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Introduction.

In this paPer we study the number of peaks of solutions for one-dimensional
semilinear parabolic problems by a finite difference method. As a model
problem let us consider the equation in $u=u(x, i)$ .

(0.1) $\left\{\begin{array}{ll}u_{t}=u_{xx}+f(u), & 0<x<1 and t>0,\\u_{x}(0, t)=u_{x}(1, t)=0, & t>0,\\u(x, 0)=u^{0}(x), & 0<x<1,\end{array}\right.$

where $f$ is a smooth function. We have two purposes; one is to know how
the number of peaks of $u(\cdot, t)$ changes as $t$ passes, the other is to present a
finite difference scheme for (0.1) whose solution has the same behavior as the
exact one concerning the number of peaks. Our result for the former is that
the number of peaks is monotonically decreasing. We do not prove it inde-
pendently of the latter. But we first attack the latter and present a finite
difference scheme whose solution has the monotonically decreasing Property
with regard to the number of peaks. After that we prove the above result
by the limit process.

Thus our main effort is devoted to constructing a finite difference scheme
whose solution has the property mentioned above under aPpropriate conditions.
Of course, it should also be shown that the finite difference solutions converge
to the exact one as $h$ and $\tau$ (space mesh and time mesh) tend to zero. In our
scheme for (0.1), roughly speaking, the condition $\tau/h^{2}\leqq 1/2$ yields the con-
vergence, while the condition $\tau/h^{2}<1/4$ leads to the property in question
(Remark 2.7).

As a simple aPplication of our result let us show a consequence relating
to the stability of equilibrium solution. Chafee [1] and Matano [5] showed
that every nonconstant equilibrium solution of (0.1) is unstable, while Ito [3]

proved that for each (unstable) equilibrium solution there exists a stable
manifold such that the solution of (0.1) starting from any function on the
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manifold converges to the equilibrium solution. The monotonically decreasing
Property of the number of peaks leads to a characterization of the stable
manifold: The number of peaks for the function on a stable manifold is not
less than that of the corresponding equilibrium solution.

For systems of semilinear equations it does not in general hold that the
number of peaks is monotonically decreasing. This fact may be observed in
the result of numerical experiments performed by Mimura [6]. He proposed
a system of diffusion equations with autonomous nonlinear couplings as a
planktonic prey and predator model in order to obtain a nonconstant stable
equilibrium solution with large amplitude. His numerical experiments for this
system show that the number of peaks may increase for each component of
solutions in some cases.

The plan of this paper is as follows. In \S 1 we define the number of
peaks of a function. Then we state the result for semilinear parabolic prob-
lems with homogeneous Neumann boundary conditions. The proof is given
in the latter part of the next section. In \S 2 we present a finite difference
scheme and show that, under appropriate conditions, the difference solution
possesses the property that the number of peaks is monotonically decreasing.
In that proof we use a theorem concerning a property of a class of linear
operators in the finite dimensional space, which plays a key role there. This
theorem is proved in \S 3. In \S 4 we consider the case of homogeneous Dirichlet
boundary conditions. After imposing a restriction to the inhomogeneous term,

we show that the same property still holds. The case of the third boundary

conditions is also noted. In \S 5 we discuss the case when solutions blow up.
We use the following notation throughout this paper:

$\Vert a\Vert_{\overline{Q}}=\max\{|a(x, t)| ; (x, t)\in\overline{Q}\}$ ,

$\Vert a\Vert_{[0.1]}=\max\{|a(x)| ; x\in[0,1]\}$ ,

$\Vert a\Vert_{[0.T]}=\max\{|a(t)| ; t\in[0, T]\}$ ,

for continuous functions $a$ on each closed set. The same symbol $\Vert a\Vert$ is used
if there is no fear of confusion. We also use

$\langle i, j\rangle=\{i, i+1, \cdots , j\}$ for integers $i<j$ .

\S 1. The number of peaks of solutions.

Let $T$ be a positive number. Consider the following semilinear parabolic

equation in $u=u(x, t)$,
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(1.1) $\left\{\begin{array}{ll}u_{t}=a(x, t)u_{xx}+b(x, t)u_{x}+f(t, u) & in Q=(O, 1)\times(0, T),\\u_{x}(0, t)=u_{x}(1, t)=0 , & t\in(O, T),\\u(x, 0)=u^{0}(x), & x\in(O, 1),\end{array}\right.$

where $u^{0}(x)$ is a given continuous function.
ASSUMPTION 1. $a,$

$b$ and $f$ satisfy the following conditions:
(i) $a$ is continuous in $\overline{Q}$ together with its first derivatives with respect

to $x$ and $t$ . There exists a positive number $a_{0}$ such that $a\geqq a_{0}$ in $\overline{Q}$ .
(ii) $b$ is continuous in $\overline{Q}$ together with its first derivative with respect

to $x$ .
(iii) $f$ is continuous in $[0, T]\times R$ together with its first and second

derivatives with respect to $u$ . There exists a real number $M_{0}$ such
that $\partial f/\partial u\leqq M_{0}$ in $[0, T]\times R$ .

REMARK 1.1. We divide $f$ into two parts as follows:

$f(t, u)=f_{0}(t)+f_{1}(t, u)u$ ,

where $f_{0}(t)=f(t, 0)$ and $f_{1}(t, u)=\{f(t, u)-f(t, O)\}/u$ . By virtue of Assumption 1
$f_{0},$ $f_{1}$ and $\partial f_{1}/\partial u$ are continuous and it holds that $f_{1}(t, u)\leqq M_{0}$ in $[0, T]\times R$ .

Let $u(x, t)$ be the solution of (1.1). Considering $u=\{u(t)\},$ $t\in[0, T]$ , as
a one-parameter family of $t$ , we observe how “the number of peaks” of $u(t)$

changes as $t$ passes. Our result is that the number is monotonically decreasing.
Before stating the theorem, we give the definition of the number of peaks
for a function belonging to $C^{1}[0,1]$ .

At Prst we assign two integers $N_{\pm}(p)$ to each continuous function $p;N_{+}(p)$

(resp. $N_{-}(p)$) is the number of those zeroes and zero-intervals of $P$ where $p$

changes its sign from positive (resp. negative) to negative (resp. positive).
The detailed definition of $N_{\pm}(p)$ is as follows. Let $p(x)$ be a continuous
function defined on $[0,1]$ . When $p$ is nonnegative or nonpositive on $[0,1]$ ,
we define $N_{+}(p)=N_{-}(p)=0$ . Otherwise, put $A_{+}=\{x;x\in[C, 1], p(x)>0\},$ $A_{+.0}$

$=\{x;x\in[0,1], p(x)\geqq 0\}$ . Let $m$ be the number of those connected components
$I$ of $A_{+.0}$ such that $ I\cap A_{+}\neq\emptyset$ and let $\tilde{A}_{+}$ be the union of those $I$ . When $m$ is
not a finite number, we dePne $ N_{+}(p)=N_{-}(p)=+\infty$ . When $m$ is finite, we
define

$N_{+}(p)=\left\{\begin{array}{ll}m-1 & if 1\in A_{+},\\m & otherwise, and\end{array}\right.$

$N_{-}(p)=\left\{\begin{array}{ll}m-1 & if 0\in A_{+},\\m & otherwise.\end{array}\right.$

For $u(x)\in C^{1}[0,1]$ the number of peaks, $\#_{p}(u)$ , is defined by $\#_{p}(u)=N_{+}(du/dx)$ .
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Similarly the number of valleys, $\#_{v}(u)$ , is defined by $\#_{v}(u)=N_{-}(du/dx)$ .
THEOREM 1.2. SuppOse AssumptiOn1 and $u^{0}\in C^{1}[0,1]$ . Then, equation (1.1)

has a unique solution $u(t)\in C^{1}[0,1],$ $t\in[0, T]$ , and it holds that

(1.2) $\#_{p}(u(t))\leqq\#_{p}(u^{0})$ , $\#_{v}(u(t))\leqq\#_{v}(u^{0})$ for $t\in[0, T]$ .

COROLLARY 1.3. Under the same assumptions as Theorem 1.2, $\#_{p}(u(t))$ and
$\#_{v}(u(t))$ are monotonically decreasing.

Corollary 1.3 is a direct consequence of Theorem 1.2. As stated in the
introduction, we shall prove Theorem 1.2 after constructing a finite difference
scheme for (1.1) whose solution satisfies the same property as (1.2). The
complete proof is given in the following section.

Here we note that (1.2) fails if the term $f$ in (1.1) depends on $x$ . For
example, consider the heat equation $(i. e., a\equiv 1, b\equiv 0)$ with an inhomogeneous
term $f(x, t)=1/2-(1/2+2\pi^{2}t)$ cos $2\pi x$ . Then $u(x, t)=t$ sin $2\pi x$ is the solution
corresponding to the initial value $u^{0}=0$ . Therefore we have $\#_{p}(u^{0})=0$ and
$\#_{p}(u(t))=1$ for $t>0$ , so that (1.2) fails.

\S 2. A finite difference approximation.

In this section we approximate (1.1) by a Pnite difference scheme and
prove that the approximate solutions converge to the exact one. Furthermore
we show that under appropriate conditions the difference solution possesses
the property that the number of peaks is monotonically decreasing. After
that the proof of Theorem 1.2 is given.

We discretize $\overline{Q}$ by a $(h, \tau)$-rectangular net, where $h=1/N(N$ is a natural
number) is a space mesh and $\tau>0$ is a time mesh. Put $J=\{1/2,3/2, \cdots , N-1/2\}$ .
Our grid points consist of $(x_{j}, k\tau),$ $x_{j}=jh,$ $j\in J,$ $k=0,$ $\cdots$ , $N_{T}(=[T/\tau])$ . We
seek a net function $u_{h}(x_{j}, k\tau)=u_{h}^{k}(x_{j})$ satisfying

(2.1) $\left\{\begin{array}{l}\{u_{h}^{k+1}(x_{j})-u_{h}^{k}(x_{j})\}/\tau=a_{j}^{k}\Delta_{h}u_{h}^{k}(x_{j})+b_{j}^{k}D_{h}u_{h}^{k}(x_{j})+f_{0}(k\tau)\\+f_{1}(k\tau, u_{h}^{k}(x_{j}))u_{h}^{k+1}(x_{j}),\\u_{h}^{k}(-h/2)=u_{h}^{k}(h/2), u_{h}^{k}(1+h/2)=u_{h}^{k}(1-h/2) ,\\u_{h}^{0}(x_{j})=u^{0}(x_{j}) for j\in J and k\in\langle 0, N_{T}-1\rangle ,\end{array}\right.$

where $a_{j}^{k}=a(x_{j}, k\tau),$ $b_{j}^{k}=b(x_{j}, k\tau),$ $\Delta_{h}$ and $D_{h}$ are difference operators dePned
by

$\Delta_{h}v(x_{j})=\{v(x_{j}+h)-2v(x_{j})+v(x_{j}-h)\}/h^{2}$ ,

$D_{h}v(x_{j})=\{v(x_{j}+h)-v(x_{j}-h)\}/(2h)$ .
THEOREM 2.1. Under AssumptjOn1 and the conditions

(2.2) $\tau\leqq h^{2}/(2\Vert a\Vert)$ , $ h\leqq 2a_{0}/\Vert b\Vert$ ,
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(2.3) $\tau<1/M_{0}$ if $M_{0}>0$ ,

the difference scheme (2.1) is $L^{\infty}$-stable in the following sense,

(2.4) max $|u_{h}^{k}(x_{j})|\leqq U_{0}(\tau)$ ,
$j\in J.k\in<0.N_{T}>$

where

$U_{0}(\tau)=\left\{\begin{array}{ll}\Vert u^{0}\Vert exp \{TM_{0}/(1-\tau M_{0})\}+\Vert f_{0}\Vert\{\exp(TM_{0}/(1-\tau M_{0}))-1\}/M_{0} & if M_{0}>0,\\\Vert u^{0}\Vert+\Vert f_{0}\Vert T & if M_{0}\leqq 0.\end{array}\right.$

Furthermore, if the exact solution $u$ of (1.1) is smooth (see Remark 2.2), $u_{h}$

converge to $u$ uniformly in $\overline{Q}$ as $h$ tends to zero.
REMARK 2.2. (i) More precise statement of Theorem 2.1 (also Theorem

4.4) is that interpolating functions of $u_{h}$ , for example bilinear on each rec-
tangular net, converge to $u$ uniformly in $\overline{Q}$ as $h$ tends to zero. This is true
if $u_{t}$ and $u_{xx}$ are H\"older continuous in $\overline{Q}$ . If $u_{t}$ and $u_{xxx}$ are Lipschitz
continuous in $\overline{Q}$ , then the rate of convergence is $h^{2}$ .
(ii) Conditions (2.2) and (2.3) can be replaced by

$\tau\leqq h^{2}/(2\Vert a\Vert+h\Vert b\Vert)$ ,

if we apply the upwind finite difference technique,

$\{u_{h}^{k+1}(x_{j})-u_{h}^{k}(x_{j})\}/\tau=a_{j}^{k}\Delta_{h}u_{h}^{k}(x_{j})+b_{j}^{k}D_{h}u_{h}^{k}(x_{j})+f_{0}(k\tau)$

$+f_{1}(k\tau, u_{h}^{k}(x_{j}))\tilde{I}_{h}^{k}u_{h}(x_{j})$ ,
where

$D_{h^{\mathcal{U}_{h}^{k}}}(x_{j})=\left\{\begin{array}{ll}\{u_{h}^{k}(x_{j}+h)-u_{h}^{k}(x_{j})\}/h & if b_{j}^{k}\geqq 0,\\\{u_{h}^{k}(x_{j})-u_{h}^{k}(x_{j}-h)\}/h & if b_{j}^{k}<0,\end{array}\right.$

$1_{h}^{k}u_{h}(x_{j})=\left\{\begin{array}{ll}u_{h}^{k}(x_{j}) & if f_{1}(k\tau, u_{h}^{k}(x_{j}))\geqq 0,\\u_{h}^{k+1}(x_{j}) & if f_{1}(k\tau, u_{h}^{k}(x_{j}))<0.\end{array}\right.$

PROOF OF THEOREM 2.1. We show (2.4) by the comparison theorem for
the difference equation. Consider the (ordinary) difference equation with
respect to $\tau$ subject to (2.3),

(2.5) $\left\{\begin{array}{ll}(v^{k+1}-v^{k})/\tau=\Vert f_{0}\Vert+M_{0}v^{k+1}, & k\in\langle 0, N_{T}-1\rangle,\\v^{0}=\Vert u^{0}\Vert. & \end{array}\right.$

The solution of (2.5) can be solved explicitly,

$v^{k}=\left\{\begin{array}{ll}\{1/(1-\tau M_{0})\}^{k}(v^{0}+\Vert f_{0}\Vert/M_{0})-\Vert f_{0}\Vert/M_{0} & if M_{0}\neq 0,\\v^{0}+\tau k\Vert f_{0}\Vert & if M_{0}=0.\end{array}\right.$
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An easy computation leads to

(2.6) $0\leqq v^{k}\leqq U_{0}(\tau)$ for $ k\in\langle 0, N_{T}\rangle$ .
To show $u_{h}^{k}(x_{j})\leqq v^{k}$ , we set $w_{j}^{k}=v^{k}-u_{h}^{k}(x_{j})$ and obtain

(2.7) $\left\{\begin{array}{ll}(w_{j}^{k+1}-w_{j}^{k})/\tau=a_{f}^{k}\Delta_{h}w_{j}^{k}+b_{j}^{k}D_{h}w & +(f_{1})_{j}^{k}w_{j}^{k+1}+\{M_{0}-(f_{1})_{j}^{k}\}v^{k+1}\\+\{\Vert f_{0}\Vert-f_{0}^{k}\} & for j\in J, k\in\langle 0, N_{T}-1\rangle,\\w_{j}^{k}=w_{j+1}^{k} & for j=-1/2, N-1/2,\end{array}\right.$

where $(f_{1})_{j}^{k}=f_{1}(k\tau, u_{h}^{k}(x_{j}))$ and $f_{0}^{k}=f_{0}(k\tau)$ . Transforming (2.7), we have

$\{1-\tau(f_{1})_{j}^{k}\}w_{j}^{k+1}=\tau\{(2a_{j}^{k}+hb_{j}^{k})/(2h^{2})\}w_{j+1}^{k}+\{1-2\tau a_{j}^{k}/h^{2}\}w_{j}^{k}$

$+\tau\{(2a_{j}^{k}-hb_{j}^{k})/(2h^{2})\}w_{j- 1}^{k}+\tau\{(M_{0}-(f_{1})_{j}^{k})v^{k+1}+(\Vert f_{0}\Vert-f_{0}^{k})\}$ .
The last term of the right is nonnegative in virtue of (2.6). By (2.2), (2.3)

and the nonnegativity of $w_{j}^{0}$ , we obtain $w_{j}^{k}\geqq 0,$ $j\in J,$ $ k\in\langle 0, N_{T}\rangle$ , which leads
to $u_{h}^{k}(x_{j})\leqq v^{k}$ . Similarly we obtain $u_{h}^{k}(x_{j})\geqq-v^{k}$ . Hence we get (2.4) by (2.6).

Since $U_{0}(\tau)$ is bounded as $\tau\downarrow 0$ and since the difference scheme (2.1) is a
consistent approximation for (1.1), we can easily show the uniform conver-
gence of $u_{h}$ to $u$ . $q$ . $e$ . $d$ .

We now dePne the number of peaks $\#_{p}^{h}$ for a net function. Let $u_{h}$ be a
net function defined on $x_{j}=jh,$ $j\in J$ . Considering the first difference of $u_{h}$ ,
we construct a broken line $p_{h}\in C[0,1]$ connecting $(jh, p_{h}(jh)),$ $j=0,$ $\cdots$ , $N$, where

(2.8) $p_{h}(jh)=\{u_{h}(jh+h/2)-u_{h}(jh-h/2)\}/h$ for $ j\in\langle 0, N\rangle$ ,

$u_{h}(-h/2)=u_{h}(h/2)$ , $u_{h}(1+h/2)=u_{h}(1-h/2)$ .

We define $\#_{p}^{h}(u_{h})$ by $\#^{h}p(u_{h})=N_{+}(p_{h})$ , where $N_{+}$ is the one defined in the previous
section. Similarly the number of valleys of $u_{h}$ is defined by $\#^{h}v(u_{h})=N_{-}(P_{h})$ .

THEOREM 2.3. SuPpose AssumptiOn1. Then, for every $\epsilon>0$ there exists a
number $h_{0}>0$ such that under the condition

(2.9) $h\leqq h_{0}$ and $\tau\leqq h^{2}/\{4\Vert a\Vert+(2\Vert a_{x}\Vert+\epsilon)h\}$

the solution $u_{h}$ of (2.1) satisfies
(2.10) $\#_{p}^{h}(u_{h}^{k})\leqq\#^{h}p(u_{h}^{0})$ , $\#^{h}v(u_{h}^{k})\leqq\#^{h}v(u_{h}^{0})$ for $ k\in\langle 0, N_{T}\rangle$ .

REMARK 2.4. $h_{0}$ depends only on $\epsilon,$ $a,$ $b,$ $u^{0}$ and $f$. One could obtain a
lower bound of $h_{0}$ if one computed some quantities without using order
estimates in the subsequent proof.

For the proof of Theorem 2.3 we need the following theorem concerning
a property of a class of linear mappings in $R^{N+1}$ . Let
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$R_{0}^{N+1}=\{p=(p_{0}, p_{1}, \cdots p_{N});P_{j}\in R, j\in\langle 0, N\rangle, p_{0}=p_{N}=0\}$

and $\Pi$ be an operator in $R_{0}^{N+1}$ such that

$(\Pi p)_{j}=\left\{\begin{array}{ll}0 & for j=0, N,\\\lambda_{j,j-1}p_{j-1}+\lambda_{j,j}p_{j}+\lambda_{j.j+1}p_{j+1} & for j\in\langle 1, N-1\rangle,\end{array}\right.$

where $\lambda_{j.l},$ $i=j,$ $j\pm 1$ , are given real numbers. For $p\in R^{N+1}$ we regard $N_{\pm}(p)$

as $N_{\pm}(p)=N_{\pm}(p_{h})$ , where $p_{h}$ is the broken line connecting $(jh, p_{j}),$ $j=0,1,$ $\cdots$ $N$.
THEOREM 2.5. Let $\Pi$ be a linear operatOr in $R_{0}^{N+1}$ as above. SuppOse $\lambda_{j,t}$

satisfy

(2.11) $\left\{\begin{array}{ll}\lambda_{j.i}\geqq 0 & for j\in\langle 1, N-1\rangle, i=j, j\pm 1,\\\lambda_{j.j}\geqq\lambda_{j+1,j}+\lambda_{j-1,j} & for j\in\langle 1, N-1\rangle,\end{array}\right.$

where $\lambda_{0.1}=\lambda_{N.N-1}=0$ . Then it holds that

(2.12) $N_{\pm}(\Pi p)\leqq N_{\pm}(p)$ for $p\in R_{0}^{N+1}$ ,

where the same sign should be taken in both sides.
The proof of Theorem 2.5 is rather complicated. Therefore we shall prove

it in the next section. Here we prove Theorem 2.3 by using $Theoreml2.5$ .
PROOF OF THEOREM 2.3. Let $u_{h}^{k},$ $k=0,$ $\cdots$ , $N_{T}$, be the solution of (2.1).

For the proof of (2.10) it is sufficient to show that

(2.13) $N_{\pm}(p_{h}^{k+1})\leqq N_{\pm}(p_{h}^{k})$ for $ k\in\langle 0, N_{T}-1\rangle$ ,

where $p_{h}^{k}$ is the first differences of $u_{h}^{k}$ defined by (2.8). Fix $k$ arbitrarily.
From (2.1) we have $p_{h}^{k},$ $p_{h}^{k+1}\in R^{N+1}$ and

$(p_{j}^{k+1}-p_{j}^{k})/\tau=a_{j+1/2}^{k}(p_{j+1}^{k}-2p_{j}^{k}+p_{j-1}^{k})/h^{2}+(a_{x})_{j}^{k}(p_{j}^{k}-p_{j-1}^{k})/h$

(2.14) $+b_{j+1/2}^{k}(p_{j+1}^{k}-p_{j-1}^{k})/(2h)+(b_{x})_{j}^{k}(p_{j}^{k}+p_{j-1}^{k})/2$

$+(f_{1})_{j}^{k}p_{j}^{k+1}+(f_{1.u}u_{h})_{j}^{k}p_{j}^{k}$ for $ j\in\langle 1, N-1\rangle$ ,
where $p_{j}^{k}=p_{h}^{k}(x_{j})$,

$(a_{x})_{j}^{k}=a_{x}(\xi_{1_{J^{\prime}}}^{k}, k\tau)=\{a((j+1/2)h, k\tau)-a((j-1/2)h, k\tau)\}/h$ ,

$(b_{x})_{j}^{k}=b_{x}(\xi_{2j}^{k}, k\tau)=\{b((j+1/2)h, k\tau)-b((j-1/2)h, k\tau)\}/h$ ,

$(f_{1})_{j}^{k}=f_{1}(k\tau, u_{h}^{k}((j+1/2)h))$ ,

$(f_{1.u}u_{h})_{j}^{k}=\partial f_{1}/\partial u(k\tau, \eta_{j}^{k})u_{h}^{k+1}((j-1/2)h)$ ,

$\xi_{ij}^{k},$ $i=1,2$, are intermediate values between $jh\pm h/2$ ,

$\eta_{j}^{k}$ is an intermediate value between $u_{h}^{k}((j\pm 1/2)h)$ .
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Hence we have
$p_{j}^{k+1}=\lambda_{j,j-1}^{k}p_{j-1}^{k}+\lambda_{j.j}^{k}p_{j}^{k}+\lambda_{jj+1}^{k}p_{j+1}^{k}$ for $ j\in\langle 1, N-1\rangle$ ,

where

(2.15) $\left\{\begin{array}{l}\lambda_{j,j-1}^{k}=\tau\{2a_{j+1/2}^{k}-2h(a_{x})_{j}^{k}-hb_{j+1/2}^{k}+h^{2}(b_{x})_{j}^{k}\}/(2h^{2}\gamma_{f}^{k}),\\\lambda_{j.j}^{k}=\{1-\tau(4a_{j+1/2}^{k}-2h(a_{x})_{j}^{k}-h^{2}(b_{x})_{j}^{k}-2h^{2}(f_{1.u}u_{h})_{j}^{k})\}/(2h^{2}\gamma_{j}^{k}),\\\lambda_{j,j+1}^{k}=\tau\{2a_{j+1/2}^{k}+hb_{j+1/2}^{k}\}/(2h^{2}\gamma_{j}^{k}),\\\gamma_{j}^{k}=1-\tau(f_{1})_{j}^{k}.\end{array}\right.$

Thus $p_{h}^{k+1}$ can be regarded as the image of $p_{h}^{k}$ by an operator which belongs
to the class considered in Theorem 2.5. We show that $\lambda_{j,i}^{k}$ defined in (2.15)
satisfy condition (2.11) if $h_{0}$ is chosen suitably small. Since condition (2.9)
yields (2.2) and (2.3), the solutions $u_{h}$ are bounded, which implies $\gamma_{j}^{k},$ $\gamma_{j\pm 1}^{k}=$

$1+O(h^{2})$ . This fact enables us to write

$\lambda_{j+1,j}^{k}=\tau\{2a_{j+1/2}^{k}-hb_{j+1/2}^{k}\}/(2h^{2}\gamma_{j+1}^{k})$

$=a_{j+1/2}^{k}\tau/h^{2}-b_{j+1/2}^{k}\tau/(2h)+O(h^{2})$ ,

$\lambda_{j\cdot j}^{k}=1-2a_{j+1/2}^{k}\tau/h^{2}+(a_{x})_{J^{T}}^{k}/h+O(h^{2})$ ,

$\lambda_{j-1.j}^{k}=\tau\{2a_{j+1/2}^{k}-2h(a_{x})_{j}^{k}+hb_{j+1/2}^{k}-h^{2}(b_{x})_{j}^{k}\}/(2h^{2}\gamma_{j-1}^{k})$

$=a_{j+1/2}^{k}\tau/h^{2}-(a_{x})_{j}^{k}\tau/h+b_{j+1/2}^{k}\tau/(2h)+O(h^{2})$ .

Hence we have

$\lambda_{j.j}^{k}-\lambda_{j+1,j}^{k}-\lambda_{j- 1.j}^{k}=1-4a_{j+1/2}^{k}\tau/h^{2}+2(a_{x})_{J^{T}}^{k}/h+O(h^{2})$

$\geqq\epsilon h/\{4\Vert a\Vert+(2\Vert a_{x}\Vert+\epsilon)h\}+O(h^{2})$

$>0$ for $ j\in\langle 2, N-2\rangle$ ,

$\lambda_{1,1}^{k}-\lambda_{2,1}^{k}=1-3a_{1+1/2}^{k}\tau/h^{2}+O(h)$

$\geqq\{\Vert a\Vert+(2\Vert a_{x}\Vert+\epsilon)h\}/\{4\Vert a\Vert+(2\Vert a_{x}\Vert+\epsilon)h\}+O(h)$

$>0$ .

In a similar line we can show that the other conditions of (2.11) are also
satisfied. $Applyi\iota lg$ Theorem 2.5, we get (2.13). $q$ . $e$ . $d$ .

PROOF OF THEOREM 1.2. We first take the case when the solution $u$ is
so smooth (cf. Remark 2.2) that Theorem 2.1 can be applied. We prove only
the former of (1.2), because the latter is shown similarly. We may assume
that $\#_{p}(u^{0})<+\infty$ , otherwise (1.2) is satisfied as a trivial relation. Set $m=\#_{p}(u^{0})$ .
For the purpose of an indirect proof, assume that $\#_{p}(u(t_{0}^{\prime}))>m$ for some
$t_{0}^{\prime}\in[0, T]$ . Fix $\epsilon>0$ and let $h_{0}$ be the one stated in Theorem 2.3. ( $1/h_{0}$ may
be supposed to be an integer.) Put $h(n),$ $\tau(n),$ $n=0,1,$ $\cdots$ , and $S$ as follows:
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$h(n)=h_{0}/2^{n}$ , $\tau(n)=1/2^{n^{\prime}}$ ,

$S=\bigcup_{n=0}^{+\infty}\{k\tau(n) ; k=0,1, \cdots , [T/\tau(n)]\}$ ,

where $n^{\prime}$ is the smallest integer such that $\tau=1/2^{n^{\prime}}$ satisfies (2.9) with $h=h(n)$ .
We consider a family of the difference equations (2.1) with $(h, \tau)=(h(n), \tau(n))$ .
Since $S$ is dense in $[0, T]$ , we can find a time $t_{0}\in S$ sufficiently near t\’o such
that $\#_{p}(u(t_{0}))>m$ . By the definition of $\tau(n)$ , for every $n$ greater than some
integer there exists a positive integer $k(n)$ satisfying $t_{0}=k(n)\tau(n)$ . Choose
$m+1$ peaks of $u(t_{0})$ arbitrarily. Then, depending on the $m+1$ peaks, there
exists a small positive number $\eta$ such that for every net function $v_{h}$ , if the
broken line connecting $(jh, v_{h}(.ih)),$ $j=0,$ $\cdots$ , $1/h$ , lies in the domain $G_{\eta}=$

$\{(x, y);|y-u(x, t_{0})|<\eta, x\in[0,1]\}$ , it holds that $\#_{p}^{h}(v_{h})\geqq m+1$ . Since $u_{h(n)}^{k(n)}$

converge uniformly to $u(t_{0})$ as $ n\rightarrow+\infty$ by Theorem 2.1, we can find a positive
integer $n_{1}$ such that the broken lines made from $u_{h(n)}^{k(n)},$ $n\geqq n_{1}$ , lie in $G_{\eta}$ . There-
fore we have

(2.16) $\#_{p}^{h}(u_{h(n)}^{k(\eta)})\geqq m+1$ for $n\geqq n_{1}$ .

Since $m$ is a finite number, it is easy to see that

(2.17) $\#_{p}^{h}(u_{h(n)}^{0})=m$ for $n\geqq n_{2}$ ,

where $n_{2}$ is some positive integer. However, (2.16) and (2.17) contradict the
result of Theorem 2.3 with $(h(n), \tau(n)),$ $n=\max(n_{1}, n_{2})$ . Hence we have
$\#_{p}(u(t))\leqq m$ for $t\in[0, T]$ .

We next take the general case. Let $u_{n},$ $n=1,2,$ $\cdots$ , be a sequence of
smooth functions such that each $u_{n}$ satisfies (1.2), that $u_{n}$ converge to $u$

uniformly in $\overline{Q}$ and that $\#_{p}(u_{n}(0))=\#_{p}(u^{0})(=m<+\infty)$ . Such a sequence can
be made by assigning to $u_{n}$ the solutions of (1.1) subject to smooth initial
values $u_{n}^{0}$ with $m$ peaks, which satisfy compatibility conditions and converge
to $u^{0}$ . (If necessary, $a,$

$b$, and $f$ are also aPproximated by smooth functions.)

That each $u_{n}$ satisfies (1.2) is the consequence of the first case. Assume that
there exists a time $t_{0}>0$ such that $m<\#_{p}(u(t_{0}))$ . Since $u_{n}$ converge uniformly
to $u$ , we have for sufficiently large $n\#_{p}(u_{n}(t_{0}))>m=\#_{p}(u_{n}(0))$ , which is a
contradiction. Thus we obtain (1.2). $q$ . $e$ . $d$ .

REMARK 2.6. One could prove Theorem 1.2 without using the finite
difference by considering the equation of $p(=u_{x})$ . The discussion is
suggested in Matano [3; Lemma 2].

REMARK 2.7. Consider a special case when $a\equiv 1$ and $b\equiv 0$ . Then Theorem
2.1 guarantees that, under the conditions $\tau/h^{2}\leqq 1/2$ and (2.3), the finite difference
solutions of (2.1) converge to the exact one, while Theorem 2.3 ensures that,
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under the conditions $\tau\leqq h^{2}/(4+\epsilon h)$ and $h\leqq h_{0}$, the difference solution holds the
property(2.10).

REMARK 2.8. Theorems 2.1 and 2.3 are valid for the following difference
schemes:

$\left\{\begin{array}{ll}(u_{j}^{k+1}-u_{j}^{k})/\tau=a_{j}^{k}\Delta_{h}u_{j}^{k}+ & b_{j}^{k}D_{h}u_{j}^{k}+f_{0}^{k}+f_{1}(k\tau, u_{j}^{k})u_{j}^{k+1},\\u_{-1}^{k}=u_{1}^{k}, u_{N+1}^{k}=u_{N-1}^{k} & for j\in\langle 0, N\rangle, k\in\langle 0, N_{T}-1\rangle,\end{array}\right.$

$\left\{\begin{array}{ll}(u_{j}^{k+1}-u_{j}^{k})/\tau=a_{j}^{k}\Delta_{h}u & +b_{j}^{k}D_{h}u_{j}^{k}+f’+f_{1}(k\tau, u’)u_{j}^{k+1},\\u_{0}^{k}=u_{1}^{k}, u_{N}^{k}=u_{N-1}^{k} & for j\in\langle 1, N-1\rangle, k\in\langle 0, N_{T}-1\rangle,\end{array}\right.$

where $u_{j}^{k}=u_{h}(jh, k\tau),$ $h=1/N$.
We conclude this section by showing two typical examples where (2.10)

holds no longer without (2.9).
EXAMPLE 2.9. Consider the heat equation $(i. e., a\equiv 1, b\equiv f\equiv 0)$ . Fix $\tau/h^{2}$

$=1/2$ and take

$u^{0}(x)=\sum_{n=1}^{+\infty}\phi(2^{n}x-1)/4^{n}$ ,

where $\phi(x)$ is a $C^{1}$-function defined in $R^{1}$ such that (i) $\phi(3/8+x)=\phi(3/8-x)$ ,
(ii) $\phi(x)=0$ for $x\leqq 1/4$ and $\phi(3/8)=1$ , (iii) $d\phi/dx\geqq 0$ on [1/4, 3/8]. Obviously
$u^{0}$ belongs to $C^{1}[0,1]$ . Then, for $N=2^{m}(m\geqq 3)$ we have $\#_{p}^{h}(u_{h}^{0})=m-2$ and
$\#_{p}^{h}(u_{h}^{1})=m-1$ .

EXAMPLE 2.10. Consider the same equation as Example2.9. Fix $\tau/h^{2}$

$=1/4+\epsilon$ , where $\epsilon>0$ is arbitrarily small. Let $N$ be an odd number greater
than $(8\epsilon+1)/(4\epsilon)$ . Take $u_{h}^{0}(x_{j}),$ $j\in J=\{1/2,3/2, \cdots , N-1/2\}$ , as follows: $u_{h}^{0}(x_{j})$

$=u_{h}^{0}(1-x_{j})=(-1)^{j^{\prime}}j^{\prime},$ $j\in\{1/2,3/2, \cdots , N/2\}$ , where $j^{\prime}=j-1/2$ . Then we have

$u_{h}^{1}(x_{j})=u_{h}^{1}(1-x_{j})=\left\{\begin{array}{ll}-1/4-\epsilon, & j=1/2,\\4\epsilon(-1)^{f}‘+1j^{\prime}, & j\in\{3/2,5/2, --, N/2-1\} ,\\2\epsilon(-1)^{j^{\prime}+1}\{N & (8\epsilon+1)/(4\epsilon)\} , j=N/2.\end{array}\right.$

Hence we have $\#_{p}^{h}(u_{h}^{0})=(N-3)/2$ and $\#_{p}^{h}(u_{h}^{1})=(N-1)/2$ .

\S 3. Proof of Theorem 2.5.

Here we prove Theorem 2.5. Throughout this section $\hat{p}$ means the image
$\Pi p$ of $p\in R_{0}^{N+1}$ by an operator $\Pi$ which belongs to the class of linear operators
in $R^{N+1}$ considered in the preceding section. $\hat{p}_{j}$ means its j-th component.
We often use double signs $\pm and\mp$ . In an expression including them the
same order should be taken in both sides. For typographical reasons, we use
no double subscripts but express them with parentheses, for example $p_{i}$ with
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$i=j_{r}$ is denoted by $p_{J^{(r)}}$ .
We extend the definition of $N_{\pm}$ to a part of $p\in R^{N+1}$ . Define $N_{\pm}(p;j_{1}, j_{2})$,

$0\leqq j_{1}<j_{8}\leqq N$, by $N_{\pm}(\tilde{p})$, where $\tilde{p}$ is an element in $R^{N+1}$ taken as follows,

$\beta_{f}=\{$

$(p_{j(1)}$ $(0\leqq j\leqq j_{1})$ ,

$p_{j}$ $(j_{1}<j<j_{2})$ ,

$p_{j(2)}$ $(j_{2}\leqq j\leqq N)$ .
The following proposition is trivial.

PROPOSITION 3.1. Let $p\in R_{0}^{N+1}$ satisfy $p_{j}\neq 0,$ $j=1,$ $\cdots$ , $N-1$ . Then it holds
that

$N_{\pm}(p)=\sum_{i=0}^{s-1}N_{\pm}(p;j_{i}, j_{i+1})$ ,

for any $j_{i},$ $i=0,1,$ $\cdots$ , $s$ , satisfying $0=j_{0}<j_{1}<\ldots<j_{*-1}<j_{s}=N$.
If $P$ or $\hat{p}$ includes zero-components except both edges, the analysis of $N_{\pm}$

is somewhat complicated. The following proposition shows that we can get
rid of such circumstances if $\lambda_{j.:}$ satisfy the condition

(3.1) $\lambda_{j.i}>0$ for $i=j,$ $j\pm 1,$ $ j\in\langle 1, N-1\rangle$ .

Define $R^{N+1}(\Pi)$ by

$R^{N+1}(\Pi)=$ {$p$ ; $p,\hat{p}\in R_{0}^{N+1},$ $p_{j},\hat{p}_{j}\neq 0$ for $j\in\langle 1,$ $ N-1\rangle$}.

PROPOSITION 3.2. SuppOse condition (3.1). Then, for every non-zero element
$p\in R_{0}^{N+1}$ there exists an element $q\in ffi^{N+1}(\Pi)$ such that

(3.2) $N_{\pm}(q)=N_{\pm}(p)$ and $N_{\pm}(\hat{q})=N_{\pm}(\hat{p})$ .
PROOF. We divide the proof into 3 steps. Throughout the following

proof, $\sigma,$ $\sigma_{1}$ and $\sigma_{2}$ indicate +1 or $-1$ and $\epsilon$ indicates a sufficiently small
positive number, which may differ at each occurrence. We call $p$ and $q$ are
equivalent to each other if (3.2) is satisfied.

1st step. To find $p^{1}\in R_{0}^{N+1}$ equivalent to $P$ such that $p_{i}^{1}=0$ for some
$ i\in\langle 2, N-2\rangle$ implies $sgnP_{i-1}^{1}$ .sgn $p_{i+1}^{1}=-1$ and that $p_{1}^{1},$ $p_{N-1}^{1}\neq 0$ . We can find
such an element $p^{1}$ by repeating the following two transformations (from $p$

to $q$):
(i) If there exists $ j\in\langle 1, N-1\rangle$ such that sgn $(p_{j-1}, p_{j}, p_{j+1})=(\sigma, 0,0)$ or

$(0,0, \sigma)$ , then $q$ is defined by

(3.3) $q_{i}=\left\{\begin{array}{ll}p_{i}+\sigma\epsilon & for i=j,\\p_{i} & otherwise.\end{array}\right.$
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(ii) If there exists $ j\in\langle 2, N-2\rangle$ such that sgn $(p_{j-1}, p_{j}, p_{j+1})=(\sigma, 0, \sigma)$ , then $q$

is defined by (3.3).

We show that $p$ and $q$ are equivalent to each other under the transfor-
mation (i) with a suitable choice of $\epsilon$ . Suppose $j\neq 1,$ $N-1$ . From the structure
of $\Pi$ and by (3.1), we know that $\hat{p}$ and $\hat{q}$ differ only at $i=j,$ $j\pm 1$ and that
sgn $\hat{p}_{J}=sgn\hat{q}_{j}=\sigma$ . Four cases are considered: (a) sgn $(\hat{p}_{j-1},\hat{p}_{j},\hat{p}_{j+1})=(\sigma_{1}, \sigma, \sigma_{2})$ ,
(b) $(0, \sigma, \sigma_{1}),$ $(c)(\sigma_{1}, \sigma, 0),$ $(d)(0, \sigma, 0)$ . By choosing a sufficiently small $\epsilon(>0)$

we have (a) sgn $(\hat{q}_{j- 1},\hat{q}_{j},\hat{q}_{j+1})=(\sigma_{1}, \sigma, \sigma_{2}),$ $(b)(\sigma, \sigma, \sigma_{1}),$ $(c)(\sigma_{1}, \sigma, \sigma),$ $(d)(\sigma, \sigma, \sigma)$

for each case. Hence we obtain $N_{\pm}(\hat{p})=N_{\pm}(\hat{q})$ in any case. A similar argument
shows that $p$ and $q$ are equivalent to each other when $j=1,$ $N-1$ and when
the transformation (ii) is executed.

2nd step. To find $p^{2}\in R_{0}^{N+1}$ equivalent to $p^{1}$ such that $p_{j}^{2}=0$ for some
$ j\in\langle 2, N-2\rangle$ implies sgn $p_{j-1}^{2}$ . sgn $p_{j+1}^{2}=-1$ , that $p_{1}^{2},$ $p_{N-1}^{2}\neq 0$ , and that $\hat{p}_{j}^{2}\neq 0$

for all $ j\in\langle 1, N-1\rangle$ . We can find such an element $p^{2}$ by repeating the follow-
ing two transformations (from $P$ to $q$):
(i) If there exists $ j\in\langle 1, N-1\rangle$ such that sgn $(\hat{p}_{j-1},\hat{p}_{j},\hat{p}_{j+1})=(\sigma, 0,0),$ $(0,0, \sigma)$

or $(\sigma, 0, \sigma)$ , then $q$ is defined by (3.3).
(ii) If there exists $ j\in\langle 2, N-2\rangle$ such that sgn $(\hat{p}_{j-1},\hat{P}_{J},\hat{p}_{j+1})=(\sigma, 0, -\sigma)$ , then

$q$ is defined by (3.3).

By (i) we have sgn $(\hat{q}_{j-1},\hat{q}_{j},\hat{q}_{j+1})=(\sigma, \sigma, \sigma)$ and by (ii) sgn $(\hat{q}_{j-1},\hat{q}_{j},\hat{q}_{j+1})$

$=(\sigma, \sigma, -\sigma)$ . Since $\epsilon$ is sufficiently small, the transformations (i) and (ii)
preserve the property which $p^{1}$ has. (It may happen that $p_{j}=0$ and $q_{j}=\sigma\epsilon\neq 0$

for some $j.$ ) It is easy to see that $p$ and $q$ (therefore $p^{1}$ and $p^{2}$) are equivalent
to each other.

3rd step. To find $qER^{N+1}(\Pi)$ equivalent to $p^{2}$ . We can find such an
element $q$ by repeating the following transformation (from $P$ to $q$): If there
exists $ j\in\langle 2, N-2\rangle$ such that $p_{j}=0$ , then $q$ is defined by (3.3), where $\sigma$ is
arbitrary (1 or $-1$ ). It is easy to see $qER^{N+1}(\Pi)$ and that $P$ and $q$ are
equivalent to each other. $q$ . $e$ . $d$ .

Before stating the following lemmas, we introduce the definition of “chain”.
A part $c$ of $p\in R_{W}^{N+1}(\Pi)$ is called a chain if $c=(p_{j(1)}, p_{j(1)+1}, \cdots , p_{j(2)})$ ,
$1\leqq j_{1}<j_{2}\leqq N-1$ , satisfies the following conditions: (i) sgn $p_{j+1}=-sgn$ $p_{j}$ for
$ j\in\langle j_{1}, j_{2}-1\rangle$ , (ii) sgn $p_{j+1}\neq-sgn$ $p_{j}$ for $j=j_{1}-1,$ $j_{2}$ . We denote a chain of $p$

by $c(p;j_{1}, j_{2})$ . A chain $c(p;j_{1}, j_{2})$ is called an active chain (or a-chain) if
there exists some $ j\in\langle j_{1}, j_{2}\rangle$ such that sgn $\hat{p}_{j}\neq sgnp_{j}$ . Put

$N_{0}(p;j_{1}, j_{2})=N_{+}(p;j_{1}, j_{2})+N_{-}(p;j_{1}, j_{2})$ .

LEMMA 3.3. Let $c(p;j, j+r),$ $1\leqq j<j+r\leqq N-1$ , be an a-chain of $p\in R_{0^{*}}^{N+1}(\Pi)$ .
Then, under condition (2.11) it holds that

(i) $N_{0}(\hat{p} ; j, j+r)\leqq r-1$ ,



Semilinear parabolic problems 183

(ii) If $sgn\hat{p}_{i}=-sgnp_{i}$ for $i=j,$ $j+r$, then $N_{0}(\hat{p};j, j+r)\leqq r-2$ .
PROOF. From the definition of chain, $N_{0}(p;j, j+r)=r$ . The results (i)

and (ii) are obtained at one stroke if we prove that it is impossible that
sgn $\hat{p}_{i}=-sgnP_{i}$ for all $ i\in\langle j, j+r\rangle$ . Without loss of generality we may assume
that sgn $p_{i}=(-1)^{i},$ $ i\in\langle j, j+r\rangle$ . We have

(3.4) $(-1)^{i}p_{i}=-\lambda_{i_{2}i-1}(-1)^{t-1}p_{i-1}+\lambda_{i.i}(-1)^{i}p_{i}-\lambda_{i,i+1}(-1)^{i+1}p_{i+1}$ .

Summing up (3.4) from $i=j$ to $j+r$, we obtain

(3.5) $\sum_{i=j}^{j+r}(-1)^{i}p_{i}=-\lambda_{j.j-1}(-1)^{j-1}p_{j-1}+(\lambda_{j,j}-\lambda_{j+1.j})(-1)^{j}p_{j}$

$+\sum_{i=j+1}^{j+r-1}(\lambda_{i,i}-\lambda_{i-1.i}-\lambda_{i+1,i})(-1)^{i}p_{i}$

$+(\lambda_{j+r.j+r}-\lambda_{j+r-1,j+r})(-1)^{j+r}p_{j+r}$

$-\lambda_{j+r,j+r+1}(-1)^{j+r+1}p_{j+r+1}$ .

By the definition of chain it holds that sgn $p_{j-1}=sgnp_{j}$ or $=0$ (if $j-1=0$)

and that $sgnp_{j+r+1}=sgnp_{j+r}$ or $=0$ (if $j+r+1=N$). By virtue of (2.11) we
have

the right of $(3.5)\geqq(\lambda_{j,j}-\lambda_{j+1.j})(-1)^{j}p_{j}$

$+(\lambda_{j+r.j+r}-\lambda_{j+r-1j+r})(-1)^{f+r}p_{j+r}$

$\geqq 0$ .

Hence there exists at least one $ i\in\langle j, j+r\rangle$ such that sgn $\hat{p}_{i}\neq(-1)^{i+1}$ , which
implies sgn $\hat{p}_{i}\neq-sgn$ $p_{i}$ . $q$ . $e$ . $d$ .

LEMMA 3.4. $SuPPose$ condition (2.11). Let $t(P;j_{0}, j_{0}+r)=(p_{J^{(0)}},$ $p_{J^{(0)+1}},$ $\cdots$

$p_{j^{(0)+}r}),$ $1\leqq j_{0}<j_{0}+r\leqq N-1$ , be a train of a-chains included in $p\in R_{\wp}^{N+1}(\Pi),$ $i$ . $e.$ ,
there exist $j_{k},$ $k=1,$ $\cdots$ , $s(\geqq 1)$, such that $j_{s}=j_{0}+r+1,$ $j_{k+1}-j_{k}\geqq 2$ for $k=$

$0,1,$ $\cdots$ , $s-1$ and that $c(p;j_{k}, j_{k+1}-1),$ $k=0,1,$ $\cdots$ , $s-1$ , are a-chains. If sgn $p_{t}$

$=sgnp_{i}$ for $i=j_{0}-1$ and $j_{0}+r+1$ , then

$N_{\pm}(\hat{p};j_{0}-1, j_{0}+r+1)\leqq N_{\pm}(p ; j_{0}-1, j_{0}+r+1)$ .

PROOF. We divide the proof into two steps.
1st step. We prove that

(3.6) $N_{0}(\hat{p} ; j_{0}-1, j_{0}+r+1)\leqq N_{0}(p ; j_{0}-1, j_{0}+r+1)$ .

Set $n_{k}=j_{k+1}-j_{k}-1$ . Obviously it holds that
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(3.7) $N_{0}(p;j_{0}-1, j_{0}+r+1)=\sum_{k=0}^{s-1}n_{k}$ .

Applying Proposition 3.1 and Lemma 3.3, we have

$N_{0}(\hat{p};j_{0}-1, j_{0}+r+1)=\sum_{k=0}^{\iota}N_{0}(\hat{p};j_{k}-1, j_{k})+\sum_{k=0}^{s-1}N_{0}(\hat{p} ; j_{k}, j_{k}+n_{k})$

$\leqq s+1+\sum_{k=0}^{s-1}(n_{k}-1)$

$=\sum_{k\Rightarrow 0}^{s-1}n_{k}+1$ .

For (3.6) it suffices to prove that all the following equalities do not hold at
one time,

(3.8) $N_{0}(\hat{p};j_{k}-1, j_{k})=1$ for $k=0,1,$ $\cdots$ , $s$ ,

(3.9) $N_{0}(\hat{p};j_{k}, j_{k}+n_{k})=n_{k}-1$ for $k=0,1,$ $\cdots$ , $s-1$ .

If $j_{0}=1$ (resp. $j_{0}+r=N-1$), $(3.8)$ does not hold for $k=0$ (resp. $k=s$). Consider
the case $1<j_{0}<j_{0}+r<N-1$ . Then we have

(3.10) sgn $p_{j(k)-1}=sgnp_{j(k)}$ for $k=0,1,$ $\cdots$ , $s$ .

We show that, if we assume (3.8) for $k=0,1,$ $\cdots$ , $s-1$ and (3.9) for $k=0,1,$ $\cdots$ ,
$s-1,$ $(3.8)$ for $s$ does not hold. For the proof we observe that those assump-
tions lead to

(3.11) sgn $p_{j(k)}=-sgn$ $p_{j(k)}$ , sgn $P_{J^{(k)+n(k)}}=sgnP_{J^{(k)+n(k)}}$

for $k=0,1,$ $\cdots$ , $s-1$ .

In the case $k=0$ , by (3.8), the assumption of Lemma, and (3.10), we have

sgn $\hat{p}_{J^{(0)}}=-sgn$ $\hat{p}_{j(0)-1}=-sgn$ $P_{J^{(0)- 1}}=-sgnp_{J^{(0)}}$ ,

which implies sgn $\hat{P}_{J^{(0)+n(0)}}=sgnp_{j(0)+n(0)}$ by Lemma 3.3 and (3.9). We now
proceed inductively, assuming that (3.11) is true for $k=l$ . By (3.8), this
assumption, and (3.10), we have

sgn $\hat{p}_{j(l+1)}=-sgn\hat{p}_{J^{(l)+n(l)}}=-sgnp_{J^{(l)+n(l)}}=-sgnp_{j(l+1)}$ ,

which implies sgn $\hat{p}_{J^{(l+1)+n(l+1)}}=sgnp_{j(l+1)+n(l+1)}$ by Lemma 3.3 and (3.9). Hence
(3.11) is true for $k=l+1$ , which completes the proof of (3.11). By setting
$k=s-1$ in the latter of (3.11), and by using (3.10) for $k=s$ and the assumption
of Lemma, we have
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sgn $P_{J^{(S)-1}}=sgnp_{j(\$)-1}=sgnp_{J^{(s)}}=sgn\hat{p}_{J^{(\$)}}$ ,

which implies (3.8) for $k=s$ is false.
2nd step. In (3.6) two cases are considered: (i) both sides are not equal,

(ii) both sides are equal. In the first case we can easily conclude the results
of Lemma since it holds generally that for $0\leqq i_{1}<i_{2}\leqq N$,

$N_{\pm}(p;i_{1}, i_{2})=\left\{\begin{array}{ll}N_{0}(p;i_{1}, i_{2})/2 & if N_{0}(p;i_{1}, i_{2}) is even,\\(N_{0}(p;i_{1}, i_{2})\pm 1)/2 & \\or & if N_{0}(p;i_{1}, i_{2}) is odd.\\(N_{0}(p;i_{1}, i_{2})\mp 1)/2 & \end{array}\right.$

In the second case we have $j_{0}\geqq 2$ or $j_{0}+r+1\leqq N-1$ . In fact if we assume
that $j_{0}=1$ and $j_{0}+r+1=N,$ $(3.8)$ does not hold for $k=0$ and $s$ , which implies

$N_{0}(\hat{p} ; j_{0}-1, j_{0}+r+1)\leqq\sum_{k=1}^{s-1}n_{k}-1<N_{0}(p ; j_{0}-1, j_{0}+r+1)$ .

Hence this is reduced to the Prst case. Without loss of generality we can
assume $j_{0}\geqq 2$ . Then we have sgn $\hat{p}_{J^{(0)-1}}=sgnp_{J^{(0)-1}}\neq 0$ . Since (3.6) is satisPed
with equality, we $obtain_{\Delta}^{A}N_{\pm}(\hat{p} ; j_{0}-1, j_{0}+r+1)=N_{\pm}(p;j_{0}-1, j_{0}+r+1)$ .

$q$ . $e$ . $d$ .
PROOF OF THEOREM 2.5. We divide the proof into 2 steps.
1st step (the case when $\lambda_{j.i}$ satisfy the additional condition (3.1)). When

$P$ is nonnegative (resp. nonpositive), we have $\hat{p}$ is nonnegative (resp. non-
positive). Hence it holds $N_{\pm}(\hat{p})=N(p)=0$ .

When $P$ has both positive and negative components, fix $q\in R_{0^{*}}^{N+1}(\Pi)$

equivalent to $p$ by Proposition 3.2. For (2.12) it suffices to show $N_{\pm}(\hat{q})\leqq N_{\pm}(q)$ .
We first take out all the a-chains $c_{j}$ included in $q$ . Connecting $c_{j}$ if they
are adjacent to each other, we make uP a set of trains of a-chains, which is
denoted by $t_{k}(q;j_{k}, j_{k}+n_{k}),$ $k=1,$ $\cdots$ , $s$ , $0<j_{1}<j_{1}+n_{1}<j_{2}<\ldots<j_{s}+n_{s}<N$.
We show that

(3.12) $sgn\hat{q}_{j}=sgnq_{j}$ for all $q_{j}\in q-\bigcup_{k=1}^{s}t_{k}$ .

Three cases are considered: (i) $j=0$ or $N$, (ii) $q_{j}$ belongs to a non-active
chain, (iii) otherwise. In cases (i) and (ii), (3.12) is trivial. In case (iii), $q_{j}$

belongs to no chain. Hence, by the dePnition of chain we have

sgn $q_{j-1}=sgnq_{j}=sgnq_{j+1}$ when $j\neq 1,$ $N-1$ ,

$q_{0}=0$ , sgn $q_{1}=sgnq_{2}$ when $j=1$ , or

sgn $q_{N-2}=sgnq_{N-1},$ $q_{N}=0$ when $j=N-1$ .
In any case we have (3.12).
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If $s=0$, our proof is complete. Suppose $s\geqq 1$ . By Proposition 3.1, we have

(3.13) $N_{\pm}(\hat{q})=N_{\pm}(\hat{q};0, j_{1}-1)+\sum_{k\Rightarrow 1}^{l}N_{\pm}(\hat{q};j_{k}-1, j_{k}+n_{k}+1)$

$+\sum_{k=1}^{s-1}N_{\pm}(\hat{q} ; j_{k}+n_{k}+1, j_{k+1}-1)+N_{\pm}(\hat{q};j_{s}+n_{s}+1, N)$ ,

where it may haPpen that $j_{1}-1=0,$ $j_{k}+n_{k}+1=j_{k+1}-1,$ $j_{s}+n_{s}+1=N$. By using
(3.12) and Lemma 3.4, we obtain

the right of $(3.13)\leqq N_{\pm}(q;0, j_{1}-1)+\sum_{k=1}^{s}N_{\pm}(q;j_{k}-1, j_{k}+n_{k}+1)$

$+\sum_{k=1}^{s-1}N_{\pm}(q ; j_{k}+n_{k}+1, j_{k+1}-1)+N_{\pm}(q ; j_{s}+n_{s}+1, N)$

$=N_{\pm}(q)$ .

2nd step (the general case). Let $\Pi_{\epsilon}$ be the same kind operator as $\Pi$ in
$R_{0}^{N+1}$ with

$\lambda_{ji}^{\epsilon}=\left\{\begin{array}{ll}\lambda_{j,i}+2\epsilon & for i=j, j\in\langle 1, N-1\rangle,\\\lambda_{j,i}+\epsilon & for i=j\pm 1, j\in\langle 1, N-1\rangle,\end{array}\right.$

where $\epsilon$ is a positive number. Since $\lambda_{j,i}^{\epsilon}$ satisfy (2.11) as well as (3.1), $\Pi_{\epsilon}$

lies within the scope of the first step. Therefore we have $N_{\pm}(\Pi_{\epsilon}p)\leqq N_{\pm}(p)$

for every $\epsilon>0$ .
Now, for each $p\in R_{0}^{N+1}$ there exists a small positive number $\epsilon$ such that

$(\Pi p)(j)\neq 0$ for some $ j\in\langle 1, N-1\rangle$ implies sgn $((\Pi p)(j))=sgn((\Pi_{\epsilon}p)(j))$ , where
$(\Pi p)(j)$ (resp. $(\Pi_{\epsilon}p)(j)$) is the j-th component of $\Pi p$ (resp. $\Pi_{\epsilon}p$). Then
obviously we have $N_{\pm}(\Pi p)\leqq N_{\pm}(\Pi_{\epsilon}p)$ . Therefore we obtain $N.(\Pi p)\leqq N.(p)$

for every $p\in R_{0}^{N+1}$ . $q$ . $e$ . $d$ .

\S 4. Homogeneous Dirichlet boundary conditions.

In this section we consider semilinear parabolic equations with homogeneous
Dirichlet boundary conditions. In this case it may happen in general that
the number of peaks of a solution increases. After giving such an example,
we impose an additional restriction to the term $f(t, u)$ and show that the
same results as Sections 1 and 2 hold under the restriction.

EXAMPLE 4.1. Consider the following equation,

(4.1) $\left\{\begin{array}{ll}u_{t}=u_{xx}+t & in Q,\\u(O, t)=u(1, t)=0, & t\in(0, T),\\u(x, 0)=0, & x\in(O, 1).\end{array}\right.$
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Then equation (4.1) has a smooth solution which can be expressed as

$u(x, t)=\int_{0}^{t}ds\int_{0}^{1}U(x, y, t-s)sdy$ ,

where $U(x, y, t)$ is the Green function of $L=\partial^{2}/\partial x^{2}-\partial/\partial t$ with homogeneous
Dirichlet boundary conditions. Since $u(x, t)$ is positive for $X\in(O, 1)$ and $t>0$ ,
we have $\#_{p}(u(t))\geqq 1$ for $t>0$ . Therefore we have $0=\#_{p}(u^{0})<\#_{p}(u(t))$ for $t>0$ .

Considering Example 4.1, we impose the following additional restriction
to $f$,

(4.2) $f(t, 0)=0$ .

By noting Remark 1.1, the equation we consider is written as

(4.3) $\left\{\begin{array}{ll}u_{t}=a(x, t)u_{xx}+b(x, t)u_{x}+f_{1}(t, u)u & in Q ,\\u(O, t)=u(1, t)=0 , & t\in(O, T),\\u(x, 0)=u^{0}(x), & x\in(0,1).\end{array}\right.$

Corresponding to Theorem 1.2 and Corollary 1.3, the following results hold.
THEOREM 4.2. $SuPPose$ Assumption1 and (4.2). Let $u^{0}\in C^{1}[0,1]$ satisfy

$u^{0}(0)=u^{0}(1)=0$ . Then, equation (4.3) has a unique solution $u(t)\in C^{1}[0,1]$ ,
$t\in[0, T]$ and it holds that

(4.4) $\#_{p}(u(t))\leqq\#_{p}(u^{0})$ , $\#_{v}(u(t))\leqq\#_{v}(u^{0})$ for $t\in[0, T]$ .

COROLLARY 4.3. Under the same assumptions as Theorem 4.2, $\#_{p}(u(t))$ and
$\#_{v}(u(t))$ are monotonically decreasing.

Theorem 4.2 can be proved in a similar line to Theorem 1.2 if we obtain
a finite difference scheme for (4.3) whose solution has the same property as
(4.4).

Discretize $\overline{Q}$ by a $(h, \tau)$-rectangular net. This time our grid points consist
of $(x_{j}, k\tau),$ $x_{j}=jh,$ $j\in\langle 0, N\rangle,$ $ k\in\langle 0, N_{T}\rangle$ . We seek a net function $u_{h}(x_{j}, k\tau)$

$=u_{h}^{k}(x_{j})$ satisfying

(4.5) $\left\{\begin{array}{l}\{u_{h}^{k+1}(x_{j})-u_{h}^{k}(x_{j})\}/\tau=a_{j}^{k}\Delta_{h}u_{h}^{k}(x_{j})+b_{j}^{k}D_{h}u_{h}^{k}(x_{j})\\+f_{1}(k\tau, u_{h}^{k}(x_{j}))u_{h}^{k+1}(x_{j}),\\u_{h}^{k}(x_{0})=u_{h}^{k}(x_{N})=0,\\u_{h}^{0}(x_{j})=u^{0}(x_{j}) for j\in\langle 1, N-1\rangle, k\in\langle 0, N_{T}-1\rangle.\end{array}\right.$

THEOREM 4.4. Under AssumptiOn1 and the conditions

(4.6) $\tau\leqq h^{2}/(2\Vert a\Vert),$ $ h\leqq 2a_{0}/\Vert b\Vert$ and

(4.7) $\tau<1/M_{0}$ if $M_{0}>0$ ,

the difference scheme (4.5) is $L^{\infty}$-stable in the sense,
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(4.8)
$jc^{-}<0$ . $V>.k\in<0,$
$N_{T}>\max_{\prime}|u_{h}^{k}(x_{j})|\leqq U_{0}(\tau)$ ,

where

$U_{0}(\tau)=\left\{\begin{array}{ll}\Vert u^{0}\Vert exp \{TM_{0}/(1-\tau M_{0})\} , & M_{0}>0,\\\Vert u^{0}\Vert, & M_{0}\leqq 0.\end{array}\right.$

Furthermore, if the exact solution $u$ of (4.3) is smooth (see Remark 2.2),
$u_{h}$ converge to $u$ uniformly in $\overline{Q}$ .

Theorem 4.4 can be proved in a similar line to Theorem 2.1. So we omit
the proof.

THEOREM 4.5. Supp0se Assumpti0n 1. Then, for every $\epsilon>0$ there exists a
number $h_{0}>0$ such that under the condition

(4.9) $h\leqq h_{0}$ and $\tau\leqq h^{2}/\{4\Vert a\Vert+(2\Vert a_{x}\Vert+\epsilon)h\}$

the solution $u_{h}$ of (4.5) satisfies
(4.10) $\#_{p}^{h}(u_{h}^{k})\leqq\#^{h}p(u_{h}^{0})$ , $\#^{h}v(u_{h}^{k})\leqq\#^{h}v(u_{h}^{0})$ for $ k\in\langle 0, N_{T}\rangle$ .

REMARK 4.6. $\#_{p}^{h}(u_{h}^{k})$ and $\#^{h}v(u_{h}^{k})$ in (4.10) should be understood as follows.
Let $p_{h}^{k}$ be broken lines connecting $(x_{j}, p_{h}^{k}(x_{j})),$ $j\in J=\{1/2,3/2, \cdots , N-1/2\}$ ,
where $x_{j}=jh$ ,

$p_{n}^{k}(x_{j})=\{u_{h}^{k}(x_{j}+h/2)-u_{a}^{k}(x_{j}-h/2)\}/h$ .
Replacing $[0,1]$ by $[h/2,1-h/2]$ in the definition of $N_{\pm}$ , we define $N_{\pm}$ for
continuous functions defined on $[h/2,1-h/2]$ . Thus we understand $\#_{p}^{h}(u_{h}^{k})$

$=N_{+}(p_{h}^{k})$ and $\#_{v}^{h}(u_{h}^{k})=N_{-}(P_{h}^{k})$ .
PROOF OF THEOREM 4.5. Let $p_{h}^{k}$ be as above. Fix $k$ arbitrarily. We

show that $N_{\pm}(p_{h}^{k+1})\leqq N_{\pm}(p_{h}^{k})$ . $p_{h}^{k}$ and $p_{h}^{k+1}$ satisfy (2.14) for $j\in J_{0}=\{3/2,5/2,$ $\cdots$

$N-3/2\}$ . Substituting $u_{\iota}^{k}(x_{1})=hp_{1/2}^{k}$ and $u_{h}^{k}(x_{2})=h(p_{y2}^{k}+p_{1f2}^{k})$ intO (4.5) with $j=1$ ,

we have

$(p_{1/2}^{k+1}-p_{1/2}^{k})/\tau=a_{\perp}^{k}(p_{s/2}^{k}-p_{1/2}^{k})/h^{2}+b_{1}^{k}(p_{y2}^{k}+p_{1\text{m}2}^{k})/(2h)+(f_{1})_{1/2}^{k}p_{\iota/2}^{k\leftarrow 1}$ .
Similarly we obtain

$(p_{N-1/2}^{k+1}-p_{N-1/2}^{k})/\tau=a_{N-1}^{k}(p_{N-3/2}^{k}-p_{N-1/2}^{k})/h^{2}$

$-b_{N-1}^{k}(p_{N-1/2}^{k}+p_{N-3/2}^{k})/(2h)+(f_{1})_{N-3/2}^{k}p_{N-1/2}^{k+1}$ .
Hence, if we set $p_{-1/2}^{k}=p_{N+1/2}^{k}=0$, we have

(4.11) $p_{j}^{k+1}=\lambda_{j.j- 1}^{k}p_{j-1}^{k}+\lambda_{jj}^{k}p_{j}^{k}+\lambda_{j.j+1}^{k}p_{j+1}^{k}$ for $j\in J$ ,

where $\lambda_{jj}^{k}$ and $\lambda_{jj\underline{+}1}^{k},$ $j\in J_{0}$ are those defined in (2.15) and
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$\lambda_{1/2,1/2}^{k}=\{2h^{2}-\tau(2a:-hb_{1}^{k})\}/\{2h^{2}(1-\tau(fi)_{1/2}^{k})\}$ ,

$\lambda_{1/2,3/2}^{k}=\tau(2a_{1}^{k}+hb_{1}^{k})/\{2h^{2}(1-\tau(fi)_{1/2}^{k})\}$ ,

$\lambda_{N-1/2.N-\ovalbox{\tt\small REJECT} 2}^{k}=\tau(2a_{N-1}^{k}-hb_{N-1}^{k})/\{2h^{2}(1-\tau(f_{1})_{N-3/2}^{k}\}$ ,

$\lambda_{N-1/2,N-1/2}^{k}=\{2h^{2}-\tau(2a_{N-1}^{k}+hb_{N-1}^{k})\}/\{2h^{2}(1-\tau(f_{1})_{N-3/2}^{k})\}$ .

Thus $p_{h}^{k+1}$ can be regarded as the image of $p_{h}^{k}$ by a linear operator in $R_{0}^{N+2}$

$=\{p=(p_{-1/2}, p_{1/2}, \cdots , p_{N+1/2});p_{j}\in R, j\in J, p_{-1/2}=p_{N+1/2}=0\}$ . It is not difficult
to see that condition (4.9) implies (2.11). Applying Theorem 2.5, we get

$N_{\pm}(P_{h}^{k+1} ;-1/2, N+1/2)\leqq N_{\pm}(p_{h}^{k} ; -1/2, N+1/2)$ .

Since $N_{\pm}(p;-1/2, N+1/2)=N_{\pm}(p;1/2, N-1/2)$ , we obtain $N_{\pm}(p_{h}^{k+1})\leqq N_{\pm}(p_{h}^{k})$ .
$q$ . $e$ . $d$ .

REMARK 4.7. We can deal with the third boundary condition

(4.12) $\left\{\begin{array}{l}\alpha_{0}(t)u(0, t)-(1-\alpha_{0}(t))\partial u/\partial_{X}(0, t)=0,\\\alpha_{1}(t)u(1, t)+(1-\alpha_{1}(t))\partial u/\partial x(1, t)=0,\end{array}\right.$

where $\alpha_{i}(t),$ $i=0,1$ , are smooth functions satisfying $0\leqq\alpha_{i}\leqq 1$ . We aPproximate
(4.12) by

$\left\{\begin{array}{l}\alpha_{0}^{k}u_{h}^{k}(x_{0})-(1-\alpha_{0}^{k})(u_{h}^{k}(x_{1})-u_{h}^{k}(x_{0}))/h=0,\\\alpha_{1}^{k}u_{h}^{k}(x_{N})+(1-\alpha_{1}^{k})(u_{h}^{k}(x_{N})-u_{h}^{k}(x_{N-1}))/h=0 ,\end{array}\right.$

which lead to

$\alpha_{0}^{k}u_{h}^{k}(x_{0})=(1-\alpha_{0}^{k})p_{1/2}^{k}$ , $\alpha_{0}^{k}u_{h}^{k}(x_{1})=\{h\alpha_{0}^{k}+(1-\alpha_{0}^{k})\}p_{1/2}^{k}$ ,

$\alpha_{1}^{k}u_{h}^{k}(x_{N})=-(1-\alpha_{1}^{k})p_{N-1/2}^{k}$ , $\alpha_{1}^{k}u_{h}^{k}(x_{N-1})=-\{h\alpha_{1}^{k}+(1-\alpha_{1}^{k})\}p_{N-1/2}^{k}$ .
By using these equations, we can obtain the same results as those in the
case of Dirichlet boundary conditions.

\S 5. The blowing-up case.

We have hitherto limited ourselves to non-blowing-up solutions by imposing
(iii) of Assumption 1. Here we remove the assumption that $\partial f/\partial u$ is less
than some real number in $[0, T]\times R$ from Assumption 1 and denote by
Assumption 1’ the remaining assumptions. Under Assumption 1’ solutions
may blow up at a time $T_{*}\in(O, T$] but the following resuIts corresponding
to Corollaries 1.3 and 4.3 are obtained.

COROLLARY 5.1. Suppose Assumption 1’ and $u^{0}\in C^{1}[0,1]$ . Let $[0, \tau_{*}$) be
the interval where the solution of (1.I) exists. Then, $u(t)\in C^{1}[0,1]$ for $t\in[0, T_{*}$)
and $\#_{p}(u(t))$ and $\#_{v}(u(t))$ are monotonically decreasing in $[0, T_{*}$).
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COROLLARY 5.2. SuPpose Assumption1’ and (4.2). Let $u^{0}\in C^{1}[0,1]$ satisfy
$u^{0}(0)=u^{0}(1)=0$ and $[0, T_{*}$ ) be the interval where the solution of (4.3) exists.
Then, $u(t)\in C^{1}[0,1]$ for $tE[0, T_{*}$ ) and $\#_{p}(u(t))$ and $\#_{v}(u(t))$ are monotonically
decreasing in $[0, T_{*}$ ).

PROOFS OF COROLLARIES 5.1 AND 5.2. Both corollaries are proved in a
similar line. So we show only the proof of the result of Corollary 5.1 con-
cerning the number of peaks. It is sufficient to prove that $\#_{p}(u(t_{2}))\leqq\# p(u(t_{1}))$

for any fixed $t_{1},$ $t_{2},0\leqq t_{1}<t_{2}<T_{*}$ . Since the solution $u$ is bounded in $[0,1]$

$\times[0, t_{2}]$ , we can modify $f$ to obtain $f$ such that $f$ satisfies (iii) of Assumption
1 and that $f$ is equal to $f$ in $[0, t_{2}]\times[U_{1}, U_{2}]$ , where $U_{2}$ (resp. $U_{1}$) is the
lowest uPper (resp. largest lower) bound of $u$ in $[0,1]\times[0, t_{2}]$ . The equation
(1.1) with $\tilde{f}$ in place of $f$ has the same solution $u$ in $[0,1]\times[0, t_{2}]$ . Hence
we have $\#_{p}(u(t_{2}))\leqq\#_{p}(u(t_{1}))$ by Corollary 1.3. $q$ . $e$ . $d$ .

We conclude by applying Theorem 2.5 to a finite difference scheme for a
blowing-up problem considered by Nakagawa [7].

EXAMPLE 5.3. In (4.3) take $a\equiv 1,$ $b\equiv 0,$ $f_{1}=u$ and $u^{0}\geqq 0$ . Nakagawa’s
scheme for this equation is the following one with variable time-steps $\tau_{k}$ ;

$|^{(u_{h}^{k+1}(x_{j})-u_{h}^{k}(x_{j}))/\tau_{k}=\Delta_{h}u_{h}^{k}(x_{j})+(u_{h}^{k}(x_{f}))^{2}}u_{h}^{k}(x_{0})=u_{h}^{k}(x_{N})=0$

,

(51)

$(\tau_{k}=\tau\times\min(1,1/u_{h}^{0}(x_{j})=u^{0}(x_{j}),\{h\sum_{j=1}^{N- 1}(u_{h}^{k}(x_{j}))^{2}\}^{1/2})$

, for $ j\in$

$\langle 1, N-1\rangle,$

$k=0,1$ , – ,

where $h(=1/N)$ and $\tau$ are given positive numbers and $x_{j}=jh$ . In his paPer

it is proved that when the exact solution blows up at a finite time $T_{*}$ , the

numerical blowing-up times $(\sum_{k=0}^{+\infty}\tau_{k})(h)$ converge to $T_{*}$ as $h\downarrow 0$ under the

condition $\tau\leqq h^{2}/2$ . In a similar line to the proof of Theorem 4.5, we observe
that the first difference $p_{j}^{k}$ satisfies (4.11) with

$\lambda_{j,j+1}^{k}=\tau_{k}/h^{2}$ $j\in J-\{N-1/2\}$ ,

$\lambda_{jj}^{k}=\left\{\begin{array}{ll}1-\tau_{k}/h^{2}+\tau_{k}u_{h}^{k}(x_{1}), & j=1/2,\\1-2\tau_{k}/h^{2}+\tau_{k}\{u_{h}^{k}(x_{f+1/2})+u_{h}^{k}(x_{j- 1/2})\}, & j\in J_{0},\\1-\tau_{k}/h^{2}+\tau_{k}u_{h}^{k}(x_{N- 1}) , & j=N-1/2,\end{array}\right.$

$\lambda_{j,j- 1}^{k}=\tau_{k}/h^{2}$ , $j\in J-\{1/2\}$ .
From (5.1) we have $u_{h}^{k}(x_{j})\geqq 0$ for $j\in\langle 0, N\rangle,$ $k=0,1,$ $\cdots$ if $\tau\leqq h^{2}/2$ . Hence the
condition $\tau\leqq h^{2}/4$ leads to (2.11), which implies

$\#_{p}^{h}(u_{h}^{k+1})\leqq\#_{p}^{h}(u_{h}^{k})$ , $\#_{v}^{h}(u_{h}^{k+1})\leqq\#_{v}^{h}(u_{h}^{k})$ for any $k$ .
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Thus, the difference scheme (5.1) with $\tau\leqq h^{2}/4$ gives solutions such that the
numerical blowing-up times converge to the exact one and that the number
of peaks of each solution is monotonically decreasing.
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Added in proof.

After having written this article the author was kindly informed by Mr.
Akira Mizutani of Gakushuin University that the proof of Theorem 2.5 could
be shorten by applying the $L-U$ decomposition to the matrix $\Pi$ . The condi-
tion (2.11) and (3.1) imply that $\Pi$ is decomposed into $\Pi_{1}\Pi_{2}$ , where $\Pi_{k}=(\lambda_{i,j}^{k})$ ,
$k=1,2$, are matrices such that $\lambda_{i,i}^{1}=1$ and $\lambda_{i,i}^{2}>0$ $(i=1, \cdots , N-1),$ $\lambda_{i+1,i}^{1},$ $\lambda_{i.i+1}^{2}>0$

$(i=1, \cdots , N-2)$ , and that the other elements are all zeros. Hence for Theorem
2.5 it is sufficient to show that $N_{\pm}(\Pi_{k}p)\leqq N_{\pm}(p),$ $k=1,2$, which is simpler than
to show (2.12) directly since $\Pi_{k}$ are bi-diagonal.
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