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§1. Introduction.

Let D be an open set in C*. Let H®(D) be the space of all bounded
holomorphic functions in D. By A*D), k=0, we denote the algebra of C*-
functions on D which are holomorphic in D, where veC*(D) means that all
derivatives of order<k of v admit a continuous extension to D. A*D) is a
Banach space with respect to the norm

I £l e= sup  sup |D*f(2)|,

where « is an n-tuple of nonnegative integers a=(ay, -+, @), |a|=a;+ - +a,
and

o'al

D= O
azizl .ee azzn

Let D be a strictly pseudoconvex domain in C® with C~-boundary and
let M be a complex submanifold of D which intersects 0D transversally.
G. M. Henkin proved that there exists a bounded operator E: H*(M)
— H>(D), which continues bounded holomorphic functions on M to bounded
holomorphic functions on D and moreover EfeA%D) if fe A"M). The
related results have been given by K. Adachi and J.E. Fornaess[3] In
this paper we prove that the extended function Ef belongs to A%(D) if
fe A°(M). In the second section we prove this theorem for a strictly convex
domain D with C>=-boundary and M={z,4,= - =2,=0}\D. The proof of
this theorem is based on the method of Y.T. Siu used to obtain the
estimates for derivatives of the solutions in the oJ-problem. In the third
section, by applying the method of G.M. Henkin [4], we prove this theorem
for strictly pseudoconvex domains with C~-boundaries. In the fourth section
we prove that the Ramirez-Henkin kernel is considered as an operator which
maps C*@D) to A™(D), provided k=2m+4. Also, we prove an approximation
theorem: O(D) is dense in A*(D) in the | ||,-norm, provided k=2m-+4. In
the final section we prove that the multiplicative Cousin problem for A*(D)
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is solvable, provided that D is a strictly convex domain with C~-boundary.

§2. The case of strictly convex domains.

Let D be a strictly convex domain in C® with C>-boundary, i.e.,
D={zeD: (z)<0}, where D is a domain, DD, o is a strictly convex C*-
function on 0. Then by G. M. Henkin [4], dp+#0 on D. Let M={zp4,= -
=z,=0} "D and M—M/\D We set p=(%, ==+, %) and {=({,, ---, {»), and

@ A A0 O=( 3 (— 1 udmA - Adpun - Ay

INCISVARVN GV

where > means that dy, is omitted. Let @, 2)= X .n 3t (C)(Cl z;), {’eoM
and U be some neighborhood of ¢°in /). Now we need the following lemmata.

LEMMA 1. Let ¢,~ecl(l7) such that for (e UnaD, ¢i(C)_ 3T, (C) Let
O, 2)= é}lqsi(C)(Ci—zi). Then there exist ¢>0 and an open neighborhood U of

¢ in U such that |8E, 2)|=cl&—z|? for &, zeU and p(2)=0=p(0).
PROOF. There exist A>0 and an open neighborhood U, of £° in [J with

d1ameter<% such that

¢i(C)- pé LOl=4p©), (=i=n)

for {eU, and p({)=0. It follows that

18, 2)— P&, 2)| <nAp@)|{—2z|
for {, ze U, and p({)=0. By Taylor’s formula and the strict convexity of p,
there exist an open neighborhood U, of {° in U, and 2>0 such that

p(2)—p(0)=2Re Z(zt Cz) ——(O+21C—z|?

BCz
for {, z€U,. Therefore
210, 2)l zp(O)+21L—=]*

for {, z€U, and p(2)=<0=<p(l). Let U be an open neighborhood of {° in U,
with diameter<(4nA)-*. Then

1BE, 212 10C, 2|8, 29— 0, | 212|i—21®
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for £, z€U and p(2)<0=p(0). Q.E.D.
The next lemma is a consequence of Y.T. Siu [5].
LEMMA 2. Let m be a positive integer and let G be an open subset of C™.

6(‘;?- #0 for LeU. Then every C>-function h(, z2) on
(ﬁmaD)xG can be extended to a C*-function h( z) on UXG such that

Oh —z (& 2)=7( 2)p@)™ for some C*-function 7, z) on UxG.

oC;
G. M. Henkin [4] proved the following.
THEOREM 1. Let f(2z) be a bounded holomorphic function on M. The formula

Suppose 1<i<n and

2.2) (Lf)=z)= ckS f(C)wk(v)/\wk(C)
where
W*A(C)
ni=— GC; and ckZ%_%
3 -22-0C-2)

defines a function F(z) which is bounded and holomorphic in D, and is such that
F(2)=f(z) for any ze M. Here F(z)e A%(D) if f(z)e A"(M).

Using lemmata 1, 2, we have the following theorem.

THEOREM 2. Let F(z) be the function obtained in theorem 1. If f(z)e A°(M),
then F(z)e A=(D).

PrOOF. Since F(z) can be written as

_{ Q)
F <Z>‘Sau O, 2)t

where w,({) is a C°(k, E—1)-form in D, we have

fQws(&, 2)

DrF=|, D, 2t

where w,(¢, 2) is a C=(k, k—1)-form in Dx D. In order to prove that F(z)e A~(D),
it suffices to show that

S (&, 2)
oM 5<C’ Z)k+m

is uniformly bounded in z€ D, where
3 - - -
w(C, Z): Zlay(C7 z)dCI/\ /\dCu/\ /\de/\dC1/\ /\de

is a C*(k, k—1)-form in DxD. After changing the coordinates system linear-
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ly, we can assume without loss of generality that there exists an open neigh-

borhood U of £° in I such that -gc (©)=#0 for ell and 1< j<n. F1x 1=v=k.
J

By lemma 2, we can find C~-functions ¢,({) on 0 such that ¢-(C)—raé;—(C) for
¢eUnoD and ¢l (<’;)—a,(C)p(C)27’““2 on U for some C=-functions ;) on U.
Also, by lemma 2 we can find C»-functions 4, z) on UxD such that

a g 2)=a,& z) on (UnoD)xD and gCy &, 2=r.&, 2)p@*™** on UxD for
some C=-function 7,(&, z) on UxD. Let &, 2)= 2 ¢«(O)(&;—z;). By lemma 1,

there exist ¢>0 and a relatively compact open neighborhood U, of {° in i
such that

18, 2)|zc,ll—2|*  for { z€U, and p(x)=0=p().

Let
. 2ic, - R
(e Z>_-W_( +m) @(C, Z)ktm+t :

It follows that
|R(&, 2)| Zconst |{—z|~%**  for {eU,~D and zeUND.

Let B, be a relatively compact open neighborhood of {° in U, such that 0B,
is C* and the normal vector of 0B, and 0D are independent at every point
of 0B,noD. For ze B,n\D, by applying Stokes’ theorem to

dc( -‘Lg')fzm de, N -AdCuA’--Adik/\dclA---Ade>

:<——l)v—1Rv(Cr Z)dc_l/\ ot /\dik/\dCI/\ T /\de
on (B,N\M)—M, we obtain

a2 5.
SBvﬁaMWdCI/\ AAE N - NAEeNAEN - NdE,

- _ a2 - T

B Sa(Bum?)—M D, z)m+* dBiN - AL - NAE RN - NdE,

(=R, 2)dEA - AAERAALNA - AdE,.

S(B ﬂM) M

It follows that if U is a relatively compact open neighborhood of {° in

(k\ B,, then
p=1 .
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S (@, 2)

tecon O, 2)*+m

is uniformly bounded for ze U\D.

§3. The case of strictly pseudoconvex domains.

Let D be a strictly pseudoconvex domain in C® with C*-boundary, i.e,
D={zeD: p(z)<0}, where D is a domain, Dcf, and p is a strictly pluri-
subharmonic function in D and dp#0 on 9D. Let M be a k-dimensional
complex submanifold in [ which intersects 8D transversally. Let M———MmD.
Let D’ be a strictly pseudoconvex domain with DDD’'DD'DD and let
M'=MA~D’. Let ‘

@D Fe 0= 520ty B Tl Oe—C)L).

It follows from the Oka-Cartan theory that the ideal I, of functions holo-
morphic in D’ and equal to zero on M’ has a finite set of generators
{Fi(2), -+, F(2)}. Let S¢,={z:|{—z|<o}. G.M. Henkin proved the
following

LEMMA. 3. There exist constants ¢>0>0 such that for any {=oM the
following assertions are true.

(a) For certain numbers ¢:(§), -, qn-2(L) from the set {1, ---, q} and for
certain numbers n,{), -+, np-(0) from the set {1, ---, n} the map

Z-*W(Z, C): {an—Cnp B Z"k-l—cnk‘l’ F(Z: C)J Fq1<z)’ "'Fqn—k(z>}

i1s a biholomorphic map of the ball S¢,,C D’ onto a neighborhood of zero W in
the space of the variables (w,, -+, wy)=w.

(b) The preimage G of some strictly convex domain V¢ of Wy contains the
domain DN\S¢,s and is contained in D, i.e.,

DﬂSg,gCGg: {ZE Sg,a : w(z, C)E VCC VQCWC} cD ’

where Vi={lweWr: p(w)<0}, and pfw) ts a real valued C*-function in the
domain Wy and is strictly convex in a neighborhood of V..
Let ¢ and 0 be the constants from lemma 3. We may assume that

e<—g—. Let 24(2), i=1, ---, N(¢), be C>-functions such that X;(2)=0, i=1, ---, N(e),
> %,(2)=1 in a neighborhood of M’ and for any i=1, -, N the diameter of

supp X; is less than % We set
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X},: 2 xi ’ 2:1: E Xi ’

i:suppX;Nsupp Xy#4 i:suppl%ﬂsup;ﬁu:ﬂ

Dy:{ZEﬁ: p(z)_ 221X1(2)<0}, v:l, e, N’

ﬁy:{zeﬁ 2 p(2)— :gliki(z)—lyiy(z)<0} R =1, -+, N.

D,=D, My:JVIf\D,,, J\ny:]\?mf),,, v=1, -, N. If 4,, v=1, -+, N, are sufficiently
small, then D, and ﬁ,,, v=1, .-, N, are strictly pseudoconvex and the assertion

35 where o¢,=o,

of lemma 3 holds for any {=0M with constants oy>5v_4

0o=0.

In this setting we have the following.

LEMMA 4. There exist constants 24, -+, Ay >0 such that, for any v=1, ---, N,
bounded operators

LY: H*(M,-)—H=(M,) and LL: H*(M,.,)— H=(M,)

exist with the following properties.

(@) f(@=(Lf)2)+(Lf)z) for any fe H*(M,-,) and any z€M,-,.

(b)) Life A(M,) and Life A=(M,) if f& A™(M,-,).

ProorF. Now we follow the proof of lemma 12 of G.M. Henkin [4].
Suppose that constants A, ---, 4,-, satisfying the conditions of the lemma
have already been chosen. We set U,=suppX!. In the case when U,"oM,,
=0, there is nothing to prove. Let U,NoM,-,;#0. We fix a point {°c
U,N0M,-,. By lemma 3, there exists a biholomorphic w(z, {° : Sg.36/4— Wro,
where Wy is some neighborhood of zero in the space of the variables
(wy, -+, wy)=w. By the same lemma, it follows that

D,-1M\ S0, 5514 CGro=A{2& S¢0,3014 : pro(w(z, {))<0}CD,_,

where pp(w) is a strictly convex function in a neighborhood of the set
I_/Co:{we Wo: peo(w)=0}. Let w—z(w, (") be the inverse map of the map
z—w(z, {°. For any z&€GpN\M,-,, by the Cauchy-Fantappié integral formula,
we have

(L2 0) nou®

[$ 20w o)

fa=ei], AE -

We set M"—{ZEM p(z)— Z AXi(2) <Ay =M{\IM{, where M{=M"N\Sc0, s34

M{=M"|Sc0,515. 1f A,<4, then [M,UMy]CM”. M” is pseudoconvex for
sufficiently small 2,>0. Let X=1—x.. We define for a=0, 1,
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(2 O)on®

3 Az, O]

If the constants 0<A4,<4, are sufficiently small, by the same method as in
the proof of theorem 2, it follows that RYf € A™(M,N\Sco,514), RLfE A“(M,N\Sco, s574)-
Moreover R} is a bounded operator from H*(M,-,) to A(M{MY{). It follows
that there exist bounded operators T%: H*(M{M{)—H(M?%), a=0, 1, such
that f(2)=(T°f)(z)+(T*f)(z), where fe H*(M! M) and ze M{\M{. We set

Ref@=ca|, (G, CE, &) i

(R (TR Nz) if z€M,N\Sco 3014

<L3f><z>={ _
F@)—(TheRLf)2) if 2 M,|Sw.0

(TLeRLf)(2) if zeM,|Sw.q0

(L.f )(z):{ . ~
(R ID)—(ToRyf)z)  if z€MuN\So,ss4-

Then LY and L. are the operators satisfying the condition of lemma 4.
Q.E.D.
If we set L;=0L! L? oL i=1, -+, N—1, and Ly=L%_oL%_ g0 -+ =LJ,
and S; M“ =1,2, -, N—1, Sy=Mny_1. Then we have the following.
THEOREM 3. For any €>0, there exist a covering {S;} of the set oM by
domains S;DM, 1=1, -+, N(¢), and bounded operators L;: H*(M)— H*(S;) such
that
(1) L;: A(M)— A=(S,) (=1, ---, N)
2 f(z):;(l,if)(z) for any function feH*(M)

(3) the diameter of M|S; is less than e for any i=l1, ---, N.

From this theorem, by following the proof of the fundamental theorem
of G.M. Henkin [4], we obtain the following theorem.

THEOREM 4. There exists a bounded extension operator E . H*(M)— H=(D)
and moreover Efe A%(D) if fe A*(M), a=0, oo,

§4. The Ramirez-Henkin kernel.

In this section we study properties about the Ramirez-Henkin kernels for
strictly pseudoconvex domains with C»-boundaries and an approximation
theorem for A*(D). Let D be a strictly pseudoconvex domain in C® with
C=-boundary and p be a defining function of D defined in D. Then we obtain
a C=-function ¥(z, {) on Jx D holomorphic in z with the following properties :

(1) ¥z, +0 for {, zeD with p(Q)> p(2)

(2) for {°=0dD there exist an open neighborhood U of &° in ) and a
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nowhere vanishing C~-function G(z, {) on UXU holomorphic in z such that
Uz, =Gz, OF(z, ) on UXU where F(z, {) is the function defined in
(3) there exist C=-functions Py(z, £) on Dx D holomorphic in z such that
n
W(Z, = z'>=':1 (2:— L) Pi(z, O).

Let P(z, O)=(Pyz, ©), -, Pu(z, £)). Then the Ramirez-Henkin kernel H(z, &)
for D can be written as

wp(P(z, O)) Ne({)
Yz, O

where 0, (P(z, O)Aa(C) is the differetial form with respect to { defined in (2.1)
From proposition 3.3 in Y. T. Siu [5], we have:

LEMMA 5. If a(z, {)isa C2™**(n, n—1)-form on Dx D, then SCGaD_TEUz_(%%)T"T

H(z, 0=

is uniformly bounded for ze D.

From this lemma, we obtain :

THEOREM 5. Let s, m be nonnegative integers such that s=2m-+4. Let f()
be a C’-function on 0D. Then

., fOHE D= AmD).

Next we can prove the following corollary as in the proof of corollary
IL. 3 in E. L. Stout [7]

COROLLARY. Let s, m be nonnegative integers such that s=2m-4. If f=
AS(D) and if U={U,, ---, Uy} is an open cover for 0D, there exist functions
fu o, fa€A™D), such that f=f1+ - +fq and such that each function f, is holo-
morphzc on a neighborhood of the compact set aD|U;.

By applying the method used in the proof of theorem II 4 of E.L. Stout
[7], we obtain an approximation theorem for functions in A*(D).

THEOREM 6. Let k, m be nonnegatlive integers such that k=2m-+4. If
fe A¥(D), then there exists a sequence {fn} in O(D) that converges in |
norm to f.

Proor. Choose a finite open covering U={U,, ---, U} of 0D, and, for
each j, choose a point P;€U, Let II; be the real tangent plane to dD at
P;, and let y; be the unit outward normal to 0D at P;. Assume the U,’s and
the P;’s have been chosen to satisfy these conditions:

A) The real linear orthogonal projection x; that carries C* onto //;
carries a neighborhood U’ of Uj diffeomorphically onto the open set =, (U;)CII,.

B) For all zeU;, the points z—ey; approach z nontangentially through
D as ¢—0%.

Choose 74, -+, 7, to constitute a C>-partition of unity on 0D subordinate

[P
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to U, and write f=f,+ - +f, as in the corollary above. In order to ap-
proximate f, it suffices to approximate the functions f;, For this purpose,
define, for ¢>0 but sufficiently small, a function f{(z) by fP(2)=f(z—ev)).
It follows that f<0(D) for all sufficiently small ¢>0. We have

IfP@—F{Dln=sup sup |D(PE@—F (|0 as e=0.
) Q.E.D.
§5. The multiplicative Cousin problem for A>(D).

Let S, be the set of all strictly convex domains in C* with C~-boundary.
Let DeS,. Then D can be written in the form D={zeD: p(z)<1}, where
D is a domain, DDD, p is a strictly convex function in D. Let

M=max {x,,: for some z€D, z=(z,, -, Za), Xen=Im z,,} ,

and let m be the corresponding minimum. Let ¢, satisfy 0<e,<(1/12)(M—m).
Let 7, 1=1, 2, be real valued functions of a real variable such that

(1) 7, is of class C~, i=1, 2,

2) p(t)=0 if t=+ (M+m)+

-

p()=0  if g%mw)——so
@) p()z2  if g%(Mﬂm-meo,
7]20)22 if §*2*'(M+m) 3¢,

@ PO>0 i (>t

Ué’(t)>0 if Z‘<—§—(M—{—m)——-§50

Let D;={z: p(2)+9i(x:,)<1}, Dy={z: p(2)+7:(x,,)<1}. Then it is easily
verified that D,, D, and D, D, are elements of S,.

LEMMA 6. Let D, D,, D, be as above. If f=A*(D;N\D,), then we can write
f=f1+f., where fie A*(D,) and f,= A=(D,).

PrOOF. Let ¢ be a C-function on C* which has the properties that

¢=0 on {zc—:a(le\DZ): x2n<%(M—%-‘m)—so}
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1
o=1 on {zea(Dlr\Dz): x2n>~2—(M+m)+so}.
Let 4 be a defining function of D;n\D,. For weD,ND, we can write

e AQRQ) _
fey=cal, i =D HAE)

SIOA—¢©) k()

9(D1NDg) o, 2™

— SOLORE)
fZ(Z)_cnga(DxﬂDz) @(C: z)"
n aﬁ

where @(z, z)= 21 3C,

fi@=cal

(O)(&;—z;) and k(z) is a C*(n, n—1)-form on some neigh-

borhood of D,~\D,. From the proof of theorem 2 and the properties of ¢ it
is easily seen that Fye A°(D),), f.€ A=(D,). Q.E.D.

Next we prove that the multiplicative Cousin problem with A* data is
solvable on every domain of class S,. The related results have been given
by K. Adachi and E. L. Stout [6].

THEOREM 7. Let DES,, and let {Vy}aer be an open cover for D. If for
each a, fo€A>(V,N\D), and if for all a, BEI, fof5'€ A (V.NVsN\D), then
there exists Fe A%(D) such that for all a, Ff3' is an invertible element of
A(DN\ V).

PROOF. Suppose that no F with the stated properties exists. Suppose
there exist F,e0(D,) and F,e0(D,) such that for all a, F\f3' and F.f3' are
invertible elements of A*(V,ND, and A*(V.ND,), respectively. Then
fo=F.F;7* is an invertible element of A*(D,ND,). 1If f,=exp(f) then
fe A°(D,N\D,). By lemma 6 we can write f=f,+f, where f,=A*(D,) and
f.€ A(D,). Define G on D by G=F,exp(—f;) on D,, G=F,exp(f,) on D,.
Then Gf3! is an invertible element of A*(V,"D). We have supposed that
no such function G exists, so either F; or F, does not exist. Say F,. The
X2p-width of D,, i.e., the number max |x5,—x4,|, the maximum taken over
all pairs of points z’, z” in D, is not more than three fourths of the x,,-
width of D. We now treat D, as we treated D, using the coordinate x,,-:
rather than x,,, and we find a smaller set D,;CD,; on which the problem is
not solvable and which has the property that the x,,-,-width of D,; is not
more than three fourths that of D,. We iterate this process, running cycli-
cally through the real coordinate of C", and we obtain a shrinking sequence
of sets on which our problem is not solvable. The sets we obtain eventually
lie in some element V,, and on V,, the function f, is a solution to the
induced problem. Thus we have a contradiction. Q.E.D.
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