Complex Laplacians on compact complex homogeneous spaces

By Hajime URAKAWA

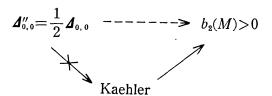
(Received Feb. 1, 1980)

Introduction.

M. Berger [1] proposed a problem: Is it possible to determine whether a complex hermitian manifold is Kaehler making use of the data of the spectrum of the (complex) Laplacian?

Let (M, g) be a compact hermitian manifold of complex dimension n. Let $\mathbf{\Delta}_{p,q}''$ (resp. $\mathbf{\Delta}_{p,q}$) be the complex (resp. real) Laplacian acting on the space $A^{p,q}(M)$ of all complex valued forms of type (p,q) (cf. § 1). Denote the spectrum of $\mathbf{\Delta}_{p,q}''$ (resp. $\mathbf{\Delta}_{p,q}$) on $A^{p,q}(M)$ by $\operatorname{Spec}(\mathbf{\Delta}_{p,q}'')$ (resp. $\operatorname{Spec}(\mathbf{\Delta}_{p,q})$). It is known that $\mathbf{\Delta}_{p,q}'' = (1/2)\mathbf{\Delta}_{p,q}$ if (M,g) is Kaehler (cf. [11]). Conversely, P. B. Gilkey [6], [7] showed that a compact hermitian manifold is Kaehler if $\operatorname{Spec}(\mathbf{\Delta}_{p,q}'')$ coincides with $\operatorname{Spec}((1/2)\mathbf{\Delta}_{p,q})$ for (p,q)=(0,0), (1,0) and (0,1). Moreover he showed (cf. [6]) that (M,g) is Kaehler if $n \leq 2$ and $\operatorname{Spec}(\mathbf{\Delta}_{0,0}'') = \operatorname{Spec}((1/2)\mathbf{\Delta}_{0,0})$, and constructed a hermitian metric on a complex torus C^n/\mathbf{Z}^{2n} $(n \geq 3)$ which is not Kaehler and satisfies $\operatorname{Spec}(\mathbf{\Delta}_{0,0}'') = \operatorname{Spec}((1/2)\mathbf{\Delta}_{0,0})$. But it would be perhaps significant to ask which geometric conditions are necessary for the existence of a hermitian metric satisfying the condition $\operatorname{Spec}(\mathbf{\Delta}_{0,0}'') = \operatorname{Spec}((1/2)\mathbf{\Delta}_{0,0})$.

Now it is well known (cf. [12]) that a Kaehler manifold has the positive second Betti number $b_2(M)$. So let us consider the following problem: Does a compact hermitian manifold with the condition $\mathbf{\Delta}_{0,0}^{\prime\prime}=(1/2)\,\mathbf{\Delta}_{0,0}$ have the positive second Betti number $b_2(M)$?



The purpose of this paper is to give a partial answer to this problem.

THEOREM 2.1. Let (M, g) be a compact, simply connected hermitian manifold. Suppose that the group of all holomorphic and isometric transformations of (M, g) acts transitively on M. If $\mathbf{\Delta}''_{0,0} = (1/2) \mathbf{\Delta}_{0,0}$ or $\mathbf{\Delta}'_{0,0} = (1/2) \mathbf{\Delta}_{0,0}$, then the second Betti

This research was partially supported by Grant-in-Aid for Scientific Research, (No. A434003), Ministry of Education.

H. Urakawa

number $b_2(M)$ of M is positive.

Moreover, we shall show that on certain compact complex manifolds admitting no Kaehler metric and the positive second Betti number, there are hermitian metrics satisfying $\mathbf{\Delta}_{0,0}^{"}=(1/2)\mathbf{\Delta}_{0,0}$ (cf. Theorem 3.1).

The author wishes to thank Professor S. Murakami for his helpful advice.

§ 1. Preliminaries.

1.1. Let M be a compact complex manifold of complex dimension n. Let g be a hermitian metric on M. For $0 \le r \le 2n$, let $A^r(M)$ be the space of all complex valued smooth r forms on M. The exterior differentiation of $A^r(M)$ into $A^{r+1}(M)$ is denoted by d. For $0 \le p$, $q \le n$, let $A^{p,q}(M)$ be the space of complex valued smooth (p+q)-forms of type (p,q). Let d'; $A^{p,q}(M) \to A^{p+1,q}(M)$ denote the differentiation with respect to complex coordinates, and let d''; $A^{p,q}(M) \to A^{p,q+1}(M)$ denote the differentiation with respect to the conjugates of complex coordinates. Let $\overline{*}$; $A^{p,q}(M) \to A^{n-p,n-q}(M)$ be the complex star operator on (M,g). Then the inner product (\cdot,\cdot) on $A^r(M)$ can be defined by

$$(\omega, \eta) = \int_{M} \omega \wedge *\eta$$

for ω , $\eta \in A^r(M)$. Then $A^r(M) = \sum_{p+q=r} A^{p,q}(M)$ is the orthogonal decomposition of $A^r(M)$ with respect to this inner product.

Put $\delta = -\overline{*}d\overline{*}$, $\delta' = -\overline{*}d'\overline{*}$ and $\delta'' = -\overline{*}d''\overline{*}$. Then it holds that $(d\omega, \eta) = (\omega, \delta\eta)$, $(d'\omega, \eta) = (\omega, \delta'\eta)$, and $(d''\omega, \eta) = (\omega, \delta''\eta)$ for $\omega, \eta \in A^r(M)$, and $\delta = \delta' + \delta''$. We define the operators $\mathbf{\Delta}_{p,q}$, $\mathbf{\Delta}'_{p,q}$ and $\mathbf{\Delta}''_{p,q}$ on $A^{p,q}(M)$ by

$$\mathbf{\Delta}_{p,q} = d\delta + \delta d$$
, $\mathbf{\Delta}'_{p,q} = d'\delta' + \delta'd'$, and $\mathbf{\Delta}''_{p,q} = d''\delta'' + \delta''d''$.

The operator $\mathbf{\Delta}_{p,q}$ is called the real Laplacian and the operators $\mathbf{\Delta}'_{p,q}$ and $\mathbf{\Delta}''_{p,q}$ are called complex Laplacians. They are all elliptic operators on $A^{p,q}(M)$ and $\mathbf{\Delta}'_{p,q} = \mathbf{\Delta}''_{p,q} = (1/2) \mathbf{\Delta}_{p,q}$ when a hermitian manifold (M, g) is Kaehler (cf. [12]). In this paper, we will be concerned with the operators $\mathbf{\Delta}_{0,0} = \delta d$, $\mathbf{\Delta}'_{0,0} = \delta' d'$ and $\mathbf{\Delta}''_{0,0} = \delta'' d''$ on $A^0(M) = A^{0,0}(M)$, we abbreviate them by $\mathbf{\Delta}$, $\mathbf{\Delta}'$ and $\mathbf{\Delta}''$, respectively.

1.2. Let M be a simply connected compact complex manifold of complex dimension n. Let g be a hermitian metric on M. Assume that the group of all holomorphic and isometric transformations of (M, g) acts transitively on M. Let K be the identity component of this group. Let B be the isotropy subgroup of K at some point o of M. Since a maximal semi-simple subgroup of K acts transitively on M (cf. [8], [15]), we may assume that K is a semi-simple Lie group and B is a closed, connected subgroup of K, due to the simply connectedness of M. So we can identify the hermitian manifold (M, g) with a coset

space K/B of K admitting an invariant complex structure and an invariant hermitian metric under the transformations τ_k ; $K/B \ni k' \cdot o \mapsto k k' \cdot o \in K/B$, $k \in K$, $o = \{K\} \in K/B$. Then J. Hano and S. Kobayashi [8] obtained the following results (cf. [15]):

- (1) B is a C-subgroup of K, that is, its semi-simple part B_s coincides with that of the centralizer $Z_K(T_1)$ of some toral subgroup T_1 of K.
- (2) T_1 contains the identity component T_0 of the center of B, (so B is contained in $Z_K(T_1)$ by the connectedness of B).
 - (3) $\operatorname{rank}(K) \operatorname{rank}(B_s) = \dim(T_1)$.
 - (4) $Z_K(T_1)/B$ is a complex torus.
- (5) $K/Z_K(T_1)$ admits an invariant complex structure such that the natural projection of K/B onto $K/Z_K(T_1)$ is holomorphic. Hence, K/B is a holomorphic principal fiber bundle over $K/Z_K(T_1)$ with $Z_K(T_1)/B$ as a structure group.
- 1.3. Under the above situations, following [15] and [8], we prepare some notations to express the above invariant complex structure and the invariant hermitian metric on M=K/B.

Let \mathfrak{f} be the Lie algebra of all real left invariant vector fields on K, and let \mathfrak{b} (resp. \mathfrak{b}_s , \mathfrak{t}_1 and \mathfrak{t}_0) be the subalgebra of \mathfrak{f} corresponding to the closed subgroup B, (resp. B_s , T_1 and T_0) of K. Let \mathfrak{h}_t be a maximal abelian subalgebra of \mathfrak{f} containing \mathfrak{t}_1 . Let \mathfrak{g} (resp. \mathfrak{h}) be the complexification of \mathfrak{f} (resp. \mathfrak{h}_t). Then \mathfrak{h} is a Cartan subalgebra of \mathfrak{g} . A linear map α of \mathfrak{h} into C is called a root of $(\mathfrak{g}, \mathfrak{h})$ if there exists a non-zero vector X in \mathfrak{g} such that $[H, X] = \alpha(H)X$, for all $H \in \mathfrak{h}$. The vector X is called a root vector for α . Let Δ be the set of all non-zero roots of $(\mathfrak{g}, \mathfrak{h})$. All $\alpha \in \Delta$ are pure imaginary valued on \mathfrak{h}_t . For each $\alpha \in \Delta$, we choose a root vector E_α such that $\tau E_\alpha = E_{-\alpha}$ and $\varphi_0(E_\alpha, E_{-\alpha}) = -1$. Here τ is the conjugation of \mathfrak{g} with respect to \mathfrak{f} and φ_0 is the Killing form of \mathfrak{g} . Put $U_\alpha = E_\alpha + E_{-\alpha}$ and $V_\alpha = \sqrt{-1} (E_\alpha - E_{-\alpha})$ for $\alpha \in \Delta$. For $\alpha \in \Delta$, we choose an element $H_\alpha \in \sqrt{-1} \mathfrak{h}_t$ such that $\varphi_0(H_\alpha, H) = \alpha(H)$ for all $H \in \mathfrak{h}$. Then we have $[E_\alpha, E_{-\alpha}] = -H_\alpha$ and

(1.1)
$$f = \mathfrak{h}_t + \sum_{\alpha \in A} (RU_\alpha + RV_\alpha).$$

Let \mathfrak{m}_1 be the orthogonal complement of \mathfrak{t}_0 in \mathfrak{t}_1 with respect to the Killing form φ_0 . Then there exist linearly independent rational elements $\{H_1, \dots, H_a\}$ of \mathfrak{h} such that \mathfrak{m}_1 (resp. \mathfrak{t}_0) is spanned by $\{\sqrt{-1}\,H_i\}_{i=1}^b$ (resp. $\{\sqrt{-1}\,H_i\}_{i=b+1}^a$) over \mathbf{R} . Here we put $a=\dim\mathfrak{t}_1$ and $b=\dim\mathfrak{t}_1-\dim\mathfrak{t}_0$ and an element H of \mathfrak{h} is called rational if all $\alpha\in\mathcal{A}$ take rational values at H (cf. [15]). In fact, there exist (cf. [15] p. 16, 19) linearly independent rational elements $\{H'_1, \dots, H'_b, H_{b+1}, \dots, H_a\}$ of \mathfrak{h} such that \mathfrak{t}_1 (resp. \mathfrak{t}_0) is spanned by $\{\sqrt{-1}\,H'_1, \dots, \sqrt{-1}\,H'_b, \sqrt{-1}\,H_{b+1}, \dots, \sqrt{-1}\,H_a\}$ (resp. $\{\sqrt{-1}\,H_{b+1}, \dots, \sqrt{-1}\,H_a\}$) over \mathbf{R} . Then the images of $\{H'_i\}_{i=1}^b$

by the orthogonal projection of $\sqrt{-1}\,t_1$ onto $\sqrt{-1}\,\mathfrak{m}_1$ with respect to the decomposition $\sqrt{-1}\,t_1=\sqrt{-1}\,\mathfrak{m}_1+\sqrt{-1}\,t_0$, constitute a rational basis of $\sqrt{-1}\,\mathfrak{m}_1$.

Let Θ be the set of all elements in Δ which vanish on t_1 . Since $\mathfrak{b}=t_0+\sum_{\alpha\in\Theta}(RU_\alpha+RV_\alpha+R\sqrt{-1}\,H_\alpha)$ and $\sum_{\alpha\in\Theta}R\sqrt{-1}\,H_\alpha$ is the orthogonal complement of t_1 in \mathfrak{h}_t with respect to the Killing form φ_0 , we may choose $\{H_{a+1},\cdots,H_t\}$ ($l=\dim t_t$) as linearly independent rational elements of \mathfrak{h} belonging to the orthogonal complement of $\sqrt{-1}\,t_1$ in $\sqrt{-1}\,\mathfrak{h}_t$. Let $\{\lambda_1,\cdots,\lambda_t\}$ be the set of linear mappings of \mathfrak{h} into C defined by $\lambda_i(H_j)=\delta_{ij}$. Then each $\alpha\in\Delta$ can be expressed as a linear combination of $\lambda_1,\cdots,\lambda_t$ with rational coefficients. So we may define a lexicographic order > on Δ by $\alpha=\sum_{i=1}^t r_i\lambda_i>0$ if and only if there exists an integer i ($1\leq i\leq t$) such that $r_1=\cdots=r_{t-1}=0$ and $r_i>0$. Let Δ^+ be the set of all positive roots in Δ . Let Θ_+ be the set of all elements in Δ^+ which do not belong to Θ . Put $\Theta_-=\{\alpha\in\Delta\,;\, -\alpha\in\Theta_+\}$. Then $\Delta=\Theta\cup\Theta_+\cup\Theta_-$ (disjoint union) and they satisfy the conditions (1) $\alpha\in\Theta\cup\Theta_+$, $\beta\in\Theta_+$ and $\alpha+\beta\in\Delta$ $\alpha+\beta\in\Theta_+$, (2) α , $\beta\in\Theta$ and $\alpha+\beta\in\Delta\Rightarrow\alpha+\beta\in\Theta$, and (3) $\alpha\in\Theta_+\Leftrightarrow-\alpha\Theta_-$. Put $\mathfrak{m}_2=\sum_{\alpha\in\Theta_+}(RU_\alpha+RV_\alpha)$ and $\mathfrak{m}=\mathfrak{m}_1+\mathfrak{m}_2$, which is the orthogonal direct sum with

respect to the Killing form φ_0 . So the algebra \mathfrak{k} decomposes as follows:

(1.2)
$$\mathfrak{t}=\mathfrak{b}+\mathfrak{m}, \quad \mathfrak{m}=\mathfrak{m}_1+\mathfrak{m}_2,$$

and the adjoint representation of B acts on \mathfrak{m}_1 trivially, and $\mathrm{Ad}\,(b)\mathfrak{m}_2=\mathfrak{m}_2$ for all $b\in B$.

- **1.4.** We express the complex structure and the hermitian metric on M = K/B, given in 1.2 (cf. [8]). Let J be the tensor field on K/B defining the complex structure. Then the restriction of J to the origin $o = \{B\}$ of K/B induces an endomorphism I of \mathfrak{m} with the following properties:
 - (i) $I^2 = -id$,
 - (ii) $[X, IY] = I[X, Y], X \in \mathfrak{b}, Y \in \mathfrak{m},$
 - (iii) $I[X, Y]_{\mathfrak{m}} [IX, Y]_{\mathfrak{m}} [X, IY]_{\mathfrak{m}} I[IX, IY]_{\mathfrak{m}} = 0$, $X, Y \in \mathfrak{m}$.

Here $Z_{\mathfrak{m}}$ ($Z \in \mathfrak{k}$) denotes the \mathfrak{m} -component of Z with respect to the decomposition $\mathfrak{k} = \mathfrak{b} + \mathfrak{m}$. Moreover, the condition (5) in 1.2 induces that the actions R_t ; $k \cdot o \in K/B \mapsto kt \cdot o \in K/B$ ($t \in T_1$) are holomorphic. So the endomorphism I satisfies that

(iv)
$$[X, IY] = I[X, Y], X \in \mathfrak{t}_1, Y \in \mathfrak{m}$$
.

Then, due to the conditions (ii) and (iv), we have

$$I(\mathfrak{m}_1) = \mathfrak{m}_1,$$

(1.4)
$$IU_{\alpha} = \varepsilon_{\alpha} V_{\alpha} \text{ and } IV_{\alpha} = -\varepsilon_{\alpha} U_{\alpha}, \text{ i.e.,}$$

$$IU_{\varepsilon_{\alpha}\alpha} = V_{\varepsilon_{\alpha}\alpha}$$
 and $IV_{\varepsilon_{\alpha}\alpha} = -U_{\varepsilon_{\alpha}\alpha}$,

where $\varepsilon_{\alpha} = \pm 1$ ($\alpha \in \Theta_{+}$) (cf. [8]). In fact, we have [X, IY] = I[X, Y] for all $X \in \mathfrak{h}_{t}$ and $Y \in \mathfrak{m}$, so we obtain that $[\sqrt{-1} H, IY] = 0$ for all $\sqrt{-1} H \in \mathfrak{h}_{t}$, $Y \in \mathfrak{m}_{1}$, and $[\sqrt{-1} H, IU_{\alpha}] = \alpha(H)IV_{\alpha}$, $[\sqrt{-1} H, IV_{\alpha}] = -\alpha(H)IU_{\alpha}$, for all $\sqrt{-1} H \in \mathfrak{h}_{t}$, $\alpha \in \Theta_{+}$. These equalities, together with (1.2), imply (1.3) and (1.4).

Let \mathfrak{b}^c (resp. \mathfrak{m}_1^c , \mathfrak{m}^c) be the complexification of \mathfrak{b} (resp. \mathfrak{m}_1 , \mathfrak{m}). We extend I to a complex endomorphism of \mathfrak{m}^c in a natural manner. Let \mathfrak{m}^+ (resp. \mathfrak{m}^-) be the eigenspace of I belonging to the eigenvalue $\sqrt{-1}$ (resp. $-\sqrt{-1}$). Then we have

$$\mathfrak{m}^+ = \mathfrak{m}_1^+ + \sum_{\alpha \in \Theta_+} C E_{\varepsilon_{\alpha} \alpha}$$
,

$$\mathfrak{m}^- = \mathfrak{m}_1^- + \sum_{\alpha \in \Theta_+} C E_{-\varepsilon_{\alpha} \alpha}$$
.

Here $\mathfrak{m}_1^+ = \mathfrak{m}_1^c \cap \mathfrak{m}^+$ and $\mathfrak{m}_1^- = \mathfrak{m}_1^c \cap \mathfrak{m}^-$, due to (1.3). The conditions (ii) and (iii) can be expressed as follows (cf. $\lceil 5 \rceil$):

(ii')
$$[\mathfrak{b}^{c}, \mathfrak{m}^{+}] \subset \mathfrak{m}^{+}, \quad [\mathfrak{b}^{c}, \mathfrak{m}^{-}] \subset \mathfrak{m}^{-},$$

(iii') both
$$\mathfrak{b}^c + \mathfrak{m}^+$$
 and $\mathfrak{b}^c + \mathfrak{m}^-$ are subalgebras of \mathfrak{g} .

The condition (iii') is equivalent to the condition

(iii")
$$\Theta \cup \{\varepsilon_{\alpha}\alpha : \alpha \in \Theta_{+}\}\$$
 is closed, i. e.,

it contains the sum of any two of its elements whenever this sum belongs to Δ . Then there exists a suitable order \succ on Δ such that $P \cup \{\varepsilon_{\alpha}\alpha; \alpha \in \Theta_{+}\} = \{\alpha \in \Delta; \alpha \succ 0\}$, where P is the set of all positive roots in Θ with respect to the order > (cf. [4], [9]). Put $\Psi_{+} = \{\varepsilon_{\alpha}\alpha; \alpha \in \Theta_{+}\}$, $\Psi_{-} = \{-\varepsilon_{\alpha}\alpha; \alpha \in \Theta_{+}\}$. Then these satisfy the condition:

$$(1.5) \alpha \in \Theta \cup \Psi_+, \ \beta \in \Psi_+ \ \text{and} \ \alpha + \beta \in \Delta \ \Rightarrow \ \alpha + \beta \in \Psi_+.$$

So let $\Pi = \{\alpha_1, \cdots, \alpha_l\}$ $(\alpha_1 > \cdots > \alpha_l)$ be the fundamental root system of Δ with respect to this order >. Then, due to the above condition and the closedness of Θ , a subset $\Pi_0 = \{\alpha_{a+1}, \cdots, \alpha_l\}$ is a fundamental system of Θ (cf. [8] Proposition 7.5). Let $\{H_i'\}_{i=1}^l$ be a basis of $\sqrt{-1}\mathfrak{h}_l$ such that $\varphi_0(H_{\alpha_i}, H_j') = \alpha_i(H_j') = \delta_{ij}$ $(1 \le i, j \le l)$. Then each element H_i' $(1 \le i \le l)$ is rational, $\{H_i'\}_{i=1}^a$ spans $\sqrt{-1}\mathfrak{t}_1$ and the images of H_i' $(a+1 \le i \le l)$ by the projection of $\sqrt{-1}\mathfrak{h}_l$ onto $\sum_{\alpha \in \Theta} R\sqrt{-1}H_\alpha$ with respect to the decomposition $\sqrt{-1}\mathfrak{h}_l = \sqrt{-1}\mathfrak{t}_1 + \sum_{\alpha \in \Theta} R\sqrt{-1}H_\alpha$ are linearly independent over R and rational. We denote these images by the same letter H_i' $(a+1 \le i \le l)$. Then we have a basis $\{H_i'\}_{i=1}^l$ of \mathfrak{h} such that each H_i' $(i=1,\cdots,l)$ is rational and

624 H. Urakawa

(1.6)
$$t_1 \text{ (resp. } \sum_{\alpha \in \Theta} R \sqrt{-1} H_{\alpha} \text{) is spanned by } \{H'_i\}_{i=1}^{\alpha} \text{ (resp. } \{H'_i\}_{i=a+1}^{l} \text{).}$$

Moreover, let $\{\lambda_i'\}_{i=1}^l$ be the linear mappings of \mathfrak{h} into C defined by $\lambda_i'(H_j') = \delta_{ij}$ $(1 \leq i, j \leq l)$, then each $\alpha \in \mathcal{A}$ can be expressed as $\alpha = \sum_{i=1}^{l} r_i \lambda_i'$ $(r_i \in \mathbf{R})$ and

$$(1.7) \alpha > 0 \Leftrightarrow r_1 = \cdots = r_{i-1} = 0 \text{ and } r_i > 0 \text{ for some } i \ (1 \le i \le l).$$

In fact, this is immediate from the definition of $\{H_i'\}_{i=1}^l$ and the choice of $\Pi = \{\alpha_1, \dots, \alpha_l\}$ $(\alpha_1 > \dots > \alpha_l)$.

Lastly, we mention that the hermitian metric g on K/B admits the transformations τ_k ($k \in K$) as isometries. This metric is given (cf. [11] p. 200) by

$$(1.8) g_{k \cdot 0}(\tau_{k} \cdot X_{0}, \tau_{k} \cdot Y_{0}) = \varphi(X, Y), \text{for } k \in K, X, Y \in \mathfrak{m}.$$

Here τ_{k^*} $(k \in K)$ is the differential of τ_k at the origin o, a tangent vector $X_o \in T_o(K/B)$ is identified usually with an element $X \in \mathfrak{m}$, and $\varphi(X, Y)$, $X, Y \in \mathfrak{m}$, is an Ad(B)-invariant inner product on \mathfrak{m} . Since the metric g is hermitian with respect to the above complex structure J, it satisfies that

(1.9)
$$\varphi(IX, IY) = \varphi(X, Y), \quad X, Y \in \mathfrak{m}.$$

§ 2. Complex Laplacians.

In this section, we preserve the notations and situations as in § 1. We consider the (complex) Laplacians $\mathbf{\Delta}$, $\mathbf{\Delta}'$, $\mathbf{\Delta}''$ acting on $A^0(K/B)$ for the above hermitian manifold (K/B, J, g). Since the transformations τ_k $(k \in K)$ act holomorphically and isometrically, $\mathbf{\Delta}$ (resp. $\mathbf{\Delta}'$, $\mathbf{\Delta}''$) is τ_k $(k \in K)$ invariant, i.e.,

$$\Delta \circ \tau_k = \tau_k \circ \Delta \text{ (resp. } \Delta' \circ \tau_k = \tau_k \circ \Delta', \Delta'' \circ \tau_k = \tau_k \circ \Delta''),$$

for $k \in K$, they can be expressed using the terms of the Lie algebras (cf. Proposition 2.2).

2.1. Firstly, notice that the inner product (\cdot, \cdot) on $A^1(K/B)$ is given by

(2.1)
$$(\omega, \eta) = \int_{K/B} (\omega | \eta) dv_g, \quad \eta, \omega \in A^1(K/B),$$

where dv_g is the volume element of (K/B, g) and $(\omega|\eta)$ is the pointwise inner product of ω and η . That is, $(\omega|\eta)(x)=(\omega_x, \eta_x)$, $x \in K/B$, where ω_x , η_x are elements of the complexified cotangent space $T_x^*(K/B)^c$ of K/B at x and the right hand side is the hermitian inner product in $T_x^*(K/B)^c$ induced from the metric g.

Now we define a left invariant Riemannian metric \tilde{g} on K by

$$\tilde{g}_{k}(X_{k}, Y_{k}) = \tilde{\varphi}(X, Y), \quad X, Y \in \mathfrak{t},$$

where X_k , $Y_k \in T_k(K)$ are tangent vectors of K at k corresponding to X, $Y \in \mathfrak{k}$ and the inner product $\tilde{\varphi}$ on \mathfrak{k} is given by

$$\tilde{\varphi}(Z_1+Y_1, Z_2+Y_2)=(Z_1, Z_2)+\varphi(Y_1, Y_2)$$

 $Z_i \in \mathfrak{h}, Y_i \in \mathfrak{m}$ (i=1, 2). Here (\cdot, \cdot) is an arbitrary inner product on \mathfrak{b} and φ is the Ad (B)-invariant inner product on \mathfrak{m} in (1.8). Then the natural projection π of K onto K/B is a Riemannian submersion of (K, g) onto (K/B, g), i. e., the differential π_{*k} of π at $k \in K$ maps the subspace $\{X_k \in T_k(K); X \in \mathfrak{m}\}$ of $T_k(K)$ onto $T_{k \cdot o}(K/B)$ isometrically, π_{*k} vanishes on the subspace $\{X_k \in T_k(K); X \in \mathfrak{h}\}$ and the decomposition $T_k(K) = \{X_k; X \in \mathfrak{h}\} \oplus \{X_k; X \in \mathfrak{m}\}$ is an orthogonal direct sum with respect to the Riemannian metric \widetilde{g} . Then we have the following lemma.

LEMMA 2.1. For $f \in A^{0}(K)$, we have

$$\int_{K} f(k) dv_{\tilde{g}}(k) = \int_{K/B} \left[\int_{B} f(kb) dv_{g'}(b) \right] dv_{g}(k \cdot o),$$

where g' is the Riemannian metric on B corresponding to the inner product (\cdot, \cdot) on \mathfrak{b} and $dv_{\tilde{g}}$ (resp. $dv_{g'}$) is the volume element on K (resp. B) corresponding to the Riemannian metric \tilde{g} (resp. g'). In particular, if $f \in A^0(K)$ satisfies f(kb) = f(k), $k \in K$, $b \in B$, then

$$\int_{K} f(k)dv_{\tilde{g}}(k) = \operatorname{vol}(B, g') \int_{K/B} f(k \cdot o) dv_{g}(k \cdot o).$$

Here vol (B, g') is the volume of (B, g') and we regard $f \in A^0(K)$ satisfying f(kb) = f(k), $b \in B$, as a function on K/B.

PROOF. For each $x=k \cdot o \in K/B$ $(k \in K)$, the Riemannian metric g_x on the fiber $\pi^{-1}(x)$ induced from \tilde{g} coincides with $L_{k-1}*g'$, where L_k is the left translation by $k \in K$. Then, for $f \in A^0(K)$, we have

$$\int_{\pi^{-1}(x)} (f|_{\pi^{-1}(x)}) dv_{g_x} = \int_{B} f(kb) dv_{g'}(b),$$

where dv_{g_x} is the volume element of $(\pi^{-1}(x), g_x)$ and $f|_{\pi^{-1}(x)}$ is the restriction to $\pi^{-1}(x)$ of f. Together with Proposition A. III. 5. in [2] p. 16, Lemma 2.1 is proved.

LEMMA 2.2. For η , $\omega \in A^1(K/B)$, we have

$$\pi^*(\omega \mid \eta) = (\pi^*\omega \mid \pi^*\eta)$$
, i. e.,

$$(\omega_{k \cdot 0}, \eta_{k \cdot 0}) = ((\pi^* \omega)_k, (\pi^* \eta)_k), \qquad k \in K.$$

Here the right hand side is the hermitian inner product in $A^{1}(K)$ induced from

the metric \tilde{g} on K.

PROOF. This is clear from the fact that the projection π of (K, \tilde{g}) onto (K/B, g) is a Riemannian submersion. Q. E. D.

LEMMA 2.3. For each $E=X+\sqrt{-1} Y \in \mathfrak{g}$ $(X, Y \in \mathfrak{k})$, we have

$$\int_{K} (Ef_{1})\overline{f}_{2} dv_{\bar{s}} = -\int_{K} f_{1} \overline{\tau(E)f_{2}} dv_{\bar{s}}, \quad f_{1}, f_{2} \in A^{0}(K),$$

where τ is the conjugation of $\mathfrak g$ with respect to $\mathfrak t$ and $\bar f$ is the complex conjugation of $f \in A^{\mathfrak o}(K)$.

PROOF. It holds that

$$\int_{K} (Xf_1)\overline{f}_2 dv_{\bar{g}} = -\int_{K} f_1(\overline{X}f_2) dv_{\bar{g}}, \quad X \in \mathfrak{k}.$$

In fact, the volume element $dv_{\tilde{g}}$ on K is invariant by the isometries L_k $(k \in K)$ of (K, \tilde{g}) . Since K is unimodular, $dv_{\tilde{g}}$ is also invariant by the right translations R_k $(k \in K)$. Then the equality holds. Lemma 2.3 is immediate from the one.

Q. E. D

For the space $A^{1}(K)$ of all complex valued smooth 1-forms on K, put

$$A^{1}(K, B) = \{\pi^{*}\omega \in A^{1}(K); \omega \in A^{1}(K/B)\},$$

$$A^{1,0}(K, B) = \{\pi^*\omega \in A^1(K); \omega \in A^{1,0}(K/B)\},$$

and

$$A^{0,1}(K, B) = \{\pi^*\omega \in A^1(K); \omega \in A^{0,1}(K/B)\}.$$

Then it is known (cf. [13]) that the space $A^1(K, B)$ coincides with the space of all $\eta \in A^1(K)$ such that $R_b * \eta = \eta$ for all $b \in B$ and $i(X)\eta = 0$ for all $X \in \mathfrak{b}$, where i(X) is the operator of interior product by a vector field $X \in \mathfrak{b}$ on K.

Let $\{X_i\}_{i=1}^n$ (resp. $\{Y_i\}_{i=1}^n$) be a basis of \mathfrak{m}^+ (resp. \mathfrak{m}^-). Let $T_{k\cdot o}^+(K/B)$ (resp. $T_{k\cdot o}^-(K/B)$) be the space of all holomorphic (resp. anti-holomorphic) vectors of the complexification $T_{k\cdot o}^c(K/B)$ of $T_{k\cdot o}(K/B)$. Then we have

$$T_{k \cdot o}^+(K/B) = \sum_{i=1}^n C \tau_{k \cdot i}(X_i)_o$$
 , $T_{k \cdot o}^-(K/B) = \sum_{i=1}^n C \tau_{k \cdot i}(Y_i)_o$,

where $(X_i)_o$, $(Y_i)_o \in T_o^c(K/B)$ $(i=1, \dots, n)$. We define complex valued left invariant 1-forms $\{\gamma_i, \xi_i\}_{i=1}^n$ on K by

$$\eta_i(X_j) = \xi_i(Y_j) = \delta_{ij}$$
 , $\eta_i(Y_j) = \xi_i(X_j) = 0$,

and

$$\eta_i(X) = \xi_i(X) = 0$$
 $(X \in \mathfrak{b}^c)$.

Then we have the following lemma.

LEMMA 2.4. For $\eta \in A^{1,0}(K, B)$, (resp. $A^{0,1}(K, B)$), we have

$$\eta = \sum_{i=1}^{n} \eta(X_i) \eta_i \quad (resp. \quad \eta = \sum_{i=1}^{n} \eta(Y_i) \xi_i).$$

PROOF. For $\eta = \pi^* \omega$, $\omega \in A^{1,0}(K/B)$, we have $\eta(X) = 0$ $(X \in \mathfrak{b}^c)$ and $\eta(Y_i) = 0$ $(i=1, \dots, n)$. Then $\eta = \sum_{i=1}^n \eta(X_i) \eta_i$. For $\eta \in A^{0,1}(K, B)$, we have $\eta = \sum_{i=1}^n \eta(Y_i) \xi_i$, similarly. Q. E. D.

Under the above preparations, we have the following proposition.

Proposition 2.1. For f_1 , $f_2 \in A^0(K/B)$, we have

$$(\mathbf{\Delta}'f_1, f_2) = \operatorname{vol}(B, g')^{-1} \int_K D'(f_1 \circ \pi) \overline{f_2 \circ \pi} dv_{\tilde{g}},$$

$$(\boldsymbol{\Delta}''f_1, f_2) = \operatorname{vol}(B, g')^{-1} \int_K D''(f_1 \circ \pi) \overline{f_2 \circ \pi} dv_{\tilde{g}},$$

and

$$(\mathbf{\Delta}f_1, f_2) = \operatorname{vol}(B, g')^{-1} \int_K D(f_1 \circ \pi) \overline{f_2 \circ \pi} dv_{\bar{g}}.$$

Here D', D'' and D are the differential operators on K given as follows:

$$-D' = \sum_{i,j=1}^{n} (\eta_i | \eta_j) \tau(X_j) X_i$$
,

$$-D'' = \sum_{i, j=1}^{n} (\xi_i | \xi_j) \tau(Y_j) Y_i$$
 ,

and

$$D=D'+D''$$

where τ is the conjugation of \mathfrak{m}^c with respect to \mathfrak{m} , both $(\eta_i|\eta_j)$ and $(\xi_i|\xi_j)$ are the pointwise hermitian inner product on $A^1(K)$ of (K, \tilde{g}) and these are constant functions on K.

PROOF. For f_1 , $f_2 \in A^0(K/B)$, we have

$$(\mathbf{A}'f_1, f_2) = \int_{K/B} (d'f_1|d'f_2)dv_g$$

$$= \text{vol}(B, g')^{-1} \int_{\mathcal{F}} (\pi^*d'f_1|\pi^*d'f_2)dv_{\tilde{g}},$$

by Lemmas 2.1 and 2.2. Since $\pi^*d'f_j$ (j=1, 2) belong to $A^{1,0}(K, B)$, we have

$$\pi^*d'f_j = \sum_{i=1}^n (\pi^*d'f_i)(X_i)\eta_i$$
, $(j=1, 2)$,

by Lemma 2.4. Moreover, since $\pi_*(X)_k \in T_{k,0}^+(K/B)$, for $X=X_i$ $(i=1, \dots, n)$, and

 $k \in K$, we have

$$(\pi^*d'f)(X)_k = (d'f)_{k \cdot 0}(\pi_*(X)_k) = (df)_{k \cdot 0}(\pi_*(X)_k)$$
$$= X(f \circ \pi)(k),$$

for $f \in A^0(K/B)$. Therefore we have

$$(\pi^*d'f_1|\pi^*d'f_2) = \sum_{i,j=1}^n X_i(f_1 \circ \pi) \overline{X_j(f_2 \circ \pi)}(\eta_i|\eta_j).$$

Since $(\eta | \omega)$ is constant on K for η , $\omega = \eta_i$ $(i=1, \dots, n)$, we obtain the desired result due to Lemma 2.3. The remain can be proved similarly. Q. E. D.

We take the above basis $\{X_i, Y_i\}_{i=1}^n$ of \mathfrak{m}^c so that

$$X_i = 2^{-1}(A_i - \sqrt{-1} B_i)$$
 and $Y_i = 2^{-1}(A_i + \sqrt{-1} B_i)$ $(i=1, \dots, n)$,

where $\{A_i, B_i\}_{i=1}^n$ is a basis of m and satisfies $IA_i = B_i$ and $IB_i = -A_i$ $(i=1, \dots, n)$. Then $\tau(X_i) = Y_i$ and $\tau(Y_i) = X_i$, so we have $(\xi_i | \xi_j) = \overline{(\eta_i | \eta_j)}$ by the definition of the inner product $(\cdot | \cdot)$ on $A^1(K)$ and the choice of $\{\eta_i, \xi_i\}_{i=1}^n$. Thus we have

$$-D' = \sum_{i,j=1}^{n} (\eta_i | \eta_j) Y_j X_i$$
 ,

and

$$-D'' = \sum_{i,j=1}^{n} (\overline{\eta_i | \eta_j}) X_j Y_i = \sum_{i,j=1}^{n} (\eta_i | \eta_j) X_i Y_j$$
.

So we obtain

$$(2.2) -D' = -2^{-1}D - 2^{-1}F, \text{ and } -D'' = -2^{-1}D + 2^{-1}F,$$

where

(2.3)
$$D = \sum_{i,j=1}^{n} (\eta_i | \eta_j) (X_i Y_j + Y_j X_i),$$

and

(2.4)
$$F = \sum_{i,j=1}^{n} (\eta_i | \eta_j) [X_i, Y_j] = \sum_{i,j=1}^{n} (\eta_i | \eta_j) [X_i, \tau(X_j)].$$

DEFINITION 2.1 (cf. [10], [14]). Let D(K/B) be the set of all τ_k $(k \in K)$ invariant differential operators on K/B. Let $S(\mathfrak{m})$ be the symmetric algebra over \mathfrak{m} , considered as a B-module by the adjoint action of B on \mathfrak{m} . Let $S(\mathfrak{m})_B$ be the set of all elements in $S(\mathfrak{m})$ which are invariant by the action Ad(b), $b \in B$, and let $S(\mathfrak{m})_B^c$ be the complexification of $S(\mathfrak{m})_B$. Then, for $P(Z_1, \dots, Z_{2n}) \in S(\mathfrak{m})_B^c$, we define $\hat{\lambda}(P) \in D(K/B)$ by

(2.5)
$$\left[\hat{\lambda}(P)f\right](k \cdot o) = \left[P\left(\frac{\partial}{\partial y_1}, \dots, \frac{\partial}{\partial y_{2n}}\right)f(k \exp \sum_{i=1}^{2n} y_i Z_i) \cdot o)\right](0),$$

for $f \in A^0(K/B)$. Here, in the right hand side, $\{Z_i\}_{i=1}^{2n}$ is a basis of \mathfrak{m} , we regard $f(k \exp(\sum_{i=1}^{2n} y_i Z_i) \cdot o)$ as a function in (y_1, \dots, y_{2n}) and $P(\partial/\partial y_1, \dots, \partial/\partial y_{2n})$ expresses the differential operator given by substituting $\partial/\partial y_1, \dots, \partial/\partial y_{2n}$ into the polynomial $P(Z_1, \dots, Z_{2n})$.

LEMMA 2.5. Both the operators D and $F_{\mathfrak{m}}$ belong to $S(\mathfrak{m})_{B}^{\mathbf{c}}$, where $F_{\mathfrak{m}}$ is the $\mathfrak{m}^{\mathbf{c}}$ -component of $F \in \mathfrak{t}^{\mathbf{c}}$ with respect to the decomposition $\mathfrak{t}^{\mathbf{c}} = \mathfrak{b}^{\mathbf{c}} + \mathfrak{m}^{\mathbf{c}}$.

PROOF. We notice that the decomposition $\mathfrak{m}^c = \mathfrak{m}^+ + \mathfrak{m}^-$ is the orthogonal one with respect to the hermitian inner product φ , and both \mathfrak{m}^+ and \mathfrak{m}^- are invariant under $\mathrm{Ad}(b)$, $b \in B$. We show that $\mathrm{Ad}(b)F_{\mathfrak{m}} = F_{\mathfrak{m}}$, $b \in B$. For $b \in B$, let $X_j' = \mathrm{Ad}(b) X_j$ $(j=1,\cdots,n)$. Since $\{X_j'\}_{j=1}^n$ is also a basis of \mathfrak{m}^+ , we may put $X_j' = \sum_{i=1}^n u_{ij}X_i$, for some unitary matrix $U = (u_{ij})$ of degree n. Let $\{\eta_i'\}_{i=1}^n$ be the dual basis of $\{X_i'\}_{i=1}^n$. Since the matrix $(\varphi(X_i', X_j'))_{1 \le i, j \le n}$ (resp. $((\eta_i' | \eta_j'))_{1 \le i, j \le n})$ coincides with ${}^tU(\varphi(X_k, X_l))_{1 \le k, l \le n}\overline{U}$ (resp. ${}^t\overline{U}((\eta_k | \eta_l))_{1 \le k, l \le n}U$), we have

$$\textstyle\sum_{i,\,j=1}^n (\eta_i' \,|\, \eta_j') [X_i',\, \tau(X_j')]_{\mathfrak{m}} = \sum_{i,\,j=1}^n (\eta_i \,|\, \eta_j) [X_i,\, \tau(X_j)]_{\mathfrak{m}}$$

which is the desired. By the same manner, we may prove that $D \in S(\mathfrak{m})_B^C$. Q. E. D.

Then we have

$$D(f \circ \pi) = (\hat{\lambda}(D)f) \circ \pi ,$$

$$D'(f \circ \pi) = (2^{-1}(\hat{\lambda}(D) + \hat{\lambda}(F_{\mathfrak{m}}))f) \circ \pi ,$$

and

$$D''(f \circ \pi) {=} (2^{\scriptscriptstyle -1}(\hat{\lambda}(D) {-} \hat{\lambda}(F_{\mathfrak{m}}))f) \circ \pi \; .$$

Thus, together with Proposition 2.1, we obtain the following proposition. Proposition 2.2. We have

$$\mathbf{\Delta} = \hat{\lambda}(D), \ \mathbf{\Delta}' = 2^{-1}(\hat{\lambda}(D) + \hat{\lambda}(F_{\mathfrak{m}})), \ \text{and} \ \mathbf{\Delta}'' = 2^{-1}(\hat{\lambda}(D) - \hat{\lambda}(F_{\mathfrak{m}})),$$

where $\hat{\lambda}(D)$ and $\hat{\lambda}(F_m)$ are the differential operators in $\mathbf{D}(K/B)$ given by (2.3), (2.4) and (2.5).

Now we make use of the facts in § 1. We may take $\{X_i \ (i=1,\cdots,u),\ E_{\alpha} \ (\alpha\in\varPsi_+)\}$ (resp. $\{Y_i \ (i=1,\cdots,u),\ E_{-\alpha} \ (\alpha\in\varPsi_+)\}$) as the basis of \mathfrak{m}^+ (resp. \mathfrak{m}^-). Here $\{X_i\}_{i=1}^u$, (resp. $\{Y_i\}_{i=1}^u$) $(u=2^{-1}b)$ is a basis of \mathfrak{m}_1^+ (resp. \mathfrak{m}_1^-) given by $X_i=2^{-1}(A_i-\sqrt{-1}\ B_i)$ (resp. $Y_i=2^{-1}(A_i+\sqrt{-1}\ B_i)$. $\{A_i,\ B_i\}_{i=1}^u$ is a basis of \mathfrak{m}_1 such that $IA_i=B_i$ and $IB_i=-A_i$ $(i=1,\cdots,u)$. For $\alpha\in \mathcal{A}$, define complex valued left invariant 1-forms ω_α on K by

(2.6)
$$\omega_{\alpha}(E_{\beta}) = \delta_{\alpha\beta}$$
, and $\omega_{\alpha}(X) = 0$ $(X \in \mathfrak{b}^{c} + \mathfrak{m}_{1}^{c})$,

and define complex valued left invariant 1-forms $\{\eta_i, \xi_i\}_{i=1}^u$ on K by

$$\begin{aligned} \eta_i(X_j) = & \xi_i(Y_j) = \delta_{ij} \,, & \eta_i(Y_j) = & \xi_i(X_j) = 0 \,, \\ \text{and} & \\ \eta_i(X) = & \xi_i(X) = 0 \quad (X \in \mathfrak{b}^c + \mathfrak{m}_2^c) \,. \end{aligned}$$

Then both D and F can be expressed by

(2.8)
$$D = \sum_{i,j=1}^{u} (\eta_{i} | \eta_{j})(X_{i}Y_{j} + Y_{j}X_{i}) + \sum_{\substack{i=1\\\alpha \in \Psi_{+}}}^{u} (\eta_{i} | \omega_{\alpha})(X_{i}E_{-\alpha} + E_{-\alpha}X_{i})$$

$$+ \sum_{\substack{i=1\\\alpha \in \Psi_{+}}}^{u} (\omega_{\alpha} | \eta_{i})(E_{\alpha}Y_{i} + Y_{i}E_{\alpha}) + \sum_{\alpha,\beta \in \Psi_{+}}^{u} (\omega_{\alpha} | \omega_{\beta})(E_{\alpha}E_{-\beta} + E_{-\beta}E_{\alpha}),$$

and

(2.9)
$$F = \sum_{\substack{i=1\\\alpha \in \Psi_{+}}}^{u} (\eta_{i} | \omega_{\alpha}) [X_{i}, E_{-\alpha}] + \sum_{\substack{i=1\\\alpha \in \Psi_{+}}}^{u} (\omega_{\alpha} | \eta_{i}) [E_{\alpha}, Y_{i}] + \sum_{\alpha, \beta \in \Psi_{+}}^{u} (\omega_{\alpha} | \omega_{\beta}) [E_{\alpha}, E_{-\beta}],$$

due to (2.3), (2.4), $(\xi_i|\xi_j) = \overline{(\eta_i|\eta_j)}$, $(\xi_i|\omega_{-\alpha}) = \overline{(\eta_i|\omega_{\alpha})}$ and $(\omega_{-\alpha}|\omega_{-\beta}) = \overline{(\omega_{\alpha}|\omega_{\beta})}$.

2.2.

PROPOSITION 2.3. Under the above situation, we assume $\Delta'' = (1/2)\Delta$ (or $\Delta' = (1/2)\Delta$). Then $\mathfrak{m}_1 = \{0\}$ (i. e., rank $(K) = \operatorname{rank}(B)$), or the \mathfrak{t}_0 -component of the element $\sqrt{-1} H_1'$ in (1.6) is not zero, where $\mathfrak{t}_1 = \mathfrak{m}_1 + \mathfrak{t}_0$.

PROOF. Assume that $\mathbf{\Delta}'' = (1/2)\mathbf{\Delta}'$ (or $\mathbf{\Delta}' = (1/2)\mathbf{\Delta}$). We suppose that the conclusion would be false. Then $\mathfrak{m}_1 \neq \{0\}$ and the \mathfrak{t}_0 -component of $\sqrt{-1}\,H_1'$ is zero. So we have $\sqrt{-1}\,H_1' \neq 0$ and it belongs to \mathfrak{m}_1 . Then

$$(2.10)$$
 $\alpha(H_1') \geq 0$, for all $\alpha \in \Psi_+$,

by (1.6). The assumption $\mathbf{\Delta}'' = (1/2)\mathbf{\Delta}'$ (or $\mathbf{\Delta}' = (1/2)\mathbf{\Delta}'$) implies

$$F_{\mathfrak{m}_1} = -\sum_{\alpha \in \Psi_+} (\omega_\alpha | \omega_\alpha) (H_\alpha)_{\mathfrak{m}_1} = 0$$
 ,

where $(H_{\alpha})_{\mathfrak{m}_1}$ is the $\sqrt{-1} \mathfrak{m}_1$ -component of H_{α} with respect to the decomposition $\sqrt{-1} \mathfrak{t}_1 = \sqrt{-1} \mathfrak{m}_1 + \sqrt{-1} \mathfrak{t}_0$. Therefore

$$\sum\limits_{\alpha\in\varPsi_+}(\omega_\alpha\!\mid\!\omega_\alpha)\alpha(H_1')\!=\!\varphi_0(\sum\limits_{\alpha\in\varPsi_+}(\omega_\alpha\!\mid\!\omega_\alpha)(H_\alpha)_{\mathfrak{m}_1},\;H_1')\!=\!0$$
 ,

so we have $\alpha(H_1')=0$ for all $\alpha \in \Psi_+$, due to (2.10). On the other hand, $\alpha(H_1')=0$ for all $\alpha \in \Theta$, by the definition of Θ . Then we have $H_1'=0$, which is a contradiction. Q. E. D.

THEOREM 2.1. Let (M, g) be a compact, simply connected hermitian manifold. Suppose that the group of all holomorphic and isometric transformations of (M, g) acts transitively on M. If $\Delta'' = (1/2)\Delta$ (or $\Delta' = (1/2)\Delta$), then the second Betti number $b_2(M)$ of M is positive.

PROOF. In general, if K is a compact, semi-simple Lie group and B is a closed connected subgroup of K, then $b_2(K/B)=0$ if and only if B is semi-simple (cf. [4] p. 499). Assume that $\Delta''=(1/2)\Delta$ (or $\Delta'=(1/2)\Delta$). We suppose that the conclusion would be false. Then B is semi-simple, i.e., the center t_0 of $\mathfrak b$ is zero. Then, due to Proposition 2.3, we have $\mathfrak m_1=\{0\}$. Thus the complex homogeneous space K/B has to satisfy that B is semi-simple and rank $(K)=\operatorname{rank}(B)$. But it never happens (cf. [4] p. 500 or [15] p. 14 Corollary). Q. E. D.

§ 3. A construction of examples for $\Delta' = \Delta'' = (1/2)\Delta$.

Conversely, let us consider a problem to construct a hermitian metric g on compact homogeneous complex manifolds satisfying $\mathbf{\Delta}' = \mathbf{\Delta}'' = (1/2)\mathbf{\Delta}$. In this section, on some compact complex manifolds admitting no Kaehler metric and the positive second Betti number, we construct hermitian metrics satisfying $\mathbf{\Delta}' = \mathbf{\Delta}'' = (1/2)\mathbf{\Delta}$ (cf. Theorem 3.1).

3.1. Let K be a compact, connected, semi-simple Lie group, and assume that a closed, connected subgroup B of K is a C-subgroup and satisfies the conditions (1), (2) and (3) in 1.2. We preserve the notations and situations in 1.3.

We define an endomorphism I on \mathfrak{m} by

(3.1)
$$I(\sqrt{-1} H_{2i}) = \sqrt{-1} H_{2i-1}, \quad I(\sqrt{-1} H_{2i-1}) = -\sqrt{-1} H_{2i} \quad (1 \le i \le u),$$
 and

$$(3.2) \hspace{1cm} I(U_{\alpha}) = \varepsilon_{\alpha} V_{\alpha} \,, \hspace{0.5cm} I(V_{\alpha}) = -\varepsilon_{\alpha} U_{\alpha} \,, \hspace{0.5cm} \text{i.e.,}$$

$$I(U_{\varepsilon_{\alpha}\alpha}) = V_{\varepsilon_{\alpha}\alpha} \,, \hspace{0.5cm} I(V_{\varepsilon_{\alpha}\alpha}) = -U_{\varepsilon_{\alpha}\alpha} \hspace{0.5cm} (\alpha \in \Theta_{+}) \,,$$

where u=(1/2)b and $\varepsilon_{\alpha}=\pm 1$ $(\alpha\in\Theta_+)$ are defined as follows: For a permutation s of $\{1,\dots,a\}$ and $\varepsilon(i)=\pm 1$ $(i=1,\dots,a)$, $(a=\dim(\mathfrak{t}_1))$, we choose an order \succ on the root system Δ in such a way that

$$\alpha = \sum_{i=1}^{a} r_i \varepsilon(i) \lambda_{s(i)} + \sum_{i=a+1}^{l} r_i \lambda_i > 0 \qquad (r_1, \dots, r_l \in \mathbf{R})$$

if and only if there exists an integer i $(1 \le i \le l)$ satisfying $r_1 = \cdots = r_{i-1} = 0$ and $r_i > 0$. For this order >, put $\Psi_+ = \{\alpha \in \mathcal{A} \setminus \Theta \; ; \; \alpha > 0\}$ and $\Psi_- = \{-\alpha \in \mathcal{A} \setminus \Theta \; ; \; \alpha > 0\}$. Then it holds that

$$(1.5) \alpha \in \Theta \cup \Psi_+, \ \beta \in \Psi_+, \ \alpha + \beta \in \Delta \ \Rightarrow \ \alpha + \beta \in \Psi_+.$$

So we define ε_{α} ($\alpha \in \Theta_{+}$) by $\{\varepsilon_{\alpha}\alpha; \alpha \in \Theta_{+}\} = \Psi_{+}$. We extend I complex linearly to the complexification \mathfrak{m}^{c} of \mathfrak{m} usually. Then the $\sqrt{-1}$ eigenspace \mathfrak{m}^{+} (resp. $\sqrt{-1}$ eigenspace \mathfrak{m}^{-}) of I on \mathfrak{m}^{c} is given by

$$\mathfrak{m}^+ = \mathfrak{m}_1^+ + \sum_{\alpha \in \Psi_+} CE_{\alpha}$$
 (resp. $\mathfrak{m}^- = \mathfrak{m}_1^- + \sum_{\alpha \in \Psi_+} CE_{-\alpha}$),

where \mathfrak{m}_1^+ (resp. \mathfrak{m}_1^-) is spanned by $\{X_i\}_{i=1}^u$ (resp. $\{Y_i\}_{i=1}^u$) and $X_i=(1/2)(\sqrt{-1}\ H_{2i}-\sqrt{-1}\ H_{2i-1})$), $(i=1,\cdots,u)$. These subspaces \mathfrak{m}^+ and \mathfrak{m}^- satisfy the conditions (ii') and (iii'), due to (1.5). Thus the endomorphism I on \mathfrak{m} induces a tensor field J which defines a complex structure on K/B.

In connection with this complex structure on K/B, we define a hermitian inner product φ on \mathfrak{m} by

(3.3)
$$\varphi(\sqrt{-1} H_i, \sqrt{-1} H_j) = \delta_{ij} \quad (1 \leq i, j \leq b),$$

(3.4)
$$\varphi(U_{\alpha}, U_{\beta}) = \varphi(V_{\alpha}, V_{\beta}) = 2a_{\alpha}^{-2}\delta_{\alpha\beta}, \ \varphi(U_{\alpha}, V_{\beta}) = 0 \qquad (\alpha, \beta \in \Psi_{+}),$$

$$(3.5) \varphi(X, Y) = 0 (X \in \mathfrak{m}_1, Y \in \mathfrak{m}_2).$$

Then $\{(\sqrt{-1}/\sqrt{2}) H_i \ (i=1, \dots, b), \ (1/\sqrt{2}) a_{\alpha}U_{\alpha}, \ (1/\sqrt{2}) a_{\alpha}V_{\alpha} \ (\alpha \in \Psi_+)\}$ is an orthonormal basis of m with respect to φ . Here $a_{\alpha} \ (\alpha \in \Psi_+)$ have to be positive constants satisfying that

(3.6)
$$a_{\alpha+\beta}=a_{\alpha}$$
, for $\alpha \in \Psi_+$, $\beta \in \Theta$.

We notice that φ is Ad(B)-invariant by (3.6). Due to the definition of φ , it holds that

(3.7)
$$\varphi(IX, IY) = \varphi(X, Y), \quad X, Y \in \mathfrak{m}.$$

So φ induces a hermitian metric g on the complex manifold (K/B, J). Let \tilde{g} be a Riemannian metric on K such that the natural projection π of K onto K/B is a Riemannian submersion, as in 2.1. We extend φ to a hermitian inner product on \mathfrak{m}^c , denoted by the same letter φ . Let $\{\eta_i, \xi_i \ (i=1, \dots, u), \omega_\alpha, \omega_{-\alpha} \ (\alpha \in \Psi_+)\}$ be complex valued 1-forms on K defined by (2.6) and (2.7). Then we have

(3.8)
$$(\eta_i | \omega_\alpha) = 0 (i=1, \dots, u, \alpha \in \Psi_+),$$

and

$$(\omega_{\alpha}|\omega_{\beta})=a_{\alpha}^{2}\delta_{\alpha\beta}$$
 $(\alpha, \beta \in \Psi_{+}),$

since $\{X_i, Y_i \ (i=1, \dots, u), a_{\alpha}E_{\alpha}, a_{\alpha}E_{-\alpha} \ (\alpha \in \Psi_+)\}$ is an orthonormal basis of \mathfrak{m}^c with respect to φ . Here $(\cdot | \cdot)$ is the pointwise inner product on $A^1(K)$ induced by the Riemannian metric \tilde{g} on K. Hence $F \ (\in \mathfrak{f}^c)$, in (2.9), is given by

$$F = -\sum_{\alpha \in \Psi_{\perp}} a_{\alpha}^{2} H_{\alpha}$$
.

Therefore we have

(3.9)
$$\mathbf{\Delta}'' = \frac{1}{2} \mathbf{\Delta} \quad \left(\text{or } \mathbf{\Delta}' = \frac{1}{2} \mathbf{\Delta} \right) \iff \sum_{\alpha \in \mathcal{V}_+} a_{\alpha}^2 \alpha(H_i) = 0, \quad (i = 1, \dots, b).$$

REMARK. In case of $\mathfrak{m}_1 = \{0\}$, i.e., rank $(K) = \operatorname{rank}(B)$, the right hand side

of (3.9) holds always without the d-closedness condition of the fundamental Kaehler form associated to the hermitian metric g on K/B.

3.2. In particular, let $B=T_0$ be a toral subgroup of K such that $\dim(K/T_0)=$ even, i. e., $b=\operatorname{rank}(K)-\dim(T_0)=$ even. Then $B=T_0$ is a C-subgroup of K. In fact, let T_1 be a maximal toral subgroup of K containing T_0 . Then the centralizer $Z_K(T_1)$ of T_1 in K coincides with T_1 and the semi-simple part of $B=T_0$ consists of only the identity. In this case, $\mathfrak{h}_t=\mathfrak{t}_1$, $\mathfrak{h}=\mathfrak{t}_0$, $\mathfrak{h}_s=\{0\}$, $\Theta=\emptyset$ and $\Delta\backslash\Theta=\Delta$. We preserve the notations and situations in 3.1. We give a complex structure J on K/T_0 by (3.1) and (3.2), and also a hermitian inner product φ on \mathfrak{m} by (3.3), (3.4) and (3.5). Then φ satisfies (3.6) and (3.7), so it gives a hermitian metric g on the complex manifold $(K/T_0, J)$. Put $\Delta'_+=\{\alpha\in\Delta^+; \alpha>0\}=\{\alpha\in\Delta^+; \varepsilon_\alpha=1\}$, $\Delta''_+=\{\alpha\in\Delta^+; \alpha<0\}=\{\alpha\in\Delta^+; \varepsilon_\alpha=-1\}$. Then the right hand side of (3.9) is

(3.9')
$$\sum_{\alpha \in \mathcal{A}'_{+}} a_{\alpha}^{2} \alpha(H_{i}) - \sum_{\alpha \in \mathcal{A}'_{+}} a_{\alpha}^{2} \alpha(H_{i}) = 0 \qquad (i=1, \dots, b).$$

For classical groups K=SU(l+1), SO(2l+1), SO(2l) or Sp(l) $(l \ge 3)$, we will construct a (l-2)-dimensional toral subgroup T_0 of K, $\{H_i\}_{i=1}^l$, φ and I satisfying (3.9').

3.3. Case 1. Let K=SU(l+1) $(l \ge 3)$. Then $k=\mathfrak{Su}(l+1)$ and $\mathfrak{g}=\mathfrak{SI}(l+1, \mathbb{C})$. Let $\mathfrak{h}_i=\left\{\begin{pmatrix} \sqrt{-1}\ \theta_1\\ 0 & \ddots \\ \sqrt{-1}\ \theta_{l+1} \end{pmatrix};\ \theta_i\in \mathbb{R}\ (i=1,\ \cdots,\ l+1),\ \sum_{i=1}^{l+1}\theta_i=0\right\}$ and $\mathfrak{h}=\mathfrak{h}_i^{\mathbb{C}}$. Put $H_1=\left\{\begin{pmatrix} 1\\ 0\\ \ddots\\ 0\\ \end{pmatrix} \text{ and } H_i=\left(\begin{pmatrix} -1\\ \ddots\\ -1\\ \end{pmatrix} i -1\\ i\\ 0\\ \ddots\\ 0\\ \end{pmatrix} \right.$

Then $\{H_1, \dots, H_l\}$ are linearly independent, rational elements of \mathfrak{h} , which are mutually orthogonal with respect to the Killing form $\varphi_0(X, Y) = 2(l+1)$ Trace (XY), $X, Y \in \mathfrak{g}$. Let $\{\lambda_i\}_{i=1}^l$ be the mappings of \mathfrak{h} into C defined by $\lambda_i(H_j) = \delta_{ij}$ $(1 \le i, j \le l)$. We have

$$\mu_i = i\lambda_i - \lambda_{i+1} - \cdots - \lambda_l$$
 (i=1, ..., l-1), and $\mu_l = l\lambda_l$,

where μ_i is a mapping of \mathfrak{h} into C defined by $\mathfrak{h} \ni \begin{pmatrix} \alpha_1 & 0 \\ 0 & \alpha_{l+1} \end{pmatrix} \mapsto \alpha_i \ (i=1, \cdots, l+1).$ Let $\mathfrak{b} = \mathfrak{t}_0$ be an abelian subalgebra of \mathfrak{k} spanned by $\{\sqrt{-1} H_3, \cdots, \sqrt{-1} H_l\}$. \mathfrak{h}

Let $b=t_0$ be an abelian subalgebra of f spanned by $\{\sqrt{-1} H_3, \dots, \sqrt{-1} H_l\}$. b generates a (l-2)-dimensional toral subgroup $B=T_0$ of K. The root system Δ

634 H. Urakawa

of (g, h) is $\{\mu_i - \mu_j; 1 \leq i, j \leq l+1, i \neq j\}$. The lexicographic order > of Δ given by $\lambda_1 > \cdots > \lambda_l > 0$ induces that $\mu_1 > \cdots > \mu_l > 0 > \mu_{l+1}$ ($\mu_{l+1} = -\mu_1 - \cdots - \mu_l$). Then the set Δ^+ of positive roots is $\{\mu_i - \mu_j; 1 \leq i < j \leq l+1\}$. Let \mathfrak{m}_1 be a subspace of \mathfrak{h}_l spanned by $\{\sqrt{-1}\,H_1, \sqrt{-1}\,H_2\}$. For $\alpha \in \Delta^+$, define elements U_α and V_α in \mathfrak{k}_l , as in 1.3. The complex structure J on K/T_0 is induced from the endomorphism I defined by

$$\begin{cases} I(\sqrt{-1} H_2) = \sqrt{-1} H_1, & I(\sqrt{-1} H_1) = -\sqrt{-1} H_2, & \text{and} \\ I(U_\alpha) = \varepsilon_\alpha V_\alpha, & I(V_\alpha) = -\varepsilon_\alpha U_\alpha & (\alpha \in \Delta^+), \end{cases}$$

as in 3.1. The numbers $\varepsilon_{\alpha} = \pm 1$ ($\alpha \in \Delta^+$) are defined in such a way that $\{\varepsilon_{\alpha}\alpha; \alpha \in \Delta^+\} = \{\alpha \in \Delta; \alpha > 0\}$ with respect to the following order > on Δ : We define the one > on Δ by

$$(3.11) \lambda_3 > \cdots > \lambda_l > \lambda_1 > \lambda_2 > 0.$$

That is, $\alpha = r_1 \lambda_3 + \cdots + r_{l-2} \lambda_l + r_{l-1} \lambda_1 + r_l \lambda_2 > 0$ if and only if

$$r_1 = \cdots = r_{i-1} = 0$$
 and $r_i > 0$, for some $1 \le i \le l$.

Then $\Delta'_{+} = \{\alpha \in \Delta_{+}; \alpha > 0\}$ is $\{\mu_{i} - \mu_{j}; 3 \leq i < j \leq l+1\} \cup \{\mu_{1} - \mu_{l+1}, \mu_{2} - \mu_{l+1}, \mu_{1} - \mu_{2}\}$ and $\Delta''_{+} = \{\alpha \in \Delta_{+}; \alpha < 0\}$ is $\{\mu_{1} - \mu_{j}, \mu_{2} - \mu_{j}; 3 \leq j \leq l+1\}$. Then we have

$$(3.12) \qquad \sum_{\alpha \in A^{+}} a_{\alpha}^{2} \varepsilon_{\alpha} \alpha(H_{1}) = \{-a_{1, l+1}^{2} + a_{2, l+1}^{2} - 2a_{12}^{2}\} - \{-\sum_{i=3}^{l} (a_{1i}^{2} + a_{2i}^{2})\},$$

(3.12')
$$\sum_{\alpha \in \mathcal{A}^+} a_{\alpha}^2 \varepsilon_{\alpha} \alpha(H_2) = \{ 2 \sum_{j=4}^l a_{3j}^2 - a_{1,l+1}^2 - a_{2,l+1}^2 \}$$

$$-\{-3(a_{13}^2+a_{23}^2)-\sum\limits_{j=4}^l{(a_{1j}^2+a_{2j}^2)}\}$$
,

where we denote $a_{ij}=a_{\mu_i-\mu_j}$ $(1 \le i < j \le l+1)$. Therefore we may give a_{α} $(\alpha \in \Delta^+)$ such that both (3.12) and (3.12') are zero. Thus such $\{a_{\alpha}; \alpha \in \Delta^+\}$ give a hermitian metric on this complex manifold $(K/T_0, J)$ of complex dimension $(1/2)(l^2+l+2)$, which satisfies $\Delta'=\Delta''=(1/2)\Delta$.

Case 2. Let K=SO(2l) (resp. SO(2l+1)) $(l \ge 3)$. Then $\mathfrak{f}=\mathfrak{o}(2l)$ (resp. $\mathfrak{o}(2l+1)$), and $\mathfrak{g}=\mathfrak{o}(2l, \mathbb{C})$ (resp. $\mathfrak{o}(2l+1, \mathbb{C})$). For $\alpha_i \in \mathbb{C}$ $(i=1, \cdots, l)$, let $H(\alpha_1, \cdots, \alpha_l)$

$$= \begin{bmatrix} R(\alpha_1) & 0 \\ 0 & R(\alpha_l) \end{bmatrix} \in \mathfrak{g}, \text{ where } R(\alpha) = \begin{pmatrix} 0 & -\alpha \\ \alpha & 0 \end{pmatrix}, \text{ for } \alpha \in \mathbb{C}. \text{ Let } \mathfrak{h}_l = \{H(\theta_1, \dots, \theta_l); \}$$

 $\theta_i \in R$ $(i=1, \cdots, l)$ and $\mathfrak{h} = \{H(\alpha_1, \cdots, \alpha_l); \alpha_i \in C \ (i=1, \cdots, l)\}$. Then \mathfrak{h}_t is a maximal abelian subalgebra of \mathfrak{k} and $\mathfrak{h} = \mathfrak{h}_t^c$. Let $H_i = -\sqrt{-1} H(0, \cdots, 0, \overset{i}{1}, 0, \cdots, 0)$ $(1 \le i \le l)$. Then $\{H_1, \cdots, H_l\}$ are linearly independent, rational elements of \mathfrak{h} which are mutually orthogonal with respect to the Killing form $\varphi_0(X, Y) = (m-2)$

•Trace (XY), X, $Y \in \mathfrak{g}$, where m=2l (resp. 2l+1). Let $\{\lambda_i\}_{i=1}^l$ be the mappings of \mathfrak{h} into C defined by $\lambda_i(H_j) = \delta_{ij}$ $(1 \le i, j \le l)$. Then it holds that

$$\lambda_i = \sqrt{-1} \mu_i$$
,

where μ_i is a mapping of $\mathfrak h$ into C defined by $\mathfrak h\ni H(\alpha_1,\cdots,\alpha_l)\mapsto \alpha_i$ $(1\leq i\leq l)$. Let $\mathfrak b=\mathfrak t_0$ be an abelian subalgebra of $\mathfrak k$ spanned by $\{\sqrt{-1}\,H_{\mathfrak k},\cdots,\sqrt{-1}\,H_{l}\}$. Then $\mathfrak b$ generates a (l-2)-dimensional toral subgroup $B=T_0$ of K. The root system $\mathcal A$ of $(\mathfrak g,\mathfrak h)$ is $\{\pm\sqrt{-1}\,\mu_i\pm\sqrt{-1}\,\mu_j\,;\,1\leq i< j\leq l\}$ (resp. $\{\pm\sqrt{-1}\,\mu_i\pm\sqrt{-1}\,\mu_j\,(1\leq i< j\leq l)\}$). With respect to the lexicographic order > of $\mathcal A$ given by $\lambda_1>\cdots>\lambda_l>0$, the set $\mathcal A^+$ of positive roots is $\{\sqrt{-1}\,\mu_i\pm\sqrt{-1}\,\mu_j\,;\,1\leq i< j\leq l\}$ (resp. $\{\sqrt{-1}\,\mu_i\pm\sqrt{-1}\,\mu_j\,(1\leq i< j\leq l),\,\sqrt{-1}\,\mu_i\,(1\leq i\leq l)\}$). Let $\mathfrak m_1$ be a subspace of $\mathfrak h_l$ spanned by $\{\sqrt{-1}\,H_1,\,\sqrt{-1}\,H_2\}$. For $\alpha\in\mathcal A^+$, define elements U_α and V_α in $\mathfrak k$ as in 1.3. The complex structure J on K/T_0 is induced from an endomorphism I defined by the same manner as (3.10), and the numbers $\mathfrak a=\pm 1$ ($\alpha\in\mathcal A^+$) are also given by the order > on $\mathcal A$ similar to (3.11). Then $\mathcal A'_+=\{\alpha\in\mathcal A_+;\,\alpha>0\}$ is $\{\sqrt{-1}\,\mu_i+\sqrt{-1}\,\mu_j\,(1\leq i< j\leq l),\,\sqrt{-1}\,\mu_i-\sqrt{-1}\,\mu_j\,(3\leq i< j\leq l),\,\sqrt{-1}\,\mu_1-\sqrt{-1}\,\mu_2\}$ (resp. $\{\sqrt{-1}\,\mu_i+\sqrt{-1}\,\mu_j\,(1\leq i< j\leq l),\,\sqrt{-1}\,\mu_i-\sqrt{-1}\,\mu_j\,(3\leq i< j\leq l),\,\sqrt{-1}\,\mu_1-\sqrt{-1}\,\mu_2\}$ (resp. $\{\sqrt{-1}\,\mu_i+\sqrt{-1}\,\mu_i\,(1\leq i\leq l)\}$), and $\mathcal A''_+=\{\alpha\in\mathcal A_+;\,\alpha<0\}$ is $\{\sqrt{-1}\,\mu_1-\sqrt{-1}\,\mu_2,\,\sqrt{-1}\,\mu_2,\,\sqrt{-1}\,\mu_i\,(1\leq i\leq l)\}$). Thus we have

$$(3.13) \qquad \sum_{\alpha \in \mathcal{A}^{+}} a_{\alpha}^{2} \varepsilon_{\alpha} \alpha(H_{1}) = \{ \sum_{j=2}^{l} a_{1j}^{2} + b_{12}^{2} \} - \sum_{j=3}^{l} b_{1j}^{2} ,$$

$$(\text{resp. } \{ \sum_{j=2}^{l} a_{1j}^{2} + b_{12}^{2} + c_{1}^{2} \} - \sum_{j=3}^{l} b_{1j}^{2}) ,$$

$$(3.13') \qquad \sum_{\alpha \in \mathcal{A}^{+}} a_{\alpha}^{2} \varepsilon_{\alpha} \alpha(H_{2}) = \{ \sum_{j=3}^{l} a_{2j}^{2} + a_{12}^{2} - b_{12}^{2} \} - \sum_{j=3}^{l} b_{2j}^{2} ,$$

$$(\text{resp. } \{ \sum_{j=3}^{l} a_{2j}^{2} + a_{12}^{2} - b_{12}^{2} + c_{2}^{2} \} - \sum_{j=3}^{l} b_{2j}^{2}) ,$$

where we denote $a_{ij}=a_{\sqrt{-1}\,\mu_i+\sqrt{-1}\,\mu_j}$, $b_{ij}=a_{\sqrt{-1}\,\mu_i-\sqrt{-1}\,\mu_j}$ $(1\leq i< j\leq l)$, $c_i=a_{\sqrt{-1}\,\mu_i}$ $(1\leq i\leq l)$. Therefore we may give a_α $(\alpha\in\varDelta^+)$ satisfying that both (3.13) and (3,13') are zero. Thus such $\{a_\alpha\,;\,\alpha\in\varDelta^+\}$ give a hermitian metric on this complex manifold $(K/T_0,\,J)$ of complex dimension l^2-l+1 (resp. l^2+1), which satisfies $\varDelta'=\varDelta''=(1/2)\,\varDelta$.

Case 3. Let $K=Sp(l)=\{x\in U(2l)\;;\; {}^txJ_lx=J_l\}\;(l\geq 3)\; \text{where}\; J_l=\begin{pmatrix} 0 & I_l\\ -I_l & 0 \end{pmatrix}$, and I_l is the unit matrix of order l. Then $f=\mathfrak{Sp}(l)=\{\begin{pmatrix} Z & Y\\ -{}^t\bar{Y} & -{}^tZ \end{pmatrix}\;;\; {}^t\bar{Z}+Z=0,\;Y={}^tY\}$ and $\mathfrak{g}=\mathfrak{Sp}(l,\;C)$. For $\alpha_l\in C$ $(i=1,\;\cdots,\;l)$, let

$$H(\alpha_1, \dots, \alpha_l) = \begin{pmatrix} \alpha_1 & & & 0 \\ & \ddots & & 0 \\ & & \alpha_l & & \\ & & & -\alpha_1 \\ & & & & -\alpha_l \end{pmatrix} \in \mathfrak{g}.$$

Let $\mathfrak{h}_t = \{H(\theta_1, \dots, \theta_l); \theta_j \in \mathbf{R} \ (i=1, \dots, l)\}$ and $\mathfrak{h} = \{H(\alpha_1, \dots, \alpha_l); \alpha_i \in \mathbf{C} \ (i=1, \dots, l)\}$. Then \mathfrak{h}_t is a maximal abelian subalgebra of \mathfrak{k} and $\mathfrak{h} = \mathfrak{h}_t^c$. Let $H_i = H(0, \dots, 0, \overset{i}{1}, 0, \dots, 0) \ (1 \leq i \leq l)$. Then $\{H_1, \dots, H_l\}$ are linearly independent, rational elements of \mathfrak{h} , which are mutually orthogonal with respect to the Killing form $\varphi_0(X, Y) = (2l+2) \operatorname{Trace}(XY), X, Y \in \mathfrak{g}$. Let $\{\lambda_i\}_{i=1}^l$ be the mappings of \mathfrak{h} into C defined by $\lambda_i(H_i) = \delta_{ij} \ (1 \leq i, j \leq l)$. Then it holds that

$$\lambda_i = \mu_i$$
,

where μ_i is a mapping of \mathfrak{h} into C defined by $\mathfrak{h}\ni H(\alpha_1,\cdots,\alpha_l)\mapsto \alpha_i$ $(1\leq i\leq l)$. Let $\mathfrak{b}=\mathfrak{t}_0$ be an abelian subalgebra of \mathfrak{t} spanned by $\{\sqrt{-1}\,H_3,\cdots,\sqrt{-1}\,H_l\}$. Then \mathfrak{b} generates a (l-2)-dimensional toral subgroup $B=T_0$ of K. The root system Δ of $(\mathfrak{g},\mathfrak{h})$ is $\{\pm\mu_i\pm\mu_j\ (1\leq i< j\leq l),\ \pm 2\mu_i\ (1\leq i\leq l)\}$. With respect to the lexicographic order > of Δ given by $\lambda_1>\cdots>\lambda_l>0$, the set Δ^+ of positive roots is $\{\mu_i\pm\mu_j\ (1\leq i< j\leq l),\ 2\mu_i\ (1\leq i\leq l)\}$. Let \mathfrak{m}_1 be a subspace of \mathfrak{h}_l spanned by $\{\sqrt{-1}\,H_1,\ \sqrt{-1}\,H_2\}$. For $\alpha\in\Delta^+$, define elements U_α and V_α in \mathfrak{t} , as in 1.3. The complex structure J on K/T_0 is induced from an endomorphism I defined by the same manner as (3.10), and the numbers $\varepsilon_\alpha=\pm 1\ (\alpha\in\Delta^+)$ are also given by the similar order > on Δ as (3.11). Then $\Delta'_+=\{\alpha\in\Delta_+;\ \alpha>0\}$ is $\{\mu_i+\mu_j\ (1\leq i< j\leq l),\ \mu_i-\mu_j\ (3\leq i< j\leq l),\ \mu_1-\mu_2,\ 2\mu_i\ (1\leq i\leq l)\}$, and $\Delta''_+=\{\alpha\in\Delta_+;\ \alpha<0\}$ is $\{\mu_1-\mu_j,\ \mu_2-\mu_j\ (3\leq j\leq l)\}$. Thus we have

(3.14)
$$\sum_{\alpha \in \mathcal{A}^+} a_{\alpha}^2 \varepsilon_{\alpha} \alpha(H_1) = \{ \sum_{j=2}^l a_{1j}^2 + b_{12}^2 + c_1^2 \} - \sum_{j=3}^l b_{1j}^2 ,$$

$$(3.14') \qquad \qquad \sum_{\alpha \in \mathcal{A}^+} a_{\alpha}{}^2 \varepsilon_{\alpha} \alpha(H_2) = \{ \sum_{j=3}^l a_{2j}{}^2 + a_{12}{}^2 - b_{12}{}^2 + c_2{}^2 \} - \sum_{j=3}^l b_{2j}{}^2 ,$$

where we denote $a_{ij}=a_{\mu_i+\mu_j}$, $b_{ij}=a_{\mu_i-\mu_j}$ $(1\leq i < j \leq l)$, and $c_i=a_{2\mu_i}$ $(1\leq i \leq l)$. Therefore we may give a_{α} $(\alpha \in \Delta^+)$ satisfying that both (3.14) and (3.14') are zero. Thus such $\{a_{\alpha}; \alpha \in \Delta^+\}$ give a hermitian metric on this complex manifold $(K/T_0, J)$ of complex dimension l^2+1 , which satisfies $\Delta'=\Delta''=(1/2)\Delta$.

Summing up the above results, we have the following theorem.

Theorem 3.1. For classical groups K=SU(l+1), SO(2l), SO(2l+1), or Sp(l) ($l \ge 3$), there exist a (l-2)-dimensional toral subgroup T_0 of K, a K-invariant complex structure J and a K-invariant hermitian metric g with respect to J on the coset space K/T_0 satisfying that

$$\Delta' = \Delta'' = \frac{1}{2} \Delta$$
.

REMARK. The complex manifolds $(K/T_0, J)$ in Theorem 3.1 have no Kaehler metric since rank (K)=l>l-2=rank (T_0) (cf. [3]).

§ 4. Compact complex parallelisable manifolds.

In this section, we assume that a compact complex manifold M of complex dimension n is parallelisable, that is, there exist n holomorphic vector fields $\{X_1, \dots, X_n\}$ on M which are linearly independent everywhere (cf. [16]). Let $\{\omega_1, \dots, \omega_n\}$ be n holomorphic 1-forms given by $\omega_{\alpha}(X_{\beta}) = \delta_{\alpha\beta}$ $(1 \le \alpha, \beta \le n)$. Then the complex symmetric form $\sum_{\alpha=1}^n \omega_{\alpha} \cdot \overline{\omega}_{\alpha}$ gives a hermitian metric g on M, where $\overline{\omega}_{\alpha}$ denotes the complex conjugate of ω_{α} $(\alpha=1, \dots, n)$. The complex Laplacians Δ' , Δ'' of (M, g) can be calculated as follows:

$$\Delta' = -\sum_{\alpha=1}^n \bar{X}_{\alpha} X_{\alpha}$$
, $\Delta'' = -\sum_{\alpha=1}^n X_{\alpha} \bar{X}_{\alpha}$,

where \overline{X} is the complex conjugate of a vector field X. Since each vector field X_{α} ($\alpha=1,\dots,n$) is holomorphic, we have $[X_{\alpha},\overline{X}_{\alpha}]=0$. Thus we obtain the following proposition.

PROPOSITION 4.1. Each compact complex parallelisable manifold admits a hermitian metric satisfying $\mathbf{\Delta}' = \mathbf{\Delta}'' = (1/2) \mathbf{\Delta}$.

REMARK 1. A compact complex parallelisable manifold which is not a complex torus, admits no Kaehler metric (cf. [16]).

REMARK 2. Recently, K. Tsukada [17] shows that for a compact complex hermitian manifold (M, g), a condition $\mathbf{\Delta}'' = (1/2) \mathbf{\Delta}$ is equivalent to that (M, g) is semi-Kaehler, that is, the Kaehler form is coclosed (cf. [18]). Thus, due to his result, Theorem 3.1 and Proposition 4.1, we obtain examples of semi-Kaehler compact complex manifolds which admit no Kaehler metric.

References

- [1] M. Berger, Eigenvalues of the Laplacian, Amer. Math. Soc. Proc. Pure Math., 16 (1970), 121-125.
- [2] M, Berger, P. Gauduchon and E. Mazet, Le spectre d'une variété riemannienne, Lecture Notes in Math., 194, Springer, Berlin, 1971.
- [3] A. Borel, Kaehlerian coset spaces of semi-simple Lie groups, Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 1147-1151.
- [4] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces I, Amer. J. Math., 80 (1958), 458-538.
- [5] A. Froelicher, Zur Differentialgeometrie der komplexen Structuren, Math. Ann.,

- **129** (1955), 50-95.
- [6] P.B. Gilkey, Spectral geometry and the Kaehler condition for complex manifolds, Invent. Math., 26 (1974), 231-258.
- [7] P.B. Gilkey, Correction to spectral geometry and the Kaehler condition for complex manifolds, Invent. Math., 29 (1975), 81-82.
- [8] J. Hano and S. Kobayashi, A fibering of a class of homogeneous complex manifolds, Trans. Amer. Math. Soc., 94 (1960), 233-243.
- [9] Harish-Chandra, Representations of semi-simple Lie groups IV, Amer. J. Math., 77 (1955), 743-777.
- [10] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [11] S. Kobayashi and K. Nomizu, Foundations of differential geometry II, Interscience Publishers, New York, 1969.
- [12] K. Kodaira and J. Morrow, Complex manifolds, Holt, Rinehart & Winston, Inc.,
- [13] Y. Matsushima and S. Murakami, On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math., 78(2), (1963), 365-416.
- [14] M. Takeuchi, Modern theory of spherical functions (in Japanese), Iwanami, Tokyo, 1975.
- [15] H.C. Wang, Closed manifolds with homogeneous complex structure, Amer. J. Math., 76 (1954), 1-32.
- [16] H.C. Wang, Complex parallelisable manifold, Proc. Amer. Math. Soc., 51 (1954), 771-776.
- [17] K. Tsukada, Eigenvalues of the Laplacian on Calabi-Eckmann manifolds (a preprint).
- [18] J. A. Wolf and A. Gray, Homogeneous spaces defined by Lie group automorphisms I, II, J. Differential Geometry, 2 (1968), 77-114, 115-159.

Hajime URAKAWA

Department of Mathematics
College of General Education
Tohoku University
Kawauchi, Sendai 980
Japan