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1. Introduction.

In [6], we defined $J_{G}(X)$ for a compact group $G$ and for a compact G-space

X. When $X$ is a point, we denote it by $J_{G}(*)$ . Similar groups $JO(G)$ were
defined and studied by Atiyah and Tall [2], Snaith [13], and Lee and Wasser-
man [9]. Our definition is more rigid than those of $JO(G)$ and is given from
the geometrical point of view as follows.

Two orthogonal representation spaces $V,$ $W$ of a compact topological
group $G$ are said to be J-equivalent if there exist an orthogonal representa-

tion space $U$ and a G-homotopy equivalence $f:S(V\oplus U)\rightarrow S(W\oplus U)$ where
$S(V\oplus U)$ and $S(W\oplus U)$ denote the unit spheres in $V\oplus U$ and $W\oplus U$ respectively.
Then the group $J_{G}(*)$ is defined as the quotient of the orthogonal representa-

tion ring $RO(G)$ by the subgroup

$T_{G}(*)=$ { $V-W|V$ is J-equivalent to $W$}.

The natural epimorphism $RO(G)\rightarrow J_{G}(*)$ is denoted by $J_{G}$ .
The purpose of the present paper is to determine the group structure of

$J_{G}(*)$ for $G$ an arbitrary compact abelian topological group as promised in [7]
(see Theorem 4.1).

Essential part of the computation is to determine the group structure of
$J_{z_{n}}(*)$ for every cyclic group $Z_{n}$ . Let $V,$ $W$ be $Z_{n}$-representation spaces such
that $Z_{n}$ acts freely on $S(V)$ and $S(W)$ . Then we shall obtain the following
unexpected theorem (see Theorem 2.6) which is crucial for determining the
group structure of $J_{z_{n}}(*);S(V)$ and $S(W)$ are $Z_{n^{-}}homotopy$ equivalent if and
only if $V$ is J-equivalent to $W$.

More generally we have as a corollary to the main theorem that for a
compact abelian topological group $G$ , two $G$-representations $V$ and $W$ are J-
equivalent if and only if $S(V)$ and $S(W)$ are $G$-homotoPy equivalent (Corollary
4.2).
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This result together with [6] yields the following. Let $G$ be a compact
abelian Lie group and $M_{1},$ $M_{2}$ be closed smooth G-manifolds. Suppose that
we are given a G-homotopy equivalence $f:M_{1}\rightarrow M_{2}$ . Denote by $F_{1}^{\mu}$ each
component of the fixed point set of $M_{1}$ . Set $F_{2}^{\mu}=f(F_{1}^{\mu})$ . Then the union
$\bigcup_{\mu}F_{2}^{\mu}$ is the fixed point set of $M_{2}$ and each $F_{2}^{\mu}$ is a component of $\bigcup_{\mu}F_{2}^{\mu}$ . Denote

by $V_{i}^{\mu}$ the normal representation of $F_{i}^{\mu}$ in $M_{i}(i=1,2)$ . Then we have that
$S(V_{i^{\alpha}})$ is G-homotopy equivalent to $S(V_{2}^{\mu})$ (Theorem 5.1).

Remark that we showed in [6] that $S(V_{1}^{\mu})$ and $S(V_{2}^{\mu})$ are stably G-homotopy
equivalent for $G$ an arbitrary compact Lie group.

Last of all, we shall express $J_{G}(*)$ in terms of the equivariant Adams
operations for $G$ an abelian p-group.

In a forthcoming paper, we shall study $J_{G}(*)$ for $G$ an arbitrary $p$-group.
The author is very grateful to Professor T. tom Dieck for stimulating

conversations.

2. Stable and unstable $Z_{n}$-homotopy equivalences.

We begin by fixing some notations. Let $G$ be a compact topological
group and $X$ be a G-space. Then for a subgroup $H$ of $G$ , we set

$X^{H}=$ { $x\in X|hx=x$ for all $h\in H$}.

For a G-map $f:X_{1}\rightarrow X_{2}$ , we denote by $f^{H}$ the restriction $f\lfloor X_{1}^{H}$ : $X_{1}^{H}\rightarrow X_{2}^{H}$ .
We promise that a representation indicates its representation space as well.
$R^{2}$ will denote the trivial two dimensional representation. Given an orthogonal
representation $V$ of $G$ , we denote by $S(V)$ the unit sphere in $V$. Denote by
$Z_{n}$ the cyclic group $Z/nZ$ of order $n$ where $n$ is a positive integer. When
$n$ is divisible by $m$, we often regard $Z_{m}$ as the canonical subgroup of $Z_{n}$ .

Our computation of $J_{G}(*)$ is based on the following lemma which is a
generalization of Corollary 2.4 in [9].

LEMMA 2.1. Let $V$ be an orthogonal $Z_{n}$-representatiOn space which involves
$R^{2}$ as a direct summand. Let $f:S(V)\rightarrow S(V)$ be a $Z_{n^{-}}maP$ such that the degree

of the restricted map $f^{H}$ : $S(V)^{H}\rightarrow S(V)^{H}$ is $\pm 1$ for every non-zero subgroup $H$

of $Z_{n}$ .
Then the degree of $f$ is $\pm 1$ mod $n$ .
PROOF. The present proof is also a generalization of those of Corollaries

2.3 and 2.4 in [9].

Let $X_{0}$ (resp. $y_{0}$) be the point $(1, 0)$ (resp. $(-1,0)$) of $R^{2}\subset V$. Then the
equivariant homotopy classes of $Z_{n}$-maps from $S(V)$ to $S(V)$ preserving $x_{0}$

form a group.
We divide the proof of Lemma 2.1 into three cases.
Case 1. $n=2^{k}$ . Strictly speaking, we show the following more general
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relations in this case.
ASSERTION 2.2.

deg $f\equiv\deg f^{z_{2}}$ mod $n$ .
If $k\geqq 3$ , deg $f^{Z_{2}}=\deg f^{z_{2^{i}}}$ for $1\leqq i\leqq k-1$ .

PROOF OF ASSERTION 2.2. Let $V=V^{z_{2}}\oplus V_{1}$ be the orthogonal decomposition.
Then we set

’$f=f^{z_{2}}*id:S(V)=S(V)^{z_{2}}*S(V_{1})\rightarrow S(V)=S(V)^{Z_{2}}*S(V_{1})$

where $*$ denotes the join. Since $f^{z_{2}}=\prime f^{Z_{2}},$ $(f-\prime f)^{Z_{2}}$ : $S(V)^{Z_{2}}\rightarrow S(V)^{Z_{2}}$ is $Z_{n^{-}}$

homotopic to the constant map $h_{1}(S(V)^{Z_{2}})=x_{0}$ . It follows from the equivariant
homotopy extension theorem that $f-\prime f$ is $Z_{n}$-homotopic to a map $h_{2}$ : $ S(V)\rightarrow$

$S(V)$ with $h_{2}(S(V)^{Z_{2}})=x_{0}$ . In view of Proposition 2.2 in [9], $h_{2}$ is $Z_{n}$-homotopic
to a map $h_{3}$ transverse regular to $y_{0}$ in $S(V)$ and close to $h_{2}$ . Since $Z_{n}$ acts
freely on $h_{3}^{-1}(y_{0})$ , the number of points $x\in h_{3}^{-1}(y_{0})$ is divisible by $n$ . Let $a^{+}$

(resp. $a^{-}$ ) be the number of points $x\in h_{3}^{-1}(y_{0})$ for which the differential
$dh_{3x}$ : $T_{x}(S(V))\rightarrow T_{y_{0}}(S(V))$ is orientation preserving (resp. reversing) with
respect to a fixed orientation on $S(V)$ where $T_{x}(S(V))$ and $T_{y_{0}}(S(V))$ denote
the tangent spaces. For every $g\in Z_{n}$ , we note that

$dh_{3gx}=dg_{h_{3}(x)}\circ dh_{3x^{\circ}}d(g^{-1})_{gx}$ .

Note that $dg^{-1}$ is orientation preserving if and only if $dg$ is orientation
preserving. Hence $dh_{3gx}$ is orientation preserving if and only if $dh_{3x}$ is
orientation preserving. Thus $a^{+}$ and $a^{-}$ are both divisible by $n$ ; hence deg $h_{3}$

$=a^{+}-a^{-}\equiv 0$ mod $n$ . Recall that

deg $h_{3}=\deg f-$deg $\prime f=\deg f-\deg f^{Z_{2}}$ ,

which proves the first formula.
Assume next that $k$ is greater than two. Regarding $S(V)^{Z_{2}}$ as a $Z_{n}/Z_{2}$

$(\cong Z_{n/2})$-manifold, the first formula in Assertion 2.2 reads

deg $f^{Z_{2}}\equiv\deg(f^{z_{2}})^{(Z_{4}/Z_{2})}$ mod $n/2$

$=\deg f^{Z_{4}}$ .

Recall that deg $f^{z_{2}}=\pm 1$ , deg $f^{Z_{4}}=\pm 1$ . Therefore we can conclude that

deg $f^{z_{2}}=\deg f^{Z_{4}}$ .
Continuing this argument, we get the second formula in Assertion 2.2.

REMARK 2.3. deg $f^{z_{n}}$ is not equal to deg $f^{Z_{2}}$ in general.
Case 2. $n=p_{1}^{r(1)}\cdots p_{t}^{r(t)}$ , $p_{i}$ ; odd prime.

In this case, we show the following
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ASSERTION 2.4.
deg $f\equiv\deg f^{z_{n}}$ mod $n$ .

PROOF OF ASSERTION 2.4. We prove Assertion 2.4 by induction on $t$ . Let
$t$ be one, that is, $n$ is of the form $p^{r}$. Then we can employ the argument in
Case 1 and get

deg $f\equiv\deg f^{z_{p}}$ mod $n$

and
deg $f^{z_{p}}=\deg f^{z_{p^{i}}}$ for $1\leqq i\leqq r-1$ .

Moreover, since $p\geqq 3$, we obtain even the following formula

deg $f^{z_{p}}=\deg f^{z_{n}}$ .

Namely Assertion 2.4 holds for $t=1$ .
When $t\geqq 2$, we suppose that Assertion 2.4 is true for $s<t$ , $n=p_{1}^{r(1)}$ $p_{s}^{r(S)}$ .

Regarding
$f^{z_{p_{1}^{r(1)}}}$ : $S(V)^{z_{p_{1}^{r(1)}}}\rightarrow S(V)^{z_{p_{1}^{r(1)}}}$

as $Z_{n}/Z_{p_{1}^{r(1)}}(\cong Z_{p_{2}^{r(2)}\cdots p_{t}^{r(t)}})$-map, we have

deg $f^{z_{p_{1}^{r(1)}}}\equiv\deg(f^{z_{p_{1}^{r(1)}}})_{1}^{(z_{n}/z_{p^{r(1)}})}$ mod $p_{2}^{r(2)}\cdots p_{t}^{r(t)}$

$=\deg f^{z_{n}}$

by the inductive assumption. Recall that

deg $f^{z_{p_{1}^{r(1)}}}=\pm 1$ and deg $f^{z_{n}}=\pm 1$ .

Hence deg $f^{z_{p_{1}^{r(1)}}}=\deg f^{z_{n}}$ . It follows that

deg $f\equiv\deg f^{z_{n}}$ mod $p_{1}^{r(1)}$ .

Since this argument is valid for any $p_{i}^{r(i)}$ , we can conclude that

deg $f\equiv\deg f^{z_{n}}$ mod $n$ .
This completes the inductive proof of Assertion 2.4.

Case 3. $n=2^{k}\cdot p_{1}^{r(1)}\cdots p_{t}^{r(t)}$ , $k\geqq 1,$ $t\geqq 1$ .
ASSERTION 2.5.

deg $f\equiv\deg f^{z_{n/2}}$ mod $n$ .
PROOF OF ASSERTION 2.5. It follows from Assertions 2.2 and 2.4 that

deg $f\equiv\left\{\begin{array}{l}1\\degf^{z_{2^{k-1}}}\end{array}\right.$

mod 2 if $k=1$ ,

$mod 2^{k}$ if $k\geqq 2$

and
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deg $f\equiv\deg f^{z_{p_{1}^{r(1)}\cdots p_{t}^{r(t)}}}$ mod $p_{1}^{r(1)}\cdots p_{t}^{r(t)}$ .
Thus, if $k=1$ ,

deg $f\equiv\deg f^{z_{n/2}}=\pm 1$ mod $n$ .

We next suppose that $k\geqq 2$ . Regarding $S(V)^{z_{p_{1}^{r(1)}\cdots p_{t}^{r(t)}}}$ as a $Z_{n}/Z_{p_{1}^{r(1)}\cdots p_{t}^{r(t)}}$

$(\cong Z_{2^{k}})$-manifold, we can prove by the same argument used often above that

deg $f^{z_{p_{1}^{r(1)}\cdots p_{t}^{r(t)}}}=\deg f^{z_{n/2}}$ .
Similarly one verifies that

deg $f^{z_{2^{k-1}}}=\deg f^{z_{n/2}}$ .
Putting all this together, we get Assertion 2.5.
This makes the proof of Lemma 1 complete.
When $2q\not\equiv 0$ mod $n$ , we define $\rho(q):Z_{n}\rightarrow SO(2)$ by

$\rho(q)(j)=\left(\begin{array}{ll}cos\frac{2qj\pi}{n} & sin\frac{2qj\pi}{n}\\-sin\frac{2qj\pi}{n} & cos\frac{2qj\pi}{n}\end{array}\right)$ for $j\in Z_{n}$ .

When $2q\equiv 0$ mod $n$ , we define $\rho(q):Z_{n}\rightarrow 0(1)$ by $\rho(q)(j)=(-1)^{2qj/n}$ for $j\in Z_{n}$ .
Hereafter we denote by $m$ the integer part of $n/2$ . Let $c(q),$ $d(q)$ be non
negative integers with $c(q)=d(q)=0$ for $(q, n)\neq 1$ where $q=1,$ $\cdots$ , $m$ .
Then we set

$V=\sum_{q=1}^{m}c(q)\rho(q)$ and $W=\sum_{q=1}^{m}d(q)\rho(q)$ .
THEOREM 2.6. The following three conditions are equivalent;

(i) $S(V)$ and $S(W)$ are $Z_{n^{-}}homotopy$ equivalent,

(ii) $\sum_{q=1}^{m}c(q)=\sum_{q=1}^{m}d(q)$ ,

$\prod_{q=1}^{m}q^{c(q)}\equiv\pm\prod_{q=1}^{m}q^{d(q)}$ mod $n$ ,

(iii) there exists a $Z_{n}$-representatjOn $U$ such that $S(V\oplus U)$ and $S(W\oplus U)$ are
$Z_{n}$-homotopy equivalent.

PROOF. It is well-known that the conditions (i) and (ii) are equivalent (see

for examples [4], [8]). Clearly (i) implies (iii). Therefore it suffices to show
that (iii) implies (ii). Let $f:S(V\oplus U)\rightarrow S(W\oplus U)$ be the $Z_{n}$-homotopy equivalence.
Then the map
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$f*id:S(V\oplus U\oplus R^{2})=S(V\oplus U)*S(R^{2})\rightarrow S(W\oplus U\oplus R^{2})$

is also a $Z_{n}$-homotopy equivalence. Therefore we may assume without loss
of generality that $U$ includes $R^{2}$ as a direct summand. When we write $U$ as
$\sum_{q=0}^{m}u(q)\rho(q)$ , we put

$a(q)=\left\{\begin{array}{ll}u(q) & for (q, n)=1\\0 & for (q, n)\neq 1\end{array}\right.$

and

$b(q)=\left\{\begin{array}{ll}u(q) & for (q, n)\neq 1\\0 & for (q, n)=1.\end{array}\right.$

Then we have a direct sum decomposition

$U=U_{a}\oplus U_{b}$

where

$U_{a}=\sum_{q=1}^{m}a(q)\rho(q)$ and $U_{b}=\sum_{q=0}^{m}b(q)\rho(q)$ .
We set

$X=\{x\in S(U_{b})|(Z_{n})_{x}\neq\{0\}\}$ .

If $X=S(U_{b})$, then $f(S(U_{b}))=S(U_{b})$ and the restriction $f|S(U_{b}):S(U_{b})\rightarrow S(U_{b})$ is
a $Z_{n^{-}}h$omotopy equivalence. If $X\neq S(U_{b}),$ $f(S(U_{b}))$ is not included in $S(U_{b})$ in
general and we have to contrive as follows. Obviously

$f(X)\subset X\subset S(U_{b})\subset S(W\oplus U)$ .

Hence $ f(X)\cap S(W\oplus U_{a})=\emptyset$ . It follows that $ f(B)\cap S(W\oplus U_{a})=\emptyset$ for some open
neighborhood $B$ of $X$ in $S(U_{b})$ . Since $Z_{n}$ acts freely on $S(U_{b})-X$, the restricted
map

$f|S(U_{b})$ : $S(U_{b})\rightarrow S(W\oplus U)$

is $Z_{n}$-homotopic to a map $f_{1}$ transverse regular to $S(W\oplus U_{a})$ in $S(W\oplus U)$ and
close to $f|S(U_{b})[9]$ . Since the codimension of $S(W\oplus U_{a})$ in $S(W\oplus U)$ is equal
to dim $S(U_{b})+1$ , we have that

$ f_{1}(S(U_{b}))\cap S(W\oplus U_{a})=\emptyset$ .
It follows that $f_{1}$ is $Z_{n}$ -homotopic to a map $f_{2}$ whose ima $gef_{2}(S(U_{b}))$ is con-
tained in $S(U_{b})$ . By the equivariant homotopy extension theorem, these homo-
topies can be extended to $S(V\oplus U)$ . Thus we have shown that $f$ is $Z_{n^{-}}$

homotopic to a map $f_{3}$ : $S(V\oplus U)\rightarrow S(W\oplus U)$ satisfying $f_{3}(S(U_{b}))\subset S(U_{b})$ . Note
that $f_{3}$ is also a $Z_{n}$-homotopy equivalence. Since
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$S(V\oplus U)^{H}=S(W\oplus U)^{H}=S(U_{b})^{H}$

for every non zero subgroup $H$ of $Z_{n}$ , the map

$f_{3}^{H}$ : $S(U_{b})^{H}\rightarrow S(U_{b})^{H}$

is a homotopy equivalence. In particular deg $f_{3}^{H}=\pm 1$ .
We are now in a position to apply Lemma 2.1 and have that the degree

of the restricted map
$f_{3}|S(U_{b}):S(U_{b})\rightarrow S(U_{b})$

is $\pm 1$ mod $n$ .
Let $q$ and $q^{\prime}$ be positive integers with $(q, n)=(q^{\prime}, n)=1$ . Then it is easy

to see that there exists a $Z_{n}$-map

$j_{1}$ : $S(\rho(q))\rightarrow S(\rho(q^{\prime}))$

with deg $j_{1}\equiv q^{\prime}/q$ mod $n$ . Hence by joining these maps, we get a $Z_{n}$-map
$j_{2}$ : $S(V)\rightarrow S(W)$ with

deg $j_{2}\equiv\prod_{q=1}^{m}q^{(d(q)-c(q))}$ mod $n$ .

Consider the $Z_{n}$-map

$j_{3}=j_{2}*id*(f_{3}|S(U_{b}))$ :
$S(V\oplus U)=S(V)*S(U_{a})*S(U_{b})\rightarrow S(W\oplus U)=S(W)*S(U_{a})*S(U_{b})$ .

Since $f_{3}|S(U_{b})=j_{3}|S(U_{b}),$ $f_{3}-j_{3}$ is $Z_{n}$-homotopic to a map $h$ with $h(S(U_{b}))=x_{0}$

$(\in R^{2}\subset U_{b})$ . We fix orientations on $S(V),$ $S(W)$ and $S(U)$ respectively. Accord-
ingly $S(V\oplus U)$ and $S(W\oplus U)$ are oriented. Then it follows by the argument
used often before that deg $h\equiv 0mod n$ . Note that $\deg f_{3}=\pm 1$ , because $f_{3}$ is a
homotopy equivalence.

Putting all this together, we obtain

$\prod_{q\approx 1}^{m}q^{c(q)}\equiv\pm\prod_{q=1}^{m}q^{d(q)}$ mod $n$ .

On the other hand, the equation

$\sum_{q=1}^{m}c(q)=\sum_{q=1}^{m}d(q)$

holds trivially from (iii).

This makes the proof of Theorem 2.6 complete.

3. The groups $J_{z_{n}}^{\prime}(*)$ and $J_{z_{n}}^{\prime\prime}(*)$ .
Let FRO $(Z_{n})$ be the subgroup of the orthogonal representation ring $RO(Z_{n})$

generated by
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$\{\rho(q)|1\leqq q\leqq m, (q, n)=1\}$ .
Then we set

$J_{z_{n}}^{\prime}(*)=J_{z_{n}}(FRO(Z_{n}))$ .

The restricted homomorphism $J_{z_{n}}|FRO(Z_{n})$ is denoted by $J_{z_{n}}^{\prime}$ .
On the other hand we define another group $J_{z_{n}}^{\prime\prime}(*)$ for $n>1$ as follows.

Let $n=2^{i}\cdot p_{1}^{r(1)}\cdots p_{t}^{r(t)}$ be the prime decomposition of $n$ .
Case 1. $k\geqq 2$ . We set

$J_{Z_{n}}^{\prime\prime}(*)=Z\oplus Z_{2^{k-2}}\oplus\bigoplus_{i=1}^{t}Z_{(p_{i}^{r(i)}-p_{i}^{r(i)-1})}$ .

Case 2. $k=0$ or 1. We set

$J_{z_{n}}^{\prime\prime}(*)=Z\oplus\{\bigoplus_{t=1}^{t}Z_{(p_{i}^{r(i)}- p_{i}^{r(t)-1})\}}/Z_{2}$

where the inclusion of $Z_{2}$ into $\bigoplus_{i=1}^{t}Z_{(p_{i}^{r(i)}-p_{i}^{r(i)-1})}$ is given by $1\leftrightarrow\bigoplus_{i=1}^{t}(Pt^{(t)}-p_{i}^{r(i)-1})/2$ .

Then we define a homomorphism

$J_{z_{n}}^{\prime\prime}$ : FRO $(Z_{n})\rightarrow J_{z_{n}}^{\prime\prime}(*)$

as follows. As is well-known, there exist integers $\alpha(i)$ with $1\leqq\alpha(i)<n$ for
$i=-1,0,1,$ $\cdots$ , $t$ such that

(a) $\alpha(-1)\equiv-1$ mod 2, $\alpha(-1)\equiv 1$ mod $p_{j}^{r(j)}$ for every $j\geqq 1$ ,

(b) $\alpha(0)\equiv 5$ mod 2, $\alpha(0)\equiv 1$ mod $p_{j}^{r(j)}$ for every $j\geqq 1$ ,

(c) for $i\geqq 1,$ $\alpha(i)$ is a primitive root mod $p_{i}^{r(i)},$ $\alpha(i)\equiv 1$ mod 2, $\alpha(i)\equiv 1$ mod $p_{j}^{r(j)}$

for every $j\geqq 1$ with $j\neq i$ .
Then for every integer $q$ with $(q, n)=1$ , there exist unique $\mu(q, -1)$

$\in Z_{2},$ $\mu(q, 0)\in Z_{2^{k-2}}$ and $\mu(q, i)\in Z_{(p_{i}^{r(i)}-p_{i}^{r(i)-1})}$ for $1\leqq i\leqq t$ such that

$q\equiv\prod_{i\rightarrow-1}^{t}\alpha(i)^{\mu(q.i)}$ mod $n$ .

When $k=0$ or 1, we consider $\alpha(i)$ and $\mu(q, i)$ only for $1\leqq i\leqq t$ . Let

$j_{i}$ : $Z_{2}\rightarrow Z_{(p_{i}^{r(i)}- p_{\ell}^{r(i)-1})}$

be the natural inclusion map given by $ 1-\rangle$ $(p_{i}^{r(i)}-p_{i}^{r(i)-1})/2$ . Let $\sum_{q=1}^{m}a(q)\rho(q)$ be

an arbitrary element of FRO $(Z_{n})$ , that is, $a(q)\in Z$ and $a(q)=0$ for $(q, n)\neq 1$ .
In the followin $g,$ $[x]$ indicates the equivalence class represented by $x$ in re-
spective context.
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Case 1. $k\geqq 2$ . We set

$J_{z_{n}}^{\prime\prime}(\sum_{q=1}^{m}a(q)\rho(q))=\sum_{q=1}^{m}a(q)\oplus\sum_{q=1}^{m}a(q)\mu(q, 0)$

$\oplus\bigoplus_{i=1}^{t}\{j_{i}(\sum_{q=1}^{m}a(q)\mu(q, -1))+\sum_{q=1}^{m}a(q)\mu(q, \iota)\}$ .

Case 2. $k=0$ or 1. We set

$J_{z_{n}}^{\prime\prime}(\sum_{q=1}^{m}a(q)\rho(q))=\sum_{q=1}^{m}a(q)\oplus[\bigoplus_{t=1}^{t}\sum_{q=1}^{m}a(q)\mu(q, i)]$ .

Then we have
THEOREM 3.1. $J_{z_{n}}^{\prime\prime}$ is a well-defined ePimorphism and $KerJ_{z_{n}}^{\prime}=KerJ_{z_{n}}^{\prime\prime}$ .

Hence we have that
$J_{z_{n}}^{\prime}(*)\cong J_{z_{n}}^{\prime\prime}(*)$ .

PROOF. Obviously $J_{z_{n}}^{\prime\prime}$ is a well-defined homomorphism. First we show
that $J_{z_{n}}^{\prime\prime}$ is an epimorphism. Define $\beta(i)$ by

$\beta(i)=\left\{\begin{array}{ll}\alpha(\iota) & if 1\leqq\alpha(\iota)\leqq m\\n-\alpha(\iota) & if m<\alpha(i)<n.\end{array}\right.$

Case 1. $k\geqq 2$ . Let $x,$ $x_{i}$ ($i=0,1,$ $\cdots$ , t) be arbitrary integers. Then one
veriPes that

$J_{z_{n}}^{\prime\prime}((x-\sum_{i=0}^{t}x_{i})\rho(1)+\sum_{i=0}^{t}x_{i}\rho(\beta(i)))$

$=x\oplus[x_{0}]\oplus\bigoplus_{i=1}^{t}[x_{i}]\in J_{z_{n}}^{\prime\prime}(*)=Z\oplus Z_{2^{k-2}}\oplus\bigoplus_{i=1}^{t}Z_{(p_{i}^{r(i)}-p_{i}^{r(i)-1)}}$ .
Namely $J_{z_{n}}^{\prime\prime}$ is surjective in this case.

Case 2. $k=0$ or 1. Let $x,$ $x_{i}$ ($i=1,$ $\cdots$ , t) be arbitrary integers. Then
one verifies similarly that

$J_{Z_{n}}^{\prime\prime}((x-\sum_{i=1}^{t}x_{i})\rho(1)+\sum_{i\approx 1}^{t}x_{i}\rho(\beta(i)))$

$=x\oplus[\bigoplus_{i=1}^{t}[x_{i}]]\in J_{z_{n}}^{\prime\prime}(*)=Z\oplus\{\bigoplus_{i=1}^{t}Z_{(p_{i}^{r(i)}-p_{i}^{r(i)-1)\}}}/Z_{2}$ .

Namely $J_{z_{n}}^{\prime\prime}$ is surjective in this case too.
Next we shall show that $KerJ_{Z_{n}}^{\prime}=KerJ_{z_{n}}^{\prime\prime}$ . Given an integer $a(q)$ , we set

$a(q)^{\prime}=\left\{\begin{array}{l}a(q)\\0\end{array}\right.$

for $a(q)>0$

for $a(q)\leqq 0$
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and

$a(q)^{\prime}=\{-a(q)0$

for $a(q)<0$

for $a(q)\geqq 0$ .

Case 1. $k\geqq 2$ . Let $\sum_{q=1}^{m}a(q)\rho(q)$ be an arbitrary element of $KerJ_{z_{n}}^{\prime\prime}$ , that is,

$\sum_{q=1}^{m}a(q)^{\prime}=\sum_{q=1}^{m}a(q)^{\prime},\sum_{q=1}^{m}a(q)^{\prime}\mu(q, 0)=\sum_{q=1}^{m}a(q)^{\prime}\mu(q, 0)$ ,

(3.2) $j_{i}(\sum_{q=1}^{m}a(q)^{\prime}\mu(q, -1))+\sum_{q=1}^{m}a(q)^{\prime}\mu(q, i)$

$=j_{i}(\sum_{q=1}^{m}a(q)^{\prime}\mu(q, -1))+\sum_{q=1}^{m}a(q)^{\prime\prime}\mu(q, i)$

for every $i$ with $1\leqq i\leqq t$ .
It is easy to see that the condition (3.2) is equivalent to the following

condition (3.3);

$\sum_{q=1}^{m}a(q)^{\prime}=\sum_{q=1}^{m}a(q)^{\prime}$ ,

(3.3)

$\prod_{q=1}^{m}q^{a(q)}‘\equiv\pm\prod_{q=1}^{m}q^{a(q)}$

“ mod $n$ .

Therefore Theorem 3.1 follows from Theorem 2.6 in this case.
Case 2. $k=0$ or 1. Since the proof is analogous to that of Case 1, we

omit it.
This makes the proof of Theorem 3.1 complete.

4. The group $J_{G}(*)$ .
Let $G$ be a compact abelian topological group and $F_{0}$ (resp. $F_{1}$) be the

family of all closed Proper subgroups $H$ of $G$ such that $G/H$ is isomorphic to
the circle group $S^{1}$ (resp. a finite cyclic group). As is well-known, there is a
canonical isomorphism

$RO(G)\cong Z\oplus Z(F_{0})\oplus\bigoplus_{H\in F_{1}}FRO(G/H)$

of groups where $Z(F_{0})$ denotes the free abelian group generated by $F_{0}$ . Then
it is not difficult to see

$T_{G}(*)=\{0\}\oplus\{0\}\oplus\bigoplus_{H\in F_{1}}KerJ_{G/H}^{f}$

under the above correspondence. It follows that
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$J_{G}(*)\cong Z\oplus Z(F_{0})\oplus_{H}\bigoplus_{\in F_{1}}J_{G/H}(*)$ .

Therefore we obtain the following main theorem from Theorem 3.1.
THEOREM 4.1. We have the following isomorphism,

$J_{G}(*)\cong Z\oplus Z(F_{0})\oplus\bigoplus_{H\in F_{1}}J_{G/H}^{\prime\prime}(*)$

where $J_{G/H}^{\prime\prime}(*)$ is the group given in \S 3.
COROLLARY 4.2. Let $V,$ $W$ be orthogonal G-representations. Then $S(V)$ is

G-homotopy equivalent to $S(W)$ if and only if $V$ is J-equivalent to $W$.

5. Normal representations of fixed point sets of $G$-homotopy equivalent
manifolds.

Let $G$ be a compact Lie group and $M_{1},$ $M_{2}$ be closed smooth G-manifolds.
SuPpose that we are given a $G$-homotopy equivalence $f:M_{1}\rightarrow M_{2}$ . Denote by
$F_{1}^{\mu}$ each component of the fixed point set of $M_{1}$ . Set $F_{2}^{\mu}=f(F_{1}^{\mu})$ . Then $F_{2}^{\mu}$ is
a component of the fixed point set of $M_{2}$ and the union $\bigcup_{\mu}F_{2}^{\mu}$ is exactly the

Pxed point set of $M_{2}$ . Denote by $V_{t^{4}}^{\rho}$ the normal representation of $F_{i}^{\mu}$ in $M_{i}$

$(i=1,2)$ .
Then we showed in [6] that $V_{1}^{\mu}$ is J-equivalent to $vg$ . Therefore this

together with Corollary 4.2 brings about;

THEOREM 5.1. If $G$ is a comPact abelian Lie group, $S(Vf)$ and $S(Vg)$ are
themselves G-homotopy equivalent.

6. Equivariant Adams conjecture.

Let $P$ be a positive prime integer and $r$ be a positive integer. When $p$

is odd, we denote by $\alpha$ a primitive root mod $p^{r}$. When $p=2$, we set $\alpha=5$ .
Let $G$ be an abelian $p$-group of order $p^{r}$ and $\Psi^{s}$ : $RO(G)\rightarrow RO(G)$ be the
equivariant s-th Adams operation[2], [9], [13].

DEFINITION 6.1. Denote by $WO(G)$ the subgroup

$\{(1-\Psi^{\alpha})^{2}(x)|x\in RO(G)\}$

of $RO(G)$ .
REMARK 6.2. Although the definition of $WO(G)$ seems to be different

from that in [7], they are equivalent.
As a special case of Theorem 4.1, we have
THEOREM 6.3.

$J_{G}(*)\cong RO(G)/WO(G)$ .
PROOF. Consider first the following commutative diagram
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$RO(G)\cong Z\oplus\oplus FRO(G/H)$
$H\in F_{1}$

$\downarrow J_{G}$ $\downarrow id\oplus\bigoplus_{H\in F_{1}}J_{G/H}^{\prime}$

JG $(*)\cong Z\oplus\bigoplus_{H\in F_{1}}J_{G/H}^{\prime}(*)$ .

Then it suffices to show that

(6.4) $WO(G)\cong\{0\}\oplus\bigoplus_{H\in F_{1}}WO(G/H)$

and

(6.5) Ker $J_{G/H}^{f}=WO(G/H)$ for $H\in F_{1}$ .
Since $(1-\Psi^{\alpha})^{2}(FRO(G/H))\subset FRO(G/H)$ under the above correspondence, (6.4)

holds.
The proof of (6.5) is divided into two cases.
Case 1. $p$ : odd prime. Let $p^{s}$ be the order of the group $G/H$ and $\rho(q)$

be the representation of $G/H$ defined in \S 2. Then an element $x$ of FRO$(G/H)$

can be written as

$x=c(i)\rho(\alpha^{i})\frac{p^{s}-p^{s-1}}{\sum_{i=0}^{2}}$

where $c(i)$ are integers. In virtue of Theorem 2.6, $x$ belongs to $KerJ_{G/H}^{\prime}$ if
and only if

$\Sigma c(\iota)=0$

(6.7)
$\prod\alpha^{ic(i)}\equiv\pm 1$ mod $p^{s}$ .

The condition (6.7) is equivalent to the following condition (6.8):

$\sum c(i)=0$

(6.8)

$\sum ic(\iota)\equiv 0$ $mod\frac{p^{s}-p^{s-1}}{2}$

We now consider a Polynomial

$f(X)=\sum c(\iota)X^{i}$

where $X$ is an indeterminate. If (6.8) holds, $f(1)=0$ and $f^{\prime}(1)=v(p^{s}-p^{s-1})/2$

for some integer $v$ . Then we define another polynomial $F(X)$ by

$F(X)=f(X)+v-vX^{(p^{s}-p^{S-1})/2}$ .
Since $F(1)=0,$ $F^{\prime}(1)=0$, there exists a polynomial $f_{1}(X)$ with integer coefficients
satisfying
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$F(X)=(1-X)^{2}f_{1}(X)$ .
Note that

$\Psi^{a(p^{s}-p^{S-1}})/2|FRO(G/H)=identity$ .
Hence we have

$x=f(\Psi^{a})\rho(1)$

$=F(\Psi^{a})\rho(1)$

$=(1-\Psi^{\alpha})^{2}f_{1}(\Psi^{\alpha})\rho(1)$ .
Namely

Ker $J_{G/H}^{\prime}\subset WO(G/H)$ .
Conversely every element $x$ of $WO(G/H)$ can be written as

$x=(1-\Psi^{\alpha})^{2}(\sum a(i)\rho(\alpha^{i}))$

$=\sum a(\iota)\{\rho(\alpha^{i})-2\rho(\alpha^{i+1})+\rho(\alpha^{t+2})\}$ .

In view of Theorem 2.6,

$\rho(\alpha^{i})-2\rho(\alpha^{i+1})+\rho(\alpha^{i+2})$

belongs to $KerJ_{G/H}^{\prime}$ , and hence

$WO(G/H)\subset KerJ_{G/H}^{\prime}$ .
Case 2. $p=2$ . Since the proof is quite similar to that of Case 1, we omit

it.
This makes the proof of Theorem 6.3 complete.
REMARK 6.4. Theorem 4.1 and Theorem 6.3 show that $J_{G}(*)$ involves many

torsion groups in general and the equivariant Adams conjecture does not hold
in general in the form similar to the non equivariant case [1], [3], [10].
These phenomena contrast with those of $JO(G)[2],$ $[9],$ $[13]$ .

7. A concluding remark.

Let $G$ be a compact connected Lie group and $T^{n}$ be a maximal torus of
$G$ . Then the natural homomorphism $RO(G)\rightarrow RO(T^{n})$ is injective. On the
other hand, $J_{\tau^{n}}$ : $RO(T^{n})\rightarrow J_{\tau^{n}}(*)$ is an isomorphism by Theorem 4.1. Thus we
have

REMARK 7.1. For a compact connected Lie group $G,$ $J_{G}(*)$ is isomorphic
to $RO(G)$ . This phenomenon occurs even for $JO(G)[9]$ .

Added in proof. Professor T. tom Dieck kindly informed me that he
obtained Theorem 6.3 for $G$ an arbitrary $P$-group [5].
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