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\S 0. Introduction.

0.0. For the modular group $SL_{2}(Z)$ , M. Saito [7] has constructed certain
series of infinite dimensional unitary representations by classifying and decom-
posing the representations induced from unitary characters of Cartan subgroups
of $SL_{2}(Z)$ . The purpose of this note is to make a few remarks which either
clarify the interconnection or generalize the results of Saito’s construction.

0.1. Let $G$ be a group, and $\llcorner fl$ a family of subgroups of $G$ . The pair $(G, d)$

is said to have Property $(\mathcal{F})$ , if the following two requirements are fulfilled.
$(\mathcal{F}1)$ For $H_{1},$ $H_{2}\in \mathcal{A}$ , and $g\in G$ ,

$[H_{1} : H_{1}\cap g^{-1}H_{2}g]<\infty\Rightarrow H_{1}\subset g^{-1}H_{2}g$ .
$(\mathcal{F}2)$ For $H\in d$ , and $g\in G$ ,

$g^{-1}Hg\subset H\Rightarrow g^{-1}Hg=H$.

Now, suppose moreover that $G$ is a locally compact topological group and
any member $H_{i}$ of $d$ is an open subgroup of $G$ . Let $\chi_{i}$ be an irreducible
unitary representation of $H_{i}$ and let $U_{i}=Ind(\chi_{i} ; H_{i}\uparrow G)$ denote the representa-r
tion of $G$ induced by $\chi_{i}$ . The points of [7] can be summarized in the following
(I ) $\sim(IV)$ .

(I) Assume that $\chi_{i}$ is one dimensional, then the following three conditions
are mutually equivalent (Th\’eor\‘eme 2 [7]).

(i) $U_{1}$ is equivalent to $U_{2}$ .
(ii) $U_{1}$ is not disjoint from $U_{2}$ .
(iii) There exists $g\in G$ such that $H_{2}=g^{-1}H_{1}g$ and $x_{2}=gx_{1}$ , where $g\chi_{1}(x)=$

$\chi_{1}(gxg^{-1})$ for $x\in H_{2}$ .
(II) If $U_{1}$ is not disjoint from $U_{2}$ (hence we may assume $H_{1}=H_{2}=H$ and

$x_{1}=x_{2}=x$ , and put $N_{\chi}=\{g\in N_{G}(H)|^{g}x=x\})$ , then the dimension of the space of
all intertwining operators of $U(\chi)=Ind(\chi; H\uparrow G)$ is given by the group index
$[N_{\chi} : H]$ (Th\’eor\‘eme 1 [7]).

(m) If $G=SL_{2}(Z)$ and $d$ is the set of all Cartan subgroups of $G$ , then the
pair $(G, \mathcal{A})$ has Property $(\mathcal{F})$ .
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(IV) If $G$ is a connected algebraic group defined over an arbitrary field $k$ ,
and $d$ is the set of all connected algebraic subgroups of $G$ defined over $k$ ,
then the pair $(G, \leftrightarrow\emptyset)$ has Property $(\mathcal{F})$ .

0.2. The representations of $SL_{2}(Z)$ constructed in [7] are precisely those
obtained as the irreducible constituents of $U_{i}’ s$ by taking the pair $(G, \leftrightarrow q)$ of
(III), with discrete topology. Since, in this case, each $H_{i}$ happens to be com-
mutative, any irreducible representation $\chi_{i}$ is one dimensional. Hence, by (I),

the classification up to the equivalence of $U_{i}’ s$ reduces to the classification up
to the conjugacy of Cartan subgroups $H_{i}’ s$ and their characters $x_{i}’ s$ .

Furthermore, each Cartan subgroup $H$ has index 2 or 1 in its normalizer,
hence the decomposition of $U_{i}$ is carried out without much difficulty.

0.3. The purpose of this note is to make the following remarks (1) $\sim(3)$ .
(1) Starting with the pair $(G, A)$ which has Property $(\mathcal{F})$ , taking a sub-

group $G^{\prime}$ of $G$ and a subfamily $\mathcal{B}$ of $\llcorner fl$ and setting $B^{\prime}=\{H\cap G^{\prime}|H\in \mathcal{B}\}$ , we
can give a simple criterion for the new pair $(G^{\prime}, \mathcal{B}^{\prime})$ to have Property $(\mathcal{F})$

(Proposition 1.7).

As an application we can associate to the group $G(Z)$ of Z-valued points
of any connected algebraic group $G$ over $Q$ , a family $\llcorner fl$ such that the pair
\langle $G(Z),$ $d$) has Property $(\mathcal{F})$ (Corollary 1.9). If $G=SL_{2}$ , we show that $d$ is, up
to commensurability, the set of all Cartan subgroups of $SL_{2}(Z)$ (Corollary 2.2).

Thus the case (III) and the case (IV), which appear at a glance of a quite
difrerent type, can be connected by our criterion.

(2) We prove the statement (I) without assuming $\chi_{i}$ to be one dimensional
\langle but still finite dimensional) (Theorem 3.3). This generalization is indispensable,
since in the case of the pair $(G(Z), \leftrightarrow\emptyset)$ for any arbitrary connected algebraic
grouP $G$ , the family $\llcorner fl$ contains non-commutative subgroups in general.

(3) We can discuss to some extent the decomposition of the induced rep-
resentation $U_{i}$ , without any knowledge of the structure of $H_{i}$ , but only on the
basis of Property $(\mathcal{F})$ (Corollary 3.8).

Finally the author wishes to express his gratitude to Professor H. Hiiikata
for suggestions and encouragement.

\S 1. General remarks on Property $(\mathscr{F})$ .
1.0. Let $G$ be a group. Let $\sim$ denote the commensurability relation in $G$ ,

and for a subgroup $H$ of $G$ , let $Cf(H)$ denote the commensurability class of
$H,$ $i$ . $e$ .

(1) $ H_{1}\sim H_{2}\Leftrightarrow[H_{i} : H_{1}\cap H_{2}]<\infty$ for $i=1,2$ .
(2) $Cl(H)=$ {$K|K$ is a subgroup of $G$ such that $K\sim H$ }.
For a family $\mathcal{A}$ of subgroups of $G$ , let .,4*(resp. $\ovalbox{\tt\small REJECT}$ ) denote the commen-

surability (resp. conjugacy) closure of $d,$ $i$ . $e$ .
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(3) ,-.rz* $=$ {$K|K$ is a subgroup of $G$ such that $K\sim H$ for some $H\in\cup q$}.
(4) $\overline{\mathcal{A}}=\{g^{-1}Hg|g\in G, H\in A\}$ .
1.1. The following lemma can be easily checked.
LEMMA. (i) If the Pair $(G, d)$ has Property $(\mathcal{F})$ , then for any subfamily

$\mathcal{B}$ of $d,$ $(G, \mathcal{B})$ has Property $(\mathcal{F})$ .
(ii) If $(G, \mathcal{A})$ has Property $(\mathcal{F})$ , then $(G, d)$ has Property $(\mathcal{F})$ .
(iii) If $\llcorner fl$ is conjugacy closed, $i$ . $e$ . $.Il=\ovalbox{\tt\small REJECT}$ , then the Property $(\mathcal{F}1)$ of \S 0 for

$(G, \mathcal{A})$ is equivalent to the following $(\overline{\mathcal{F}}1)$ .
$(\overline{\mathcal{F}}1)$ For $H_{1},$ $H_{2}\in q[H_{1} : H_{1}\cap H_{2}]<\infty\Rightarrow H_{1}\subset H_{2}$ .
1.2. As is well known, the commensurability relation $\sim$ is an equivalence

relation, and we can consider the quotient set $c\lrcorner q/\sim=\{Cl(H)|H\in d\}$ with the
canonical projection $p$ .

(1) $ p:\leftrightarrow l\rightarrow d/\sim$ $p(H)=Cl(H)$ .
Furthermore, for the quotient set $ d/\sim$ , we can define a structure of an

ordered set by the following inclusion relation.
(2) $Cl(H_{1})\subset Cl(H_{2})\Leftrightarrow^{\exists}H_{\ell}^{\prime}\in Cl(H_{i})$ , where $i=1,2$ , such that $H_{1}^{\prime}\subset H_{2}^{\prime}$ .

Indeed the following two facts can be easily checked.
(3) $Cl(H_{1})\subset Cl(H_{2}),$ $Cl(H_{2})\subset Cl(H_{1})\Rightarrow Cl(H_{1})=Cl(H_{2})$ .
(4) $Cl(H_{1})\subset Cl(H_{2}),$ $Cl(H_{2})\subset Cl(H_{3})\Rightarrow Cl(H_{1})\subset Cl(H_{3})$ .
1.3. PROPOSITION. (i) The following three conditions for $(G, d)$ are mutu-

ally equivalent.
(1) $(G, d)$ has the ProPerty $(\mathcal{F}1)$ of \S $0$ .
(2) $(G, d)$ has the ProPerty $(\overline{\mathcal{F}}1)$ of 1.1.
(3) $d$ is an inclusion preserving section of the canonical prOjectiOn $p;(d)^{*}$

$\rightarrow(fi)^{*}/\sim,$ $i$ . $e$ . the restriction of $p$ to J4 gives an isomorphism of JZ and $(i?)^{*}/\sim$

as ordered sets with respect to the inclusion.
(ii) SuPpose $(G, d)$ has the Property $(\mathcal{F}1)$ , then the following two conditions

are mutually equivalent.
(4) $(G, \mathcal{A})$ has the property $(\mathcal{F}2)$ of \S $0$ .
(5) $(G, (d)^{*})$ has the following prOperty $(\mathcal{F}^{*}2)$ .
$(\mathcal{F}^{*}2)$ For $K\in(\overline{\mathcal{A}})^{*}$ and $g\in G,$ $g^{-1}Kg\subset K\Rightarrow Cl(g^{-1}Kg)=Cl(K)$ .
POOOF. (i) (1) $\sigma\Rightarrow(2)$ is clear from 1.1. We show (3) $\Rightarrow(2)$ . Suppose (3) holds.

Take $H_{1},$ $H_{2}\in\overline{\mathcal{A}}$ such that $[H_{1} : H_{1}\cap H_{2}]<\infty$ . Then $H_{1}$ and $H_{1}\cap H_{2}$ are com-
mensurable. Since $H_{1}\cap H_{2}\subset H_{2},$ $Cl(H_{1})\subset Cl(H_{2})$ by the definition (2) of 1.2. As
$H_{1}$ (resp. $H_{2}$ ) is the image of $Cl(H_{1})$ (resp. $Cl(H_{2})$ ) by the inclusion preserving
section of (3), we have $H_{1}\subset H_{2}$ . Conversely, suppose (2) holds. Take $H_{1},$ $H_{2}\in d$ .
If $H_{1}\neq H_{2}$ , then $H_{1}$ and $H_{2}$ are not commensurable. Hence $Cl(H)->H$ (for $H\in\overline{\mathcal{A}}$ )

defines the section of the canonical projection $(\overline{\mathcal{A}})^{*}\rightarrow(d)^{*}/\sim$ . We must show
that this section preserves the inclusion. Suppose $Cl(H_{1})\subset Cl(H_{2})$ . By the
definition (2) of 1.2, there exist $H_{i}^{\prime}\in Cl(H_{i})$ (for $i=1,2$) such that $H_{1}^{\prime}\subset H_{2}^{\prime}$ . By
easy index calculation, we see that $[H_{1} : H_{1}\cap H_{2}]<\infty$ . Hence $H_{1}\subset H_{2}$ , because
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of (2).

(ii) To see (4) $\Rightarrow(5)$ , take $K\in(\overline{\mathcal{A}})^{*}$ and $g\in G$ such that $g^{-1}Kg\subset K$. There
exists $H\in\overline{\mathcal{A}}$ such that $H\sim K$ by the definition of $(\overline{\mathcal{A}})^{*}$ , and then clearly $g^{-1}Kg$

$\sim g^{-1}Hg$ . The image of $Cl(H)=Cl(K)$ (resp. $Cl(g^{-1}Hg)=Cl(g^{-1}Kg)$ ) by the inclu-
sion preserving section is $H$ (resp. $g^{-1}Hg$). Hence we have $g^{-1}Hg\subset H$ from
$Cl(g^{-1}Hg)\subset Cl(H)$ . Therefore $g^{-1}Hg=H$ by $(\mathcal{F}2)$ . Thus we get $Cl(g^{-1}Kg)=Cl(K)$ .
Conversely, suppose (5) holds. Take $H\in d$ and $g\in G$ such that $g^{-1}Hg\subset H$.
Since $H\in(\overline{\mathcal{A}})^{*},$ $g^{-1}Hg\in(\overline{\mathcal{A}})^{*}$ and $g^{-1}Hg\subset H$, we have $Cl(H)=Cl(g^{-1}Hg)$ . Thus
we have $g^{-1}Hg=H$ as the images by the inclusion preserving section.

1.4. COROLLARY. $Suppose\leftrightarrow q=\overline{\mathcal{A}}$ .
(i) If $(G, d)$ has the ProPerty $(\mathcal{F}1)$ , then $\mathcal{A}$ is the inclusion preserving

section of the canonical projection $ p:d^{*}\rightarrow d^{*}/\sim$ .
(ii) Conversely, if $\mathcal{B}$ is any conjugacy closed inclusion preserving section of

the canonical projection $ p:\leftrightarrow q*\rightarrow d^{*}/\sim$ , then the pair $(G, \mathcal{B})$ has the prOperty
$(\mathcal{F}1)$ .

1.5. EXAMPLE. Let $k$ be a Peld, $G$ an algebraic group defined over $k$ and
$\leftrightarrow q$ the set of all algebraic subgroups of $G$ defined over $k$ . Let $d_{0}$ denote the
set of all connected algebraic subgroups of $G$ defined over $k$ . Any two
elements of $\leftrightarrow q$ are commensurable if and only if they have the same connected
component of the identity element. Therefore the pair $(G, d_{0})$ has the prop-
erty $(\mathcal{F}1)$ . Since the dimension of any element of $d_{0}$ is invariant by the inner
automorphisms of $G$ , the pair $(G, A_{0})$ has the property $(\mathcal{F}2)$ .

Hence the pair $(G, d_{0})$ has Property $(\mathcal{F})$ and obviously $A_{0}^{*}=d$ and $fi_{0}=\leftrightarrow q_{0}$ .
1.6. REMARK. (i) In view of 1.1, we may assume $d=fi$ without impor-

tant loss of generality for our purpose. However in the statement of 1.4, the
assumption, $d=\overline{\mathcal{A}}$ , is essential. For example, if $ A^{*}/\sim$ has only one point, say
$Cl(H)$ , then the assumption $d=\overline{\mathcal{A}}$ reduces the case to the trivial one where $H$

is normal in $G$ .
(ii) $d$ is not necessarily unique for a given $\llcorner fl^{*}$ . For example let $d^{*}$ be

the set of all one dimensional algebraic subgroups of $G$ of Example 1.5. Then
any conjugacy closed section of the canonical projection $p:\leftrightarrow\beta^{*}\rightarrow\leftrightarrow\beta^{*}/\sim preserves$

the inclusion, because there is no non-trivial order relation in $cA^{*}/\sim$ .
1.7. PROPOSITION. Let $(G, d)$ be a pair with Property $(\mathcal{F}).$ SuPpose $G$ has

the toPology such that the left and right translations are closed maPpings. For
a subgrouP $G^{\prime}$ of $G,$ Put $\llcorner\emptyset^{\prime}=$ { $H\cap G^{\prime}|H\in\leftrightarrow q$ and $H\cap G^{\prime}$ is dense in $H$}. Then
the pair $(G^{\prime}, d^{\prime})$ has ProPerty $(\mathcal{F})$ .

PROOF. For a subset $X$ of $G$ , let $\overline{X}$ denote its topological closure. If
$H_{i}^{\prime}\in d^{\prime}$ , by our definition of $d^{\prime},$ $H_{i}^{\prime}$ has the form $H_{t}^{\prime}=H_{i}\cap G^{\prime}$ with $H_{i}\in d$ and
$\overline{H_{i}^{\prime}}=H_{i}$ .

To see $(\mathcal{F}1)$ , note that:
$[H_{1}^{\prime} : H_{1}^{\prime}\cap x^{-1}H_{2}^{\prime}x]<\infty$ , where $x\in G^{\prime}$
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$\Leftarrow\ni\exists g_{j}\in H_{1}^{\prime}$ for $j\leqq N,$ $H_{1}^{\prime}=\bigcup_{j=1}^{N}g_{J}(H_{1}^{\prime}\cap x^{-1}H_{2}^{\prime}x)$ ,

where $N$ is a suitable natural number

$\Rightarrow H_{1}=\overline{H_{1}^{\prime}}=\bigcup_{j=1}^{N}\overline{g_{j}(H_{1}^{\prime}\cap x^{-1}H_{2}^{\prime}x})$ .

Now, the closedness of translations implies:
$\overline{g_{j}(H_{1}^{\prime}\cap x^{-1}H_{2}^{\prime}x)}\subset g_{f}(\overline{H_{1}^{\prime}\cap x^{-1}H_{2}^{\prime}x})\subset g_{j}\overline{(H_{1}^{\prime}}\cap\overline{x^{-1}H_{2}^{\prime}x})\subset g_{f}(\overline{H_{1}^{\prime}}\cap x^{-1}\overline{H_{2}^{\prime}}x)$

$=g_{j}(H_{1}\cap x^{-1}H_{2}x)$ .
Namely $[H_{1}^{\prime} : H_{1}^{\prime}\cap x^{-1}H_{2}^{\prime}x]<\infty$ implies $[H_{1} : H_{\iota\cap}x^{-1}H_{2}x]<\infty$ , hence $H_{1}\subset x^{-1}H_{2}x$

and $H_{1}^{\prime}\subset x^{-1}H_{2}^{\prime}x\cap G^{\prime}=x^{-1}H_{2}^{\prime}x$ .
To see $(\mathcal{F}2)$ , take $H^{\prime}\in d^{\prime}$ and $x\in G^{\prime}$ such that $x^{-1}H^{\prime}x\subset H^{\prime}$ . Since $H^{\prime}$ has

the form $H^{\prime}=H\cap G^{\prime}$ with $H\in \mathcal{A}$ and $\overline{H^{\prime}}=H$, $x^{-1}H^{\prime}x\subset H^{\prime}$ implies $ H=\overline{H^{\prime}}\subset$

$\overline{xH^{\prime}x^{-1}}\subset x\overline{H}^{\prime}-x^{-1}=xHx^{-1}$ . Hence $H=xHx^{-1}$ by the property $(\mathcal{F}2)$ for $(G, d)$

and $H^{\prime}=H\cap G^{\prime}=xHx^{-1}\cap G^{\prime}=xH^{\prime}x$ ”.
1.8. COROLLARY. Let $k$ be an infinite perfect field and $G$ an algebraic

group defined over $k$ . Let u4 be the set of all connected algebraic subgroups of
$G$ defined over $k$ and let $G^{\prime}=G(k)$ the grouP of k-rational points of $G$ , and
$\leftrightarrow I^{\prime}=\{H(k)|H\in d\}$ . Then the pair $(G^{f}, d^{\prime})$ has Property $(\mathcal{F})$ .

PROOF. Combine 1.5 and 1.7, and use the fact that if $k$ is perfect and
infinite, then $H(k)$ is Zariski dense in $H$ which is a connected algebraic group
defined over $k$ (Rosenlicht [6]).

1.9. COROLLARY. Let $k,$ $G$ and $d$ be as in 1.8. Let $O$ be a subring of $k$

with the identity and $G^{\prime}=G(O)$ : the grouP of O-valued Points and put $\mathcal{A}^{\prime}=$

{ $H(O)|H\in \mathcal{A}$ and $H(O)$ is Zariski-dense in $H$}. Then the pair $(G^{\prime}, d^{\prime})$ has
Property $(\mathcal{F})$ .

PROOF. It is immediate from 1.7.
This example will be discussed in more detail in the next section. In

particular, it will be seen that the pair $(G, d)$ of (m) in \S $0$ is essentially a
special case of our $(G^{\prime}, A^{\prime})$ .

\S 2. Remarks on $SL_{2}(Z)$ .
2.0. Let $G$ be $SL_{2}$ and u7 a family of connected algebraic subgroups of $G$

defined over $Q$ . Let $G^{\prime}$ denote $SL_{2}(Z)$ and $\mathcal{B}$ denote the subfamily $of\mapsto q$ such
that $H\in \mathcal{B}$ if and only if $H\cap G^{\prime}$ is Zariski dense in $H$.

2.1. PROPOSITION. (i) $H\in \mathcal{A}$ belongs to $\mathcal{B}$ if and only if $H$ is equal to
one of the following three.

(1) $H=G$ ,
(2) $H\cong G_{m}$ over the algebraic closure $\overline{Q}$ of $Q$ and $|H(Z)|=\infty$ ,

(3) $H\cong G_{a}$ over $Q$ .
(ii) In the case (2), we have $[N_{G}(H):H]=2$ , hence $[N_{G^{\prime}}(H^{\prime}):H^{\prime}]\leqq 2$ ,
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where $H^{\prime}=H(Z)$ .
(iii) In the case (3), we have $H\cong\left(\begin{array}{ll}1 & *\\0 & 1\end{array}\right)$ . Then $N_{G}(H)\cong B=\left(\begin{array}{ll}* & *\\0 & *\end{array}\right)$ :

a Borel subgroup of G. Accordingly, $H^{\prime}\cong\left(\begin{array}{ll}1 & Z\\0 & 1\end{array}\right)$ and $N_{G^{\prime}}(H^{\prime})\cong B(Z)=\pm\left(\begin{array}{ll}1 & Z\\0 & 1\end{array}\right)$ .

PROOF. To see (i), take $H\in \mathcal{A}$ . Since $\dim SL_{2}=3,$ $\dim H\leqq 3$ . If dim H$=3$ ,
then $H=SL_{2}$ by the connectedness of $H$ and $SL_{2}$ . Since $SL_{2}(Z)$ is Zariski
dense in $SL_{2}$ by Borel [2], this is the case (1).

If dim $H\leqq 2$ , then $H$ is solvable over $\overline{Q}$ by Borel [1] (Theorem 11.6). So
there exists a Borel subgroup defined over $\overline{Q}$ which contains $H$.

If dim $H=2$ , then $H$ itself is a Borel subgroup. Since $H$ is defined over $Q$ ,
by the uniqueness of the minimal parabolic subgroup (Borel-Tits [3]) $H$ is a

split Borel subgroup, $i$ . $e$ . $H\cong\left(\begin{array}{ll}* & *\\0 & *\end{array}\right)$ . But $H(Z)\cong\pm\left(\begin{array}{ll}1 & Z\\0 & 1\end{array}\right)$ is not Zariski dense

in $H$.
If dim H$=1$ , then by Borel [1] (Theorem 10.9) $H$ is isomorphic to $G_{m}$ or

$G_{a}$ over $\overline{Q}$ . If $H$ is isomorphic to $G_{m}$ , then clearly $H(Z)$ is Zariski dense in $H$

if and only if $|H(Z)|=\infty$ . This is the case (2). If $H$ is isomorphic to $G_{a}$ ,

then $H$ is isomorphic to $G_{a}$ over $Q$ by Borel [1] (remark after Theorem 10.9).

Again, by the uniqueness of the minimal Q-parabolic subgroup, $H$ is isomorphic
to the unipotent radical of a suitable split Borel subgroup. This is the case (3).

(i) In the case (2), $H$ is the maximal torus of $SL_{2}$ . Therefore $N_{G}(H)/H$

is isomorphic to the Weyl grcup of $SL_{2}$ , which is isomorphic to the symmetric
group of degree 2. Thus we get (ii).

(iii) In the case (3), clearly $N_{G^{\prime}}(H^{\prime})=G^{\prime}\cap N_{G}(H)=B(Z)$ .
2.2. COROLLARY. Let $\mathcal{B}^{\prime}=\{H\cap G^{\prime}|H\in \mathcal{B}, H\neq G\}$ and $C$ be the set of all

Cartan subgroups of $G^{\prime}$ . Then $(\mathcal{B}^{\prime})^{*}=C^{*}$ . Here, the definition of a Cartan
subgroup $C$ is in the sense of Chevalley characterized by the following.

(1) $C$ is a maximal nilpotent subgroup, and
(2) every subgroup of finite index in $C$ has finite index in its normalizer

in $G^{\prime}$ (cf. Borel [1] p. 290).

PROOF. Let $C\in C$ and $\overline{C}$ (resp. $\overline{C}^{0}$ ) be the Zariski closure of $C$ in $SL_{2}$

(resp. the connected component of the identity of $\overline{C}$ ). $[\overline{C} : \overline{C}^{0}]<\infty$ and $\overline{C}$

normalizes $\overline{C}^{0}$ . Since $\overline{C}^{0}$ is nilpotent and connected, $\overline{C}^{0}$ is isomorphic to $G_{a}$ or
$G_{m}$ over $\overline{Q}$ . By the nilpotency of $\overline{C}$ and the maximality of $C$, it follows that
$C=\overline{C}\cap SL_{2}(Z)$ . Moreover $|C|=\infty$ by the definition of a Cartan subgroup.
Hence $|\overline{C}^{0}(Z)|=|\overline{C}^{0}\cap SL_{2}(Z)|=\infty$ . Therefore by a proper $H$ of the type of
(2) or (3) in $\mathcal{B}$ , we have $N_{G^{\prime}}(H^{\prime})\supset C\supset H^{f}$ . In the case (2), $N_{G^{\prime}}(H^{\prime})$ induces the
action of the Weyl group on $H^{\prime}$ , $i$ . $e$ . $nhn^{-1}=h^{-1}$ for $h\in H^{\prime}$ and $n\in N_{G^{\prime}}(H^{\prime})$ ,

ne $H^{f}$ , hence $N_{G},$ $(H^{\prime})$ is not nilpotent. Thus $C$ must be equal to $H^{\prime}$ .
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In the case (3), by (3) of 2.1, $N=N_{G^{\prime}}(H^{\prime})$ is nilpotent. Since $C$ is a maximal
nilpotent subgroup, $C$ must be equal to $N$.

Therefore we see that for any $H\in \mathcal{B}^{\prime}$ (resp. $C\in C$) there exists a suitable
$C\in C$ (resp. $H\in \mathcal{B}^{\prime}$ ) such that $H\sim C$ . Hence we have $(\mathcal{B}^{\prime})^{*}=C^{*}$ .

In particular, if we denote by $\mathcal{D}$ the set $\{N_{G^{\prime}}(C)|C\in C\}$ , then we have
$\mathcal{D}^{*}=C^{*}$ , because $[N_{G^{\prime}}(C):C]<\infty$ by the definition of a Cartan subgroup.

2.3. REMARK. (i) In the view points of the construction of the repre-
sentations of $SL_{2}(Z)$ induced from the characters of a subgroup of $SL_{2}(Z)$ as
will be seen in \S 3, the choice of an inclusion preserving section of the canonical
projection $ C^{*}=(\mathcal{B}^{f})^{*}\rightarrow C^{*}/\sim$ does not yield any essential difference.

(ii) Given an algebraic group defined over a field $k$ , the problem of the
classification of $\leftrightarrow q$

’ in 1.9 can be very complicated. However there are some
cases where such classifications are essentially known. For example, let $G=SL_{2}$

and $G^{\prime}=\Gamma_{0}(N)$ . Then the classification is implicitly done in efforts to give an
explicit formula for the traces of Hecke operators (cf. Hijikata [4]).

\S 3. Representations.

3.0. In this section, let $G$ be a separable locally compact group, and $\mathcal{A}$ be
a conjugacy closed family of open subgroups of $G$ . Suppose that the pair $(G, \mathcal{A})$

has Property $(\mathcal{F})$ .
Let $K\in d^{*}$ and $\rho$ : $K\rightarrow GL(V)$ be a finite dimensional unitary representation,

where $V$ denotes a finite dimensional vector space over the complex number
field $C$ with the scalar product $(, )$ .

Let $U(\rho)$ denote the representation of $G$ induced from $\rho$ . By the dePnition
of $d^{*}$ , there exists some $H\in\llcorner fl$ such that $H\sim K$. Since such $H$ is unique by
1.3, let us denote this $H$ by $H(K)$ . Let $K^{\prime}$ be another member of $\mathcal{A}^{*}$ in the
same commensurability class as $K,$ $H(K)=H(K^{\prime})$ . If $K\supset K^{\prime}$ , let $\rho^{\prime}$ be the
restriction of $\rho$ to $K^{\prime}$ . Then every irreducible constituent of $U(\rho^{\prime})$ is contained
in $U(\rho)$ . Hence in the view points of the construction of the representations
we may restrict our attention to only large enough $K$ in $Cf(H)$ .

For example we may assume $K\supset H(K)$ without any important loss of
generality.

3.1. LEMMA. Assume $K\supset H(K)=H$, and put $x=\rho|_{H}$ and $N_{\chi}=\{g\in N_{G}(H)|x\sim gx\}$ .
Then $K$ is a subgroup of $N_{\chi}$ .

PROOF. If $k\in K$, then $[H:H\cap k^{-1}Hk]\leqq[K:k^{-1}Hk]=[K:H]<\infty$ . Hence
$H\subset k^{-1}Hk$ by the property $(\mathcal{F}1)$ and then $H=k^{-1}Hk$ by the property $(\mathcal{F}2)$ .
Since $\chi(k^{-1}hk)=\rho(k^{-1}hk)=\rho(k)^{-1}\chi(h)\rho(k)$ for any $k\in K$ and any $h\in H$, we have
$k\in N_{\chi}$ .

3.2. We assume the quotient $K\backslash G$ is denumerable for any $K\in \mathcal{A}^{*}$ . Then
recall that $U(\rho)$ is realized on the Hilbert space
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$\mathcal{V}=\{f:\Theta\rightarrow V|\Vert f\Vert^{2}=\sum_{x\in\Theta}|f(x)|^{2}<\infty\}$

by the action of $g\in G$ as follows,

$(U(\rho)(g)f)(x)=\rho(\eta(xg))f(\theta(xg))$ for $f\in \mathcal{V}$ and $ x\in\Theta$ .
Here $\Theta$ denotes a system of representatives of the quotient $K\backslash G,$ $|f(x)|^{2}=$

$(f(x), f(x))$ , and $\theta$ is the section $ K\backslash G\rightarrow\Theta$ , and $\eta(g)=g\theta(Kg)^{-1}$ is a mapping
from $G$ into $K$.

This action of $g\in G$ is essentially independent of the choice of the system
$\Theta$ . For, if $\Theta^{\prime}$ denotes another system of representatives of the quotient $K\backslash G$ ,

and $\mathcal{V}^{\prime}$ denotes another space with respect to $\Theta^{\prime}$ , then we can define a unitary
operator $I:\mathcal{V}\rightarrow \mathcal{V}^{\prime}$ such that $I\circ U(\rho)(g)=U(\rho)(g)\circ I$ for $g\in G$ as follows.

$(I(f))(x^{\prime})=\rho(\eta(x^{\prime})f(\theta(x^{\prime}))$ for $f\in \mathcal{V}$ and $x^{\prime}\in\Theta^{\prime}$ .
In particular, we may assume that the system $\Theta$ contains the identity element
of $G$ .

3.3. THEOREM. Let $G$ be a separable locally compact group and $\mathcal{A}$ be a
family of open snbgroups of $G$ such that the pair $(G, \leftrightarrow q)$ has Property $(\mathcal{F})$ . Let
$\leftrightarrow q*$ be a commensurability closure of $d$ . Let $K_{i}\in d^{*}$ and let $H_{i}=H(K_{t})$ and
assume $K_{i}\supset H_{i}$ , where $i=1,2$ . Let $\rho_{i}$ be a unitary representati0n of $K_{i}$ acting
on a finite dimensional vector space $V_{i}$ over $C$, and $x_{i}=\rho_{i}|_{H_{i}}$ the restriction of
$\rho_{i}$ to $H_{i}$ .

If $x_{i}’ s$ are irreducible, then
(i) $U(\rho_{1})$ and $U(\rho_{2})$ are disjoint from each other unless there exists $g\in G$

such that $H_{2}=g^{-1}H_{1}g$ and $x_{2}=gx_{1}$ .
(ii) If $H_{1}=H_{2}=H$ and $x_{1}=x_{2}=x$ , then the dimension of the space of all

intertwining operat0rs from $U(\rho_{2})$ to $U(\rho_{1})$ is not greater than the group index
$[N_{\chi} : K_{1}]$ .

(iii) In particular, if $K_{1}=K_{2}=N_{\chi}$ , then $U(\rho_{1})$ and $U(\rho_{2})$ are equivalent to
each other if and only if $\rho J$ and $\rho_{2}$ are equivalent to each other.

PROOF. We use the notations in 3.2 attaching the index $i$ as $\mathcal{V}_{i},$ $\theta_{i},$

$\eta_{i}$ ,

etc. for $i=1,2$ .
Suppose dim $V_{i}=n_{i}$ and let $\{v_{t}|t=1,2, \cdots , n_{1}\}$ (resp. $\{u_{j}|j=1,2,$ $\cdots$ , $n_{2}\}$ )

be a basis of $V_{1}$ (resp. $V_{2}$). We may assume these bases are orthonormal.
Then we can set, for any $k_{i}\in K_{i}$ ,

$\rho_{2}(k_{2})u_{j}=\sum_{s=1}^{n_{2}}a_{j,s}(k_{2})u_{S}$ $a_{js}(k_{2})\in C$

and

$\rho_{1}(k_{1})v_{t}=\sum_{r=1}^{n_{1}}b_{t.r}(k_{1})v_{r}$ $b_{t,r}(k_{1})\in C$ .
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Let $\varphi_{x}$ (resp. $\psi_{y}$ ) denote the characteristic function on $\Theta_{2}$ (resp. $\Theta_{1}$ ) of $x$

(resp. $y$ ).

Under these notations, we have

$U(\rho_{2})(g)(u_{j}\varphi_{x})=\sum_{s=1}^{n_{2}}a_{j,s}(\eta_{2}(\theta_{2}(xg^{-1})g))u_{s}\varphi_{\theta_{2}(xg}- 1)$

for any $g\in G$ , where $x\in\Theta_{2}$ and $u_{j}\psi_{x}$ denotes the assignment $x^{\prime}-\varphi_{x}(x^{\prime})u_{j}$ for
$x^{\prime}\in\Theta_{2}$ .

3.4. LEMMA. Let $\mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ be the sPace of all intertwining operatOrs

from $U(\rho_{2})$ to $(U\rho_{1})$ . If there exists a non trivial $M\in \mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ , then $ H_{2}\subset$

$x^{-1}H_{1}x$ for any $x\in j=1U^{2}Supp\Vert M(u_{j}\varphi_{e})\Vert n\subset\Theta_{1}$ .

PROOF. Since we have

$U(\rho_{1})(k)M(u_{j}\varphi_{e})=\sum_{s=1}^{n_{2}}a_{j,s}(k)M(u_{s}\varphi_{e})$ for any $k\in K_{1}$ ,

it holds that

$\sum_{j=1}^{n_{2}}|U(\rho_{1})(k)M(u_{f}\varphi_{e})(x)|^{2}=\sum_{j=1}^{n_{2}}|M(u_{j}\varphi_{e})(x)|^{2}$

for each $x\in\Theta_{1}$ . On the other hand we have

$\sum_{j=1}^{n_{2}}|U(\rho_{1})(k)M(u_{j}\varphi_{e})(x)|^{2}=\sum_{j=1}^{n_{2}}|M(u_{j}\varphi_{e})(\theta_{1}(xk))|^{2}$

by the definition of $U(\rho)$ . Hence we get

(1) $\sum_{j=1}^{ng}|M(u_{j}\varphi_{e})(x)|^{2}=\sum_{j=1}^{n_{2}}|M(u_{j}\varphi_{e})(\theta_{1}(xk))|^{2}$

for each $x\in\Theta_{1}$ and each $k\in K_{2}$ .
Therefore if $ x\in Supp\Vert M(u_{j}\varphi_{e})\Vert$ for some $j$ , then the orbit of the action of

$K_{2}$ on $\Theta_{1}$ containing $x$ must be a finite set, because we have (1) and

$\sum_{x\in\Theta_{1}}\sum_{j=1}^{n_{2}}|M(u_{j}\varphi_{e})(x)|^{2}=\sum_{j=1}^{n_{2}}\Vert M(u_{j}\varphi_{e})\Vert<\infty$ .

In other words $[K_{2} : K_{2}\cap x^{-1}K_{1}x]<\infty$ . This implies $[H_{2} : H_{2}\cap x^{-1}H_{1}x]<\infty$ and
hence $H_{2}\subset x^{-1}H_{1}x$ by the property $(\mathcal{F}1)$ . This completes the proof of the lemma.

3.5. PROOF OF 3.3 (i). Suppose $U(\rho_{2})$ and $U(\rho_{1})$ are not disjoint. That is
to say that there exist non trivial members $M\in \mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ and $N\in \mathcal{E}(U(\rho_{1})$ ,
$U(\rho_{2}))$ . Accordingly we have U $Supp\Vert M(u_{j}\varphi_{e})\Vert\neq\emptyset$ and $(/Supp\Vert N(v_{t}\psi_{e})\Vert\neq\emptyset$ .

By the lemma of 3.4, there exists $x\in\Theta_{1}$ and $y\in\Theta_{2}$ such that $H_{2}\subset x^{-1}H_{1}x$ and
$H_{1}\subset y^{-1}H_{2}y$ . Thus we get $H_{2}\subset x^{-1}H_{1}x\subset x^{-1}y^{-1}H_{2}yx$ , hence $yx\in N_{G}(H_{2})$ by the
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property $(\mathcal{F}2)$ and $H_{2}=x^{-1}H_{1}x$ . This shows the first part of (i).

To see the second part of (i), we may assume $H_{1}=H_{2}=H$ by the first part
of (i). Then it is clear that $Uj$ Suppll $M(u_{j}\varphi_{e})\Vert\subset N_{G}(H)\cap\Theta_{1}$ . So we get, for
each $j$ ,

$M(u_{j}\varphi_{e})=$

$\sum_{1\leqq t\leqq n_{1},x\in N_{G}(H)\cap\Theta_{1}}\alpha_{j,t}(x)(v_{t}\psi_{x})$

, $\alpha_{j,t}(x)\in C$ .

This is symbolically

(1) ${}^{t}(\cdots, M(u_{j}\varphi_{e}),$ )
$=\sum_{x\in N_{G}(H)\cap\Theta_{1}}(\alpha_{j,t}(x))^{t}(\cdots, v_{t}\psi_{x}, )$

where $t$ on the left shoulder denotes the transposing symbol and $(\alpha_{j.t}(x))$ is an
$n_{2}\times n_{1}$ matrix.

Applying $U(\rho_{1})(h)(h\in H)$ to the both sides of (1), we have

the left side $={}^{t}(\cdots , MU(\rho_{2})(h)(u_{j}\varphi_{e}),$ $\cdots$ )

$={}^{t}(\cdots, M(\sum_{s}a_{j,s}(h)(u_{s}\varphi_{e})),$ )

$=(a_{j,s}(h))^{t}(\cdots, M(u_{s}\varphi_{e}),$ )

(2)
$=\sum_{x\in N_{G}(H)\cap\Theta_{1}}(a_{j.s}(h))(\alpha_{j,t}(x))^{t}(\cdots, v_{t}\psi_{x}, \cdots)$

and

the right side $=\sum_{x\in N_{G}(H)\cap\Theta_{1}}(\alpha_{j,t}(x))^{t}(\cdots , U(\rho_{1})(h)(v_{t}\psi_{x}),$
)

(3)
$=\sum_{x\in N_{G}(H)\cap\Theta_{1}}(\alpha_{j,t}(x))(b_{t,r}(xhx^{-1}))^{t}(\cdots, v_{r}\psi_{x}, )$ .

Since $\{v_{t}\psi_{x}|j, x\}$ is a linearly independent subset of $V_{1}$ , comparing (2) and
(3) we get

(a
$j,$

$S(h)$ ) $(\alpha_{j,t}(x))=(\alpha_{j,t}(x))(b_{t,r}(xhx^{-1}))$ .

Since $M$ is non trivial, there exists some $x\in N_{G}(H)\cap\Theta_{1}$ such that $(\alpha_{f.t}(x))\neq 0$ .
Hence the irreducibility of $x_{i}’ s$ shows that $n_{1}=n_{2}$ and $(\alpha_{j.t}(x))$ is invertible by
the Schur’s lemma. This implies $x_{2}\sim^{x}x_{1}$ , because $\chi_{2}(h)=(a_{j,s}(h))$ , and $x\chi_{1}(h)=$

$(b_{t,r}(xhx^{-1}))$ by the definition.
3.6. PROOF OF 3.3 (ii). We may assume $x_{2}=x_{1}=x$ by (i). Since $x\sim^{x}x$ for

any $x$ such that $(\alpha_{j.t}(x))\neq 0$ , it follows that if $M\in \mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ , then $M(u_{j}\varphi_{e})$

appears in
$\langle v_{t}\psi_{x}|t=1, \cdots n, x\in N_{\chi\cap}\Theta_{1}\rangle_{C}$

for each $j$ , where $n=\dim x$ and $\langle S\rangle_{C}$ denotes the vector subspance spanned by the
subset $S$ of $\mathcal{V}$ over $C$. Since the action of $G$ on $\Theta_{2}$ is transitive, $\{u_{j}\varphi_{e}|j\}$

generates the space $\mathcal{V}_{2}$ as a G-space. Therefore, to define a member $M$ in
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$\mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ , we must define a suitable linear maPping:

$\langle u_{j}\varphi_{e}|j\rangle_{C}\rightarrow\langle v_{j}\psi_{x}|j, x\in N_{\chi\cap}\Theta_{1}\rangle_{C}$ .

Clearly $\langle v_{j}\psi_{x}|j, x\rangle_{C}=\oplus_{x}\langle v_{j}\psi_{x}|j\rangle_{C}$ (direct sum of vector spaces). We can easily

check that $\langle u_{j}\varphi_{e}|j\rangle_{C}$ (resp. $\langle v_{j}\psi_{x}|j\rangle_{C}$ ) is closed under the action of $H$ by
$U(\rho_{2})(H)$ (resp. $U(\rho_{1})(H)$ ) and is isomorphic to $V_{2}$ (resp. $V_{1}$ ) as an H-space. We
note that $V_{1}$ and $V_{2}$ are isomorphic to each other as H-spaces by our assump-
tion. Thus, since $V_{i}’ s$ are irreducible H-spaces, we have

dim $Hom_{H}(\langle u_{j}\varphi_{e}|j\rangle_{C}, \langle v_{j}\psi_{x}|j\rangle_{C})=1$ .

Therefore dim $\mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ is not greater than the cardinality $|N_{\chi}\cap\Theta_{1}|$ .
Since $|N_{\chi}\cap\Theta_{1}|=[N_{\chi} : K_{1}]$ , we get (ii).

3.7. PROOF OF 3.3 (iii). Since $K_{1}=K_{2}=N_{\chi}\subset N_{G}(H)$ , we may assume that
$\Theta_{1}=\Theta_{2},$

$v_{j}=u_{j}$ for each $j$ , and $\varphi_{e}=\psi_{e}$ . Then we have, for each $j$ ,

$M(u_{j}\varphi_{e})=\sum_{t=1}^{n}\alpha_{j,t}(u_{t}\varphi_{e})$ $\alpha_{j,t}\in C$ .

(Note that $N_{G}(H)\cap\Theta_{1}=\{e\}.$ ) This is symbolically

(1) ${}^{t}(\cdots, M(u_{j}\varphi_{e}),$ ) $=(\alpha_{j,t})^{t}(\cdots, u_{t}\varphi_{e}, )$ .
Applying $U(\rho_{1})(k)(k\in K_{1}=K_{2}=N_{\chi})$ to the both side of (1), we get

(a
$j,$

$t(k)$ ) $(\alpha_{j,\iota})^{t}(\cdots, u_{t}\varphi_{e}, )=(\alpha_{j,t})(b_{j,t}(k))^{t}(\cdots, u_{t}\varphi_{e}, )$ .
Since $\{u_{j}\varphi_{e}|j\}$ is a linearly independent subset of $\mathcal{V}$ , we have $(a_{j,t}(k))(\alpha_{j,t})=$

$(\alpha_{j,t})(b_{j,t}(k))$ . If $U(\rho_{1})$ and $U(\rho_{2})$ are not disjoint, then there exists non trivial
member $M\in \mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ , and then $(\alpha_{j,t})\neq 0$ . Since $\rho_{i}’ s$ are irreducible, $(\alpha_{j,t})$

is invertible. That is to say $\rho_{1}\sim\rho_{2}$ . This completes the proof.
3.8. Under the same notations as in 3.3, let $W(\rho_{2}, \rho_{1})$ be the set of all

$x\in N_{\chi}\cap\Theta_{1}$ which satisfy the following two condition.
(1) $x$ is fixed by $K_{2},$ $i$ . $e$ . $x=\theta_{1}(xk)$ for $\forall k\in K_{2}$ .
(2) $\rho_{2}=^{x}\rho_{1}$ on $x^{-1}K_{1}x\cap K_{2}$ .
COROLLARY. If dim $x=1$ in 3.3 (ii), then

$|W(\rho_{2}, \rho_{1})|$ Sdim $\mathcal{E}(U(\rho_{2}), U(\rho_{1}))\leqq|K_{1}\backslash N_{\chi}/K_{2}|$ .

PROOF. From Mackey [5] Theorem 3’, we have

dim $\mathcal{E}(U(\rho_{2}), U(\rho_{1}))=\sum_{D\in \mathcal{D}_{f}}$ dim $\mathcal{E}(\rho_{2}, \rho_{1} : D)$
,

where $\mathcal{D}_{f}$ denote the set of all double cosets, namely $D=K_{1}xK_{2}(x\in G)$ , such
that $K_{2}$ and $x^{-1}K_{1}x$ are commensurable, and $\mathcal{E}(\rho_{2}, \rho_{1} : D)$ denotes the space of
all intertwining operators between the restrictions of $\rho_{2}$ and $x\rho_{1}$ to $x^{-1}K_{1}x\cap K_{2}$ .
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The dimension of $\mathcal{E}(\rho_{2}, \rho_{1} : D)$ is independent of the choice of the representa-
tive $x$ of $D=K_{1}xK_{2}$ .

If $D=K_{1}xK_{2}\in \mathcal{D}_{f}$ , then the commensurability of $x^{-1}K_{1}x$ and $K_{2}$ shows
$x\in N_{G}(H)$ by Property $(\mathcal{F})$ for $(G, A)$ . Moreover dim $\mathcal{E}(\rho_{2}, \rho_{1} : D)=1$ or $0$,

because dim $\rho_{2}=\dim\rho_{1}=1$ . If this value is equal to 1, then $x\in N_{\chi}$ . Thus we
have

dim $\mathcal{E}(U(\rho_{2}), U(\rho_{1}))\leqq|K_{1}\backslash N_{\chi}/K_{2}|$ .
On the other hand, if $x\in W(\rho_{2}, \rho_{1})$ , then $K_{2}\subset x^{-1}K_{1}x$ from $x=\theta_{1}(xk)$ for

any $k\in K_{2}$, and then we can define a member of $\mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ by setting
$\varphi_{e}-\psi_{x}$ from $\rho_{2}=^{x}\rho_{1}$ . So we get $|W(\rho_{2}, \rho_{1})|\leqq\dim \mathcal{E}(U(\rho_{2}), U(\rho_{1}))$ .

3.9. REMARK. In 3.8, if we take $K_{2}=K_{1}=H_{2}=H_{1}=Hand\rho_{1}=\rho_{2}=x_{1}=x_{2}=x$,
then it holds that dim $\mathcal{E}(U(\chi), U(\chi))=|N_{\chi}/H|$ . This is the result of Th\’eor\‘eme 1
of Saito [7].
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