, and 45,
are called complex Laplacians. They are all elliptic operators on A? M) and
45, =47 ,=(1/2) 4, , when a hermitian manifold (M, g) is Kaehler (cf. [12]). In
this paper, we will be concerned with the operators 4, ,=dd, 4;,=6’d’ and

¢0e=0"d” on A(M)=A"°M), we abbreviate them by 4, 4’ and 4”, respectively.

1.2. Let M be a simply connected compact complex manifold of complex
dimension n. Let g be a hermitian metric on M. Assume that the group of
all holomorphic and isometric transformations of (M, g) acts transitively on M.
Let K be the identity component of this group. Let B be the isotropy subgroup
of K at some point o of M. Since a maximal semi-simple subgroup of K acts
transitively on M (cf. [8], [15]), we may assume that K is a semi-simple Lie
group and B is a closed, connected subgroup of K, due to the simply connected-
ness of M. So we can identify the hermitian manifold (M, g) with a coset
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space K/B of K admitting an invariant complex structure and an invariant
hermitian metric under the transformations ¢, ; K/B>k’-0—kk’-0€K/B, k€K,
o={K}=K/B. Then J. Hano and S. Kobayashi obtained the following results
(cf. [15]) :

(1) B is a C-subgroup of K, that is, its semi-simple part B coincides with
that of the centralizer Zx(T,) of some toral subgroup T; of K.

(2) T, contains the identity component T, of the center of B, (so B is con-
tained in Zg(T,) by the connectedness of B).

(3) rank (K)—rank (B;)=dim (T)).

(4) Zg(T,)/B is a complex torus.

(5) K/Zg(T,) admits an invariant complex structure such that the natural
projection of K/B onto K/Z ((T,) is holomorphic. Hence, K/B is a holomorphic
principal fiber bundle over K/Z x(T,) with Zx(T,)/B as a structure group.

1.3. Under the above situations, following and [8], we prepare some
notations to express the above invariant complex structure and the invariant
hermitian metric on M=K/B.

Let f be the Lie algebra of all real left invariant vector fields on K, and
let b (resp. b, t, and t,) be the subalgebra of f corresponding to the closed sub-
group B, (resp. B, T, and T,) of K. Let §, be a maximal abelian subalgebra
of f containing t,. Let g (resp. ) be the complexification of t (resp. §,). Then
b is a Cartan subalgebra of g. A linear map « of Y into C is called a root of
(g, B) if there exists a non-zero vector X in g such that [H, X]=a(H)X, for all
HeY. The vector X is called a root vector for a. Let 4 be the set of all non-
zero roots of (g, §). All a4 are pure imaginary valued on §,. For each as4,
we choose a root vector E, such that tE,=F_, and ¢(E,, E_,)=—1. Here
= is the conjugation of g with respect to f and ¢, is the Killing form of g. Put
Uys,=E,+E_, and V,,=+~/—1(E,—E_,) for ac4d. For a4, we choose an ele-
ment H,e+/=1%; such that ¢(H. H)=a(H) for all HeY). Then we have
[E. E_,]J=—H, and

(LD t=het X (RU+RVS).

Let m, be the orthogonal complement of t, in t, with respect to the Killing
form ¢,. Then there exist linearly independent rational elements {H;, ---, H,}
of ) such that m, (resp. t,) is spanned by {~/—1 H.} 2., (resp. {~/—1 Hi} ¢-p.1) OvVer
R. Here we put a=dimt; and b=dimt,—dimt, and an element H of Y is called
rational if all a=4 take rational values at H (cf. [15]). In fact, there exist (cf.
p. 16, 19) linearly independent rational elements {Hj, -+, Hy, Hypyy, -+, Hy}
of § such that 1, (resp. t,) is spanned by {~/—=1H{, -, v/ =1 Hp /=1 Hyyyy -+,
vV =1H,} (resp. {v/ =1 Hps1, =+, ~V/—1Hy})over R. Then the images of {H{}%,
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by the orthogonal projection of «/—11t; onto 4/—1 m; with respect to the decom-
position 4/ —1 t;=+/—1m;++/—11, constitute a rational basis of 4/—1m,.

Let ® be the set of all elements in 4 which vanish on t;. Since b=
to+ aze)e(RUa—i—RVa—l— R+/—1H,) and a%@R\/——l H, is the orthogonal complement

of t; in Y, with respect to the Killing form ¢, we may choose {Hgyy, -, Hi}
(I=dim,) as linearly independent rational elements of § belonging to the ortho-
gonal complement of 4/—11; in 4/—1%. Let {4, -, 4} be the set of linear
mappings of ¥ into C defined by 2,(H;)=d;;. Then each a=4 can be expressed
as a linear combination of A;, ---, A, with rational coefficients. So we may de-

1
fine a lexicographic order > on 4 by a= 2 »;4;>0 if and only if there exists
i=1

an integer 7 (1<:/</) such that r,= -+ =r;,;=0 and »;>0. Let 4% be the set
of all positive roots in 4. Let @, be the set of all elements in 4* which do
not belong to ©. Put @.={acsd; —a=BO,}. Then 4=0UO,\JO_ (disjoint
union) and they satisfy the conditions (1) ac6U6O,, 8O, and a+pfed=
a+pc0,, 2) a, f€O and a+ped=a+p<6O, and (3) acO, & —ab_. Put
m,= >, (RU,+RV,) and m=m,+m,, which is the orthogonal direct sum with

aE@+
respect to the Killing form ¢,. So the algebra f decomposes as follows:

(12) f:5+m, m:m1+m2 B

and the adjoint representation of B acts on m, trivially, and Ad (b)m,=m, for
all b B.

1.4. We express the complex structure and the hermitian metric on M=
K/B, given in 1.2 (cf. [8]). Let J be the tensor field on K/B defining the com-
plex structure. Then the restriction of J to the origin o={B} of K/B induces
an endomorphism I of m with the following properties:

(i) IP=-—1id,
(ii) [X, IY]=I[X, Y], X&€b, Yem,
(i) ITX, Y1a—UX, Y1u—[X, IY]e—I[IX, IY],=0, X, YEm.

Here Z, (Z<t) denotes the m-component of Z with respect to the decomposition
f=b%+m. Moreover, the condition (5) in 1.2 induces that the actions R;; k-o<
K/B—kt-o=K/B (tT,) are holomorphic. So the endomorphism [ satisfies that

Gv) [X, IY]=I[X, Y], Xet, Yem,
Then, due to the conditions (ii) and (iv), we have
(1.3) I(m)=m,,
(1.4) IU,=¢,V, and IV,=—eU,, i.e,
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]Ueaa:sza and ]Veaa:'_Usa.a »

where e,==1 (a€0,) (cf. [8]. In fact, we have [X, IY]=I[X, Y] for all
XY and YEm, so we obtain that [+/—1H, [Y]=0 for all /-1 H&Y), Yem,,
and [~/ —=1H, IU,J=a(H)IV,, [~/=1H, IV, ]J=—a(H)IU,, for all /-1 HeY,
as@,. These equalities, together with imply (1.3) and [1.4).

Let B¢ (resp. m¢, m®) be the complexification of b (resp. m;, m). We extend
I to a complex endomorphism of m® in a natural manner. Let m* (resp. m~) be
the eigenspace of I belonging to the eigenvalue +/—1 (resp. —+/—1). Then we
have

m*=mi+ 3 CE, .,

a€9+

m-:mT"f_ E CE—sa,a'
a69+
Here mi=m¢{m* and m7=m¢\m", due to (1.3). The conditions (ii) and (iii) can
be expressed as follows (cf. [5]):

(ii") [6°, m*Jcm*,  [6°, m~JCm,

(iii”) both ¢+m* and b°+m~ are subalgebras of g.
The condition (iii’) is equivalent to the condition

(iii”) OV {ear; a=B,} is closed, i.e.,

it contains the sum of any two of its elements whenever this sum belongs to 4.
Then there exists a suitable order > on 4 such that P\ {c,a; a=O. }={asd,;
a>-0}, where P is the set of all positive roots in @ with respect to the order
> (cf. [9). Put ¥.={ena; achB,}, U .={—cq.a; a=6.}. Then these
satisfy the condition :

(1.5) acOUY,, ¥, and a+tped = atpel,.

So let II={ay, ---, a;} (a;> - >a;) be the fundamental root system of 4 with
respect to this order >>. Then, due to the above condition and the closedness
of ©, a subset IT,—={aq+1, -, a;} is a fundamental system of @ (cf. Prop-
osition 7.5). Let {Hi}i_, be a basis of +/—1Y; such that ¢(H., Hj)=aH})
=0;; (1=4, j=I). Then each element H; (1=/=</) is rational, {H{}{, spans
+~/—11; and the images of Hj; (a+1=i=l) by the projection of 4/—1 5 onto
EGR\/‘:I H, with respect to the decomposition v/ —1 §:=+/—1t:+ aze)eR‘/Tl H,
are linearly independent over R and rational. We denote these images by the

same letter H} (a+1=i{=<l). Then we have a basis {H:} ., of ) such that each
Hj (=1, ---, ]) is rational and
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(1.6) t; (resp. ZE)GR«/:I H,) is spanned by {Hi} &, (resp. {Hi}ias1).

Moreover, let {2;}!_; be the linear mappings of § into C defined by 2A(H})=0;;

t
(1=4, j=I), then each a=4 can be expressed as a= g)lnlé (r;€ R) and

1.7 a>0sr=-=r;_;=0 and »;>0 for some 7 (1<i</).

In fact, this is immediate from the definition of {H}!_; and the choice of IT=
{as, -, ai} (@ > >ay).

Lastly, we mention that the hermitian metric g on K/B admits the trans-
formations 7, (k< K) as isometries. This metric is given (cf. p. 200) by

(1.8) gk-O(Tk‘Xﬂy Tk-Yo)ZGD(X, Y), for kEK, X, Yem.

Here z,. (k€ K) is the differential of 7, at the origin o, a tangent vector X,&
T,(K/B) is identified usually with an element Xem, and ¢(X, Y), X, Yem, is

an Ad (B)-invariant inner product on m. Since the metric g is hermitian with
respect to the above complex structure J, it satisfies that

(1.9) oIX, IY)=¢(X, Y), X, Yem.

§2. Complex Laplacians.

In this section, we preserve the notations and situations as in §1. We con-
sider the (complex) Laplacians 4, 4’, 4”7 acting on A°(K/B) for the above her-
mitian manifold (K/B, J, g). Since the transformations r, (k= K) act holomor-
phically and isometrically, 4 (resp. 4’, 4”) is 7, (k€ K) invariant, i.e.,

der,=1,°d (resp. 4 ot,=7,°d", 4"7,=1,°4"),
for k=K, they can be expressed using the terms of the Lie algebras (cf. Prop-

osition 2.2).

2.1. TFirstly, notice that the inner product (-, ) on A'K/B) is given by
2.1 @ =], (@, 9 0cAK/B),

where dv, is the volume element of (K/B, g) and (w|%) is the pointwise inner
product of w and 7. That is, (w|9)(x)=(w., p.), x€K/B, where w,, 7, are
elements of the complexified cotangent space TH(K/B)¢ of K/B at x and the
right hand side is the hermitian inner product in T#(K/B)¢ induced from the
metric g.

Now we define a left invariant Riemannian metric & on K by
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§k<Xk’ Yk):¢(X: Y)y X} Yef:

where X, Y,eT,(K) are tangent vectors of K at k corresponding to X, Yet
and the inner product ¢ on f is given by

¢(Z1+Y1, Zy+Y)=(Z,, Zz)‘l‘(P(Yl; Yy,

Z;eb, Y,em (=1, 2). Here (-, -) is an arbitrary inner product on b and ¢ is
the Ad (B)-invariant inner product on m in [I.8) Then the natural projection z
of K onto K/B is a Riemannian submersion of (K, g) onto (K/B, g), i.e., the
differential 74, of = at k=K maps the subspace {X,= T (K); Xem} of T,(K)
onto T,.,(K/B) isometrically, n4, vanishes on the subspace {X,=T.(K); X<b}
and the decomposition T ,(K)={X,; Xeb} P {X,; X=m} is an orthogonal direct

sum with respect to the Riemannian metric 3. Then we have the following
lemma.

LEMMA 2.1. For fe AYK), we have

SKﬂk)dvg(k):S BBB f(kb)dvg,(b)]dvg(le 0),

K/

where g’ is the Riemannian metric on B corresponding to the inner product (-, -)
on b and dv, (resp. dv,.) is the volume element on K (resp. B) corresponding to
the Riemannian metric § (resp. g’). In particular, if fe A"K) satisfies f(kb)=
f(k), keK, be B, then

[ s rdvatir=vol(B, g)|  flk-0)dv,k-0).

Here vol (B, g’) is the volume of (B, g’) and we regard fe A'(K) satisfying f(kb)
=f(k), b€ B, as a function on K/B.

PrROOF. For each x=Fk.-0=K/B (k= K), the Riemannian metric g, on the

fiber #7!(x) induced from g coincides with L,-1*g’, where L, is the left trans-
lation by k=K. Then, for fe A%(K), we have

[ Ulemsco)dve,={ 1 k0Ydve ),

where dv,, is the volume element of (77 '(x), gz) and f|:-1 is the restriction

to 7 %x) of f. Together with Proposition A.IIL 5. in p. 16, is
proved.

LEmMA 2.2. For 3, o€ AK/B), we have
w|p)=(r*w|x*y), i.e.,
(@peor Pio)=((7*W)p, (7*n)e), kEK.

Here the right hand side is the hermitian inner product in A*K) induced from
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the metric g on K.
PrRooF. This is clear from the fact that the projection = of (X, g) onto
(K/B, g) is a Riemannian submersion. Q.E.D.
LEMMA 2.3. For each E=X++/—1Y g (X, YY), we have

| (Effudvy=—{ 17Edv,, 1, fi= A0,

where © is the conjugation of § with respect to ¥ and f is the complex conjugation
of fe AK).
PrOOF. It holds that

SK(Xfl)fzdvg:—SK X TDdve,  Xet.

In fact, the volume element dv, on K is invariant by the isometries L, (k= K)
of (K, 2). Since K is unimodular, dv, is also invariant by the right translations
R, (k€ K). Then the equality holds. is immediate from the one.
Q.E.D.
For the space AYK) of all complex valued smooth 1-forms on K, put

AK, B)={r*ws AK); w= A((K/B)},

AVUK, B)={r*we A‘(K); ws AVYK/B)},
and
A*Y(K, B)={r*we A(K); wc A*(K/B)}.

Then it is known (cf. [13] that the space A'(K, B) coincides with the space
of all e A'(K) such that R,*p=1y for all b€ B and i(X)»=0 for all X&b, where
i(X) is the operator of interior product by a vector field X<b on K.

Let {Xi}%, (resp. {Y}2,) be a basis of m* (resp. m~). Let T{(K/B) (resp.
T5.K/B)) be the space of all holomorphic (resp. anti-holomorphic) vectors of
the complexification TS, (K/B) of T,..(K/B). Then we have

TiK/B)= El CtidX)o,  TirolK/B)= E Crp(Yi)o,
where (X))o, Y )o=TS(K/B) (i=1, ---, n). We define complex valued left invari-

ant 1-forms {»;, &} on K by

?i(Xj):fi(Yj):5ij s ﬁi(Yj):Ei(Xj>:0 ’
and
7(X)=§:(X)=0 (Xeb9).

Then we have the following lemma.
LEMMA 24. For ne A*%K, B), (resp. A>Y(K, B)), we have
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=3 n&on  (resp. p= 5 (V080

Proor. For p=r*w, wc A*°(K/B), we have n(X)=0 (X&b°) and 5»(¥,)=0
(=1, -, n). Then p= é;y(Xi)m. For € A*Y(K, B), we have p= 2177(}/")5“

similarly. Q.E.D.
Under the above preparations, we have the following proposition.
PROPOSITION 2.1. For f,, fo.€ A"K/B), we have

(', f=vol (B, g)*| D'(fromfsmdu,,

1, fa=vol (B, g)*| D(fiemFready,,
and ’
(4f,, f)=vol (B, g’>-1§KD< from)\fardv,.

Here D’, D” and D are the differential operators on K given as follows:

_D/:i’]ﬁ:}l (pile(X )X,

—D'= 3} €Ex(Y )Y,

and
D=D'+D",

where 7 is the conjugation of m® with respect to m, both (n;|n;) and (§;|&;) are

the pointwise hermitian inner product on AYK) of (K, &) and these are constant

functions on K.
Proor. For fi, f:€ A"K/B), we have

sy = (@hld fadv,
=vol (B, g)"| (wa'si1mrddv,,
by Lemmas 2.1 and Since 7*d’f; (j=1, 2) belong to AV°(K, B), we have
' fy= B @ X, (=1,2),

by Lemma 2.4. Moreover, since n«(X): < Tho(K/B), for X=X; (i=1, ---, n), and
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k= K, we have
(”*d,f)(X)k:(d,f>k-o(75*(X)k):(df)k-o(ﬂ'*(X)k>
=X(ferm)k),
for fe AAK/B). Therefore we have
(w*d'fulm*d f= 3 X frem X Faem)el n)).

Since (y|w) is constant on K for », w=x; (=1, ---, n), we obtain the desired
result due to The remain can be proved similarly. Q.E.D.
We take the above basis {X;, Y.} %, of m® so that

Xi=2""(Ai—+v/-=1B:) and Y=2"Y(Ai++/-1By) (=1, -, n),

where {A;, B;}%, is a basis of m and satisfies [A;=B; and I B,=—A; (=1, -+, n).
Then 7(X;)=Y; and (Y ;)=X,, so we have (§;|§;)=(n:|n;) by the definition of
the inner product (-|-) on A'(K) and the choice of {»;, §;}7%,. Thus we have

~D’=i§1(ﬁi|7]j)Yin ’
and
_D”:i,él(ﬁi | 7}]‘)XjYi:i 21(7]1‘ [ Uj)Xin .

So we obtain

(2.2) —D'=—-2"'"D—-2"'F, and —D"=-—-2"'D427'F,
where

(2.3) | D=3} (il n )XY 4Y X0,

and

2.4 F= 33 (il 7 Xe, V1= 5 (741 7)[Xs, 2(X)00.

DEFINITION 2.1 (cf. [107, [14]). Let D(K/B) be the set of all z, (= K)
invariant differential operators on K/B. Let S(m) be the symmetric algebra
over m, considered as a B-module by the adjoint action of B on m. Let S(m)p
be the set of all elements in S(m) which are invariant by the action Ad (b), b= B,
and let S(m)§ be the complexification of S(m)z. Then, for P(Z,, -+, Z,,)e Sm)S,
we define A(P)e D(K/B) by

2.5 P k0= P, ) 52 ) itk exp $ 3120-0)|0),
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for fe A(K/B). Here, in the right hand side, {Z;}%*, is a basis of m, we regard
f(kexp (,,ZéiniM) as a function in (v, -+, y2n) and P(0/0yy, -+, 0/0Y2,) €X-

presses the differential operator given by substituting d/0y:, ---, 0/0y., into the
polynomial P(Z,, -+, Zsza).

LEMMA 2.5. Both the operators D and Fy belong to Sm)S, where Fy is the
mC-component of FEXC with respect to the decomposition ¥¢=bC+mC,

PrROOF. We notice that the decomposition m®=m*+m"~ is the orthogonal one
with respect to the hermitian inner product ¢, and both m* and m~ are invariant
under Ad(b), be B. We show that Ad(b)F,=F, beB. For beB, let Xi=
Ad () X; (=1, ---, n). Since {X}}™, is also a basis of m*, we may put Xj

n
= > u;;X;, for some unitary matrix U=(u,;) of degree n. Let {7} 7, be the
i=1

dual basis of {X{}7,. Since the matrix (o(X7, Xisi jsn (resp. (9il9i)isi,jzn)
coincides with *U(o(Xe, X))icr, 12U (resp. ‘U((ne| 9))1sk,152U), We have

B GUmIX «X)T= 3 (il )Xo w(X )

i, =1

which is the desired. By the same manner, we may prove that D<= S(m)é.
Q.E.D.
Then we have

D(f-m)=((D)f)=,

D'(fer)=2 Y A(D)+A(Fu)f ) ,
and
D"(fom)y=Q2*AD)—A(Fw)f)om .

Thus, together with [Proposition 2.1, we obtain the following proposition.
PROPOSITION 2.2. We have

4=3i(D), 4'=2"YAD)+A(Fy), and 4"=2"YA(D)—A(Fw)),

where A(D) and A(Fy) are the differential opzratorsin D(K/B) given by (2.3), (2.4)
and (2.5).

Now we make use of the facts in §1. We may take {X; (=1, -+, u), E,
(ac W)} (resp. {Y; (=1, -, u), E_, (= ¥,)}) as the basis of m* (resp. m~).
Here {X;}%,, (resp. {Y}%,) (u=27'b) is a basis of m} (resp. m7) given by X;=
2°YA;—+/—1B;) (resp. Y;=2"YA;+~+/—=1B;). {A;, Bj}%, is a basis of n; such
that JA;=B; and IB;,=—A4; (=1, ---, u). For a4, define complex valued
left invariant 1-forms w, on K by

(2.6) 0alE5) =045 and 0 X)=0 (X&t+ms),

and define complex valued left invariant 1-forms {7;, §;}{-: on K by



630 H. Urakawa

2.7 vi(Xj):Ei(Yj):aij » ﬁi(yj):é_i(x j)=0 ’
and
7:(X)=5(X)=0  (Xeb+m9).

Then both D and F can be expressed by

2.8) D=3 (il p)XY Y, X0+ 3 (1] 0)(XE-atE-oXo)

i, j=1 i=1,
acPy

+ 2 (Wa| DNEY +Y Ea)—l- 2 (walwﬁ)(E E_s+E_4E,),

aEIF+
and
2.9 F= 2 (ﬁz[a)a)[Xu E_.J+ E (a)abﬁ)[Ea, Y]
aew.,_ DIEW.;.

+a, ﬁ}ezw_-'-(wa { wﬁ)EEa; E—ﬂ] ’

due to EEN=nil ), Elo- =00 and (@-.|w-5)=(w.]wp).

2.2,

PrOPOSITION 2.3. Under the above situation, we assume 4”=(1/2)4 (or 4'=
(1/2)4). Then m;={0} (i.e., rank (K)=rank (B)), or the t,-component of the ele-
ment /=1 H, in (1.6) is not zero, where t;=m;+1,.

PROOF. Assume that 47=(1/2)4 (or 4'=(1/2)4). We suppose that the con-
clusion would be false. Then m;+# {0} and the {,-component of /—1 Hj is zero.
So we have «/—1 H;#0 and it belongs to m;. Then

(2.10) a(H)=0, for all ac ¥,
by The assumption 4”=(1/2)4 (or 4’=(1/2)4) implies
lez— Z (walwaxHa)ml"‘o

ac¥ +
where (H.)s, is the 4/—1m;-component of H, with respect to the decomposition
V=1t=+/=1m++/—11,. Therefore
2 (wq | @ )a(HY)= goo( 2 (walwa)(H myy HD=0,

ac¥

so we have a(H;)=0 for all ac ¥, due to [2.10). On the other hand, a(H;)=0
for all a=®, by the definition of ®. Then we have H;=0, which is a contra-
diction. Q.E.D.

THEOREM 2.1. Let (M, g) be a compact, simply connected hermitian manifold.
Suppose that the group of all holomorphic and isometric transformations of (M, g)
acts transitively on M. If 4"=1/2)4 (or 4’=(1/2)4), then the second Betti
number by (M) of M is positive.
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PrROOF. In general, if K is a compact, semi-simple Lie group and B is a
closed connected subgroup of K, then b,(K/B)=0 if and only if B is semi-simple
(cf. p. 499). Assume that 47=(1/2)4 (or 4’=(1/2)4). We suppose that the
conclusion would be false. Then B is semi-simple, i.e., the center f, of b is
zero. Then, due to [Proposition 2.3, we have m;={0}. Thus the complex homo-
geneous space K/B has to satisfy that B is semi-simple and rank (K)=rank (B).
But it never happens (cf. p. 500 or p. 14 Corollary). Q.E.D.

§3. A construction of examples for 4'=4"=(1/2)4.

Conversely, let us consider a problem to construct a hermitian metric g on
compact homogeneous complex manifolds satisfying 4’=4"=(1/2)4. In this
section, on some compact complex manifolds admitting no Kaehler metric and
the positive second Betti number, we construct hermitian metrics satisfying 4'=
4"=(1/2)4 (cf. [Theorem 3.1)).

3.1. Let K be a compact, connected, semi-simple Lie group, and assume that
a closed, connected subgroup B of K is a C-subgroup and satisfies the conditions
(1), (2) and (3) in 1.2. We preserve the notations and situations in 1.3.

We define an endomorphism I on m by

3.1) (=1 How)=~=1 Huier, I(V=1Hpo)=—~/ =1 Hu (1ZiZu),
and
(3.2) IU)=eaVa, IV)=—eUo, e,

U )=V, IV, )=—U.. (a€6.),

where u=(1/2)b and e,==+1 (a=0.) are defined as follows: For a permutation
s of {1, -+, a} and e()==+1 (=1, -+, a), (a=dim (1,)), we choose an order >
on the root system 4 in such a way that

a=Bre@hot 2 rdi=0 (0, nER)

if and only if there exists an integer ; (1=/</) satisfying »,= - =r;-;=0 and
r:>0. For this order >, put ¥,={acd\O; a>-0} and VU_={—acd\O; a>-0}.
Then it holds that

1.5) acOUY,, pe¥,, a+pcd = a+pe¥.,.

So we define ¢, (a=6,) by {c.a; acB,}=",. We extend [ complex linearly
to the complexification m¢ of m usually. Then the +/—1 eigenspace m* (resp.
V=1 eigenspace m~) of I on m° is given by
mt=mi+ > CE, (resp. m~=mi+ > CE_,),

ac¥ ac¥



632 H. UrRakAawA

where m{ (resp. my) is spanned by {X;} %, (resp. {Y;} ) and X;=(1/2)(v/ —1 Hy;
—+/ =1 Hyi-y) (resp. YVi=(1/2)(v/ =1 Hyi+~/—1 Hyi-1)), G=1, ---, u). These sub-
spaces m* and m~ satisfy the conditions (ii’) and (iii’), due to [1.5). Thus the
endomorphism I on m induces a tensor field /] which defines a complex structure
on K/B.

In connection with this complex structure on K/B, we define a hermitian
inner product ¢ on m by

3.3) (v ~1Hy ~/~-1H)=0y;  (1=i, j=b),
(3.4) YU, Ug)=@p(Va, V)=2a3%00p, ¢Ua, V)=0 (a, =¥,
3.5 (X, Y)=0 (Xem, Yem,).

Then {(v/=1/~/2)H: (=1, ---, b), 1/v/2) aUs (1/4/2) aaVa (s ¥,)} is an
orthonormal basis of m with respect to ¢. Here a, (e ¥,) have to be positive
constants satisfying that

(3.6) Qa+§=0a, for ac ¥,, 6.

We notice that ¢ is Ad(B)-invariant by [3.6) Due to the definition of ¢, it
holds that

3.7 oIX, IV)=¢(X,Y), X, Yem.

So ¢ induces a hermitian metric g on the complex manifold (//B, /). Let & be
a Riemannian metric on K such that the natural projection = of K onto K/B is
a Riemannian submersion, as in 2.1. We extend ¢ to a hermitian inner product
on m¢, denoted by the same letter ¢. Let {n;, & (=1, -, w), Wa, ®_o (@€ ¥,)}
be complex valued 1-forms on K defined by (2.6) and Then we have

(3.8) (Nilwa)=0 =1, -, u, ac¥,),
and

(Walwg)=aibas  (a, B V),

since {X;, Y; G=1, -+, u), auEw, aoE_-, (= ¥,)} is an orthonormal basis of m®€
with respect to ¢. Here (-|-) is the pointwise inner product on A'(K) induced
by the Riemannian metric § on K. Hence F (f°), in is given by

F=— > az;H,.

ac¥ 4

Therefore we have

”_— 1 /_A_I_ 2 —_— y —
(3.9) A—§A<md—2@<ﬁ 5 aka(H)=0, (=1, 0b).

=1

REMARK. In case of m,={0}, i.e., rank (K)=rank (B), the right hand side
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of holds always without the d-closedness condition of the fundamental
Kaehler form associated to the hermitian metric g on K/B.

3.2. In particular, let B=T, be a toral subgroup of K such that dim (K/T,)
=even, i.e., b=rank (K)—dim (T, =even. Then B=T, is a C-subgroup of K.
In fact, let T, be a maximal toral subgroup of K containing 7. Then the
centralizer Zx(T,) of T, in K coincides with 7, and the semi-simple part of
B=T, consists of only the identity. In this case, §;=t;, b=t,, b,={0}, ©@=0
and 4/\@=4. We preserve the notations and situations in 3.1. We give a com-
plex structure J on K/T, by and and also a hermitian inner product
¢ on m by [33) [34) and [35). Then ¢ satisfies and so it gives a
hermitian metric g on the complex manifold (K/T,, J). Put di={acd"; a0}
={acsd”; e,=1}, A/={acd*; a<0}={a=sd*; ¢,=—1}. Then the right hand
side of is
3.9 > ala(H)— 2 ala(H)=0 G=1, -, b).

acdy acsy

For classical groups K=SU((+1), SO2I+1), SO@2!l) or Sp(l) (I=3), we will
construct a (/—2)-dimensional toral subgroup T, of K, {H;}}.;, ¢ and I satisfy-
ing (3.9").

3.3. Case 1. Let K=SU(/+1) ({=3). Then k=3&u(/+1) and g=8[([+1, C).

=186, 0 1+1
Let H,= ; 0. R (=1, -, I+1), X 60;=0; and h=p7. Put
0 V=164 =1

H,= and H;= 0 (2=:1=0).

—1

Then {H,, ---, H,} are linearly independent, rational elements of Y, which are
mutually orthogonal with respect to the Killing form ¢,(X, Y)=2(/+1) Trace (XY),
X,Yeg. Let {4}i.; be the mappings of § into C defined by A, (H)=0,;
(1=4, j=0). We have

,ui:ilzi'_‘/zi-#l_ v =4, (=1, -+, [=1), and /«lz:ul ’

a 0
where p; is a mapping of ) into C defined by f)s( n. )Hai (=1, ---, [+1).
Aia

Let b=t, be an abelian subalgebra of f spanned by {~—1Hs, -=-, ~/—1H;}. b
generates a (/—2)-dimensional toral subgroup B=T, of K. The root system 4
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of (g, ) is {gs—p;; 154, j=I+41, i#j}. The lexicographic order > of 4 given
by A:> -+ >4,>0 induces that p,> - >, >0> g4y (ys1=—pa— -+ — ). Then
the set 4* of positive roots is {u;—p;; 1=5i<j=<[+1}. Let m; be a subspace of
B spanned by {v/—1H,;, ~/—1H;}. For ac4*, define elements U, and V, inf,
as in 1.3. The complex structure J on K/T, is induced from the endomorphism
I defined by

{ IW=1H)=v-1H:, I(v-1H)=—+=1H;, and
(3.10)

IU)=¢aVa, I(V)=—eUq (acsd),

as in 3.1. The numbers ¢,=-+1 (e=4*) are defined in such a way that {e,a;

s

acsd*}={acsd; a>>0} with respect to the following order > on 4: We define
the one > on 4 by
(3.11) Aso= o A=A 2.0 .
That is, a=rAs+ -+ —I—n_22;+rl_121+7’122>0“ if and only ifk
ri= o =r;.;=0 and »,>0, for some 1</</.

Then A;:{aelhi a>0} is {#i_‘/«‘j; 3§Z‘<].§H“1}U{#1—#1+1; Mo Ui+1s #1_#2}
and dl={a<sd;; a<0} is {pai—py, po—p; 3=j=I+1}. Then we have

!
(3.12) §+a oteqa(Hy)= {“‘(11, 11+, l+12—20122} —{— E (a::2+az?},
« 1=3
!
(3.12') > aleqa(Hy)= {2 > asjz—a1,1+12_‘02,l+12}
acdt Jj=4

l
- {—3((1 132—['-(1232)— Jg (alj2+a2j2)} ’

where we denote a;;=ap,-,; 1=i<j=[41). Therefore we may give a, (as4")
such that both and (3.12’) are zero. Thus such {a,; a=4*} give a her-
mitian metric on this complex manifold (K/T,, /) of complex dimension
(1/2)(1*4-1+2), which satisfies 4'=4"=(1/2) 4.
Case 2. Let K=S0(20) (resp. SO2[+1)) (I=3). Then I=0(2]) (resp. 0(2[-+1)),
and g=o0(2/, C) (resp. o(2/4+1, C)). For a;=C (=1, ---, D), let Hla,, -, a;)
Rlay) 0
. 0 —a
:{ 0 Ry (Ojeg, where R(a)z(a 0), for ae C. Let b= {H(0,, -, 0,);

6;.cR (=1, -, D} and h={H(ey, -, a); a;€C (=1, ---, D}. Then b, is a

maximal abelian subalgebra of t and §=4¢. Let H;=—+/—1H(0, --+,0, 1, 0, -, 0)
(1=i<0D. Then {H,, ---, H;} are linearly independent, rational elements of %
which are mutually orthogonal with respect to the Killing form ¢,(X, Y)=0(n—2)
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-Trace (XY), X, Y=g, where m=2[ (resp. 2{+1). Let {A;}!-; be the mappings
of §) into C defined by A;(H;)=0;; (1=i, j=/). Then it holds that

21:\/?1 i

where p; is a mapping of § into C defined by )3 H(ay, -, a))—a; (1=i=)).
Let b=t, be an abelian subalgebra of f spanned by {~/—1 H,, -, ~/—1 H;}. Then
b generates a (/—2)-dimensional toral subgroup B=T, of K. The root system
4of (g, 9) is {/—T gt/ =1 ;5 1=i<j=l} (resp. {=v/ =1 pat/ -1 p; (IS0
<JED, £4/=1ps 1=i<))}). With respect to the lexicographic order > of 4
given by A,> -+ >A,>0, the set 4% of positive roots is {+/ =1 pi=+/—1t5;
1<i<j<l} (resp. {v/=T prie/=T gy A<i<j<D), V=1 A=i=D}). Let m be
a subspace of Y, spanned by {~/—1H,, ~/—1H,}. For asd*, define elements
U, and V, in t as in 1.3. The complex structure J on K/T, is induced from
an endomorphism / defined by the same manner as and the numbers
ea==1 (as4*) are also given by the order > on 4 similar to [3.1I). Then
di={acd:; a>0} is {/=1 it~/ —1py; AZI<GED, /=1 pui—~/—1p; B=i<
J=D, /=1 pa—~/=1 pa} (resp. {v/ =1 gt~/ =1 p; ASi<FJED, V=1 pi—~ =1 5
B=i<J=D, V-Tma—vV—1pte, V=1 (1=i=D}), and di={acd,; a<0} is
(V=T1m—~ -1 V=1 p—+v=1p; B=j=D}. Thus we have

l 1

(3.13) > aleqa(H)= { > a1j2+b122} - b1j2 ’

acdt Jj=2 j=3

l l
(resp. {j>=:2 as + b+’ —j§3 bi;*),
l !

(3-13/) 2 aJlea(Hy)={2 azj2+ a1°—by’t — 2 sz?‘ s

acd+ j=3 j=3

{ {
(resp. {Jgg azj2+(1122_b122+ %t — _7;, b2j2> s

where we denote Qij=Ay=T pyrn=ipp bis=0y=1 py-v=1 p; (1=i<j=D), ci=a =1,

(1</<!). Therefore we may give a, (asd*) satisfying that both and

(3,13’) are zero. Thus such {a,; a=4d*} give a hermitian metric on this com-

plex manifold (K/T,, J) of complex dimension /*—/+1 (resp. {*+1), which satisfies
'=d4"=(1/2) 4.

I
Case 3. Let K=Sp()={x<UQ2l); ‘xJ;x=];} ({=3) where ]l:( O[ 6), and
4y
I, is the unit matrix of order /. Then fzép(l)z{(ﬁzty, —‘}Z/>; t7 +Z=0, Y=‘Y}

and g=38p(/, C). For a;=C (i=1, -, [), let
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a
Ha, -, a))= w €g.

—ay

Let ‘fh: {H(aly ) 6[); HJER (Z—:l, ) l)} and ‘f):{H(aly E) al); aiEC (Z.:l’
-+, D}. Then Y, is a maximal abelian subalgebra of f and H=1°. Let H;=

H(, --,0,1,0, -, 0) (1<i<l). Then {H,, -, H;} are linearly independent,
rational elements of ¥, which are mutually orthogonal with respect to the Killing
form ¢,(X, Y)=(2[+2) Trace (XY), X, Y=g. Let {2;}}-, be the mappings of }
into C defined by A;(H;)=0;; (1=i7, j=/). Then it holds that

/21;:#1; ’

where y; is a mapping of Y into C defined by Y= H(ay, -, a))—a; (1=i=0).
Let b=t, be an abelian subalgebra of ¥ spanned by {v/—1H,, -+, ~/—1H;}.
Then b generates a (/—2)-dimensional! toral subgroup B=T, of K. The root
system 4 of (g, ) is {Fptp; I<i<j=D), £2p, (1=i=))}. With respect to
the lexicographic order > of 4 given by A,> --- >21,>0, the set 4* of positive
roots is {u;+p; (1=Si<j=0), 2p; (1=i=</)}. Let m, be a subspace of §j, spanned
by {&/=1H;, v/—1H,}. For acd4+, define elements U, and V, in {, as in 1.3.
The complex structure J on K/T, is induced from an endomorphism I defined
by the same manner as and the numbers e,==+1 (e=4*) are also given
by the similar order > on 4 as[3.1I) Then di={acsd:; a>0} is {p:+p;
(A=i<G=D, pu—p; B=Zi<G=D), pa— e, 2p 1=i=0)}, and dl={a<sd,; a<0} is
{ti—py, po—p; B=j=0)}. Thus we have

i !
(3.14) 2 alteqa(H)={2 a,/+ b’ +ci’y — 2 by)%,
acd+ j=2 j=3
l l
(3.14%) 2 alfeqaa(Hy)={2 @+ a1’ —bi" ¢t — 20 bef®,
acd+ j=3 j=3

where we denote a;;=u;+pp bij=0p;-p; (1=i<j=0), and c;=a,,; 1=i=)).
Therefore we may give a, (asd*) satisfying that both and (3.147) are
zero. Thus such {a,; a=4*} give a hermitian metric on this complex manifold
(K/T,, J) of complex dimension /21, which satisfies 4’=4"=(1/2) 4.

Summing up the above results, we have the following theorem.

THEOREM 3.1. For classical groups K=SU(I+1), SO2!), SO2I+1), or Sp(l)
(1=23), there exist a (I—2)-dimensional toral subgroup T, of K, a K-invariant
complex structure | and a K-invariant hermitian metric g with respect to | on
the coset space K/T, satisfying that
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1
P AV —
4'=4 =7 4.
REMARK. The complex manifolds (K/T,, J) in [Theorem 3.1 have no Kaehler

metric since rank (K)=[>[—2=rank (T,) (cf. [3].

§4. Compact complex parallelisable manifolds.

In this section, we assume that a compact complex manifold M of complex
dimension n is parallelisable, that is, there exist n holomorphic vector fields
{X,, -, X,} on M which are linearly independent everywhere (cf. [16]). Let
{w, -+, w,} be n holomorphic 1-forms given by w.(Xz)=0.5 (1=, B=n). Then

13
the complex symmetric form 3 w.-@, gives a hermitian metric g on M, where
a=1

@, denotes the complex conjugate of w, (a«=1, -+, n). The complex Laplacians
4’, 4”7 of (M, g) can be calculated as follows:

4'=— iXaXa; 4"=— %lXaXa,
a=1 a=

where X is the complex conjugate of a vector field X. Since each vector field
X, (a=1, ---, n) is holomorphic, we have [X,, X,]=0. Thus we obtain the
following proposition.

PROPOSITION 4.1. Each compact complex parallelisable manifold admits a
hermitian metric satisfying 4’=4"=(1/2) 4.

REMARK 1. A compact complex parallelisable manifold which is not a
complex torus, admits no Kaehler metric (cf. [16].

REMARK 2. Recently, K. Tsukada shows that for a compact complex
hermitian manifold (M, g), a condition 4”=(1/2) 4 is equivalent to that (M, g) is
semi-Kaehler, that is, the Kaehler form is coclosed (cf. [18]). Thus, due to his
result, and [Proposition 4.1, we obtain examples of semi-Kaehler
compact complex manifolds which admit no Kaehler metric.
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