# Continuation of $A^{\infty}$ -functions from submanifolds to strictly pseudoconvex domains

By Kenzō ADACHI

(Received July 11, 1978)

### § 1. Introduction.

Let D be an open set in  $C^n$ . Let  $H^{\infty}(D)$  be the space of all bounded holomorphic functions in D. By  $A^k(D)$ ,  $k \ge 0$ , we denote the algebra of  $C^k$ -functions on  $\overline{D}$  which are holomorphic in D, where  $v \in C^k(\overline{D})$  means that all derivatives of order  $\le k$  of v admit a continuous extension to  $\overline{D}$ .  $A^k(D)$  is a Banach space with respect to the norm

$$||f||_k = \sup_{z \in \partial D} \sup_{|\alpha| \le k} |D^{\alpha}f(z)|,$$

where  $\alpha$  is an *n*-tuple of nonnegative integers  $\alpha = (\alpha_1, \dots, \alpha_n)$ ,  $|\alpha| = \alpha_1 + \dots + \alpha_n$  and

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial z_1^{\alpha_1} \cdots \partial z_n^{\alpha_n}}.$$

Let D be a strictly pseudoconvex domain in  $C^n$  with  $C^{\infty}$ -boundary and let M be a complex submanifold of D which intersects  $\partial D$  transversally. G.M. Henkin [4] proved that there exists a bounded operator  $E: H^{\infty}(M)$  $\to H^{\infty}(D)$ , which continues bounded holomorphic functions on M to bounded holomorphic functions on D and moreover  $Ef \in A^0(D)$  if  $f \in A^0(M)$ . related results have been given by K. Adachi [1] and J. E. Fornaess [3]. In this paper we prove that the extended function Ef belongs to  $A^{\infty}(D)$  if  $f \in A^{\infty}(M)$ . In the second section we prove this theorem for a strictly convex domain D with  $C^{\infty}$ -boundary and  $M = \{z_{k+1} = \cdots = z_n = 0\} \cap D$ . The proof of this theorem is based on the method of Y.T. Siu [5] used to obtain the estimates for derivatives of the solutions in the  $\bar{\delta}$ -problem. In the third section, by applying the method of G.M. Henkin [4], we prove this theorem for strictly pseudoconvex domains with  $C^{\infty}$ -boundaries. In the fourth section we prove that the Ramírez-Henkin kernel is considered as an operator which maps  $C^k(\partial D)$  to  $A^m(D)$ , provided  $k \ge 2m+4$ . Also, we prove an approximation theorem:  $O(\overline{D})$  is dense in  $A^k(D)$  in the  $\| \|_m$ -norm, provided  $k \ge 2m+4$ . In the final section we prove that the multiplicative Cousin problem for  $A^{\infty}(D)$ 

332 K. Adachi

is solvable, provided that D is a strictly convex domain with  $C^{\infty}$ -boundary.

## § 2. The case of strictly convex domains.

Let D be a strictly convex domain in  $C^n$  with  $C^{\infty}$ -boundary, i.e.,  $D=\{z\in \widetilde{D}: \rho(z)<0\}$ , where  $\widetilde{D}$  is a domain,  $\overline{D}\subset \widetilde{D}$ ,  $\rho$  is a strictly convex  $C^{\infty}$ -function on  $\widetilde{D}$ . Then by G. M. Henkin [4],  $d\rho\neq 0$  on  $\partial D$ . Let  $\widetilde{M}=\{z_{k+1}=\cdots=z_n=0\}\cap \widetilde{D}$  and  $M=\widetilde{M}\cap D$ . We set  $\eta=(\eta_1,\cdots,\eta_n)$  and  $\zeta=(\zeta_1,\cdots,\zeta_n)$ , and

(2.1) 
$$\omega_k'(\eta) \wedge \omega_k(\zeta) = \left(\sum_{\nu=1}^k (-1)^{\nu-1} \eta_{\nu} d\eta_1 \wedge \cdots \wedge \widehat{d\eta_{\nu}} \wedge \cdots \wedge d\eta_k\right)$$

$$\wedge (d\zeta_1 \wedge \cdots \wedge d\zeta_k)$$
,

where  $\hat{}$  means that  $d\eta_{\nu}$  is omitted. Let  $\Phi(\zeta, z) = \sum_{i=1}^{n} \frac{\partial \rho}{\partial \zeta_{i}}(\zeta)(\zeta_{i} - z_{i}), \ \zeta^{0} \in \partial M$  and  $\tilde{U}$  be some neighborhood of  $\zeta^{0}$  in  $\tilde{D}$ . Now we need the following lemmata.

LEMMA 1. Let  $\phi_i \in C^1(\tilde{U})$  such that for  $\zeta \in \tilde{U} \cap \partial D$ ,  $\phi_i(\zeta) = \frac{\partial \rho}{\partial \zeta_i}(\zeta)$ . Let  $\tilde{\Phi}(\zeta, z) = \sum_{i=1}^n \phi_i(\zeta)(\zeta_i - z_i)$ . Then there exist c > 0 and an open neighborhood U of  $\zeta^0$  in  $\tilde{U}$  such that  $|\tilde{\Phi}(\zeta, z)| \ge c |\zeta - z|^2$  for  $\zeta$ ,  $z \in U$  and  $\rho(z) \le 0 \le \rho(\zeta)$ .

PROOF. There exist A>0 and an open neighborhood  $U_1$  of  $\zeta^0$  in  $\tilde{U}$  with diameter  $\leq \frac{1}{2}$  such that

$$\left|\phi_i(\zeta) - \frac{\partial \rho}{\partial \zeta_i}(\zeta)\right| \leq A \rho(\zeta)$$
,  $(1 \leq i \leq n)$ 

for  $\zeta \in U_1$  and  $\rho(\zeta) \geq 0$ . It follows that

$$|\tilde{\Phi}(\zeta,z)-\Phi(\zeta,z)| \leq nA\rho(\zeta)|\zeta-z|$$

for  $\zeta$ ,  $z \in U_1$  and  $\rho(\zeta) \ge 0$ . By Taylor's formula and the strict convexity of  $\rho$ , there exist an open neighborhood  $U_2$  of  $\zeta^0$  in  $U_1$  and  $\lambda > 0$  such that

$$\rho(z) - \rho(\zeta) \ge 2 \operatorname{Re} \sum_{i=1}^{n} (z_i - \zeta_i) \frac{\partial \rho}{\partial \zeta_i} (\zeta) + \lambda |\zeta - z|^2$$

for  $\zeta$ ,  $z \in U_2$ . Therefore

$$2|\Phi(\zeta,z)| \ge \rho(\zeta) + \lambda |\zeta-z|^2$$

for  $\zeta$ ,  $z \in U_2$  and  $\rho(z) \le 0 \le \rho(\zeta)$ . Let U be an open neighborhood of  $\zeta^0$  in  $U_2$  with diameter  $\le (4nA)^{-1}$ . Then

$$|\tilde{\Phi}(\zeta,z)| \ge |\Phi(\zeta,z)| - |\tilde{\Phi}(\zeta,z) - \Phi(\zeta,z)| \ge \frac{1}{2} \lambda |\zeta-z|^2$$

for  $\zeta$ ,  $z \in U$  and  $\rho(z) \leq 0 \leq \rho(\zeta)$ .

Q.E.D.

The next lemma is a consequence of Y.T. Siu [5].

LEMMA 2. Let m be a positive integer and let G be an open subset of  $C^n$ . Suppose  $1 \le i \le n$  and  $\frac{\partial \rho}{\partial \bar{\zeta}_i} \ne 0$  for  $\zeta \in \tilde{U}$ . Then every  $C^{\infty}$ -function  $h(\zeta, z)$  on  $(\tilde{U} \cap \partial D) \times G$  can be extended to a  $C^{\infty}$ -function  $\tilde{h}(\zeta, z)$  on  $\tilde{U} \times G$  such that  $\frac{\partial \tilde{h}}{\partial \bar{\zeta}_i}(\zeta, z) = \gamma(\zeta, z) \rho(\zeta)^m$  for some  $C^{\infty}$ -function  $\gamma(\zeta, z)$  on  $\tilde{U} \times G$ .

G. M. Henkin [4] proved the following.

Theorem 1. Let f(z) be a bounded holomorphic function on M. The formula

$$(2.2) (Lf)(z) = c_k \int_{\zeta \in \partial M} f(\zeta) \omega_k'(\eta) \wedge \omega_k(\zeta) ,$$

where

$$\eta_{i} = \frac{\frac{\partial \rho}{\partial \zeta_{i}}(\zeta)}{\sum_{\nu=1}^{n} \frac{\partial \rho}{\partial \zeta_{\nu}}(\zeta)(\zeta_{\nu} - z_{\nu})} \quad and \quad c_{k} = \frac{(k-1)!}{(2\pi i)^{k}}$$

defines a function F(z) which is bounded and holomorphic in D, and is such that F(z)=f(z) for any  $z \in M$ . Here  $F(z) \in A^{0}(D)$  if  $f(z) \in A^{0}(M)$ .

Using lemmata 1, 2, we have the following theorem.

THEOREM 2. Let F(z) be the function obtained in theorem 1. If  $f(z) \in A^{\infty}(M)$ , then  $F(z) \in A^{\infty}(D)$ .

PROOF. Since F(z) can be written as

$$F(z) = \int_{\partial M} \frac{f(\zeta)\omega_1(\zeta)}{\Phi(\zeta, z)^k}$$

where  $\omega_1(\zeta)$  is a  $C^{\infty}(k, k-1)$ -form in D, we have

$$D^{m}F(z) = \int_{\partial M} \frac{f(\zeta)\omega_{2}(\zeta, z)}{\Phi(\zeta, z)^{k+m}}$$

where  $\omega_2(\zeta, z)$  is a  $C^{\infty}(k, k-1)$ -form in  $\widetilde{D} \times \widetilde{D}$ . In order to prove that  $F(z) \in A^{\infty}(D)$ , it suffices to show that

$$\int_{\partial M} \frac{\omega(\zeta, z)}{\Phi(\zeta, z)^{k+m}}$$

is uniformly bounded in  $z \in D$ , where

$$\omega(\zeta, z) = \sum_{\nu=1}^{k} a_{\nu}(\zeta, z) d\bar{\zeta}_{1} \wedge \cdots \wedge d\bar{\zeta}_{\nu} \wedge \cdots \wedge d\bar{\zeta}_{k} \wedge d\zeta_{1} \wedge \cdots \wedge d\zeta_{k}$$

is a  $C^{\infty}(k, k-1)$ -form in  $\widetilde{D} \times \widetilde{D}$ . After changing the coordinates system linear-

ly, we can assume without loss of generality that there exists an open neighborhood  $\tilde{U}$  of  $\zeta^0$  in  $\tilde{D}$  such that  $\frac{\partial \rho}{\partial \zeta_j}(\zeta) \neq 0$  for  $\zeta \in \tilde{U}$  and  $1 \leq j \leq n$ . Fix  $1 \leq \nu \leq k$ . By lemma 2, we can find  $C^{\infty}$ -functions  $\phi_i(\zeta)$  on  $\tilde{U}$  such that  $\phi_i(\zeta) = \frac{\partial \rho}{\partial \zeta_i}(\zeta)$  for  $\zeta \in \tilde{U} \cap \partial D$  and  $\frac{\partial \phi_i}{\partial \bar{\zeta}_i}(\zeta) = \alpha_i(\zeta) \rho(\zeta)^{2m+2}$  on  $\tilde{U}$  for some  $C^{\infty}$ -functions  $\alpha_i(\zeta)$  on  $\tilde{U}$ . Also, by lemma 2, we can find  $C^{\infty}$ -functions  $\tilde{a}_{\nu}(\zeta, z)$  on  $\tilde{U} \times \tilde{D}$  such that  $\tilde{a}_{\nu}(\zeta, z) = a_{\nu}(\zeta, z)$  on  $(\tilde{U} \cap \partial D) \times \tilde{D}$  and  $\frac{\partial \tilde{a}_{\nu}}{\partial \bar{\zeta}_{\nu}}(\zeta, z) = \gamma_{\nu}(\zeta, z) \rho(\zeta)^{2m+1}$  on  $\tilde{U} \times \tilde{D}$  for some  $C^{\infty}$ -function  $\gamma_{\nu}(\zeta, z)$  on  $\tilde{U} \times \tilde{D}$ . Let  $\tilde{\Phi}(\zeta, z) = \sum_{i=1}^n \phi_i(\zeta)(\zeta_i - z_i)$ . By lemma 1, there exist c > 0 and a relatively compact open neighborhood  $U_{\nu}$  of  $\zeta^0$  in  $\tilde{U}$  such that

$$|\tilde{\Phi}(\zeta,z)| \ge c_{\nu} |\zeta-z|^2$$
 for  $\zeta, z \in U_{\nu}$  and  $\rho(z) \le 0 \le \rho(\zeta)$ .

Let

$$R_{\nu}(\zeta, z) = \frac{\frac{\partial \tilde{a}_{\nu}}{\partial \bar{\zeta}_{\nu}}(\zeta, z)}{\tilde{\boldsymbol{\varphi}}(\zeta, z)^{k+m}} - (k+m) \frac{\tilde{a}_{\nu}(\zeta, z)}{\tilde{\boldsymbol{\varphi}}(\zeta, z)^{k+m+1}}.$$

It follows that

$$|R_{\nu}(\zeta, z)| \leq \text{const } |\zeta - z|^{-2k+1}$$
 for  $\zeta \in U_{\nu} - \overline{D}$  and  $z \in U_{\nu} \cap D$ .

Let  $B_{\nu}$  be a relatively compact open neighborhood of  $\zeta^0$  in  $U_{\nu}$  such that  $\partial B_{\nu}$  is  $C^1$  and the normal vector of  $\partial B_{\nu}$  and  $\partial D$  are independent at every point of  $\partial B_{\nu} \cap \partial D$ . For  $z \in B_{\nu} \cap D$ , by applying Stokes' theorem to

$$d_{\zeta} \left( \frac{\tilde{a}_{\nu}(\zeta, z)}{\tilde{\boldsymbol{\phi}}(\zeta, z)^{k+m}} d\bar{\zeta}_{1} \wedge \cdots \wedge \hat{d}\bar{\zeta}_{\nu} \wedge \cdots \wedge d\bar{\zeta}_{k} \wedge d\zeta_{1} \wedge \cdots \wedge d\zeta_{k} \right)$$

$$= (-1)^{\nu-1} R_{\nu}(\zeta, z) d\bar{\zeta}_{1} \wedge \cdots \wedge d\bar{\zeta}_{k} \wedge d\zeta_{1} \wedge \cdots \wedge d\zeta_{k}$$

on  $(B_{\nu} \cap \widetilde{M}) - \overline{M}$ , we obtain

$$\int_{B_{\nu}\cap\partial M} \frac{a_{\nu}(\zeta,z)}{\Phi(\zeta,z)^{k+m}} d\bar{\zeta}_{1}\wedge\cdots\wedge d\bar{\zeta}_{\nu}\wedge\cdots\wedge d\bar{\zeta}_{k}\wedge d\zeta_{1}\wedge\cdots\wedge d\zeta_{k}$$

$$=-\int_{\partial(B_{\nu}\cap\widetilde{M})-M} \frac{\tilde{a}_{\nu}(\zeta,z)}{\tilde{\Phi}(\zeta,z)^{m+k}} d\bar{\zeta}_{1}\wedge\cdots\wedge d\bar{\zeta}_{\nu}\wedge\cdots\wedge d\bar{\zeta}_{k}\wedge d\zeta_{1}\wedge\cdots\wedge d\zeta_{k}$$

$$+\int_{(B_{\nu}\cap\widetilde{M})-\overline{M}} (-1)^{\nu-1} R_{\nu}(\zeta,z) d\bar{\zeta}_{1}\wedge\cdots\wedge d\bar{\zeta}_{k}\wedge d\zeta_{1}\wedge\cdots\wedge d\zeta_{k}.$$

It follows that if U is a relatively compact open neighborhood of  $\zeta^0$  in  $\stackrel{k}{\cap} B_{\nu}$ , then

$$\int_{\zeta \in \partial M} \frac{\omega(\zeta, z)}{\Phi(\zeta, z)^{k+m}}$$

is uniformly bounded for  $z \in U \cap D$ .

# § 3. The case of strictly pseudoconvex domains.

Let D be a strictly pseudoconvex domain in  $C^n$  with  $C^{\infty}$ -boundary, i.e.,  $D=\{z\in \widetilde{D}: \rho(z)<0\}$ , where  $\widetilde{D}$  is a domain,  $\overline{D}\subset \widetilde{D}$ , and  $\rho$  is a strictly plurisubharmonic function in  $\widetilde{D}$  and  $d\,\rho\neq 0$  on  $\partial D$ . Let  $\widetilde{M}$  be a k-dimensional complex submanifold in  $\widetilde{D}$  which intersects  $\partial D$  transversally. Let  $M=\widetilde{M}\cap D$ . Let D' be a strictly pseudoconvex domain with  $\widetilde{D}\supset \overline{D'}\supset D'\supset \overline{D}$  and let  $M'=\widetilde{M}\cap D'$ . Let

$$(3.1) \hspace{1cm} F(z,\,\zeta) = \sum_{i=1}^n \frac{\partial \rho}{\partial z_i}(\zeta)(z_i - \zeta_i) + \frac{1}{2} \sum_{i,\,j=1}^n \frac{\partial^2 \rho}{\partial z_i \partial z_j}(\zeta)(z_i - \zeta_i)(z_j - \zeta_j) \,.$$

It follows from the Oka-Cartan theory that the ideal  $I_M$ , of functions holomorphic in D' and equal to zero on M' has a finite set of generators  $\{F_1(z), \dots, F_q(z)\}$ . Let  $S_{\zeta, \sigma} = \{z : |\zeta - z| < \sigma\}$ . G. M. Henkin [4] proved the following

LEMMA. 3. There exist constants  $\sigma > \delta > 0$  such that for any  $\zeta \in \partial M$  the following assertions are true.

(a) For certain numbers  $q_1(\zeta)$ ,  $\cdots$ ,  $q_{n-k}(\zeta)$  from the set  $\{1, \dots, q\}$  and for certain numbers  $n_1(\zeta)$ ,  $\cdots$ ,  $n_{k-1}(\zeta)$  from the set  $\{1, \dots, n\}$  the map

$$z \to w(z, \zeta) = \{z_{n_1} - \zeta_{n_1}, \cdots, z_{n_{k-1}} - \zeta_{n_{k-1}}, F(z, \zeta), F_{q_1}(z), \cdots F_{q_{n-k}}(z)\}$$

is a biholomorphic map of the ball  $S_{\zeta,\sigma} \subset D'$  onto a neighborhood of zero  $W_{\zeta}$  in the space of the variables  $(w_1, \dots, w_n) = w$ .

(b) The preimage  $G_{\zeta}$  of some strictly convex domain  $V_{\zeta}$  of  $W_{\zeta}$  contains the domain  $D \cap S_{\zeta,\delta}$  and is contained in D, i.e.,

$$D \cap S_{\zeta,\delta} \subset G_{\zeta} = \{z \in S_{\zeta,\delta} : w(z,\zeta) \in V_{\zeta} \subset \bar{V}_{\zeta} \subset W_{\zeta}\} \subset D ,$$

where  $V_{\zeta} = \{w \in W_{\zeta} : \rho_{\zeta}(w) < 0\}$ , and  $\rho_{\zeta}(w)$  is a real valued  $C^{\infty}$ -function in the domain  $W_{\zeta}$  and is strictly convex in a neighborhood of  $\bar{V}_{\zeta}$ .

Let  $\sigma$  and  $\delta$  be the constants from lemma 3. We may assume that  $\varepsilon < \frac{\delta}{2}$ . Let  $\chi_i(z)$ ,  $i = 1, \cdots$ ,  $N(\varepsilon)$ , be  $C^{\infty}$ -functions such that  $\chi_i(z) \geq 0$ ,  $i = 1, \cdots$ ,  $N(\varepsilon)$ ,  $\sum_i \chi_i(z) = 1$  in a neighborhood of  $\bar{M}'$  and for any  $i = 1, \cdots, N$  the diameter of  $\sup \chi_i$  is less than  $\frac{\varepsilon}{3}$ . We set

$$\begin{split} & \chi_{\nu}^{1} \!\! = \!\! \sum_{i: \mathrm{supp} \chi_{i} \cap \mathrm{supp} \chi_{\nu \neq \emptyset}} \! \chi_{i} \,, \qquad \tilde{\chi}_{\nu} \!\! = \!\! \sum_{i: \mathrm{supp} \chi_{i}^{1} \cap \mathrm{supp} \chi_{\nu = \emptyset}} \! \chi_{i} \,, \\ & D_{\nu} \!\! = \!\! \left\{ z \! \in \! \tilde{D} : \, \rho(z) \!\! - \! \sum_{i=1}^{\nu} \lambda_{i} \chi_{i}(z) \! < \! 0 \right\}, \qquad \nu \! = \!\! 1, \, \cdots, \, N \,, \\ & \tilde{D}_{\nu} \!\! = \!\! \left\{ z \! \in \! \tilde{D} : \, \rho(z) \!\! - \! \sum_{i=1}^{\nu-1} \lambda_{i} \chi_{i}(z) \! - \! \lambda_{\nu} \tilde{\chi}_{\nu}(z) \! < \! 0 \right\}, \qquad \nu \! = \!\! 1, \, \cdots, \, N \,. \end{split}$$

 $D_0=D,\ M_{\nu}=\widetilde{M}\cap D_{\nu},\ \widetilde{M}_{\nu}=\widetilde{M}\cap\widetilde{D}_{\nu},\ \nu=1,\ \cdots,\ N.$  If  $\lambda_{\nu},\ \nu=1,\ \cdots,\ N$ , are sufficiently small, then  $D_{\nu}$  and  $\widetilde{D}_{\nu},\ \nu=1,\ \cdots,\ N$ , are strictly pseudoconvex and the assertion of lemma 3 holds for any  $\zeta\in\partial M$  with constants  $\sigma_{\nu}>\delta_{\nu}\geq\frac{3}{4}\delta$ , where  $\sigma_0=\sigma$ ,  $\delta_0=\delta$ .

In this setting we have the following.

LEMMA 4. There exist constants  $\lambda_1, \dots, \lambda_N > 0$  such that, for any  $\nu = 1, \dots, N$ , bounded operators

$$L^0_{\nu}: H^{\infty}(M_{\nu-1}) \rightarrow H^{\infty}(M_{\nu}) \text{ and } L^1_{\nu}: H^{\infty}(M_{\nu-1}) \rightarrow H^{\infty}(\widetilde{M}_{\nu})$$

exist with the following properties.

(a<sup>$$\nu$$</sup>)  $f(z)=(L^{0}f)(z)+(L^{1}f)(z)$  for any  $f \in H^{\infty}(M_{\nu-1})$  and any  $z \in M_{\nu-1}$ .

(b) 
$$L^0_{\nu} f \in A^{\infty}(M_{\nu}) \text{ and } L^1_{\nu} f \in A^{\infty}(M_{\nu}) \text{ if } f \in A^{\infty}(M_{\nu-1}).$$

PROOF. Now we follow the proof of lemma 12 of G. M. Henkin [4]. Suppose that constants  $\lambda_1, \cdots, \lambda_{\nu-1}$  satisfying the conditions of the lemma have already been chosen. We set  $U_{\nu} = \sup \chi^1_{\nu}$ . In the case when  $U_{\nu} \cap \partial M_{\nu-1} = \emptyset$ , there is nothing to prove. Let  $U_{\nu} \cap \partial M_{\nu-1} \neq \emptyset$ . We fix a point  $\zeta^0 \in U_{\nu} \cap \partial M_{\nu-1}$ . By lemma 3, there exists a biholomorphic  $w(z, \zeta^0) : S_{\zeta^0, 3\sigma/4} \to W_{\zeta^0}$ , where  $W_{\zeta^0}$  is some neighborhood of zero in the space of the variables  $(w_1, \cdots, w_n) = w$ . By the same lemma, it follows that

$$D_{\nu-1} \cap S_{r_0, s_0/4} \subset G_{r_0} = \{z \in S_{r_0, s_0/4}: \rho_{r_0}(w(z, \zeta^0)) < 0\} \subset D_{\nu-1}$$

where  $\rho_{\zeta^0}(w)$  is a strictly convex function in a neighborhood of the set  $\bar{V}_{\zeta^0} = \{w \in W_{\zeta^0}: \rho_{\zeta^0}(w) \leq 0\}$ . Let  $w \to z(w, \zeta^0)$  be the inverse map of the map  $z \to w(z, \zeta^0)$ . For any  $z \in G_{\zeta^0} \cap M_{\nu-1}$ , by the Cauchy-Fantappiè integral formula, we have

$$f(z) = c_k \int_{\partial V \zeta^0} f(z(\zeta, \zeta^0)) \frac{\omega_k' \Big( \frac{\partial \rho_{\zeta^0}}{\partial \zeta}(\zeta) \Big) \wedge \omega_k(\zeta)}{\Big[ \sum_{i=1}^k \frac{\partial \rho_{\zeta^0}}{\partial \zeta_i}(\zeta)(\zeta_i - w_i(z, \zeta^0)) \Big]^k} \ .$$

We set  $M'' = \{z \in \widetilde{M} : \rho(z) - \sum_{i=1}^{\nu-1} \lambda_i \chi_i(z) < \lambda_0\} = M''_0 \cup M''_1$ , where  $M''_0 = M'' \cap S_{\zeta^0, 3\hat{\sigma}/4}$ ,  $M''_1 = M'' \mid S_{\zeta^0, \hat{\sigma}/2}$ . If  $\lambda_{\nu} < \lambda_0$ , then  $[\widetilde{M}_{\nu} \cup M_{\nu}] \subset M''$ . M'' is pseudoconvex for sufficiently small  $\lambda_0 > 0$ . Let  $\chi_{\nu}^0 = 1 - \chi_{\nu}^1$ . We define for  $\alpha = 0$ , 1,

$$R_{\nu}^{\alpha}f(z) = c_{k} \int_{\partial V \zeta^{0}} f(z(\zeta, \zeta^{0})) \chi_{\nu}^{\alpha}(z(\zeta, \zeta^{0})) \frac{\omega_{k}' \Big( \frac{\partial \rho_{\zeta^{0}}}{\partial \zeta}(\zeta) \Big) \omega_{k}(\zeta)}{\Big[ \sum\limits_{i=1}^{k} \frac{\partial \rho_{\zeta^{0}}}{\partial \zeta_{i}}(\zeta) (\zeta_{i} - w_{i}(z, \zeta^{0})) \Big]^{k}} \; .$$

If the constants  $0<\lambda_{\nu}<\lambda_0$  are sufficiently small, by the same method as in the proof of theorem 2, it follows that  $R^0_{\nu}f\in A^{\infty}(M_{\nu}\cap S_{\zeta^0,\,3\delta/4})$ ,  $R^1_{\nu}f\in A^{\infty}(\tilde{M}_{\nu}\cap S_{\zeta^0,\,3\delta/4})$ . Moreover  $R^1_{\nu}$  is a bounded operator from  $H^{\infty}(M_{\nu-1})$  to  $A^0(M''_0\cap M''_1)$ . It follows that there exist bounded operators  $T^{\alpha}_{\nu}: H^{\infty}(M''_0\cap M''_1)\to H(M''_{\alpha}), \ \alpha=0$ , 1, such that  $f(z)=(T^0f)(z)+(T^1f)(z)$ , where  $f\in H^{\infty}(M''_0\cap M''_1)$  and  $z\in M''_0\cap M''_1$ . We set

Then  $L^0_{\nu}$  and  $L^1_{\nu}$  are the operators satisfying the condition of lemma 4.

Q. E. D.

If we set  $L_i = L_i^1 \circ L_{i-1}^0 \circ \cdots \circ L_1^0$ ,  $i=1, \cdots, N-1$ , and  $L_N = L_{N-1}^0 \circ L_{N-2}^0 \circ \cdots \circ L_1^0$ , and  $S_i = \widetilde{M}_i$ ,  $i=1, 2, \cdots, N-1$ ,  $S_N = M_{N-1}$ . Then we have the following.

THEOREM 3. For any  $\varepsilon > 0$ , there exist a covering  $\{S_i\}$  of the set  $\partial M$  by domains  $S_i \supset M$ ,  $i = 1, \dots, N(\varepsilon)$ , and bounded operators  $L_i : H^{\infty}(M) \to H^{\infty}(S_i)$  such that

- (1)  $L_i: A^{\infty}(M) \rightarrow A^{\infty}(S_i) \ (i=1, \dots, N)$
- (2)  $f(z) = \sum_{i} (L_i f)(z)$  for any function  $f \in H^{\infty}(M)$
- (3) the diameter of  $\overline{M}|S_i$  is less than  $\varepsilon$  for any  $i=1, \dots, N$ .

From this theorem, by following the proof of the fundamental theorem of G.M. Henkin [4], we obtain the following theorem.

THEOREM 4. There exists a bounded extension operator  $E: H^{\infty}(M) \to H^{\infty}(D)$  and moreover  $Ef \in A^{\alpha}(D)$  if  $f \in A^{\alpha}(M)$ ,  $\alpha = 0$ ,  $\infty$ .

# § 4. The Ramírez-Henkin kernel.

In this section we study properties about the Ramírez-Henkin kernels for strictly pseudoconvex domains with  $C^{\infty}$ -boundaries and an approximation theorem for  $A^k(D)$ . Let D be a strictly pseudoconvex domain in  $C^n$  with  $C^{\infty}$ -boundary and  $\rho$  be a defining function of D defined in  $\widetilde{D}$ . Then we obtain a  $C^{\infty}$ -function  $\Psi(z, \zeta)$  on  $\widetilde{D} \times \widetilde{D}$  holomorphic in z with the following properties:

- (1)  $\Psi(z, \zeta) \neq 0$  for  $\zeta, z \in \widetilde{D}$  with  $\rho(\zeta) > \rho(z)$
- (2) for  $\zeta^0 \in \partial D$  there exist an open neighborhood U of  $\zeta^0$  in  $\widetilde{D}$  and a

338 K. Adachi

nowhere vanishing  $C^{\infty}$ -function  $G(z,\zeta)$  on  $U\times U$  holomorphic in z such that  $\Psi(z,\zeta)=G(z,\zeta)F(z,\zeta)$  on  $U\times U$  where  $F(z,\zeta)$  is the function defined in (3.1)

(3) there exist  $C^{\infty}$ -functions  $P_i(z, \zeta)$  on  $\widetilde{D} \times \widetilde{D}$  holomorphic in z such that  $\Psi(z, \zeta) = \sum_{i=1}^{n} (z_i - \zeta_i) P_i(z, \zeta)$ .

Let  $P(z, \zeta) = (P_1(z, \zeta), \dots, P_n(z, \zeta))$ . Then the Ramírez-Henkin kernel  $H(z, \zeta)$  for D can be written as

$$H(z, \zeta) = \frac{\omega'_n(P(z, \zeta)) \wedge \omega(\zeta)}{\Psi(z, \zeta)^n}$$

where  $\omega'_n(P(z,\zeta)) \wedge \omega(\zeta)$  is the differential form with respect to  $\zeta$  defined in (2.1). From proposition 3.3 in Y. T. Siu [5], we have:

LEMMA 5. If  $\omega(z, \zeta)$  is a  $C^{2m+2}(n, n-1)$ -form on  $\widetilde{D} \times \widetilde{D}$ , then  $\int_{\zeta \in \partial D} \frac{\omega(z, \zeta)}{\Psi(z, \zeta)^{n+m}}$  is uniformly bounded for  $z \in D$ .

From this lemma, we obtain:

THEOREM 5. Let s, m be nonnegative integers such that  $s \ge 2m+4$ . Let  $f(\zeta)$  be a  $C^s$ -function on  $\partial D$ . Then

$$\int_{\zeta\in\partial D} f(\zeta)H(z,\zeta) \in A^m(D).$$

Next we can prove the following corollary as in the proof of corollary II. 3 in E. L. Stout [7].

COROLLARY. Let s, m be nonnegative integers such that  $s \ge 2m+4$ . If  $f \in A^s(D)$  and if  $\mathfrak{U} = \{U_1, \dots, U_q\}$  is an open cover for  $\partial D$ , there exist functions  $f_1, \dots, f_q \in A^m(D)$ , such that  $f = f_1 + \dots + f_q$  and such that each function  $f_j$  is holomorphic on a neighborhood of the compact set  $\partial D | U_j$ .

By applying the method used in the proof of theorem II. 4 of E. L. Stout [7], we obtain an approximation theorem for functions in  $A^k(D)$ .

THEOREM 6. Let k, m be nonnegative integers such that  $k \ge 2m+4$ . If  $f \in A^k(D)$ , then there exists a sequence  $\{f_n\}$  in  $O(\overline{D})$  that converges in  $\| \|_m$ -norm to f.

PROOF. Choose a finite open covering  $\mathfrak{U}=\{U_1,\cdots,U_q\}$  of  $\partial D$ , and, for each j, choose a point  $P_j \in U_j$ . Let  $\Pi_j$  be the real tangent plane to  $\partial D$  at  $P_j$ , and let  $\nu_j$  be the unit outward normal to  $\partial D$  at  $P_j$ . Assume the  $U_j$ 's and the  $P_j$ 's have been chosen to satisfy these conditions:

- A) The real linear orthogonal projection  $\pi_j$  that carries  $C^n$  onto  $\Pi_j$  carries a neighborhood  $U'_j$  of  $\bar{U}_j$  diffeomorphically onto the open set  $\pi_j(U_j) \subset \Pi_j$ .
- B) For all  $z \in U_j$ , the points  $z \varepsilon \nu_j$  approach z nontangentially through D as  $\varepsilon \to 0^+$ .

Choose  $\gamma_1, \dots, \gamma_q$  to constitute a  $C^{\infty}$ -partition of unity on  $\partial D$  subordinate

to  $\mathfrak U$ , and write  $f=f_1+\cdots+f_q$  as in the corollary above. In order to approximate f, it suffices to approximate the functions  $f_j$ . For this purpose, define, for  $\varepsilon>0$  but sufficiently small, a function  $f_j^{(\varepsilon)}(z)$  by  $f_j^{(\varepsilon)}(z)=f_j(z-\varepsilon\nu_j)$ . It follows that  $f_j^{(\varepsilon)}\in O(\overline{D})$  for all sufficiently small  $\varepsilon>0$ . We have

$$\|f_j^{(\varepsilon)}(z)-f_j(z)\|_m=\sup_{z\in\partial D}\sup_{|\alpha|\leq m}|D^\alpha(f_j^{(\varepsilon)}(z)-f_j(z))|\to 0\quad\text{as}\quad\varepsilon\to 0\;.$$
 Q. E. D.

# § 5. The multiplicative Cousin problem for $A^{\infty}(D)$ .

Let  $S_n$  be the set of all strictly convex domains in  $C^n$  with  $C^{\infty}$ -boundary. Let  $D \in S_n$ . Then D can be written in the form  $D = \{z \in \widetilde{D} : \rho(z) < 1\}$ , where  $\widetilde{D}$  is a domain,  $\widetilde{D} \supset \overline{D}$ ,  $\rho$  is a strictly convex function in  $\widetilde{D}$ . Let

$$M=\max\{x_{2n}: \text{ for some } z\in\overline{D}, z=(z_1, \dots, z_n), x_{2n}=\text{Im } z_n\}$$

and let m be the corresponding minimum. Let  $\varepsilon_0$  satisfy  $0 < \varepsilon_0 < (1/12)(M-m)$ . Let  $\eta_i$ , i=1, 2, be real valued functions of a real variable such that

(1)  $\eta_i$  is of class  $C^{\infty}$ , i=1, 2,

(2) 
$$\eta_1(t) = 0$$
 if  $t \leq \frac{1}{2}(M+m) + \frac{5}{2}\varepsilon_0$ ,

$$\eta_2(t) = 0$$
 if  $t \ge \frac{1}{2}(M+m) - \frac{5}{2}\varepsilon_0$ ,

(3) 
$$\eta_1(t) \ge 2$$
 if  $t \ge \frac{1}{2}(M+m) + 3\varepsilon_0$ ,

$$\eta_{2}\!\left(t\right)\!\!\geq\!\!2$$
 if  $t\!\leq\!\!rac{1}{2}\!\left(M\!+\!m
ight)\!-\!3arepsilon_{\scriptscriptstyle{0}}$  ,

(4) 
$$\eta_1''(t) > 0$$
 if  $t > \frac{1}{2}(M+m) + \frac{5}{2}\varepsilon_0$ ,

$$\eta_2''(t) > 0$$
 if  $t < \frac{1}{2}(M+m) - \frac{5}{2}\varepsilon_0$ .

Let  $D_1=\{z: \rho(z)+\eta_1(x_{2n})<1\}$ ,  $D_2=\{z: \rho(z)+\eta_2(x_{2n})<1\}$ . Then it is easily verified that  $D_1$ ,  $D_2$  and  $D_1\cap D_2$  are elements of  $S_n$ .

LEMMA 6. Let D,  $D_1$ ,  $D_2$  be as above. If  $f \in A^{\infty}(D_1 \cap D_2)$ , then we can write  $f = f_1 + f_2$ , where  $f_1 \in A^{\infty}(D_1)$  and  $f_2 \in A^{\infty}(D_2)$ .

PROOF. Let  $\phi$  be a  $C^{\infty}$ -function on  $C^n$  which has the properties that

$$\psi=0$$
 on  $\left\{z\in\partial(D_1\cap D_2): x_{2n}<\frac{1}{2}(M+m)-\varepsilon_0\right\}$ 

340 K. Adachi

$$\psi=1$$
 on  $\left\{z\in\partial(D_1\cap D_2): x_{2n}>\frac{1}{2}(M+m)+\varepsilon_0\right\}$ .

Let  $\tilde{\rho}$  be a defining function of  $D_1 \cap D_2$ . For  $w \in D_1 \cap D_2$ , we can write

$$f(z) = c_n \int_{\partial(D_1 \cap D_2)} \frac{f(\zeta)k(\zeta)}{\Phi(\zeta, z)^n} = f_1(z) + f_2(z)$$

$$f_1(z) = c_n \int_{\partial(D_1 \cap D_2)} \frac{f(\zeta)(1 - \psi(\zeta))k(\zeta)}{\Phi(\zeta, z)^n}$$

$$f_2(z) = c_n \int_{\partial(D_1 \cap D_2)} \frac{f(\zeta)\psi(\zeta)k(\zeta)}{\Phi(\zeta, z)^n}$$

where  $\Phi(z, z) = \sum_{i=1}^n \frac{\partial \tilde{\rho}}{\partial \zeta_i}(\zeta)(\zeta_i - z_i)$  and k(z) is a  $C^{\infty}(n, n-1)$ -form on some neighbors.

borhood of  $\overline{D_1 \cap D_2}$ . From the proof of theorem 2 and the properties of  $\psi$  it is easily seen that  $F_1 \in A^{\infty}(D_1)$ ,  $f_2 \in A^{\infty}(D_2)$ . Q. E. D.

Next we prove that the multiplicative Cousin problem with  $A^{\infty}$  data is solvable on every domain of class  $S_n$ . The related results have been given by K. Adachi [2] and E. L. Stout [6].

THEOREM 7. Let  $D \in S_n$ , and let  $\{V_{\alpha}\}_{{\alpha} \in I}$  be an open cover for  $\overline{D}$ . If for each  $\alpha$ ,  $f_{\alpha} \in A^{\infty}(V_{\alpha} \cap D)$ , and if for all  $\alpha$ ,  $\beta \in I$ ,  $f_{\alpha}f_{\beta}^{-1} \in A^{\infty}(V_{\alpha} \cap V_{\beta} \cap D)$ , then there exists  $F \in A^{\infty}(D)$  such that for all  $\alpha$ ,  $Ff_{\alpha}^{-1}$  is an invertible element of  $A^{\infty}(D \cap V_{\alpha})$ .

PROOF. Suppose that no F with the stated properties exists. Suppose there exist  $F_1 \in O(D_1)$  and  $F_2 \in O(D_2)$  such that for all  $\alpha$ ,  $F_1 f_{\alpha}^{-1}$  and  $F_2 f_{\alpha}^{-1}$  are invertible elements of  $A^{\infty}(V_{\alpha} \cap D_1)$  and  $A^{\infty}(V_{\alpha} \cap D_2)$ , respectively.  $f_0 = F_1 F_2^{-1}$  is an invertible element of  $A^{\infty}(D_1 \cap D_2)$ . If  $f_0 = \exp(f)$  then  $f \in A^{\infty}(D_1 \cap D_2)$ . By lemma 6 we can write  $f = f_1 + f_2$  where  $f_1 \in A^{\infty}(D_1)$  and  $f_2 \in A^{\infty}(D_2)$ . Define G on D by  $G = F_1 \exp(-f_1)$  on  $D_1$ ,  $G = F_2 \exp(f_2)$  on  $D_2$ . Then  $Gf_{\alpha}^{-1}$  is an invertible element of  $A^{\infty}(V_{\alpha} \cap D)$ . We have supposed that no such function G exists, so either  $F_1$  or  $F_2$  does not exist. Say  $F_1$ . The  $x_{2n}$ -width of  $D_1$ , i.e., the number max  $|x'_{2n}-x''_{2n}|$ , the maximum taken over all pairs of points z', z'' in  $D_1$ , is not more than three fourths of the  $x_{2n}$ width of D. We now treat  $D_1$  as we treated D, using the coordinate  $x_{2n-1}$ rather than  $x_{2n}$ , and we find a smaller set  $D_{11} \subset D_1$  on which the problem is not solvable and which has the property that the  $x_{2n-1}$ -width of  $D_{11}$  is not more than three fourths that of  $D_1$ . We iterate this process, running cyclically through the real coordinate of  $C^n$ , and we obtain a shrinking sequence of sets on which our problem is not solvable. The sets we obtain eventually lie in some element  $V_{\alpha}$ , and on  $V_{\alpha}$ , the function  $f_{\alpha}$  is a solution to the induced problem. Thus we have a contradiction. Q. E. D.

#### References

- [1] K. Adachi, Extending bounded holomorphic functions from certain subvarieties of a strongly pseudoconvex domain, Bull. Fac. Sci. Ibaraki Univ., No. 8 (1976), 1-7.
- [2] K. Adachi, On the multiplicative Cousin problems for  $N^p(D)$ , Pacific J. Math., 80, (1979), 297-303.
- [3] J.E. Fornaess, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math., 98 (1976), 529-569.
- [4] G.M. Henkin, Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains, Izv. Akad. Nauk SSSR, 36 (1972), 540-567. (English translation: Math. USSR Izvestija, 6 (1972), 536-563.)
- [5] Y. T. Siu, The  $\bar{\partial}$  problem with uniform bounds on derivatives, Math. Ann., 207 (1974), 163-176.
- [6] E.L. Stout, On the multiplicative Cousin problem with bounded data, Ann. Scuola Norm. Sup., 27 (1973), 1-17.
- [7] E.L. Stout,  $H^p$ -functions on strictly pseudoconvex domains, Amer. J. Math., 98 (1976), 821-852.

Kenzō ADACHI Department of Mathematics Nagasaki University Bunkyo Machi, Nagasaki 852 Japan