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Introduction.

In this paper, extending the notion of generalized Siegel domains in C*XC™
with exponent ¢ due to Kaup, Matsushima and Ochiai [5], we introduce the
notion of generalized Siegel domains in C"XC™ XC™2X---XC™s with exponent
(cy, € -+, €s) and give a generalization of results obtained by Vey and
Sudo for these domains. Many interesting domains are contained in the
category of our domains. As a typical example of generalized Siegel domains
with exponent (cy, ¢, **+, ¢s), we present here the following domain

D=A{(z, wy, Wy, ++, W) ECXCIm, z— |w,|1— | w, | 2— - — | w,| >0}
which is a canonical unbounded model of the generalized Thullen domain (cf. [4])

D=A{(z, wy, ws, -+, w)EC™ | 2|+ w14 |wy| o2+ + | w,[ s <1}
where c¢; are all positive real numbers. For examples of our domains, see sec-
tion 4.

Now, for a domain D in C¥ we denote by Aut(D) the group of all biholo-
morphic transformations of D onto itself. According to Vey [12], we say that
D is a sweepable domain if there exist a subgroup I” of Aut(D) and a compact
subset K of D such that I-K=D. In [12], Vey proved the following result:
A sweepable generalized Siegel domain in C™XC™ with non-zero exponent c 1is
a Siegel domain in the semse of Pjateckii-Sapiro [10]. This result was later
generalized by Sudo to more general domains, called generalized S-domains.
Recall that, to use our terminology, a generalized S-domain due to Sudo is
nothing but a generalized Siegel domain with exponent (¢;, ¢;) for some non-zero
¢, 1=1, 2. Extending these results to our domains, we shall prove the following
theorem in section 3: ‘

THEOREM. A sweepable generalized Siegel domain D 1 C*XC™tXC™2X .-
X C™s with non-zero exponents ¢; (1=1=s) is a Siegel domain in the sense of
Pjateckii-Sapiro [10].

Combining this with a result of Vey [12], we obtain the following
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COROLLARY. Let 9 be a generalized Siegel domain in C*"XC™XC™2X .-
X C™s with non-zero exponents ¢; (1=i=<s). Suppose that D admits a discrete
subgroup I' of Aut(D) with compact quotient D/I. Then D is symmetric.

The last fact may be interesting when we recall the following outstanding
conjecture on bounded domains (cf. [8], p. 128): If D is a bounded domain in
CY and if there exists a discrete subgroup I’ of Aut(D) such that D/I" is compact,
then D is homogeneous. So far as the author knows, Vey and Sudo {11]
seem to be the only known results concerning this conjecture.

§1. Preliminaries.

Let R (resp. C) denote the field of real (resp. complex) numbers as usual.
We fix a coordinate system

(21, 2o, *** ) Zny Wi, Wi,y Whyy o0, W, WE, o0, Winy)
in C*"XC™xC™x---XC™s once and for all. For the sake of simplicity, putting

{ z2=(2y, 23 ***, Zn);

we=(w§, wg, -+, wh,) for a=1,2, -, s,

we shall define a generalized Siegel domain with exponent (cy, ¢ -+, ¢s) @S
follows.

DEFINITION 1. A domain @ in C*"XC™XC™2X.--XC™s is called a general-
ized Siegel domain with exponent (cy, ¢4, -+, ;) if the following conditions are
satisfied :

(1) 9 is holomorphically equivalent to a bounded domain in Cm*mi+me+-+ms
and 9N\(C™ X {0} X {0} X---x {0})+0, where {0} X {0} X---x {0} denotes the origin
of Cmitmettms

(2) 9 is invariant by the transformations of C™*™i*m2*++ms of the following
types:

(a) (Z; Wi, Wey =, ws)'—)(z+al Wy, Wy ", ws) ’
(b) (Zy Wyy 00y Way mty wS>H(Zy Wiy, *, eﬁ/—_llu)z’ Tty ws) for l:]-) 2’ tt, S5
(c> (Z’ wl; Tty wl, R ws)'_-)(elzy QCItwly Tty ecitwll Yy ecstws)

for all aeR", t=R, where ¢; (1=A=s) are all real numbers depending only on
9. We call (¢, ¢s -+, ¢s) the exponent of 9.

In the following part of this paper, we denote by 9 a generalized Siegel
domain in C"XC™xXC™x---XC™s with exponent (ci, ¢y, ***, Cs). Since 9 is
holomorphically equivalent to a bounded domain, by a well-known theorem of H.
Cartan the group Aut(9®) has the structure of real Lie group and its Lie
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algebra is canonically identified with the real Lie algebra g(9) consisting of all
complete holomorphic vector fields on 9.

From the definition, the following holomorphic vector fields on 9 are con-
tained in ¢(9):

(a) g for k=1,2, -+, n
azk
< _ :
() 0*=+—13 wh5— for 2=1,2, -, s;
a=1 awa

2 a s ma 2 a
© 0= Fag -t Z o Z vigy)-
Therefore, by the same way as in [5] we can show the following

THEOREM A. Every vector field in ¢(D) is a polynomial vector field.
Thus, every vector field X in ¢(9) is expressed in the following form :

x= g (3 e+ B1E(E Pl

a

where

k — Dk

Py, =P}y pppgons fOr 1=R=n
and

Aa — Pla

Pia= P} pypqns fOr 122=s

are homogeneous polynomials of degree v in z; (1=/=<n) and g, in w} (1=B=m.)
for 1<a=s.
THEOREM B. We have

Pluipgens=0 for patpot-+p>1
and

Plpyns=0 for pitpt 4 pus>2.

Proor. Taking the vector field ¢'+0%*+---+0° in g(9®) instead of the vector
field ¢’ in the proof of Lemma 3.1 in [5], our proof can be done with exactly
the same arguments. q.e.d.

For later use, let us fix some notations. Putting p=(up.--p;) as before,
we set

n 0
o 2 b 0z
Wi.= 2 P afu for 2=1, 2, -+, s

Then, by direct computations we have
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Lo, Zv,,]:——(v—l—i— a:ijl capL,)Zw;

LD 08, Wid={o+ 2 calpa=0e)| Wi,

[0, Z,, 0=~ —1paZ,y;
fo%, Wﬁ#]:\/'_——l(#a_aal)wﬂﬂ

1 if i=j,
for 1=a, 1<s, where 0;;=
0 if i#7J.
Finally we recall the following basic fact due to H. Cartan [2]:
(1.2) 3DV —1g(D)={0}.
§2. Vector fields which are independent of z,, z,, -, z,.

In this section we study holomorphic vector fields in g(®) which are inde-
pendent of z,, z,, -+, Za. :
From now on, the following ranges of indices will be used throughout this
paper.
1=4, j, by -+ =0,

1<a, B, 7, - <s.

Denoting by Z,,,.,-pn, and Wi, ,,.., the polynomial vector fields on 9 defined
in section 1, we put

Zy=Lyyo, ZLi=Zy.010m0,

A+1

A—TI/ A AT
Wi=Wio..o, Wa——Woo...o}\o...o ,

a+l

Wé, a— Wéo...o;\g...o and Wﬁ[ﬁ: W(l)o...o}\o.‘.o}\o...o (a < ‘8)

a+1 a+1 f+1

where /l\ means that the numbers 1 or 2 appear at the [-th position. Thus, for
example Wi=Wiiio.0, Wi 1=Wbio.o, Whi=Wis1100, **

Now, let X be a vector field in ¢(9®) which is independent of z;, z,, -+, 2.
Then, by B X can be written in the form

X=Zot 2 Zi+(E What ZWi+ S Wi+ S W3
Using the bracket relation (1.1), we can show by direct computations the fol-
lowing equalities

(2.1 (ad(0"+---+0))* X=— {223 Zit 2 Wi+ )2 Wf,,g+§ Wi,

alB



Generalized Siegel domains 251

2.2) ad 0-(ad(@'+---+0%)*- X
:2 (]-_’CX)ZI"'_ 2 CXW%,LI_Z Z CaWé,a_Z CZW'Zz, A
2 A#a A#a 2

— 2 caWéerﬁ‘, C/stzx,a"f"/I Zﬁ Cszzﬁ-l-; Wi,

5:273 a<'B a<p
(2.3) (ad 0" X=—{Z,+4 Z Wi, + X Wit 2 Wip
Ay .a zxa,'ﬁzu
+ X Wi+ Z Wi+ I Wi+ X Wi+Wi
) ﬁzyy 52:& A#y A#y
and
(2.4) (ad(@*+---+0%))%-(ad 0”)*- X
=Zy+4;3 Wi+ W3+ % W$5+ZE Wi+ 22 Wi +Ws.
#Y a a, B+y #Fy #v
a<lf a<ly w<a

Therefore we have

(2.5) Y:=ad 0-(ad(@'+---+0*))* X—; c,(ad(@'+----+0%)* (ad 0")*- X

=2 (1—2¢3)Z;—2 2 Wii—6X caWia

A+a
—2 D (Catced)Wieg—23caWEg—2> csWag.
éi‘gﬂ( pWap—2 2, peZ s Was

It follows then by a routine calculation that

(2.6) ad(@'+---+0%)- Y=+/—1Y.
Recalling that g(9)N\+/—1g(9)={0} by [1.Z), this implies
2.7) Y=0.

We are now in a position to prove the following lemma, which is essential
to the proof of our theorem.

LEMMA 2.1. Let X be a holomorphic vector field in §(D) which is independ-
ent of zi, 2s, -+, Zn. Suppose that D satisfies the following two conditions:

(*) c#1/2.

(**)  The exponents ¢, 1=a=<s) are all different from each other and c,+0
(1Za=s).

Then X can be written in the form

X=Z+ 37+ 3 Wisg+Wit+ 2 Wi+ I Wi,
1<2 }:z<ﬁﬁ 1<a, 1<2

1<
Proor. By and our assumptions (*), (**), we conclude that
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{ Z]x Wé,a (léa: ZéS),
Wﬁﬁ and Wgﬂ (1§a<ﬂ§s)
are all equal to zero. So that the vector field X is of the form

(2.8) X=Z+ 2 Z;+ 3 Wi+ X Wi+ Wi.
1<2 1‘;3',8‘8 i, a 2
Direct computations now give the following equalities

29)  (ad(@+---+08°))-(ad 0" X=2,+ %)s Wzﬁ+22 wa+12 Wi +Ws,

a‘fﬁ;&y a<ly v<la
(2.10) ad@”-ad(@'+--+3%)-(ad ") X=2Z,— 3 Wys+ S Wi+ T Wi +W3
i pos 2
and hence
Eﬁ Wissa(D);
(2.11) a B#v
Z, 4 Wi+ T Wi A+Wieg9).
& v
In particular, putting v=1 in we see that the vector fields
(2.12) Xii= 2 Wis
1<a<lfp
and
(2.13) Xyi= 3 Wi+ Wi
1<a, A

are both contained in g(9). Here we assert that
(2.14) X;=0 and X,=0.

First of all, we show the first assertion X,=0. Putting

(2.15) A,= 3 Wi, for a=2, 3, -, s—1,

yv=a+1

we have Xlzsi_)lea. Using induction on «, we shall prove that any A,=0,
which assures X;=0. Now, since (ad 0%)% X,=—A4,, we get

ad 0*-(ad %)% X;=—+/—1 W},;
(2.16)
: (ad 0%)%-(ad 9%)%- X,=W1,

for 3=v=<s, which implies from that W},=0 for 3<yv=<s and so A,=0.
Suppose that A,=0 for 2=<a=<y, 2<pu<s—1. Then we have

@2.17) (ad 9#*1)- X;=—A .,
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and hence
ad o*- (ad 3“1)2' X1: '—'\/:-1 W%p+1)u B
(2.18)
(ad 8”)%-(ad 0**1)*- X,=Wtuiny

for p+2=<v=s, which implies as above that A,.,=0. Therefore we have shown
that X,=0. Next, we shall prove that X,=0. Direct computations now give the
following

(ad 39" Xy=—{ 2 Wt 3 Wi}
(2.19)

8 3

ad 0%-ad(0*+---+0°%)-(ad 0")*- X= 23 We— 23 we,.
From this we have
(2.20) ;:)3 Wi, 2 Wk € g(9).

Since

ad9*{ 3 Wip=v=1Wi,;

a=3

3

(ad 09 3 Wip=—W1,

a=3
for 3Za=<s, (2.20) says that
2.21) W2,=0 for 3=a<s,
because g(D)N\V —1g(9)=1{0} by [1.2) Analogously we obtain the following
(2.22) We=0 for 3Za<s.
Then it is an easy matter to verify that
(@d 3 Xo=—{ 3 Wt 3 Wi}
(2.23) .
ad *-ad(@'+ - +3-(ad ) X= X Wi~ 3 Wi..

From this we have

(2.24) S Wi, 3 W5 < o(9)
and hence'
(2.25) 3.=~0 and Wg&=0 for 4=<a=<s

by a similar argument as above. By continuing these calculations, we finally
arrive at the following result
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(2.26) Wi.,=0 for 1<a, A.

It remains to show that Wi=0, but this is now obvious, since W} and ~/—1 W}

=—ad 0'-W} are both contained in g(9) and g(D)N\V—1g(D)=1{0} by
Therefore we have shown the second assertion X,=0, and thus we obtain [(2.14),
The vector field X is now of the form

2.27) X=Z+ 2 Z)+ X Wi+ Wi+ T Wi.
1<A A*a, B a, 1<4

1<a<p
1<4

Then, by routine calculations we have
2.28) { ad 0-(ad 0Y)?- X= 1;a(cl—*c,,,)W}1~Ea(cl—ca)Wi’;
ado*-ad o*- X=WLi+W¢ for a=2,3, -, s,
which yields that the vector field
(2.29) ad 0-(ad 6‘)2'X+1§1(c1—ca)ad 0%-ad a‘-X:21§ (cr—ca)Wh
is contained in g(9®). Since
{ ad 9" {3 (c1—caWil =(cr—ca)vV/ =1 Wi;
(ad 0%)* {lg(cl—ca)W}x} =—(ci—ca)Wq
and ¢;#c¢, (1<a) by our assumption (**), we find that

(2.30) Wi=0 for 1<a<s,

because g(P)N\+—1g(D)={0} by [1.2). A similar reasoning yields also the fol-
lowing

(2.31) We=0 for 1<a=s.
Finally, by [2.14), (2.27), [(2.30) and [(2.31) we conclude that X has the desired
form as in our lemma. qg.e.d.

By means of Lemma 2.1, the following lemma can be proved in the same
way as in Lemmas 3.2 and 3.3 in Vey [12], and hence is omitted.

LEMMA 2.2. Under the same conditions (*) and (**) as in Lemma 2.1, we
have the followings:

(a) The vector field 0* belongs to the center 3 of ¢(D).

(b) Let V be the set of common zeros of vector fields belonging to 3. Then

DDDA(C™ X {0} X C™2x - X C™s)
DVDDINC™ X {0} X {0} X--- < {0}).

The proofs of the following two lemmas are almost identical to those of
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Lemmas and 2.2 above. So we will omit the proofs.

LEMMA 23. Let X be a holomorphic vector field in ¢(D) which is independent
of 2z, 23+, Zn. Suppose that D satisfies the following two conditions:

Y =12

(**)  The exponents co (1=a=s) are all different from each other and c,+0
(I=£a<s).

Then X can be written in the form

X=Z+2Zi+ 2 Wigt 3 Wi+ X Wi,

2<a<B 2<a<lp 2<la, 2

A*a, 2
of *e
+Wi+ X Wi+ S Wi
a, A#2 A#2

LEMMA 24. Under the same conditions (*)’ and (**) as in Lemma 2.3, we
have the followings:

(a)) The vector field 0* belongs to the center 3 of g(9D).

(b)) Let V be the set of common zeros of vector fields belonging to 3. Then

DOPIN(C*XC™ X {0} XC™sx - X C™s)

DVIDIDNC* X {0} x--- X {0}).

§3. Proof of Theorem.

In order to prove the theorem, we need some preparations.
Let © be a generalized Siegel domain in C*"XC™XC™:X---XC™s with
exponent (¢, ¢z -*+, €s). Supposing that at least some two exponents ¢, and cg

are not identical, there exists a partition I, Iy, -+, I, 2=k=<s) of {1, 2, ---, s}
so that
(GRY) ' I,#9 for all ¢=1,2, -+, k;

(3.2) if I,={ng, ngs, -+, ngs,}, then there is a constant ¢, satisfying Cngi=Cnge
:---:cnqsq:Eq and such that ¢,#¢, if p#q. Putting

qu(wnqu Wnggs " w"qsq) for ¢=1, 2, -+, &,

we now define a non-singular linear mapping

s QPtmitmet My, O AMyk Mgt ting

by
L(z, Wy, W, =+, We)=(2, Wy, Wy, **+, Ws).

Then, it is easily seen from the definition that the image domain

33) P=_(9) is a generalized Siegel domain in C"XC™1X C™2X -+ X C™k with
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exponent (¢y, s, +-+, C) such that ¢,#¢, if p+#q, where Mg=Mn gy +Mn
+etmgs,, ¢=1, 2, -, k.

In the proof below, we shall use the following notation. Let ) be a vector
subspace of g(9) and p a point of 9. Then we put

N p)y={X(p| Xeh CTHD)
and

b(p)=0p)+~—14(p),

where we denote by X(p) the value of the vector field X at p and T%(9D) the
complex tangent space of 9 at p.

PrROOF OF THEOREM. Let 9@ be a sweepable generalized Siegel domain with
exponent (cy, Ca -+, Cs). By a result of Vey [12], we have only to show that
all the exponents ¢, are identical. Supposing that this is not true, we shall
obtain a contradiction. First of all, there exists a subgroup I" of Aut(9®) such
that 9/I" is compact, since 9 is a sweepable domain.  We denote by 3 the center
of ¢(9) and V the common zeros of vector fields belonging to 3. Since 3 is
stable under the adjoint .action of I, it follows from Proposition 2.3 in Vey
that dim 3°(p)==Fk, where %k is a constant independ'ent of pe9. Now, we
suppose that c¢,#cs for some two a and 8. Consider the domain 9 defined in
(3.3). Since D is holomorphically equivalent to 9, D is then a sweepable gener-
alized Siegel domain with exponent (¢;, ¢, -+, &) such that &,#¢, if p#q.
Therefore, by considering the domain 9 instead of 9 if necessary, we may
assume without loss of generality that the exponents ¢, of @ are all different
from each other from the beginning. We must now point out a contradiction.

We have two cases to consider. Consider first the case where ¢;#1/2. Then,
by we have

(3.4) V+0
and
dim 3*(p)=0 for peV;
(3.5) )
dim 3°(p)#0 for p€D—{DN(C"X {0} XC™2x--- X C™s)}.

Since, as is stated above, the dimension of 3°(p) is independent of the point
PE D this is obviously a contradiction. Consider next the case where c,=1/2.
Then, by using instead of [Lemma 2.2 in the above arguments, we

can prove an analogous contradiction. Therefore, in any cases we have a con-
tradiction. This completes the proof.
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§4. Examples.

We conclude this paper by a few examples of generalized Siegel domains
with exponent (c;, ¢, =+, Cs).

EXAMPLE 1. We recall generalized Siegel domains with exponent ¢ due to
Kaup, Matsushima and Ochiai [5]. A domain 9 in C*XC™ is called a general-
1zed Siegel domain with exponent c if the following conditions are satisfied:

(1) 9 is holomorphically equivalent to a bounded domain in C**™ and
DN(C™x {0})+#0, where 0 denotes the origin of C™.

(2) 9 is invariant by the transformations of C"*™ of the following types:

@ (2, w)y—(z+a, w) for all acR";
(®) (2, w)—(z, ev-1t w) for all t€R;
(©) (2, w)y—(e'z, ew) for all teR,

where ¢ is a fixed real number depending only on @. We call ¢ the exponent
of 9. Comparing this definition with our definition 1 in section 1, we see that
the notion of generalized Siegel domains with exponent (cy, ¢,, -+, ¢;) may be
considered as a natural generalization of the notion of generalized Siegel domains
with exponent ¢ by Kaup, Matsushima and Ochiai [5].

EXAMPLE 2. For a=1, 2, ---, r, let @,: C"=—R be a non-negative continuous
function defined on C™« such that

4.1) D,={weC"| P (w)<1} is a bounded domain;

(4.2) D, (Aw)=|A| V2@ ,(w)

for all weC™« and all 2=C, where ¢, is a fixed non-zero real number. Taking
1/2, ¢y, €5y -, ¢,) for the exponent in the definition 1 in section 1, it is easily

seen that the domain

@:{(z, U, W, Wey -, W)ECKC™IXCMXC 2 o X O

|
m=1 r
Im.z— 'S luwl*~ 3 @a(wa)>0}

satisfies the condition (2) and (v/—11/, 0)€ @ for every positive real number /,
where u=C(u,, Uy, -, Un-1)=C™ 1. Moreover, it can be shown that the domain
9 is holomorphically equivalent to the following bounded domain

D={, meCm ™| 3|5+ X O (0.)<1}

i=1 a=1

where 2=(%,, Z,, ---, Zn), Ww=(W,, W,, -+, W,) and |n|=n;+n,++n, Indeed,
the following mapping @ : C™*'»'—C™*'" gives rise to a biholomorphic isomor-
phism of 9 onto D: ‘
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s z—+/—1
Tz —1
. ~ 2ui_1 . .
(4.3) Q:{ z,= P for 1=2,3, -+, m;
oo AW —1 9 ..
Wo= Y i § for a=1, 2, ---, r.

Therefore we have seen that the domain 9 is a generalized Siegel domain in
CXC™ X C"xXCr2x.--XC" with exponent (1/2, ¢4, ¢s, -+, ¢;). This Example
2 yields the following interesting

ExXAMPLE 3. Consider the following special case in the Example 2: We
put

@a(w>:( 21 l wpg l 2)1/pa

for all w=(w;, w,y, -+, w,, )EC", where p, is a natural number such that
p,>1. Then it follows from the Example 2 that the domain

Don 5=, 4, Wy, W, WIECKCTIXCHXCMX - X O

_mal e 3 na 2\ Pa
Im. z nglujl g]l(gllwﬁal) >0}

is a generalized Siegel domain with exponent (1/2, p,/2, p,/2, ---, p,/2), where
U=y, Us, =+, Up-1) EC™ ' and wa=Wia, Wea, -, Wn,a) E C"=. Moreover,
D,z » 18 holomorphically equivalent to the following bounded Reinhardt domain

g

m [ 1/pg
— . R m+inl ]2 |2
Do 5={( wa) €| Bzt 5 (3 lwal?) " <1

In connection with the structure theory of the group Aut(D) for a bounded
domain D, this domain D, ., , is studied by Ise [3]. To use his terminology,
this domain Dy, ,, , is nothing but the Naruki domain of type (m, n, p).

Therefore, our generalized Siegel domain 9, . , iS a natural unbounded
model of the Naruki domain Dy, 5, ;.
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