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§0. Introduction.

0.0. For the modular group SL,Z), M. Saito has constructed certain
series of infinite dimensional unitary representations by classifying and decom-
posing the representations induced from unitary characters of Cartan subgroups
of SL,Z). The purpose of this note is to make a few remarks which either
clarify the interconnection or generalize the results of Saito’s construction.

0.1. Let G be a group, and A a family of subgroups of G. The pair (G, A)
is said to have Property (&), if the following two requirements are fulfilled.

(¢1) For H,, H,e A, and g=G,

[H,: HNg'H,g]<oomH,C g 'H,g.
(92) For He 4, and g=aG,

g 'HgCH=>g 'Hg=H.

Now, suppose moreover that G is a locally compact topological group and
any member H; of 4 is an open subgroup of G. Let X; be an irreducible
unitary representation of H; and let U,=Ind(X;: H; 1 G) denote the representa- ;
tion of G induced by X;. The points of can be summarized in the following
(I)~(IV).

(1) Assume that X; is one dimensional, then the following three conditions
are mutually equivalent (Théoréme 2 [7])).

(i) U, is equivalent to U..

(i) U, is not disjoint from U,.

(iii) There exists g G such that H,=g 'H,g and X,=%X,, where £X,(x)=
Xi(gxg™") for xe H,.

() If U, is not disjoint from U, (hence we may assume H,=H,=H and
X,=X,=X, and put Ny={ge Ns(H)|*X=X}), then the dimension of the space of
all intertwining operators of UX)=Ind(X: H1G) is given by the group index
[Ny: H] (Théoréme 1 [7]).

() If G=SL,Z) and A is the set of all Cartan subgroups of G, then the
pair (G, A) has Property (&).
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(V) If G is a connected algebraic group defined over an arbitrary field k&,
and A is the set of all connected algebraic subgroups of G defined over &,
then the pair (G, A) has Property (&). :

0.2. The representations of SL,Z) constructed in are precisely those
obtained as the irreducible constituents of U;’s by taking the pair (G, A) of
(I), with discrete topology. Since, in this case, each H; happens to be com-
mutative, any irreducible representation X; is one dimensional. Hence, by (1),
the classification up to the equivalence of U;’s reduces to the classification up
to the conjugacy of Cartan subgroups H;’s and their characters %;’s.

Furthermore, each Cartan subgroup H has index 2 or 1 in its normalizer,
hence the decomposition of U; is carried out without much difficulty.

0.3. The purpose of this note is to make the following remarks (1)~(3).

(1) Starting with the pair (G, 4) which has Property (&), taking a sub-
group G’ of G and a subfamily # of A, and setting B'={HNG'|HE 3}, we
can give a simple criterion for the new pair (G’, 8’) to have Property (&)
(Proposition 1.7).

As an application we can associate to the group G(Z) of Z-valued points
of any connected algebraic group G over @, a family 4 such that the pair
(G(Z), A) has Property (&) (Corollary 1.9). If G=SL,, we show that 4 is, up
to commensurability, the set of all Cartan subgroups of SL,(Z) (Corollary 2.2).
Thus the case (I) and the case (IV), which appear at a glance of a quite
different type, can be connected by our criterion.

(2) We prove the statement (1) without assuming X; to be one dimensional
(but still finite dimensional) (Theorem 3.3). This generalization is indispensable,
since in the case of the pair (G(Z), A) for any arbitrary connected algebraic
group G, the family 4 contains non-commutative subgroups in general.

(3) We can discuss to some extent the decomposition of the induced rep-
resentation U;, without any knowledge of the structure of H;, but only on the
basis of Property (&) (Corollary 3.8).

Finally the author wishes to express his gratitude to Professor H. Hijikata
for suggestions and encouragement.

§1. General remarks on Property (&).

1.0. Let G be a group. Let ~ denote the commensurability relation in G,
and for a subgroup H of G, let C/(H) denote the commensurability class of
H, ie.

(1) H~H,o[H;: HHN\H,]<oo for i=1, 2.

(2) CI(H)={K|K is a subgroup of G such that K~H}.

For a family A of subgroups of G, let _4* (resp. ) denote the commen-
surability (resp. conjugacy) closure of 4, i.e.
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(3) A*={K|K is a subgroup of G such that K~H for some He A}.

(4) JA={g'HglgeG, HeJ}.

1.1. The following lemma can be easily checked.

LEMMA. (i) If the pair (G, A) has Property (F), then for any subfamily
B of A, (G, B) has Property (F).

(ii) If (G, A) has Property (F), then (G, A) has Property (F).

(iii) If A is conjugacy closed, i.e. A=, then the property (F1) of §0 for
(G, A) is equivalent to the following (F1).

(F1) For H,, Hye A, [H,: HHNH,]<oo H,C H,.

1.2. As is well known, the commensurability relation ~ is an equivalence
relation, and we can consider the quotient set A/~={Cl(H)|H= A} with the
canonical projection p.

1) p: A—=d/~ p(H)=CI(H).

Furthermore, for the quotient set 4/~, we can define a structure of an
ordered set by the following inclusion relation.

(2) ClI(H)CCI(Hy)=3H;=Cl(H;), where 1=1, 2, such that H;C H,.

Indeed the following two facts can be easily checked.

(3) ClI(H,)CCI(H,), CI(Hy)CCI(H,)>CI(H,)=CI(H,).

(4) Cl(H,)CCI(H,), Cl(H,)CTCI(H3)>Cl(H,))CCI(H,).

1.3. PROPOSITION. (i) The following three conditions for (G, A) are mutu-
ally equivalent.

(1) (G, A) has the property (F1) of §0.

(2) (G, A) has the property (Z1) of 1.1.

(3) A is an inclusion preserving section of the canonical projection p:(A)*
—(A)*/~, i.e. the restriction of p to A gives an isomorphism of A and (A)*/~
as ordered sets with respect to the inclusion.

(i) Suppose (G, A) has the property (F1), then the following two conditions
are mutually equivalent.

(4) (G, A) has the property (F2) of §0.

(5) (G, (A)*) has the following property (F*2).

(g*2) For Ke(A)* and g=G, g KgC K=>Cl(g ' Kg)=Cl(K).

Pooor. (i) (1)&(2) is clear from 1.1. We show (3)=>(2). Suppose (3) holds.
Take H,, H,e A such that [H,: Hi"\H,]<co. Then H, and H,~H, are com-
mensurable. Since HN\H,CH,, CI(H,)CCI(H,) by the definition (2) of 1.2. As
H, (resp. H,) is the image of CI(H,) (resp. C/(H)) by the inclusion preserving
section of (3), we have H;CCH,. Conversely, suppose (2) holds. Take H,, H, .
If H,+#H,, then H, and H, are not commensurable. Hence CI(H)—H (for He J)
defines the section of the canonical projection (A)*—(JA)*/~. We must show
that this section preserves the inclusion. Suppose CI(H,)CCI(H,). By the
definition (2) of 1.2, there exist H;=Cl(H;) (for i=1, 2) such that H{CHj,. By
easy index calculation, we see that [H,: H,"H,]<co. Hence H,CH, because
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of (2).

(ii) To see (4)=(5), take Ke(A)* and g G such that g7*Kgc K. There
exists He J such that H~K by the definition of (A)* and then clearly g-'Kg
~g-'Hg. The image of CI(H)=Cl(K) (resp. Cl(g"*Hg)=Cl(g"*Kg)) by the inclu-
sion preserving section is H (resp. g 'Hg). Hence we have g-'HgCH from
Cl(g *Hg)CCl(H). Therefore g7'Hg=H by (F2). Thus we get Cl(g"*Kg)=Cl(K).
Conversely, suppose (5) holds. Take He. A and geG such that g *HgCH.
Since He(JA)*, g tHge(A)* and g 'HgCH, we have CI(H)=Cl(g"'Hg). Thus
we have g 'Hg=H as the images by the inclusion preserving section.

1.4. COROLLARY. Suppose A=A.

(i) If (G, A) has the property (F1), then A is the inclusion preserving
section of the canonical projection p: A*—A*/~.

(i) Conversely, if B is any conjugacy closed inclusion preserving section of
the canonical projection p: A*—A*/~, then the pair (G, B) has the property
().

1.5. ExaMPLE. Let k be a field, G an algebraic group defined over % and
A the set of all algebraic subgroups of G defined over k2. Let .4, denote the
set of all connected algebraic subgroups of G defined over k. Any two
elements of 4 are commensurable if and only if they have the same connected
component of the identity element. Therefore the pair (G, 4,) has the prop-
erty (¢1). Since the dimension of any element of 4, is invariant by the inner
automorphisms of G, the pair (G, A,) has the property (ZF2).

Hence the pair (G, A,) has Property (&) and obviously Af=cA and A =A,.

1.6. REMARK. (i) In view of 1.1, we may assume 4=J without impor-
tant loss of generality for our purpose. However in the statement of 1.4, the
assumption, A=dJ, is essential. For example, if .4*/~ has only one point, say
Cl(H), then the assumption A= J reduces the case to the trivial one where H
is normal in G.

(ii) A is not necessarily unique for a given .A*. For example let A* be
the set of all one dimensional algebraic subgroups of G of Example 1.5. Then
any conjugacy closed section of the canonical projection p : A*—A*/~ preserves
the inclusion, because there is no non-trivial order relation in A*/~.

1.7. PROPOSITION. Let (G, A) be a pair with Property (F). Suppose G has
the topology such that the left and right translations are closed mappings. For
a subgroup G’ of G, put A={HNG'|HEA and HNG’ is dense in H}. Then
the pair (G’, A’) has Property (F).

Proor. For a subset X of G, let X denote its topological closure. If
Hi;e ', by our definition of A’, H; has the form H,=H,nG’ with H,e A and
H=H.

To see (F1), note that:

CH,: Hinx *Hyx]<oo, where x€G’
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N
eig,eH; for jEN, Hi= \J g(Hinx" Hyx),
P
where N is a suitable natural number

‘ - N
>H=H= j\zjl gi(HiNx*Hjx).

Now, the closedness of translations implies :
g(Hinx"Hyx)C g (Hinx ' Hyx)C g (HiNx "Hyx)C g (Hinx™
=g {(H;Nx" Hyx).

Namely [H.: Hin\x *Hyx]<co implies [H,: Hinx H,x]<co, hence HCx *H,x
and HiCx *HyxN\G'=x"'Hjx.

To see (F2), take H'e A’ and x=G’ such that x*H' xCH’. Since H’ has
the form H'=HNG' with He 4 and H=H, x'H'xCH' implies H=H C
xH x ‘cxH x'=xHx'. Hence H=xHx"' by the property (ZF2) for (G, A)
and H=HNG'=xHx NG '=xH x™.

1.8. COROLLARY. Let k be an infinite perfect field and G an algebraic
group defined over k. Let A be the set of all connected algebraic subgroups of
G defined over k and let G'=G(k) the group of k-rational points of G, and
A'={H(k)|HesA}. Then the pair (G’, A’) has Property (F).

PrROOF. Combine 1.5 and 1.7, and use the fact that if 2 is perfect and
infinite, then H(k) is Zariski dense in H which is a connected algebraic group
defined over £ (Rosenlicht [6].

1.9. CoROLLARY. Let k, G and A be as in 1.8. Let O be a subring of k
with the identity and G'=G(O): the group of O-valued points and put A'=
{HO)|HE A and H(O) is Zariski-dense in H}. Then the pair (G’, A’) has
Property ().

Proor. It is immediate from 1.7.

This example will be discussed in more detail in the next section. In
particular, it will be seen that the pair (G, .4) of (I) in §0 is essentially a
special case of our (G’, A).

4

2X)

§2. Remarks on SL,(Z).

2.0. Let G be SL, and A a family of connected algebraic subgroups of G
defined over Q. Let G’ denote SLyZ) and 4 denote the subfamily of .4 such
that He @ if and only if HN\G’ is Zariski dense in H.

2.1. PrOPOSITION. (i) He belongs to B if and only if H is equal to
one of the following three.

(1) H=gG,

(2) Hz=G, over the algebraic closure Q of Q and |H(Z)|=oc0,

(3) H=G, over Q.

(i) In the case (2), we have [Ng(H): H]=2, hence [Ns(H'): H]=Z2,
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where H'=H(Z).
1 * k%
(i) In the case (3), we have Hz(o 1). Then NG(H)EBZ(O *)3

1 Z 1 Z
a Borel subgroup of G. Accordingly, H’z( 01 ) and NG,(H’)zB(Z):i( )
0 1

Proor. To see (i), take He A. Since dim SL,=3, dim H<3. If dim H=3,
then H=SL, by the connectedness of H and SL, Since SL,Z) is Zariski
dense in SL, by Borel [2], this is the case (1).

If dim H<2, then H is solvable over @ by Borel (Theorem 11.6). So
there exists a Borel subgroup defined over @ which contains H.

If dim H=2, then H itself is a Borel subgroup. Since H is defined over @,
by the uniqueness of the minimal parabolic subgroup (Borel-Tits [3]) H is a

* X 1 Z
split Borel subgroup, i.e. Hz(o ) But HZ)= i( )is not Zariski dense
* 01

in H.

If dim H=1, then by Borel (Theorem 10.9) H is isomorphic to G, or
G, over Q. If H is isomorphic to G, then clearly H(Z) is Zariski dense in H
if and only if |H(Z)|=co. This is the case (2). If H is isomorphic to G,
then H is isomorphic to &G, over @ by Borel (remark after Theorem 10.9).
Again, by the uniqueness of the minimal @-parabolic subgroup, H is isomorphic
to the unipotent radical of a suitable split Borel subgroup. This is the case (3).

(i) In the case (2), H is the maximal torus of SL,. Therefore Ngz(H)/H
is isomorphic to the Weyl group of SL,, which is isomorphic to the symmetric
group of degree 2. Thus we get (ii).

(iii) In the case (3), clearly Ng (H)=G ' "\Ng(H)=B(Z).

2.2. COROLLARY. Let #'={HNG'|He B, H+G} and C be the set of all
Cartan subgroups of G’. Then (B'Y*=C*. Here, the definition of a Cartan
subgroup C is in the sense of Chevalley characterized by the following.

(1) C is a maximal nilpotent subgroup, and

(2) every subgroup of finite index in C has finite index in its normalizer
in G’ (cf. Borel p. 290).

ProoF. Let CeC and C (resp. C° be the Zariski closure of C in SL,
(resp. the connected component of the identity of C). [C: C°]J<co and C
normalizes C°. Since C° is nilpotent and connected, C° is isomorphic to G, or
G, over Q. By the nilpotency of C and the maximality of C, it follows that
C=CNSLyZ). Moreover |C|=co by the definition of a Cartan subgroup.
Hence |C(Z)|=|C°\SLyZ)|=oco. Therefore by a proper H of the type of
(2) or (3) in B, we have N (H)DCDH'. In the case (2), Ng (H') induces the
action of the Weyl group on H’, i.e. nhn~'=h"* for he H and n<Ng (H'),
ne& H', hence Ng (H') is not nilpotent. Thus C must be equal to H'.
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In the case (3), by (3) of 2.1, N=Ng (H’) is nilpotent. Since C is a maximal
nilpotent subgroup, C must be equal to N.

Therefore we see that for any He @’ (resp. C€C) there exists a suitable
CeC (resp. He &’) such that H~C. Hence we have (@')*=C*.

In particular, if we denote by 9 the set {N.(C)|C=(C}, then we have
D*=C*, because [ Ng (C): C]<co by the definition of a Cartan subgroup.

2.3. REMARK. (i) In the view points of the construction of the repre-
sentations of SL,(Z) induced from the characters of a subgroup of SL,Z) as
will be seen in § 3, the choice of an inclusion preserving section of the canonical
projection C*=(8’)*—~C*/~ does not yield any essential difference.

(i) Given an algebraic group defined over a field %, the problem of the
classification of A’ in 1.9 can be very complicated. However there are some
cases where such classifications are essentially known. For example, let G=SL,
and G’'=[y(N). Then the classification is implicitly done in efforts to give an
explicit formula for the traces of Hecke operators (cf. Hijikata [4]).

§ 3. Representations.

3.0. In this section, let G be a separable locally compact group, and A be
a conjugacy closed family of open subgroups of G. Suppose that the pair (G, A)
has Property ().

Let K€ A* and p: K—GL(V) be a finite dimensional unitary representation,
where V denotes a finite dimensional vector space over the complex number
field C with the scalar product (,).

Let U(p) denote the representation of G induced from p. By the definition
of A*, there exists some He A such that H~K. Since such H is unique by
1.3, let us denote this H by H(K). Let K’ be another member of A* in the
same commensurability class as K, H(K)=H(K’). If KDK’, let p’ be the
restriction of p to K’. Then every irreducible constituent of U(p’) is contained
in U(p). Hence in the view points of the construction of the representations
we may restrict our attention to only large enough K in CI(H).

For example we may assume KDH(K) without any important loss of
generality.

3.1. LEMMA. Assume KDH(K)=H, and put 1=p| g and Ny={g&€ No(H)|X~4X}.
Then K is a subgroup of Ny.

Proor. If k=K, then [H: HNE*HE]S[K: kE'HR]=[K: H]<c. Hence
HCE*HE by the property (1) and then H=FEk 'HEk by the property (F2).
Since Xk 'hk)=p(k *hk)=p(k)"A(h)p(k) for any k€K and any h€H, we have
EENy.

3.2. We assume the quotient K\G is denumerable for any K=.4*. Then
recall that U(p) is realized on the Hilbert space
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v={f: @-V]lif|*= §@ | /(x)|*< oo}
by the action of g G as follows,

(UpX ) ) x)=p(p(xg)f(0(xg)) for f€V and x<0.

Here © denotes a system of representatives of the quotient K\G, |f(x)|?=
(f(x), f(x)), and @ is the section K\G—6, and 7(g)=g0(Kg)* is a mapping
from G into K.

This action of g G is essentially independent of the choice of the system
@. For, if ©’ denotes another system of representatives of the quotient K\G,
and <’ denotes another space with respect to @', then we can define a unitary
operator [: <V—cY’ such that I-U(p)(g)=U(p)(g)-I for g G as follows.

T(x")=p(p(xNf(B(x")) for feY and x'€6".

In particular, we may assume that the system @ contains the identity element
of G. '

3.3. THEOREM. Let G be a separable locally compact group and A be a
Sfamily of open smbgroups of G such that the pair (G, A) has Property (F). Let
A* be a commensurability closure of A. Let K;e A* and let H;=H(K;) and
assume K;DH;, where i=1, 2. Let p; be a unitary representation of K; acting
on a finite dimensional vector space V; over C, and X;=p;|u, the restriction of
pi to Hi.

If X’s are irreducible, then

(i) U(py) and Ulps) are disjoint from each other unless there exists g=G
such that Hy=g 'H,g and X,=*X,.

(ii) If Hi=H,=H and X,=X,=2X, then the dimension of the space of all
intertwining operators from U(py) to Ulp,) is not greater than the group index
Ny K.

(iii) In particular, if Ki=K,=Ny, then U(p;) and U(p,) are equivalent to
each other if and only if p, and p, are equivalent to each other.

ProoF. We use the notations in 3.2 attaching the index i as V;, 6;, 74,
etc. for 1=1, 2.

Suppose dim V;=n; and let {v,|t=1, 2, ---, ny} (resp. {u,;|j=1,2, -+, ny})
be a basis of V, (resp. V,). We may assume these bases are orthonormal.

Then we can set, for any k€K,

ng
Pz(kz)uj: > a;, s(Ro)us a;, (k)eC
and s=1

ny
pik)v,= T=21 by, (kD)v, by k)EC.
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Let ¢, (resp. ¢,) denote the characteristic function on @, (resp. ©,) of x
(resp. y).
Under these notations, we have

Ulp(8)(tspe)= 2 a5 (7a(0s(x8™)8NtiPoyces-1

for any g=G, where x€0, and u ), denotes the assignment x'—¢,(x")u; for
x'€06,.

34. LEMMA. Let &(U(ps), U(p,)) be the space of all intertwining operators
Srom U(p,) to (Up,). If there exists a non trivial Me&(U(p,), U(p,)), then H,C

x*H,x for any x< j\:JiSuppllM(ujgoe)HC@l.

PROOF. Since we have
ng
Up)(R)M(u jp0.)= sgl aj (RYM(usp.) for any k€K,
it holds that

B UMM 0)l™= ¥ | Mup)]*
for each x=®,. On the other hand we have
2 | U )(R) Mt j0)(x) | = 2 | M(uj00) (0 k)2

by the definition of U(p). Hence we get

(1) 2 | MG y0)(x) 7= 2 | M(u00)(0:(x )|

for each x=6, and each k= K..
Therefore if x<Supp|M(u,p.)| for some j, then the orbit of the action of
K, on @, containing x must be a finite set, because we have (1) and

ng

S M) (x) 2= 2 | M0 < 0.

ey J=1

In other words [K,: K,nx 'K;x]<oco. This implies [H,: Hynx *H,x]<oo and
hence H,C x *H,x by the property (F1). This completes the proof of the lemma.

3.5. PRrOOF oF 3.3 (i). Suppose U(p,) and U(p,) are not disjoint. That is
to say that there exist non trivial members M &(U(p,), U(p,)) and Ne &(U(py),
U(pz)). Accordingly we have Lj} Suppl| M(u ;)| #0 and \t) Suppl| N(v )| #0.

By the lemma of 3.4, there exists x€6, and y=®, such that H,Cx *H,x and
H,Cy*H,y. Thus we get H,Cx 'HxCx 'y *H,yx, hence yxe Ny (H;) by the
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property (92) and Hy,=x"'H,x. This shows the first part of (i).
To see the second part of (i), we may assume H,=H,=H by the first part
of (i). Then it is clear that \U Supp|M(u;0)|CNe(H)N@,. So we get, for
J
each j,

M(ujSDe): 1s§n1 a; (X)(vee), a;(x)eC.

.tENg(H)ﬂ@I

This is symbolically

(1) oy M(ujpe), )= __ 2 (a; (), veay )

ZEN (HHXNOy

where ¢t on the left shoulder denotes the transposing symbol and («;,, .(x)) is an
neX n; matrix.

Applying U(p.)(h) (h€ H) to the both sides of (1), we have
the left side="‘(---, MU(0:)(h)(u;p.), =)

:t< ’ M(; a]S(h’)(uSSDe>>y )

=(a; s(h)(+, M(usgpe), --)
(2) = NE (aj (W) aj ()G, vihe, )
TEN o (H)NOy
and
the right side= 3 (a; (x)'C, Ulp)(h)vs), )

ZEN G(H)NOy

(3) = E)pel(aj,t(x»(bt,r(x}lx_l))t('"; Vs *)

TEN GH)IN

Since {ve).|j, x} is a linearly independent subset of V;, comparing (2) and
(3) we get

(a;, s(h)a, (x)=(a;, (X))(bs.(xhx™)).

Since M is non trivial, there exists some x&Ng(H)N\O,; such that (a; (x))+0.
Hence the irreducibility of X;’s shows that n,=n, and (a; ,(x)) is invertible by
the Schur’s lemma. This implies X,~7X;, because X,(h)=(a; s(h)), and *A(h)=
(b, (xhx™Y)) by the definition.

3.6. PrROOF oF 3.3 (ii). We may assume 2,=X,=X by (i). Since X~*X for
any x such that (a; (x))#0, it follows that if Me&(U(p,), U(p,)), then M(u;p,)
appears in

V| t=1, -+, n, xENyNO D¢

for each j, where n=dim X and <S)¢ denotes the vector subspance spanned by the
subset S of <V over C. Since the action of G on @, is transitive, {u;p.|;}
generates the space <V, as a G-space. Therefore, to define a member M in
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&(U(ps), U(py)), we must define a suitable linear mapping :

<uj§0elj>c_’<vj¢’x | B xeNxm@1>C .

Clearly <v;d.|j, x0c=P{vz| D¢ (direct sum of vector spaces). We can easily
check that <u;p.|j>c (resp. <v;d.|j>¢) is closed under the action of H by
U(p2)(H) (resp. U(p:)(H)) and is isomorphic to V, (resp. V,) as an H-space. We
note that V; and V, are isomorphic to each other as H-spaces by our assump-
tion. Thus, since V,’s are irreducible H-spaces, we have

dim Hompg(<u ;.| j>¢, vzl e)=1.

Therefore dim &(U(p,), U(p,)) is not greater than the cardinality |N,N0O,|.
Since |NyN@,|=[Ny: K;], we get (ii). '

3.7. Proor or 3.3 (iii). Since K,=K,=N,CN4zH), we may assume that
0,=0,, v;=~u; for each j, and ¢,=¢.. Then we have, for each j,

M(Ungg): t§1 aj, t(uZSDe) A, €C.

(Note that Ng(H)N\6@,={e}.) This is symbolically

(1) Uoor, M(ujop), ) =(at;, )" ) e, =) -

Applying U(p,)(k) (ke K;=K,=Ny) to the both side of (1), we get
(@, (RN ez ) (e s wagpe, =) =(ats, )by, (R s Uegpe, =2

Since {u;p.|j} is a linearly independent subset of <V, we have (a; (k))a; )=
(aj,)(b; (k). If U(p,) and U(p,) are not disjoint, then there exists non trivial
member Me &(U(p;), U(py)), and then (a;,)#0. Since p;’s are irreducible, («;, ;)
is invertible. That is to say p;~p,. This completes the proof.

3.8. Under the same notations as in 3.3, let W(p,, p;) be the set of all
x€ Nyn\O, which satisfy the following two condition.

(1) =x is fixed by K,, i.e. x=68(xk) for ke K,.

(2) p:=%p; on x'K;xNK,.

COROLLARY. [If dimX=1 in 3.3 (ii), then

| W(pz po)|=dim &(U(p2), Ulp))= | Ki\Ny/Ks|.
Proor. From Mackey Theorem 3/, we have
dim &(U(p»), U(pl)):DEZ@)fdim &(ps, p1: D),
where 9; denote the set of all double cosets, namely D=K,xK, (xG), such

that K, and x™'K,x are commensurable, and &(p,, p;: D) denotes the space of
all intertwining operators between the restrictions of p, and “p, to x 'K, x N\ K.
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The dimension of &(p., p:: D) is independent of the choice of the representa-
tive x of D=K,xK,.

If D=K,xK,=9;, then the commensurability of x'K;x and K, shows
xENg(H) by Property (F) for (G, A). Moreover dim &(p,, p,: D)=1 or 0,
because dim p,=dim p,=1. If this value is equal to 1, then x€Ny,. Thus we
have

dim &(U(p,), Ulp))= | K:\Nu/ K, |.

On the other hand, if x€W(p,, py), then K,Cx 'K,x from x=6,(xk) for
any k€K, and then we can define a member of &(U(p,), U(p)) by setting
Pe—Ps from p,=7p;. So we get |W(ps, p1)| =dim E(U(p,), U(pw).

3.9. REMARK. In 3.8, if we take K,=K,=H,=H,=H and p,=p,=X,=X,=X,
then it holds that dim &(UX), UX))=|Ny/H|. This is the result of Théoréme 1
of Saito [7].
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