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1. Introduction.

A number of results concerning the existence of optimal controls for
systems governed by parabolic partial differential equations without delays
has been reported in [1-5] and others. However, it appear that only few
results are available for systems with time delayed arguments appearing in
the coefficients of the differential equations ([3, p. 262], [6]).

In [6], Teo and Ahmed considered the existence of optimal controls for
second order parabolic partial delay-differential equations with controls and
delayed arguments appearing in the first and zero order coefficients and the
forcing terms. Further, the solutions of that system satisfy the differential
equations a.e.

In this paper, we consider the question on the existence of optimal controls
which minimize a given cost functional subject to the system monitored by
the following parabolic partial differential equations
n
2

j=1

0
Tx‘-"(F”(x’ t—hy, ulx, t—hy))

Law(x, D=3 {

+fa(e t=hy, ulx, t—h)}  on Q=@X(0, T]

&(x, )=0(x, t) on 2x[—hy, 0] 1.1
o(x, t)=0 on 082x[0, T,
where hy, hy, -+, hy, T are constants so that

0=hy<h,< -+ <hy<T<oo; N finite, usD,;

D is the class of controls to be defined later; and, for each u< D, the operator
L{u) is given by
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{i 0 (;:31 agif(x, t——hk).;QSb_(&t;hkj—

=1 0x; 0x;

Lawgix, o280 $

k=0

taxfn, t—he ulx, t—h)glx, t—ho)}

7 (1.2)
- § bj(x7 t} u(x} t))'¢xj(x; t)

—c(x, t, u(x, t)-¢(x, t).

Note that solutions of system (1.1) are weak solutions in the sense of Aronson
[7] The existence and uniqueness of weak solutions are established in
of §4. Notations are given in §2 and the statement of the control
problem in §3. In §4, we also present some Lemmas which will be needed
in proving the existence of optimal controls. The existence theorem of
optimal controls is presented in of §5 and is proved by using
Filippov’s method. Note that the control restraint set U is taken as either
a measurable multifunction or an upper semicontinuous multifunction.

2. Notations.

Let R™ denote the n-dimensional Euclidean space. For any x€R?®, let
lx]|=C0x:|DY% “a.e” means almost everywhere with respect to Lebesgue
measure. |FE| denotes the Lebesgue measure of the measurable set E of any
finite dimensional Euclidean space. 0B denotes the boundary of the set B
and B its closure.

A function f: XXY—R™ is said to be a Carathéodory function if f(-, b)
is measurable on X for every b=Y and f(a, -) is continuous on Y for almost
all ae X.

Let G be any bounded connected subset of R®, and denote by CYG) the
class of all continuous /-times differentiable real-valued functions on G, where
[ is a positive integer or equal to co. C¥G) denotes the class of all functions
in CYG) with compaét support in G.

H}*G) is the completion of C3(G) in the norm

Izl &lzlle 6 +lzz]26,

1/2
where Izl o _é_(galz(x) | 2a’x) . and

22l ([, 3 120 (0)1%dx) .

Wt G) is the class of all measurable functions z: G—R! having a
generalized derivative z, and satisfying
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lzlle 6+ l2zlle6 <00,

where |z|. ¢ and ||z:l. ¢ are as defined above.
LYG), (g=1), is the Banach space of all measurable functions z: G— R*
that are ¢'* power integrable on G. Its norm is defined by

1/q
Hzllq,aé(SGIZ(x)l"dx) , for 1=¢<co; and
IIZHm,GéessE%upIZ(x)l for g=oo.

L*"(GX]I), (1=q, r=o0), is the Banach space of all measurable functions
z: I— LYG) such that |zl »gxs<oo, where

2o &(] ([ 12tx, D12ax) at)™,  for 1=q, r<eo;

Izllg.e, 6 1 LS sup ll2(-, Dlg. for 1=q<co, r=co;

I2herr o &( (e, Dllmoyd) for g=co, 1=r<co;
and

[#lemer 2, e384 1205, D] for g=r=co.

LI, HY¥G)) (LI, W¥G))), (r=1), is the Banach space of all measura-
ble functions z: I—-H}*G) (z: I-W*'%G)) having a finite norm |z||,, where

1/r
Il &{] (I, Dl5.e+lz, DIsdt} for 1=r<co

and
lllzlllmé,es§e§up(112(-, Olaetzz(5 Dllee) for r=oo.
3¢ ¢ b
AP A . A
¢t= at ’ ¢E1,= ax1; ’ ( )IJ= axj ( )'

When there is no confusion, any subsequence will be denoted by its
original sequence.

3. Definitions, basic assumptions and the statement of the problem.

Let 2 be a bounded connected open set in R™ and let N be a positive
integer. Let h, (k=0,1, -+, N), and T be fixed constants so that 0=#h,<h;
<o <hy<T<oco. Let I, A[—hy, 0], I,LAWO, T], LA[—hy, T], Qc22XI,
QAQRXI,, and Q,AQXI,.



346 S. NaBaBaN and K.L. TEo

DEFINITION 3.1. A multifunction U: Q—R™ is a function from @ into
the set of nonempty subsets of R™. A multifunction U: Q— R™ has complete
values if and only if U(x, t) is complete for all (x, )=@. A multifunction
U: Q—R™ is measurable if and only if U-Y(B)={(x, t)eQ: Ulx, )"\B*0} is
measurable for every closed subset B of R™.

Let U, be a given nonempty compact subset of R™ and let U: Q— R™ be
a multifunction such that Ulx, t)CU, for all (x, t)eQ. Let a: Q,—U, be a
given measurable function. Let D be the set of measurable functions
u: Q,—U, such that u(x, t)=#a(x, t) a.e. on Q,, We say that « is a control
if ueD.

For any pair of functions ¥'e L¥I,Hy%R)) and Z=CYQ) defined on
QX[—hy, T] and Qx[0, T] respectively, let the following abbreviations be
defined by

<L(’LI,) w; Z>Qx (r.'a)_A—__- JJ

2x(z, o)

[— Wx, 1) Z(x, 1) G.1)

N ) n
+ 2 { 2 (iglakij(x’ t——hk)' wzi(x) t—“hk)

k=0 \ j=1

+aa, t— iy uln, 1= ) Ux, t=h0))-Za (, 0}
— 3 b,(x, , ulx, 1) Ty (x, )-2x, 1)

—c(x, t, ulx, 1) U(x, t)-Z(x, t)]dxdt

and

FW), Dol || (5 B Fae, t—h ulx, t=hy) (32

2%z, o)L k=0

X Ze s O=Fulx, t—hy ulx, t=ha)- 2z, D} |dxdt,

where 0=7<o =T, L(u) is as defined in (1.2) and

Tz, 08 B (Fulx, t—hs, ulx, t=hi)a,

Hfes t=ha, u(x, t—h)}

Corresponding to system (1.1), we need the following definition.
DEFINITION 3.2. For each ueD, the function ¢(u): Q,— R' is said to be
a weak solution of system (1.1) in the sense of Aronson [7, p. 633] if
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@) owlee L>=(QINL* I, Hy ¥ (2));
(i) ¢(u)x, H)=D(x, t) on Q,;
(iii) <L(u)¢(u)—|—£f‘(u), 70¢=0 for any 7<CiQ);

and
Gv) lim SQ¢(u)(x, t)-z(x)dngg@(x, 0)-2(x)dx

for any zeCi(£2), where ¢(u)|o denotes the restriction of ¢(u) on Q.

For ease in future references, the following assumptions will be referred
to as assumptions (A):

(i) For each ke{0,1,---, N}, the functions a., (i, j=1, -+, n), are
measurable on @ X[—h,, T—h,]and ag;, Fej, fs, (j=1, -+, n), are Carathéodory
functions in (2 X[—hy, T—h,;])X U,; and by, (j=I, -+, n), ¢ are Carathéodory
functions on (2 X [0, T)X U,;

(i) There exist constants «, >0 such that

,ilaoij(X, £)-&-;=all|? a.e. on Q for all {&R™; for each k{0, 1, -, N},
1,J=

Iakijléﬁ a.e.on 2x[—h T—h,]and la,;| =B a.e on Q@ X[—hy, T—hIXU,
for all i, j=1, -, n; and |b;], G=1, -, n), |c|<B a.e. on 2X[0, TIXU,;
(iii) There exists a constant 7>0 such that for all k{0, 1, ---, N} and
ueD,
1 Fs(Ces -5 ule, '))”z.z.gx(—nk,r-nkl, =1, -, n),

"fk(', % u(') '))Hq.r,Qx(—hk,T—hklér)

L+—1-<1; and
2qg r

iv) @< L¥,, W+*Q)) and @(-, 0)= L¥(QD).

A control ue D is called an admissible control if

A ulx, )eU(x, t) a.e. in Q; and

(ii) there exists a unique weak solution ¢(u) of system (1.1) correspond-
ing to u.

Let A denote the set of all admissible controls. Let the cost functional
J be defined on A by

where ¢ and r satisfy 1<q, r=o0 and

j[u]:SSQd(x, t,ulx, ) glx, t, plu)x, H)dxdt, (3.3)

where ¢(u) is the weak solution of system (1.1) corresponding to u and the
functions d: QX U,—R! and g: QX R'— R! satisfy the following assumptions
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which will be referred to as assumptions (H):

(i) d and g are Carathéodory functions on @ X U, and @ X R?, respectively ;
and

(ii) there exist a non-negative continuous function A:[0, 0)— R! and

non-negative measurable functions p,=L*?(Q), p,=L*-7(Q), where 2, o, 2/,

a’'>1, %—l—il,—:l and %-l—i:l such that for all ue€U, and ¢ L*>*Q)

ld(x, t, w)| <py(x, t); and

lg(x, t, ¢(x, 1) =pa(x, 1)-h([Pllz.2.9) on Q.

We now state our control problem “P” as: subject to system (1.1), find
an admissible control u,=A such that

JLud=J[u] 34)

for all u€A. Such an admissible control will be referred to as an optimal
control.

4. Preliminary results.

We first consider the existence and uniqueness of weak solutions of
system (1.1) for each ueD.

THEOREM 4.1. Consider system (1.1). Suppose that the assumptions (A) are
satisfied. Then, for each u€ D, system (1.1) admits a unique weak solution ¢(u)
satisfying the estimate

IpGO15 = o Fl G2(wllf 2. o= M, (4.1

where the constant M>0 depends only on «, 8,7, n, T, N, q, v, hy, |2],
19C-, Ol 0 P32, and [Pzl3 2. q,

PrOOF. Let ueD be arbitrary but fixed. Let ¢ be a positive integer
such that ch,<T=(c+1)h,. We now consider system (1.1) on 2X[(t—1h, th,]
successively in the order of i=1, 2, -+, c and on 2X[oh;, T]. Clearly, system
(1.1) on 2X[0, h,] reduces to the system without time delayed arguments
given by

Liwg(x, = 3 (Fiu)x, D)a 7wz, 1) on 2X(O, h]

O(x, Y=0 on d2X[0, hy] 42)
1 O(x, 0)=0(x,0) x2,

where the operator L,(u) is given by
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Liwg(x, =gz, D= 3 {( X ansx - galx, 1 (43)

tan(x, £, ulx, 0)-g(x, D)+, £, ulx, 0)-ga (x, 1)}
—c(x, t, u(x: t))'¢(x: t);

N n
Fiw)(x, )= 3 { 3 auis(x, t—h0)-Bu(x, t—ha) (4.4)
+apf(x, t—hy, u(x, t—hy) Oz, t—hk)}
+ 35 Fulx, t—ha, ulz, t—hy); and

Fax, = 2 falx, t—ha, ulx, t=ha). 45)

Applying Minkowski’s inequality to (4.4) and then using the assumptions
A(ii), A(iv) and A(iii) and Cauchy’s inequality, it can be shown that

||F§(u)|[§,z,gx(o. %) (4.6)
SEN+DINn B D5, 2. o+ NB P32, o +(N+ D} 5 j=1, -

Further, by applying Minkowski’s inequality to it follows from the
assumption (Aiii) that

1 GOI2.r e =N+ 4.7

Since @(-, O)e L¥2), we observe from Theorem 1 of [7, p. 634] that system
(4.2) admits a unique weak solution ¢'(u)e L>~(2x%0, h,))NL*(0, k.1, Hy*(2)).
By Lemma 1 of [7, p. 623] with {=1, s=0 and p=oco, we obtain the estimate

16" (3., @x o, np I 9(0)11Z, 2, 2x 0. 13 (4.8)

<d (|00, Olt.ot 3 IFHWIE,2.0x00.n

HIFA 7. 000.n5)

where the constant d,>0 depends only on a, 3, n, ¢, 7, |£2| and h,. Thus, it
can be easily deduced from estimates and (4.7) that

I6* ()13, @x o, 1 I @H(13, 2, 2x 0. p =M1, (4.9)
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where the constant M,;>0 depends only on a, 8,7, 1, N,q, |2|,7 hy
19, 013, 0, 1Pl320, and [Dl13,2. g,

Consider system (1.1) on 2x[h,, 2h,]. Clearly, system (1.1) on 2 X[h,, 2Ah,]
reduces to the following system

J Lu(udp(x, )= 35 (Fia)(x, D)etfu)z, ) on 2 (h, 2hi]
o(x, )=0 on d2x[hy, 2h,] (4.10)
1 O(x, h)=¢ (u)(x, hy) x€8,
where Lo(u) and f(u) are as defined in and respectively, and F¥}u)
is as defined in with @ replaced by #'(u) in which @'(u) is defined by

~1( )( Z‘)"‘{ (D(x, t) on Qo
ks, B= O (u)x, 1) on 2%, k].

Since ¢'(u) is the weak solution of system (4.2), it follows from expression
(2.3) of [7, p. 622] that ¢'(u)(-, hye L*¥(2). Moreover,

(), ADlla 2= " (Ul 2,0, 20,2 p1 « (4.11)
Note that for each =1 and g= L>=(2X%]I),

181 acr=(] ([ 196, Di2ax)"ar)"

g(gl{estseslupgglgz&(x, Dltdx)" Y ar)” 4.12)

LT Blls, e, 0x1 -

As before, by applying Minkowski’s inequality to F%u) and using the as-
sumptions A(ii)-A(iii) and Cauchy’s inequality, it can be easily shown that

IF33 2 05 cny 20 p S BN+ 1) N2 B2 GLu)I3, 0, 0oy, 1y
+NB G 2. 0x -1y a0 (V4172 (4.13)

for j=1, ---, n. Thus, it follows again from Theorem 1 and Lemma 2 of [7,
p. 634, p. 623] that system (4.10) admits a unique weak solution ¢*(u)
€ L>>(2X(hy, 2R, )N L¥((hy, 2h,], Hy%(Q)) satisfying the estimate

@23, 2x ny. 23+ I GF(UNN3, 2, 2y 2n 2
=do(l¢'w)(-, h)l3 0+ ,-ZEI IFFOI3 2. 0x hy. 23 (4.14)

‘|"”f~(u)”37 2xChy. Zhll) ’
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where the constant d,>0 is as defined for [4.8).
Using (4.13), and (4.7), it can be easily deduced from
(4.14), that

16*(WIIZ, ., 2y, 20 3 [ G252, 0x cry en p= Mo, (4.15)

where the constant M,>0 depends only on a, 8,7, n,¢q |2],7, N, hy,
19(-, 03,0, |1PI3 29, and D12 5. ¢,

By the same token, we can show successively in the order of i=3, -, ¢
that system (1.1) on 2X[(¢—1)h,, th,] and on 2X[oh,, T] admits unique weak
solutions ¢*(u)e L> (X (G—1Dh,, th, DN L*(G—1Dh,, ih,], HY*(2)), (=3, -, o),
and ¢’ (u)e L>=(2X(ah,, TDNL*(ch,, T], Hy*(2)). Further, ¢*(u), (i=3, -,
o+1), satisfy the corresponding estimates as for inequality for some
constants M;>0 (1=3, ---, 0+1), where M;, (i=3, -+, o) depend only on
a, B, r,n,q, 7, |21, N, hy, 19C, 030 1Pl3:ee, and [D:l32q, while Mgy,
depends only on T and the above quantities.

Let ¢(u) be defined on Q, by

D(x, t) on Q,
p(u)(x, )=1 ¢*(u)(x, t) on 2X((G—Dhy, ihy], i=l, -, 0
&7 (u)x, t) on 2X(ch, T].

Then, by taking M= gilMi, it follows readily that ¢(u) satisfies estimate
i=1

(4.1} We now show that ¢(u) is the unique weak solution of system (1.1).
Clearly, ¢(u) satisfies the conditions (i), (ii) and (iv) of It remains
to show that ¢(u) satisfies the condition (iii) of Definition 3.2 Let p=C*Q) be
arbitrary with compact support in £ and vanishing at t=T. Let 5, (I=1, -,
o), and 7,4, denote, respectively, the restrictions of 7 on 2X[(—1h,, [h,],
(I=1, -+, 0),and 2X[oh,, T]. Clearly, p,ecl(ﬁx[(l—l)hl, lhy]), U=1, ---, o),
p,,HECl(.Qx[ahl, T7) with compact support in £ and 7,+, vanishes at t=T.
Since, ¢'(u), (=1, ---, o), and ¢°**(u) are weak solutions of system (1.1) on
QxL(I—Dhy, Lhy], (=1, ---, 0), and 2x[oh,, T], respectively, it follows from
expression (1.4) of [7, p. 620] that for each [=1, .-, &,

S9¢l(u)(X, Lhy)-n(x, lhl)dx+<L(u)¢l(u)+SF(u), NDOx(U=Dhy, Lny3 (4.16)

=| #w)x, (=R ulx, (=Dhdx;

and
CL(w)p* () +F(u), o+ 0xony 11 (4.17)

:SQ?J’UH(“X’C’ ohy) nesi(x, ohy)dx .
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Further, since ¢'(u)(x, 0)=@(x, 0) on £, it follows from (4.16), (4.17) and the
definitions of ¢(u) and 7 that

L@+, 15e=| B(x, 0)-7(x, Odx. (4.18)

In particular, if »C}Q), then holds with zero on its right hand side.
Hence, ¢(u) is a weak solution of system (1.1). The uniqueness of ¢(u)
follows from the uniqueness of ¢%(u), (I=1, ---, o+1). This completes the
proof.

Let 0<p<min {1, h,} be an arbitrary but fixed constant. Let £, denote
a subset of £ having a distance p from 082 ; and let K,20Q,X(p, T].

LEMMA 4.2. The set of weak solutions {¢(u): u€D} of system (1.1) is
equicontinuous and uniformly bounded on K,.

PRrROOF. Let ¢ be a positive integer so that ¢h,<T =(g-+1)h;. Then, system
(1.1) on 2x[0, h,] reduces to system (4.2), which is a system without time

delayed arguments. Let K}AK,N2X[0, h,]J=82,%X(p, h,] and let poz—é—p. For
an arbitrary (%, I)e K}, let G(p)2A{xeR": |x—Z%] <%po} X(t—p}, t]. Let

o u)=¢(u)oxo,ny. Since ¢'(u) is the weak solution of system (4.2) and
G(Bp)C2X(0, hyl, it follows from Theorem B of [7, p. 616] that for all

(x; t)EC(Po); R
| (u)(x, ) =di(p0™ " P21 (W22 60500+ 08 R1)

where the positive constant d; depends on n, p,, @, 8, |£2|, hy, g and 7,0 is a
positive constant which is determined by the values of » and ¢ occurring in

n ~ .
assumptions (A), and k1=( ;1 I F5Gli, z,gx<o.hln+Ilf(u)ll?,.r,gxm,hln). In particular,

[ (w)(x, DI =di(po™ " P2 @ (W)II3. 2. 6300+ 0T 1) - (4.19)

Since (%, f) is an arbitrary element in K} and the constant d, is independent

of (z, t), it follows that holds for all (%, {)e K} In view of

and (4.7), it can be easily shown that
|¢*(w)(x, )| =m, (4.20)

for each (x, t)€ K}, where the constant m,>0 depends only on «, 8, n, 6, |2/,
hy ¢, 7, N, 7, T, po, |9, 0)3.0, | P3,5.9,and D]} 5., Since m, is independent
of ueD, {¢(u): ueD} is uniformly bounded on K} The equicontinuity of
{¢(w): ue D} on K} follows from Theorem C of [7, p. 616].

Consider system (1.1) on 2X[h,—p, 2h,]. Then, system (1.1) on Qx[hl——p,
2h,] reduces to the system without time delayed arguments given by
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Low)g(x, t)= ;:(F?-(u)(x, )z, +fw)(x, 1) on @X(hi—p, 2h]

¢(x, 1)=0 on 0R2X[h,—p, 2h,] (4.21)
Sb(x: h1_P):¢l(u)(x, hl_P) on Q;

where F3(u) and f(u) are as defined for system (4.10). Let ¢*(u)=¢(u)|gxtn,2np
and let

o' (u)(x, t) on £2X[hi—p, h

T2 , 1)=
Pt 1 {¢2(u)(x, D on @x(hy 2h].

Then @*(u) is the weak solution of system (4.21). Let K2AK,N\2X(hy, 2h]
=802,X(hy, 2h,] and let p(,::%p. Then, by using a similar argument as that

given above, we can show that {¢*(u): u€D} is uniformly bounded and
equicontinuous on K3

By the same token, we can show successively in the order of [=3, -, g,
that the sets {¢'(u): u€D}, (=3, ---, ), and {¢’*(u): u€D} are uniformly
bounded and equicontinuous on K}, (=3, :--, o), and KJ*!, respectively, where

¢l(u):¢(u)|Qx[(l—1)h1.Lh1]; (=3, -, 0),
¢o‘+l(u):¢(u) | Qxlohq. Ty

Ky K, N(U—Dhy, 1R ]=2,X((—=Dhy, th], (=3, -, 0),
and
K3 AK ,N(aoh,, T]=82,%X(oh,, T].

Thus, the set {¢(u): uD} on K, is uniformly bounded and equicontinuous.
This completes the proof.

Using and the Ascoli-Arzela theorem, we can easily obtain
the following result.

LEMMA 4.3. Let {u,} be a sequence in D and let {¢(u,)} denote the cor-
responding sequence of weak solutions of system (1.1). Then, there exist a sub-
sequence of {@(u,)}, which is denoted by the original sequence, and a continuous
Sfunction ¢: Q—R* so that ¢(u,)—¢ uniformly on any compact subset of Q.

With the help of Lemma 4.3, we can prove the following lemma.

LEMMA 4.4. Consider system (1.1). Let the assumptions (A) be satisfied.
Let {u;} be a sequence in D such that for each k{0, 1, ---, N},

akj('r *y ul(', '))——)dkj('r ')} (]:1, Tty 7’1,),

in the weak * topology of L>(2X(—h,, T—h,]));
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Fiicy o w(c, N=Fasc, ), (=1, -, n),
weakly in L**(QX(—h,, T—h]); and
£y o wle, N=Fa(e, +) weakly in L¥(QX(—h,, T—h]);
and that
bi(e, - wils, N=by-, ), (G=L,-,n), and
c(.) -, ul(., .))._,g(., )

in the weak * topology of L==(2x(0, T]). Let ¢(u,) denote the weak solution
of system (1.1) corresponding to u,. Then, there exist a subsequence of {¢(u.)},
which is denoted by the original sequence, and a function ¢: 2XI,— R* such
that
(i) u)— ¢ weakly in L**Q), uniformly on any compact subset of Q ; and
(ii) ¢ is the weak solution of the following system

~ N n ~
Lotx, )= Z{ 5 Fus, t=h e Fux, t=hp} on Q

O(x, )=P(x, t) on Q, (4.22)
Igl)(x, £)=0 on 9Rx[0, T1,

where the operator L is defined by

Lotx, Dagux, D= S{ 3 (Z anste, t=ho)gulx, t=h)

+aux, t=he) @z, t=h0)_ |} 336, g (5, D

zj

—&(x, 1) (x, t).

Proor. Since ¢(u;) is the weak solution of system (1.1) corresponding to
u,, it follows from the estimate (4.1) of [Theorem 4.1 that, for each u,,

I3, . @ @(n)3 2. =M, (4.23)

where the constant M>0, which is independent of [, is as defined for [4.1)
This implies that

l@(udls,e.q=T-M (4.24)
and
lPz(udli 2. q=M. (4.25)

In view of the weak compactness of bounded sets in L%, Hy%({2)), it follows
from [(4.24) and [4.25) that there exists a subsequence of {¢#(u,)} which con-




Optimal controls of the first boundary value problems 355
verges to ¢ weakly in L%(/,, Hy*2)). By Lemma 43, we observe that, cor-
responding to this sequence, there exist a subsequence of {¢(u,;)}, which is

again denoted by the original sequence, and a function 5: Q— R* such that

¢<uz)—>5 (4.26)

uniformly on any compact subset of . However, by virtue of and
it follows from Theorem 13.44 of [8, p. 207] that ¢(u,) also converges

to ;b weakly in L*¥Q’), where. Q" is any compact subset of ¢¢. By the uni-

queness of the weak limit, we obtain readily that &(x, t)=g3(x, t) a.e. on any
compact subset of Q. We may modify ¢ if necessary, by taking @(x, t)

=;S(x, t) on any compact subset of Q. Thus, it follows from that

P(u)— 4. 27)

uniformly on any compact subset of Q.
By estimate [4.23) and Lemma 3 of [7, p. 633], it follows that = L>=(Q).
Hence, ¢< L>=(Q)N\L*(I;, Hy¥{2)).

Let ¢ be defined on @, by
O(x,t) on Q,
s, 0=
o(x, t) on Q.

Next, we shall show that ¢ is the weak solution of system (4.22). It is clear
that ¢ satisfles the conditions (i) and (ii) of Let 7 be an
arbitrary element in C}(Q). Since ¢(u;) is the weak solution of system (1.1),
it follows from the condition (iii) of that

CL(u)p(u)+F(uy), 70¢=0. (4.28)

By virtue of the hypotheses, (4.27), Lemma 412, and the weak convergence of
{p(u)} to ¢ in L¥I,, Hy*2)), we can deduce by using of [9] that
in the limit with respect to ! reduces to

Lo+, pde=0, (4.29)
where

G, 08 2 {5 (Fux, t—h)sytfils, t=hol

It remains to show that

lim{ g(x, 0)-2(x)dx=| gz, 0-zx)dx (4.30)
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for any zeC{(2).
Note that by using the same arguments as those given for expressions
(1.3) and (1.4) of [7, p. 619-620], we obtain, respectively, the following results:
(i) If the function ¢(u): 2XxI,— R* satisfies the conditions (i), (ii) and
(iii) of then

[ e, 90z, Ddx-+HL@PE+FF@), Daxco.s (431)

:SQ¢(u)(x, o)-n(x, o)dx

for any pECl(Q_) with compact support in £, where 0<o<z<ZT.
(i) If @(u) is a weak solution of system (1.1), then relation [(4.31) holds

with ¢=0 and its right hand side replaced by \ @(x, 0)-n(x, 0)dx. Since
2 )

satisfies the conditions (i), (ii) and (iii) of it follows from the
results stated in (i) that

Lo+ F, Docon={ $x, )-9(x, 9)dx (432)

for any »<C¥Q) with compact support in £ and vanishing near t=T, where
0<o<T. Further, since ¢(u;) is a weak solution of system (1.1), it follows
from the results stated in (ii) that

(L) P(u)+F), 1do=| O(x, 0)-5(x, 0)dx (433)

for any neC*(Q) with compact support in £ and vanishing near t=7. Letting
[— o0 in [(4.33) and using an argument similar to that used to obtain
it follows that the relation reduces to

(Eg+F, ;7>Q=S_Qq)<x, 0) 7(x, 0)dx (4.34)

for any »=C¥(Q) with compact support in £ and vanishing near t=7. Let
0<o<T and let g be a C'-function defined on [0, 7] such that ¢(t)=1 on
[0, ¢] and vanishes near t=7T. Then for any z€CiQ), q(-)z(-)eCYQ) with
compact support in £ and vanishing near t=T. Thus, replacing 7(:, +) by
g()z(+) in and and comparing their results, we obtain (4.30).
Therefore ¢ is a weak solution of system (4.22). By virtue of [Theorem 41,
¢ is the unique weak solution of system (4.22). This completes the proof.
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5. Existence of optimal controls.

In this section, we establish the existence of optimal controls fork the
problem P using Filippov’s method and
For each k=1, 2, ---, N, let &, be defined on Q XU, by

axx, t,v) on 2X[0, T—h1xU,

&k(X, t} v):{ -
ax, T—h,, v) on 2X(T—h,, TIxU,,

where a, denotes a;j, Fp; or f, (j=1, -, n).
Let I': QX U,— RWbentb+ntz he defined by

I'(x, t, w)=col (an(x, t, u), -+, aonlx, t, w), 8.(x, t, w), -,
Ain(x, t, w), -, axx, t, u), -+, anax, t, u), bi(x, t, u), ---,
bu(x, t, uw), c(x, t, u), Foulx, t, w), -+, Fon(x, t, u),
Fulx, t, u), -, Fu(x, t, ), -, Fyx, t, w), -,
Fua(x, t, w), folx, 1, w), fulx, t, w), -, falx, t, 0),
d(x, t, w)),

a
where col (a,, -, as)___[ - |. For each (x, )e@, let R(x, t) be defined by

as
Rix, )={I(x, t, w): uslU(x, t)}.

Clearly, R(x, t)YCR* for each (x,)eQ and R: Q—R° is a multifunction,
where s=(N+1)(2n+1)+n-+2.

The following assumptions will be referred to collectively as assumptions
(B): ‘ _

(i) U is a measurable multifunction and for each (x, t)e@Q, U(x, t) is
compact ;

(ii) For each (x, t)e(, the set R(x, t) is convex and closed; and

(iii) The multifunction R: Q — R® is upper semicontinuous with respect
to inclusion (u.s.c.i) for all (x, 1)@, where s=(N+1@2n-+1)+n-+2.

THEOREM b5.1. Consider the problem P. Suppose that the assumptions (A),
(H) and (B) are satisfied. Then, there exists an optimal control.

PROOF. By virtue of the assumption H(ii) and estimate [4.1), it can be
easily deduced from Holder’s inequality that |inf {J{u]: ucsA}|<oo. Let
v=inf{/[u]: ucA} and let {u;} CA be a minimizing sequence such that

llim][ul]:v . (6.1)



358 S. NaBaBAN and K.L. Teo

Let us first consider the case when 1<gq, r<co. The cases when 1<g< oo,
r=o00 and g=o0, 1<r<oo will be considered later. In view of the assumptions
A(ii), A(iii) and H(i), there exist subsequences of {a,(-, -, wi(+, *))},
({27 CRE'7ICAIED)) PRI (77 CRIEE "7 CIED)) PR (< CHICIE 7 CRIED)) PRI ¥ 'Y CRICIE 77 CRIED))
{FasCy o wC, D, AfoCs o wle, D AfeCs - w, Y, =1, -+, n; k=1, -,
N), and {d(-, -, w;(+, +))}, which will be denoted by their original sequences,
and functions a.;, b;, ¢ L=~(Q), FNkje L2¥Q), fre L"(Q), (j=1, -+, n; k=0,
1, -, N), and de L*?(Q) such that for each k< {l, ---, N} and j{l, ---, n},

o+ i V= oy )y Gy s wale, N aasc, +),

by = wiles DB, ), €y oy e, - N—EC, +) (5.2)
in the weak * topology of L>>(Q);

Foi(y o5 wa(y D= Fos(, ) Fage, o i, N=Fis(c, +) (5.3)

weakly in L*¥Q);

fo('» * ul(" '))—‘).}70('7 '), f\k(') s ul(', '))_)fk(', ') (54)
weakly in L*™(Q); and
d(': * ul('; '))—)J(" ') (55)

weakly in L*(Q).
Let
y(x: t):COI (a-01<x’ t): Tty don(x, t); dll(x: t)) Tty dNn(x! t): 51(."(, t)) Tty

En(-xi t)) E(x) t); ﬁOI(xr t)) Tty ﬁon(x: t): ﬁll(x, t): Tty
ﬁNn(xy t)) fo(x: t)! ) fN(-x) t); J(x, t))-

Then, y is a measurable function from @ to R®, where s=(N+1)2n-+1)+n-+2.
We shall show that y(x, t)eR(x, t) a.e. in Q. For each [=1, 2, ---, let

§.04x, HEQ: w(x, & Ulx, 1)}.  Let c}:g Q.. Then |J]=0. Let Q!

=Q\Q. Let (x,, t)€Q' be an arbitrary regular point of the function jy.
Since R(x,t) is u.s.c.i on @, for any given ¢>0 there exists a 6=d(e)>0
such that

R(x, t)CTR*(x,, to) (5.6)

whenever |(x, t)—(x,, to)| <0, where R*(x, t) denotes the closed e-neighbour-

hood of R(x, t).
Let Qs={(x, )eQ: |(x, t)—(xo to)] <6}. Let ECQs be any measurable
set such that (x,, f)€E. Let
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yl(x: t)zr(x, t: ul(x, t))'

Then, y,(x, t)eR(x, t) a.e. on Q for =1, 2, ---. Thus, it follows from [(5.6)
that y,(x, t)e R*(x,, t,) for almost all (x, {)€E and for all [=1,2, ---.
Further, since R*(x,, t,) is closed and convex, we obtain that for all /=1, 2, ---,

ﬁSSEyl(x, Hdxdite R (x,, to). (5.7

Since R%(x, t) is closed, it follows from [5.2), [5.3), [5.4), [5.5), [(5.7) and the
fact that | E|<co that

-

lim 12‘—1~SSEyl(x, Hdxdt= T%TSSEy(x, Hdxdt (6.8)

ERE(XO) tﬂ) 1

and consequently

y(x,, to)=1lim {TZI—ETSSEy(x, t)dxdt}ERe(xo, to) .

1E|-0

Since ¢ was arbitrary and R(x,, t,) is closed, y(x,, t, € R(x,, t,). Further,
since almost all points (x, t)Q are regular points of y, we have that
y(x, t)eR(x, t) a.e. on Q. By a modification on a set of measure zero if
necessary, we can assume that y(x, )€ R(x, t) for all (x, t)eQ.

Note that Q can be considered as a locally compact Hausdorff space in
which each compact subspace is metrizable, U, as a separable metric space
and U: Q—U, as a measurable multifunction with complete values. Further,
I is a Carathéodory function from QX U, into the Hausdorff space R, where
s=(N+D@n+1D+n+2, and y: §—R*, where s=WN+DQ@n+D+n+2, is a
measurable function with y(x, t)eR(x, t)=I(x, t, U(x, t)) for all (x, t)Q.
Thus, it follows from Theorem 3’ of [10, p. 281] that there exists a measur-
able function u,: Q — U, such that u,(x, )€ U(x, t) and y(x, )=I(x, t, u,(x, t))
for all (x, t)€Q. This, in turn, implies that &, (x, t)=a.(x, t, u(x, 1)),
ari(x, )=08xx, t, us(x, t)), b(x, )=b,(x, t, uyx, t)), &x, )=c(x, t, usx, t)),
Fojlx, y=Foy(x, t, uo(x, 1)), Fof(x, )=Fuj(x, t, uo(x, 1)), Folx, D=Folx, t, us(x, t)),
fulx, D=Fulx, t, u(x, ), G=1, -, n; k=1, ---, N), and d(x, t)=d(x, t, us(x, t)).

Note that for each ke({l, .-, N}, aulx, t, u(x, )=awlx, t, 2(x, t)),
Fioilx, t, wi(x, ))=Fx, t, a(x, t)), (G=1,--,n), and fu(x, ¢, w(x, )=
Falx, t, a(x, 1)) on 2X[—h,, 0] for all [=1,2,.-. For each k=1, ---, N,
extend the definitions of a,;, F,; (j=1, -, n), fr on 2X[—h, 0] and the
definition of u, on 2X[—hy, 0] by defining
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dkj(x: t)zakj(xi tl ﬁ(x, t)): ij(x’ t):ij(xx t; ﬁ(x) t)): (]Zl’ Tty n)y
Falx, O=F(x, t, a(x, 1)) on QX[—hy, 0] and
u(x, )=a(x, 1) on 2x[—hy, 0].

Then, it follows from that there exist a subsequence of {@(u,)},
which is denoted by the original sequence, and a unique weak solution ¢(u,)
of system (1.1) corresponding to u, such that

(u)— d(u,) (5.9)

uniformly on any compact subset of (). Hence, u, is an admissible control.
We now show that u, is an optimal control. From [(5.9), it follows that

(uiy ¢(u))—(uy, ¢(u))—0 in measure on Q. Further, (u;, ¢(uy), (ui, ¢(uo))
e L?»?(Q)X L*¥Q), (p=1). Thus, it follows from the assumption H(i) and
Lemma 3.1 of [11, p. 524] that

Ui(x, HAd(x, t, ui(x, 1)-(glx, t, ¢lu)(x, 1)—g(x, t, ¢(u)(x, t)))—0

in measure on Q. This implies that there exists a subsequence of {¥;} which
is denoted by the original sequence, such that

U(x, t)—0 a.e. in Q. (5.10)

By virtue of the assumption H(ii) and estimate [4.I), ¥, is bounded by a
L¥*(Q)-function. Hence, it follows from [(5.10) and the Lebesgue dominated
convergence theorem that

SSQd(x, t, uix, 1))-(g(x, t, plu)(x, )—g(x, t, ¢u)x, t))dxdt —0

(5.11)
as [—oo. Recall that d(-, -, u,(+, -)—d(-, -, us(+, ©)) weakly in L*Q).

Further, by assumption H(ii) and estimate [(4.1), g(-, -, u.(-, -)€ L* ' (Q), where

1 i,:l and iJr—l—,zl. Thus, it follows readily that
A 2 o 0o

SSQ(d(x’ t; ul(x, t))_d(x) t; uo(x, t)))g(x, t,- uo(X, t))dth—"O (512)
as [—co. Thus, it follows from (5.11) and (5.12) that
llijerolf[uz]=][uo]=w

Therefore, u, is an optimal control.

In the case when 1<g<oco and r=co, it follows from and the
assumption A(iii) that [f4(-, -, u.(-, Dg.q.o=T"%. Using this estimate and a
similar argument to the one used above, we can show that an optimal control
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exists. The case when g=oco and 1<r<oo, can be similarly treated. This
completes the proof.

REMARK 52. Let U: §— R™ be a multifunction such that U is u.s.c.i
and U(x, t) is compact for each (x, t)eQ. Then, it is clear that U is a
measurable function. In addition, if we further assume that the functions
Ay, by, ¢, Fuj, fr and d, (k=0, 1, ---, N; j=1, ---, n), are continuous, it follows
that R(x, t) is u.s.c.i and compact for each (x, ). Thus,
remains valid if the functions a.j, b, ¢, Fij, f2, (=1, -, n; k=0, 1, -+, N),
and d are assumed continuous; and when the assumptions (B) are replaced
by the following assumptions (B’):

(i) Uisu.s.c.i on @ and for each (x, t)eQ, U(x, t) is compact; and

(ii) For each (x, t)eQ, the set R(x, t) is convex.

REMARK 5.3. remains valid when the cost functional J is
defined by

Joad=({ Hx, t, gz, 1), ux, t)dxdt,

where ¢(u) is the weak solution of system (1.1) corresponding to u and the
function H: QX R'XU,— R! satisfies the following assumptions (H’):

(i) H(x,t, ¢, u) is continuous in (¢, u) for all (x, t)€Q and measurable
in (x, t) for each (¢, W)€ R*'XU,;

(ii) There exist a nonnegative continuous function A : [0, c0)—R! and a
nonnegative measurable function pe L**Q) such that for all usU, and for

all g L2%(Q),
|H(x, t, ¢(x, 1), W|=p(x, t)h(|¢lls2¢) a.e. on @; and

(iii) There exist measurable functions p,, p,= L*°(Q) and Carathéodory
functions a,, a,: QX U,— R* such that

“al(': s 'L[(‘, '))”2’,0’.Qr ”a2('y y 'LI,(', '))lll',o’,Qéa

for all ueD and for some constant d>0, where A, 2/, o, 6">1, %—i—%:l and

%4_%_—_1: Further for all u,, u,eU,,

Pilx, t)(aix, t, u)—aix, t, u))<H(x, t, ¢, u)—H(x, t, &, us)
§172(x, t)'(az(x: t, ul)_az(x, t, uZ)))

for all (x, t, ))cQXRL
For this case we let I': QX U,— R*, where s=(N+1)2n+1)+n+3, be defined
by
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[(x, t, u)=col(au(x, t, u), -+, aonlx, t, u), dulx, t, u), -+,
dnn(x, t, u), bi(x, t, u), -+, bu(x, t, w), c(x, t, ),
Foi(x, t, w), -, Fou(x, t, u), Fy(x, t, u), -,
Fyn(x, t, w), folx, t, w), filx, ¢, w), -,
Fulx, t, u), ay(x, t, u), ax(x, t, w)); and

Rlx, )y={(x, t, u): uelU(x, t)}.
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