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Let $f$ and $g$ denote two germs of real analytic functions on $R^{n}$ at the origin.
We assume that $f(O)=g(O)=0$ . If $x(t)(0\leqq t)$ is any analytic path in $R^{n}$ starting
at the origin then we can compare $f$ and $g$ along $x(t)$ by using the orders
$0(f(x(t)))$ and $O(g(x(t)))$ respectively. If these orders are the same for all such
paths starting at the origin then we say that $f$ and $g$ have the same distribu-
tion of Lojasiewicz exponents, or simpIy the same distribution. (Cf. [3]).

Problem: How are the two germs of real analytic functions at the origin
related if they have the same distribution?

We show that if two germs have the same distribution then they are repre-
sented, after a succession of suitable blow-ups, by functions which differ only
by composition with a bianalytic isomorphism.

A. The theorem.

Let $f$ and $g$ be two germs of real analytic functions on $R^{n}$ at $0$ . When it
is convenient we will identify $f$ and $g$ with representative functions on some
neighbourhood $U$ of $0$ .

We say that $f$ and $g$ are almost analytically equivalent if there exists a
neighbourhood $U$ of $0$ , the composite

$\pi^{*};$ $U^{*}\rightarrow U$

of a finite succession of monoidal transformations with non singular (closed)

centres over $U$ , and a bianalytic isomorphism

$\tau^{*};$ $V_{1}^{*}\rightarrow V_{2}^{*}$

between two neighbourhoods $V_{1}^{*}$ and $V_{2}^{*}$ of $(\pi^{*})^{-1}(0)$ in $U^{*}$ such that the diagram
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commutes.
Let $x(t),$ $0\leqq t$ , denote an analytic path starting at the origin. Thus $ x(O)=0\sim$

and the components of $x(t)$ are convergent power series in $t$ .
By $\mathcal{D}_{f}$ we mean the distribution of $f$ at the origin. Thus $\mathcal{D}_{f}$ is a function

which assigns to each analytic path $x(t),$ $0\leqq t$ , starting at the origin, the order
$O(f(x(t))$ of the power series $f(x(t))$ in $t$ . (Compare [3]).

REMARK. The infimum of the values taken by $\mathcal{D}_{f}$ yields the Lojasiewicz
exponent of $f$. Thus our classification of germs of functions by means of the
functions $\mathcal{D}_{f}$ is finer than that given by the Lojasiewicz exponent. (Here $f$ is
positive definite.)

With the notation which we have now introduced we state the main result:
THEOREM. If $\mathcal{D}_{f}=\mathcal{D}_{g}$ then $f$ and $g$ are almost analytically equivalent.
EXAMPLE. Consider the functions

$f_{a}(x, y)=x^{4}+y^{4}+ax^{2}y^{2}$

where $a$ is a real number. If $a>-2$ then $\mathcal{D}_{f_{a}}$ is the constant function with
value 4. Thus if $a,$ $b>-2$ then, by the theorem, $f_{a}$ and $f_{b}$ are almost analytically
equivalent.

When $a\leqq-2$ then the function is no longer positive definite. If $a\neq b$ and
$b\leqq-2$ then $\mathcal{D}_{f_{a}}\neq \mathcal{D}_{f_{b}}$ .

The above notion of almost analytic equivalence, slightly modified, is used in
[4] to establish a finite classification theorem for isolated singularities.

B. Resolution of singularities.

We now state a theorem of Hironaka which is contained in [2].

Let $V_{f}$ and $V_{g}$ denote the varieties $f=0$ and $g=0$ respectively. If $\mathcal{D}_{f}=\mathcal{D}_{g}$

then for a sufficiently small neighbourhood $U$ of $0$ ,

$U\cap V_{f}=U\cap V_{g}$ .
This follows from the curve selection lemma ([1]).

HIRONAKA’S THEOREM. SuppOse $\mathcal{D}_{f}=\mathcal{D}_{g}$ . Then there exist a neighbourhood
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$U$ of $0$ and a finite succession of monoidal transformations with non-singular
centers

$\pi;(O, \Sigma)\rightarrow(U, V_{f}\cap U)$

where $\Sigma=\pi^{-1}(V_{f}\cap U)=\pi^{-1}(V_{g}\cap U)$ with the following property:
Near any $p\in O$ there is an (analytic) coordinate system $\{x_{1}, \cdots , x_{n}\}$ with

respect to which
$f(\pi(x))=\epsilon_{1}(x)x_{1}^{k_{1}}\ldots x_{n^{n}}^{k}$

(B1)
$g(\pi(x))=\epsilon_{2}(x)x_{1}^{k_{1}}\cdots x_{n^{n}}^{k}$

where $\epsilon_{1}(0)\neq 0\neq\epsilon_{2}(0),$ $k_{i}\geqq 0$ and $p$ is at the origin.
COROLLARY 1. The quotient function $f(\pi(x))/g(\pi(x))$ defined on $ O-\Sigma$ has

an analytic extension throughout U. It is non vanishing at any Point.
The extension is clearly $\epsilon_{1}(x)/\epsilon_{2}(x)$ near $p$ .
COROLLARY 2. In a neighbourhood of $p\in O,$ $k_{i}>0$ if and only if $\Sigma$ con-

tains the coordinate hyperplane $x_{i}=0$ .
Thus $\Sigma=\bigcup_{k_{i}>0}P_{i}$ where $P_{i}=\{x|x_{i}=0\}$ .

C. A vector field on $\tilde{U}\times I$ .
We assume $f$ and $g$ are as in the main theorem. We then choose $U,$ $O,$ $\Sigma$

and $\pi$ in accordance with Hironaka’s theorem.
Let

$F:\tilde{U}\times I\rightarrow R$

be defined by
$F(x, t)=(1-t)f(\pi(X))+tg(\pi(\sim x))$ ,

$x\in\tilde{U}$ , $0\leqq t\leqq 1$ .
Choose an analytic Riemannian metric on $\tilde{U}$ so that $grad_{(x.t)}F$ may be iden-

tified with a tangent vector field on $O\times I$ . Here we consider $t$ as a parameter;
$grad_{(x.t)}F\equiv gradF$ has the obvious meaning whilst $grad_{x}F$ denotes the gradient
of $F$ in x-space. Thus if the coordinate system is orthonormal then

$grad_{(x.t)}F=(\frac{\partial F}{\partial x_{1}},$ $\cdots$ $\frac{\partial F}{\partial x_{n}}\frac{\partial F}{\partial t})$

while

$grad_{x}F=(\frac{\partial F}{\partial x_{1}},$
$\cdots,$

$\frac{\partial F}{\partial x_{n}}0)$ .

We now define a vector field $\tilde{V}$ on $\tilde{U}\times I$ . At any point $(x, t)$ where $ x\not\in\Sigma$ .
This field is to lie in the plane spanned by grad $F$ and the unit vector $e_{t}$ in the



474 T.-C. KUO and J.N. WARD

t-direction. (Notice that if $ x\not\in\Sigma$ then $grad_{(x,t)}F\neq 0\sim$ by Hironaka’s theorem so
these two vectors are linearly independent). We also require that this field has
component 1 in the direction $e_{t}$ , and is orthogonal to Grad $F$ for $ x\not\in\Sigma$ .

Let $u=(1/|gradF|)$ grad $F$ denote the unit vector in the direction of grad $F$.
Then the component of $e_{t}$ in the direction of grad $F$ is the inner product $e_{t}\cdot u$ .

Thus $\tilde{V}(x, t)$ has the same direction as the vector

$w=e_{t}-(e_{t}\cdot u)u=e_{t}-\frac{(e_{t}\cdot gradF)}{|gradF|^{2}}$grad $F$ .

Now grad $F=grad_{x}F+F_{t}e_{t}$ . Also $grad_{x}F$ is orthogonal to $e_{t}$ . Hence

$w=e_{t}-\frac{F_{t}}{|gradF|^{2}}gradF$

$=\frac{-F_{t}}{|gradF|^{2}}grad_{x}F+[1-\frac{F_{t}^{2}}{|gradF|^{2}}]e_{t}$

$=\frac{-F_{t}}{|gradF|^{2}}grad_{x}F+\frac{|grad_{x}F|^{2}}{|gradF|^{2}}e_{t}$ .

Adjusting the length of $w$ we define, for $ x\not\in\Sigma$ ,

$V(x, t)=\frac{-F_{t}}{|grad_{x}F|^{2}}grad_{x}F+e_{t}$ .

For $ x\in\Sigma$ we define
$\tilde{V}(x, t)=e_{t}$ .

The following proposition is now almost immediate:
PROPOSITION. Inside $\tilde{U}$ in some neighbourhood of $\Sigma$ ,

(1) grad $F\neq 0$ for $ x\not\in\Sigma$ . Hence $V$ is analytic off $\Sigma\times I$ .
(2) Off $\Sigma\times I$ the field $V(x, t)$ is tangent to the level surfaces $F=constant$ .
(3) $V$ is continuous on $O\times I$ (but not, in general, analytic on $\Sigma\times I$).

In order to verify (3) it need only be noted that as $ x\rightarrow\Sigma$,
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$-\frac{F_{t}}{|grad_{x}F|^{2}}grad_{x}F\rightarrow\sim 0$ .

To see this it is sufficient to check that each component $x_{i}$ of $x$ appears in the
vector on the left with exponent at least one in each component.

EXAMPLE. Suppose $n=2,0=R^{2}$ and $F=\epsilon(t)x^{a}y^{b}$ where $a,$ $b>0$ . Now

$grad_{x}F=\epsilon(t)$ (a $x^{a- 1}y^{b}\dot{k}+bx^{a}y^{b- 1}j$ )
$\sim$

.
Thus for $(x, y)\not\in\Sigma=$ { $(x,$ $y)|x=0$ or $y=0$} we have

$\frac{-F_{t}}{|grad_{x}F|^{2}}grad_{x}F=\frac{\epsilon^{\prime}(t)}{\epsilon(t)}\frac{xy}{a^{2}y^{2}+b^{2}x^{2}}$ (a $yi\sim+bxj$ )
$\sim$

$\rightarrow 0$ as $x\rightarrow 0$ or $y\rightarrow 0$ .
Here 2 and 7 are the unit vectors in the x- and y-directions.

D. Stratifications in normal crossing.

Let $d$ be an analytic manifold of dimension $n$ , and

.5: $d=\bigcup_{s=0}^{n}\Sigma_{s}$

a stratification of $d$ . Thus each $\Sigma_{s}$ is an analytic submanifold of dimension $s$

and $\Sigma_{s}\cap\Sigma_{t}=\emptyset$ if $s\neq t$ .
We say that $S$ is in normal crossing if the following holds. For any point

$p\in d$ we have $p\in\Sigma_{s}$ for some $s$ . There is to exist an analytic coordinate
system $\{x_{1}, \cdots , x_{n}\}$ with origin $P$ such that in a sufficiently small neighbour-
hood of $p$ ,

(D1) $\Sigma_{s}$ coincides with the $(x_{n- S+1}, \cdots , x_{n})$ coordinate space. ( $i$ . $e$ . $\Sigma_{s}$ is
defined by $x_{1}=\cdots=x_{n-s}=0$).

(D2) $\Sigma_{s}\cup\cdots\cup\Sigma_{s+k}$ is the union of all $(s+k)$-dimensional coordinate spaces,
each of which contains $\Sigma_{s},$ $1\leqq k\leqq n-s$ .

We say that the coordinate system $\{x_{1}, \cdots , x_{n}\}$ displays $S$ at $p$ . From these
we also obtain the property

(D3) If $\Sigma_{0}=\ldots=\Sigma_{k-1}=\emptyset,$ $\Sigma_{k}\neq\emptyset$ then $\Sigma_{k}$ is a closed submanifold.

EXAMPLE 1. Let $\mathcal{A}$ denote the $O$ of Hironaka’s theorem. Let $\Sigma_{s}$ consist
of all those $p\in d$ for which the expression (B1) has exactly $n-s$ exponents $k_{i}$

greater than zero.
Notice that $\Sigma_{n}$ is open and dense in $\mathcal{A}$ and that

$\Sigma=_{s}^{n}\overline{U_{=0}}^{1}\Sigma_{s}$ .
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This stratification is in normal crossing.
EXAMPLE 2. More generally let $h$ be any analytic function on a manifold

$\mathcal{A}$ . If $h$ is in normal crossing then a similar stratification can be defined on $d$ .
In particular if $d=R^{n}$ with coordinates $(x_{1}, \cdots x_{n})$ and $h(x_{1}, \cdots , x_{n})=x_{1}\cdots x_{n}$

then $\Sigma_{0}=\{0\}$ and for $k>0,$ $\Sigma_{0}\cup\cdots\cup\Sigma_{k}$ is the union of all k-dimensional coordi-
nate spaces.

E. Blowing-up the stratification $\mathcal{S}$ .
Let

$\mathcal{S};\mathcal{A}=\bigcup_{s}\Sigma_{s}$

be a stratification in normal crossing. Denote by $k$ the smallest integer for
which $\Sigma_{k}\neq\emptyset$ .

Since $\Sigma_{k}$ is closed, di can be blown up along $\Sigma_{k}$ . Let

$\beta:B(d)\rightarrow d$ (E1)

denote such a monoidal transformation. If $p\in\Sigma_{k}$ then

$\beta^{-1}(p)$

is an $n-k-1$ dimensional real projective space in $B(d)$ .
For $X\subseteqq=l$ let $\tau(X)$ denote the strict transform of $X$ in $B(d)$ . Thus $\tau(X)$

is the closure of $\beta^{-1}(X-\Sigma_{k})$ in $B(d)$ . In particular $\tau(\Sigma_{k+1})$ is a closed $(k+1)-$

dimensional (analytic) submanifold in $B(d)$ .
Let

$B(\Sigma_{k+1})=\tau(\Sigma_{k+1})$

and for $1\leqq i\leqq n-k-1$ define

$B(\Sigma_{k+1+i})=\tau(\Sigma_{k+1+i})-\tau(\Sigma_{k+t})$ .
Finally put

$B(\mathcal{S}):B(d)=\bigcup_{t=k+1}^{n}B(\Sigma_{i})$ .

PROPOSITION. The stratification $B(\mathcal{S})$ is also in normal crossing. It has no
strata of dimension less than $k+1$ .

PROOF. Away from $\Sigma_{k}$ the monoidal transformation $\beta$ is locally an analytic
isomorphism. Thus any analytic coordinate system for $\mathcal{S}$ corresponds to one
for $B(\mathcal{S})$ in a neighbourhood of corresponding points.

At a point on $\Sigma_{k}$ we may choose a coordinate system $\{x_{1}, \cdots , x_{n}\}$ which
displays $\mathcal{S}$ at $p$ . The point $P$ is now at the origin and we refer to it as the
origin. The blow-up of a suitably small neighbourhood of the origin may be
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covered by $n-k$ sets, $U_{i},$ $k+1\leqq i\leqq n$ .
Fix one such an $i$ , say $r$ . The set $U_{r}$ is mapped by $\beta$ into a sector of $R^{n}$

containing the $x_{r}$-axis. Now we may coordinatize $U_{r}$ by coordinates $(x_{1}, \cdots , x_{n})$

and the map $\beta$ when restricted to $U_{r}$ is given by

$($ ( $x_{1}$ , $\cdot$ .. , $x_{n}$ ) $)=(x_{1}, \cdot.. , X_{k}, x_{k+1}x_{r}, \cdot.. , x_{r-1}x_{r}, x_{r}, x_{r+1}x_{r}, \cdot.. , x_{n}x_{r})$ .
The blow-up of the point $p\in\Sigma_{k}$ is thus in the subspace defined by

$x_{1}=\ldots=x_{k}=0;x_{r}=0$ .
The required conditions for a normal stratification now are easily seen to hold.
This completes the proof.

REMARK. The above situation is illustrated by the diagram

Now we can repeat this construction so that we obtain the successive strati-
fications:

$S,$ $B(S),$ $B^{2}(S),$ $\cdots$ , $B^{n-k-1}(S)$ ,

all of which are in normal crossing.
In addition $B^{n-k-1}(S)$ has no strata of dimension less than $n-1$ . Thus

$B^{n-k-1}(S)$ consists of only two strata, of dimension $n$ and $n-1$ respectively.
Blowing up along an $(n-1)$-dimensional stratum does not yield anything

new. Thus we stop at $B^{n-k-1}(S)$ .
NOTATION.

$d^{*}=B^{n-k-1}(d)$ , $\beta^{*}=\beta\circ\cdots\circ\beta$ ($n-k-1$ times).

$S^{*}=d^{*}=\Sigma_{n}^{*}\cup\Sigma_{n-1}^{*}$ .
We call

$\beta^{*}:$ $d^{*}\rightarrow d$

the complete blowing-up of $\mathcal{A}$ with respect to $S$ .

F. The main lemma.

Consider the stratifications
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$S_{f\circ\pi}$ and $S_{g\circ\pi}$

of $\tilde{U}$ as in Example 1(D). By (B1) they are the same.
We take $d=\tilde{U},$ $S=S_{f\circ\tau}=S_{g\circ\pi}$ and obtain the complete blow-up

$\beta^{*}:$
$U^{*}\rightarrow\tilde{U}$ .

LEMMA. There exists a vector field $V^{*}$ defined and analytic throughoui
$U^{*}\times I$ such that

$d\beta^{*}(V^{*}(P^{*}t))=\tilde{V}(\beta^{*}(p^{*});t)$ $P^{*}\in U^{*},$ $0\leqq t\leqq 1$ .

The two examples which follow illustrate the proof in the local sitlation.
They can be generalized to deal with the global situation as in the next section.

EXAMPLE 1. Take $n=2,$ $\iota y_{=R^{2}},$ $F=\epsilon(t)x^{a}y^{b}$ where $\epsilon(t)\neq 0,$ $a>0,$ $b>0$ .
Then

$\Sigma_{1}^{*}=\{(x, y)|xy=0, (x, y)\neq(0,0)\}$ .
$\Sigma_{0}^{*}=\{(0,0)\}$ .
$\Sigma_{2}^{*}=U-\Sigma_{1}^{*}-\Sigma_{0}^{*}$ .

If $\beta^{*}:$
$ U^{*}\rightarrow$ cr denotes the blow up around the origin then $U^{*}$ is covered by

two pieces, $U_{1}^{*}$ and $U_{2}^{*}$ say. In $U_{i}^{*}$ ($i=1$ or 2) we can choose a coordinate sys-
tem $(X_{i}, Y_{i})$ and take

$\beta^{*}((X_{1}, Y_{1}))=(X_{1}, X_{1}Y_{1})$

and
$\beta^{*}((X_{2}, Y_{2}))=(X_{2}Y_{2}, Y_{2})$ .

Thus $\beta^{*}$ maps $U_{1}$ onto a sector about the x-axis and $U_{2}$ onto one about the y-
axis.

From the example in $C$,

$ V(x, y, t)=\frac{\epsilon^{\prime}(t)}{\epsilon(t)}\frac{xy}{a^{2}y^{2}+b^{2}x^{2}}(ayi+bxj)+e_{t}\sim\sim$

if $X,$ $y\neq 0$ ,

$=e_{t}$ if $x=0$ or $y=0$ .
Now,

$ V^{*}(X, Y, t)=-\frac{\epsilon^{\prime}(t)}{\epsilon(t)}\frac{X}{a^{2}+b^{2}X^{2}}(ai+X(bX-a)j)+e_{t}\sim\sim$

in the neighbourhood of the Y-axis.
In the neighbourhood of the X-axis we have

$ V^{*}(X, Y, t)=-\frac{\epsilon^{\prime}(t)}{\epsilon(t)}\frac{Y}{ay^{2}+b^{2}}((aX-b)yi+bj)+e_{t}\sim\sim$ .
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It is easily seen that
$d\beta^{*}(V^{*}(X, Y, t))=V(\beta(X, Y),$ $t$ ),

in these neighbourhoods. $V^{*}$ is indeed analytic since the denominators in these
expressions are units.

EXAMPLE 2. Take $n=3,0=R^{3}$ and $F=\epsilon(t)x^{a}y^{b}z^{c}$ .
Now

$grad_{x}F=\frac{aF}{x}i+\frac{bF}{y}j+\frac{cF}{z}k\sim\sim\sim$ if $x,$ $y,$ $z\neq 0$

$=0\sim$ if $X,$ $y,$ $z=0$ .
Thus for $(x, y, z)\not\in\Sigma$ which is the union of the coordinate planes,

$-\frac{F_{t}}{|grad_{x}F|^{2}}grad_{x}F=-\frac{\epsilon^{\prime}(t)}{\epsilon(t)}(\frac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}+\frac{c^{2}}{z^{2}})^{-1}(\frac{a}{X}\sim i+\frac{b}{y}\sim j+\frac{c}{j}k\sim)$

$=-\frac{\epsilon^{\prime}(t)}{\epsilon(t)}\frac{xyz}{a^{2}y^{2}z^{2}+b^{2}x^{2}z^{2}+c^{2}x^{2}y^{2}}$ (a $yzi+bxzj+cyzk$ )
$\sim\sim\sim$

.

Now

$V_{(x},$
$y,$ $z,$

$t$ ) $=-\frac{\epsilon^{\prime}(t)}{\epsilon(t)}\frac{xyz}{a^{2}y^{2}z^{2}+b^{2}x^{2}z^{2}+c^{2}x^{2}y}2$ (a $yzi+bxzj+cyzk$ )$+e_{t}\sim\sim\sim$

for $xyz\neq 0$ .
Clearly as $x\rightarrow 0$ or $y\rightarrow 0$ or $z\rightarrow 0$ then $\tilde{V}(x, y, z, t)\rightarrow 0\sim$ . If $x,$ $y$ or $z$ is zero

then $ V(x, y, z, t)=0\sim$ . A simple computation shows that $(d\beta^{*})^{-1}(\nu)$ has a unique
analytic extension in $U^{*}$ .

G. Analysis of $\tilde{V}$ .
We prove the main lemma by a careful analysis of the field $\tilde{V}$ . Consider

the general case first. Let the manifold $d$ with stratification

$S;\Sigma=\overline{\bigcup_{s=0}^{n1}}\Sigma_{s}$

be given. For a point $p\in\Sigma_{n-s}$ let $\{x_{1}, \cdots , x_{n}\}$ be a coordinate system display-
ing $S$ at $P$ (as in $(D)$ ).

Write

$X^{(s)}=\prod_{i=1}^{s}x_{i}$

$\xi i^{s)}=\frac{1}{X_{i}}X^{(s)}$ $1\leqq i\leqq s$ .

$\xi^{(s)}=(\xi_{1}^{(S)}\sim’\cdots, \xi_{s}^{(s)})$ .
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(In the case $s=1$ notice that $X^{(1)}=x_{1},$ $\xi_{1}^{(1)}=1$ ).

These notations can only be used when $p,$ $\Sigma_{n-s}$ and the coordinate system are
given.

Let $V$ be a vector Peld defined and analytic on $(d-\Sigma)\times I$ . We say that $V$

is modifiable along $\Sigma$ if for any $ p\in\Sigma$, say $p\in\Sigma_{n-s}$ , tbere is a coordinate sys-
tem $\{x_{1}, \cdots , x_{n}\}$ displaying $S$ at $p$ for which $V$ has the form

$V(x, t)=\sum_{i=1}^{n}\frac{X^{(s)}L_{i}(\xi^{(s)};x,t)}{P(\xi^{(S)};x,t)}\frac{\partial}{\partial x_{i}}+\frac{\partial}{\partial t}$ (G1)

where the $L_{i}(1\leqq i\leqq n)$ are linear and $P$ is a quadratic form in the s-variables
with coefficients which are analytic in $(x, t)$ . Moreover, we require that $P$ is
positive definite near $O\times I$ (that is $P$ ( $y_{1},$

$\cdots$ , $y_{s}$ ; $X,$ $t)>0$ if $y\neq 0$)
$\sim\sim$

. By $\partial/\partial x_{i}$ we
mean the unit vector in the $x_{i}$-direction. Similarly $\partial/\partial t$ , for consistency, re-
places $e_{t}$ . Note that $V$ has an analytic extension on $\Sigma_{n-1}$ .

EXAMPLE. Let,$\leftrightarrow t=\tilde{U},$

$s=s_{f\circ\pi}=s_{g\circ\pi}$ and $V=\tilde{V}$ as given in C. We show
that $\tilde{V}$ is modifiable.

For $p\in\Sigma_{n-s}$ , choose $\{x_{1}, \cdots , x_{n}\}$ displaying $S$ so that

$f(\pi(x))=\epsilon_{1}(x)x_{1}^{k_{1}}\cdots x_{s^{s}}^{k}$

$k_{i}>0$ .
$g(\pi(x))=\epsilon_{2}(x)x_{1}^{k_{1}}\cdots x_{s^{s}}^{k}$

Then
$F(x, t)=\epsilon(x, t)x_{1}^{k_{1}}\cdots x_{s^{s}}^{k}$

where $\epsilon(x, t)=(1-t)\epsilon_{1}+f\epsilon_{2}$ .

$\frac{\partial F}{\partial x_{i}}=e_{i}(x, t)x_{1}^{k_{1}}\cdots X_{i}^{k_{i}-1}$ $x_{s^{s}}^{k}$

$=x_{1}^{k_{1}-1}\cdots x_{s^{s}}^{k-1}e_{i}\xi_{i}^{(s)}$

where $e_{i}(0, t)\neq 0,1\leqq i\leqq s$ .
$\frac{\partial F}{\partial x_{s+i}}=x_{1}^{k_{1}-1}\cdots x^{k-1}s^{s}X^{(s)}q_{s_{T\grave{s}}}$

where

$q_{s+i}=\frac{\partial\epsilon}{\partial x_{s+i}}$ $1\leqq i\leqq n-s$ .

In terms of the Riemannian metric, which has been chosen on $0$, the com-
ponents of grad $F$ are expressed as certain linear combinations of the above
partial derivatives. Hence each has the form

$x_{1}^{k_{1}-1}\cdots x_{s}^{k_{s}- 1}\sum_{i=1}^{\epsilon}$ a $i\xi\downarrow s$
) (G2)

where the $a_{i}$ are functions of $ x\sim$ and $t$ . Moreover
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$\frac{\partial F}{\partial t}=(\epsilon_{2}-\epsilon_{1})x_{1}^{k- 1}\cdots x_{s^{s}}^{k-1}X^{(s)}$ . (G3)

Now grad $F|^{2}=\tilde{P}(\partial F/\partial x_{1}, \cdots , \partial F/\partial x_{n})$ where $\tilde{P}(z_{1}, \cdots , z_{n})$ is a quadratic
form in $z_{1},$

$\cdots$ , $z_{n}$ depending on the metric. Thus

$|gradF|^{2}=\tilde{P}(\frac{\partial F}{\partial x_{1}},$ $\cdots$ , $\frac{\partial F}{\partial x_{s}}\ldots$ $\frac{\partial F}{\partial x_{n}})$

$=(x_{1}^{k_{1}-1}$ ... $x_{s^{s}}^{k-1})^{2}\tilde{P}(e_{1}\xi_{1}^{(s)}, \cdot.. , e_{s}\xi_{s}^{(s)}, X^{(s)}q_{s+1}, \cdots X^{(s)}q_{n})$

$=(x_{1}^{k_{1}-1}$ ... $x_{s^{s}}^{k-1})^{2}P(\xi_{1}^{(s)}, \cdot.. \xi_{s}^{(s)} ; \sim x, t)$

where $P(\xi_{1}^{(s)}, \cdots , \xi_{s}^{(s)} ; \sim x, t)=\tilde{P}(e_{1}\xi_{1}^{(s)}, \cdots , e_{s}\xi_{s}^{(s)}, X^{(s)}q_{S+1}, \cdots , X^{(s)}q_{n})$ is positive
definite for $\sim xnearO\sim$ and $0\leqq t\leqq 1$ .

That is, for $0\leqq t\leqq 1$ ,
$P(y_{1}, \cdots y_{s} ; \sim x, i)>0$ .

(Notice that $P$ is not uniquely determined as a form). Thus

$|gradF|^{2}=(x_{1}^{k_{1}-1}\cdots x_{s^{s}}^{k-1})^{2}P(\xi^{(S)} ; x, t)$ . (G4)

Now Gl follows from G2, G3 and G4.
In the general case let

$\beta:B(d)\rightarrow\leftrightarrow q$

be the blow-up of $S$ in El.
LEMMA. Let $V$ denote a modifiable vector field on $d$ . Then there exists a

modifiable vector field $B(V)$ on $B(d)$ such that where $(d\beta)^{-1}$ is defined,

$B(V)=(d\beta)^{-1}(V)$ .
PROOF. Let $\Sigma_{k}$ denote the lowest dimensional stratum of $S$ . Let $s=n-k$

and choose $p\in\Sigma_{k}=\Sigma_{n-s}$ .
Since $V$ is modiPable we can choose a coordinate system $\{x_{1}, x_{n}\}$ at $P$

such that $V(x, t)$ is expressed as in Gl. This coordinate chart about $p$ is blown
up by $\beta$ into $n$ coordinate charts, a typical one of which has coordinate system
$\{y_{1}, \cdots , y_{n}\}$ related to the system $\{x_{1}, \cdots , x_{n}\}$ by

$x_{i}=y_{i}y_{s}$ $1\leqq i\leqq s-1$

$x_{s}=y_{s}$ (G5)

$x_{s+j}=y_{s+j}$ $1\leqq j\leqq k$ .
(This amounts to the blow up of a cone around the $x_{s}$-axis in $\{x_{1}, \cdots , x_{s}\}$ space,
a fact which we have emphasised by not condensing the middle equation into
the last one. The other charts are obtained by blowing up about the other
axes of course). Observe that $\{y_{1}, \cdots , y_{n}\}$ displays $B(S)$ .
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By the chain rule we have

$\frac{\partial}{\partial x_{t}}=\frac{1}{y_{s}}\frac{\partial}{\partial y_{i}}$ $1\leqq i\leqq s-1$

$($

$\frac{\partial}{\partial x_{s}}=-\sum_{i=1}^{s-1}\frac{y_{\ell}}{y_{s}}\frac{\partial}{\partial y_{i}}+\frac{\partial}{\partial y_{s}}$ (G6)

$\frac{\partial}{\partial x_{s+j}}=\frac{\partial}{\partial y_{s+j}}$ $1\leqq j\leqq k$ .
$\int$

Define
$Y^{(s-1)}=y_{1}\cdots y_{s-1}$

$\eta_{i}^{(s-1)}=\frac{1}{y_{i}}Y^{(s-1)}$ $1\leqq i\leqq s-1$

$\eta^{(s- 1)}=(\eta_{1}^{(s- 1)}, \cdots \eta_{s-1}^{(s-1)})$ .
Then (a) $X^{(s)}=Y^{(S- 1)}y_{s}^{s}$ ,

(b) if $L$ is a linear form in $s$ variables with coefficients which are func-
tions of $(x, t)$ then there exists a linear form $L^{\prime}$ in $s-1$ variables with co-
efficients which are functions of $(y, t)$ such that

$L(\xi^{(s)} ; X, t)=y_{s}^{s-1}L^{\prime}(\eta^{(s-1)}, y, t)$

and (c) if $P(\xi^{(s)} ; x, t)$ is a quadratic form in $\xi^{(s)}$ with coefficients which are
functions of $(x, t)$ then there exists a quadratic form $P^{\prime}(\eta^{(s-1)} ; y, t)$ in $\eta^{(s-1)}$

whose coefficients are functions of $(y, t)$ and which satisfies

$P(\xi^{(s)} ; X, t)=y_{s}^{2(s- 1)}P^{\prime}(\eta^{(s- 1)} ; y, t)$ .

Furthermore if $P$ is positive definite for $x$ near $0,0\leqq t\leqq 1$ then $P^{\prime}$ is positive
definite for $y$ near $0,0\leqq t\leqq 1$ .

Now off the hyperplane $y_{s}=0,$ $ d\beta$ is not singular and substituting G5 and
G6 into Gl we find that $(d\beta)^{-1}$ transforms $V(x, t)$ into a vector field of the
form

$\sum_{i=1}^{s-1}\frac{7Y^{(s-1)}(L_{i}^{\prime}-y_{i}L_{0}^{\prime})\partial}{P^{\prime}\partial y_{i}}+y_{s}\sum_{j=s}^{n}\frac{Y^{(s-1)}L_{j}^{\prime}\partial}{P’\partial y_{j}}+\frac{\partial}{\partial t}$ . (G7)

We are now in a position to define the vector field $B(V)$ .
Let $\overline{p}$ be a point represented by $(a_{1}, \cdots , a_{n})$ in the above coordinate system,

such that $\beta(\overline{p})=p$ . Of course, $a_{s}=a_{s+1}=\cdots=a_{n}=0$ . There are two cases to
consider:

(i) Each $a_{i}\neq 0,1\leqq i\leqq s-1$ . This implies $\overline{p}\not\in B(\Sigma)$ and hence $P^{\prime}$ is a unit;
G7 is thus an analytic expression and we take it as the dePnition of $B(V)$ at
$\overline{p}$ . Hence $B(V)$ is dePned and analytic off $B(\Sigma)$ .

(ii) Some $a_{i}=0$ . By permuting the indices $(1, \cdots , s-1)$ , we may assume
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$\overline{p}=$ ( $0,$ $\cdots$ $0$ , a $ t+1\ldots$ $a_{s- 1},0,$ $\cdots$ $0$), a $i\neq 0$ , $0\leqq l\leqq s-2$ .
An important observation is that $\overline{p}\in B(\Sigma_{n-l})$ . This follows from the definition
of blowing-up.

We must show that $B(V)$ has the form Gl near $\overline{p}$ (with 1 replacing $s$).
Let us translate the origin to $\overline{p}$ by setting

$z_{i}=y_{i}-a_{l}$ $l+1\leqq i\leqq s-1$

$z_{i}=y_{i}$ otherwise.
Let

$Z^{(t)}=\prod_{i=1}^{l}z_{i}$

$\zeta\downarrow^{\iota)}=\frac{1}{Z_{t}}z^{(l)}$

and
$\zeta^{(l)}=(\zeta_{1}^{(t)}, \cdots \zeta t^{t)})$ .

Then $Y^{(S-1)}=Z^{(l)}\delta(z, t)$ where $\delta(z, t)$ is a unit;

$L^{\prime}(\eta^{(S)} ; y, t)=L^{\prime}(\zeta^{(l)} ; z, t)$ ;
and

$P^{\prime}(\eta^{(s)} ; y, t)=P^{\prime}(\zeta^{(l)} ; z, t)$ .
Here $L^{\prime\prime}$ and $P^{\prime\prime}$ are respectively linear and quadratic forms in 1 variables with
properties analogous to those of $L^{\prime}$ and $P^{\prime}$ .

G7 then is of the form Gl near $\overline{p}$ . This shows that $B(V)$ is modifiable.

H. Proof of the theorem.

We now use the notation of $A$ and assume that the germs $f$ and $g$ satisfy
$\mathcal{D}_{f}=\mathcal{D}_{g}$ . Let $U$ and $\tilde{U}$ be as defined by Hironaka’s Theorem (B). Let $S$ denote
the corresponding strata of $\tilde{U}$ and, as in $E$ , form the complete blow up $U^{*}$ of
the stratification $S$ .

By the main lemma there exists a vector field $V^{*}$ which is dePned and
analytic throughout $U^{*}\times I$ such that

$d\beta^{*}(V^{*}(P^{*} ; t))=\tilde{V}(\beta^{*}(p^{*});t)$ .

Now $V$ is tangent to the level surfaces $F=constant$ off $\Sigma\times I$ . Thus $V^{*}$ is
tangent to the level surfaces of the composite function

$F^{*}=F\circ(\beta^{*}\times 1)$

where 1: $I\rightarrow I$ is the identity map. Since $V^{*}$ has t-component one the integral
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lines of $V^{*}$ (which are contained in level surfaces $F^{*}=constant$ ) give an analytic

map
$\tau^{*};$ $V_{1}^{*}\times\{1\}\rightarrow V_{2}^{*}\times\{0\}$

where $V_{1}^{*}$ and $V_{2}^{*}$ are suitable neighborhoods of $(\pi\circ\beta^{*})^{-1}(0)$ in $U^{*}$ . Now as

$F_{|V_{1}^{*}\times\{1\}}=g\circ\pi\circ\beta^{*}$ and $F_{|V_{2}^{*}\times\{01}=f\circ\pi\circ\beta^{*}$

we see that $f$ and $g$ are almost analytically equivalent. The theorem is proved.
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