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Introduction.

Let V be a finite dimensional vector space over a field K. We denote by
G (V) the Grassmann manifold defined by the set of all k-dimensional subspaces
of V. For an increasing sequence of natural numbers

1§k1<k2< te <kg<dim V,

we denote by F=F(k,, ---, k,; V) the flag manifold of type (k,, ---, &;) defined
by {(Wy, -, W)EG, (V)X - XG (V) |[W;CWiyy, 1=i<t}. For a nilpotent
transformation N of V, put

F¥N={W)eF|INW)CW}.

In this paper, we prove the following

THEOREM. The variety F¥ has a partition into a finite number of affine
spaces and this partition is determined by the Young diagram associated to N.

The partition is given by some inductive formula and is described precisely
in §1. The crucial point of the proof of the theorem is the proof in the case
of Grassmann manifold F¥=g(k ; V)¥=G (V)" and this is given in
of §3. If t=dim V—1,i.e. & is the manifold of complete flags, N. Spaltenstein
has proved, among other interesting results, a theorem below (see also
R. Steinberg 3.10) We remark that, by an appropriate identification, we
can rewrite the theorem in the following form.

THEOREM’. For any parabolic subgroup P of the geneval linear group G=
GL,(K) and for any unipotent element u of G, the variety

(G/P),={gP |u-gP=gP}

has a partition into a finite number of affine spaces and this partition is deter-
mined by the Young diagram associated to u.

Several consequences about the characters of the finite general linear
groups have been deduced from our theorem, and they will be discussed in a
subsequent paper.
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Notation.

In this paper, K is simply a field without assumptions on algebraically
closedness or its characteristic. Let V be a vector space over K. If N is an
endomorphism of V, we may consider V as a K[ N]-module. Then we wirte
(V, N) for V. If {x,|lveEN} is a set of generators of V, then we write V=
{x,lveN)> or V=¢(--, x,, --->. We denote by N the set of all natural numbers.
For neN, let A" be the n-dimensional affine space over K. Let X be a set.
If {X,)} is a family of subspaces of X, then X:iﬂLX,, means the direct sum

decomposition of X. If X is finite, then #(X) denotes the number of its elements.

§1. Statement of the result.

1. We use a Jordan basis {wi;;|1=7;=L} of (V, N) satisfying the follow-
ing requirement:

llélzé .- éln, Nw1jj:w1;+1j and an]:().

By making use of this basis, we may associate to (V, N) the Young diagram
of degree dim V, which will also be denoted by (V, N).

ExAMPLE 1. Let dim V=10. If N has two Jordan blocks of dimension 4
and one Jordan block of dimension 2, then we can write

\
Wy l Wsy | War | Wn

(V, N)=| wg ! Wss Was Wi ‘

| Was ’ Wss
i i

2. For a natural number £ and for (V, N), let L,(N) be the set of mappings
[:{1, 2, ---, n} —> {all the subsets of N}

such that IONI()H=0 G+, I(H{l, 2, ---, [;} and é (n—i+1)-8(@)=Fk. We
write the elements of /(2) as follows:

D=L, U2)s, -+, {Dacir}, L) <U2)e< -+ <I(@Dacos -
For le L,(N), put

M={N"wiyw,|1=i=n, 1=m=d(@), 0=sh=n—1}.
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EXxAMPLE 2. Let (V, N) be as in Example 1 and let 2=7. If [(1)=0,
12)={l(2),} = {2}, I3)={I(3),, I(3),} ={1, 3} and I(4)=0, then M, is the collection
of w;; in % on the following diagram:

’/// i
/////

3. DEerINITION. For /e L,(N), let T, be the set of vector spaces defined by

{<thil(i)m+§ aiijhwij_"(ZJ) bimpaN" W pg | (D] Cimjs bimpeE K}

\

where the conditions (1), (2) and (3) are defined in the following:

1) 1=isn,1=m=d(), 0=h=n—i,
2) J<iWm, j&E lg\sjg I(s),

(3) pgl'l—l, wpquMl.
For l€ L,(N), put
nh= 3| 2 (D —4 15Ul = Y KON+ wom My pZi+1) .

We shall prove that Gk(V)N:l LiL N)Tl. Here T, is a locally closed subset of
ELg(

G(V)? and isomorphic to A*® (§2, and Remark).
4. Let [ and M, be as in 2. Put

Vi=<wlwi; € M) .

Then V, is an N-stable subspace of V and V,eT,.
ExampLE 3. If V, N and M, are as in Example 2, then

Vi, N)~

Let =4%(k,, ---, k;; V) be the flag manifold of type (k,, ---, k;) as in the in-
troduction and let &,=%(k,, -, k;-1; V) be the flag manifold of type (&, -,
k,-,). We may also define the subvariety %% for (V,, N). Then we have the
following theorem.

THEOREM. The variety FV has a partition into a finite number of affine
spaces by the following recurrence formula:
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GV~ 1 TLXQ'JLV.
IEL}, (N)

REMARK. We can change the in the following form. Let L,(N)
and M, be as in 2.
DEFINITION’. For le L,(N), let T; be the set of vector spaces defined by

{<thil(i)m+(22,) aiijhwij_l"(;) bimquhwpql(l)>l aimj; bimpqEK} ’

where the conditions (1) and (3) are as in 3, Definition and the condition (2’)
is defined by j>I(D)n, jeElsKi'l(s). For le L,(N), put

d (i)

D=2 [ Z - l0n—#UDn Skl jE U KD

+8{w & lesz-l}].

Then T{ is a locally closed subset of G (V)Y and isomorphic to A% and
further G,(V)= 1 Tj.

IELB (V)

Let V, be as in 4. Then we also have V,=7T,. Let & and &, be the flag
manifold as in the Under these information, we have

THEOREM'. The variety F¥ has a partition into a finite number of affine
spaces by the following recurrence formula:

gV= 1 TixgFy.
LELp ()

The proof can be carried out mutatis mutandis.

§ 2. Preliminaries.

Let T, be as in §1, 3,
LEMMA 1. The set T, is a subset of G(V)".
Proor. Put

vim:wmi)m‘l'(zz; aimjwij+(zg): bimpgW pq s

where the summations (2), (3) are as in §1, 3, Then we can write
the element of T as

<thim | (1)> .

It is obvious that N({N™v;, |(ID)CT{Nv;»[(1)>. We shall prove that the set
{N"v;» (1)} is linearly independent. Assume

(%) (21)) CimnN"03 =0 (cimnEK).

We may assume [(1)#0. By (2) and (3), {vin|1=<m=<d(1)} is linearly independent.
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Since v, Ker N*~! and

— h -
2 CimoVim = ——i+:2>1 Cith UimEKer Nt »

we have ¢yo=0 for 1=m=d(1). Thus the (x) becomes

> CithhvimZO .

t+h>1

By (2) and (3), {ven|l=m=d@2)}J{Nvin|1=<m<d(1)} is linearly independent.
Since vypm, NvinsKer N*2 and

2 CimVin=—_ 2 CimalN"VinEKer N" 7%,
2 i+h>2

i+n=

we have ¢yne=0 for 1=m=d(2) and ¢,»,;=0 for 1<m=<d(1). If we continue this
procedure, we have

Cimn=0 for any i, m and h.

Since #-{N"vmi(l)}zé(n—i—{—l}d(i):k, the proof of the lemma is completed.
LEMMA 2. Under amapping (-*-, Gimj» ***» Dimpgs ---)H(N”wilci)m—{—% imiN" Wy
—I—(% bimpaN" W pq| (1)>, we have an isomorphism A™P =T, where n(l) is a natural
number defined in §1, 3.
PrROOF. We have to prove that the mapping is injective. Put
vim:wil(i)m+§ aimjwij‘f‘(zs): bim pqWpq »
U'im:wiz(i)m‘Fg‘; aémjwir{'(zs)) b} m pqW pq 5
(@imjr bimpe Uimjr Oimpe EK).
We have to prove that if {N"0;,|(1)>={(N"}n|(1)), then asm;=a}n; and binmp,
=b}mpe for any i, m, j, p, g. Assume

(*) Uéam‘):(zl): CmniN™Wim (cmni€K).

We shall prove ¢pgi,=1 and cpni=0 for (m, h, 1)#(m,, 0, i,). We may assume
(D) +0.

Assume 1<i,. In (%), there is only one N"v;, which contains N*wy;,,.
Hence cpn=0. If 2<iy, by cnr:=0, there is only one N"v;, in (x¥) which con-
tains N"Wy 0y, Hence cmpe=0. 1f 3<iy, BY Cmri=cmr.=0, there is only one
N™;pn in (x) which contains N*wgp,,. Hence cnn;=0. In this way, if we con-
tinue this procedure for 1=4, 5, ---, 1,—1, we have

Cmni=0 for 1<i,.
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Assume 1=1i,. Since cn,;=0 for i<i, there is only one N"v;, in (x) which
contains Wiy, (MFMo) and CmgoigWigltip)me=Wigttighmg ENCE Cmpoi,=1 and
thiozo (m+=m,), cmohiozo (h>0).

Assume >4, Since ¢pn=0 for i<i, or i=i, (m#m,) and cpumi,=0 for
h>0, there is only one N"v;, in (*) which contains N"w; 11440, Hence
Cmnig+1=0. If we continue this procedure for i=i,+2, 1,+3, -+, n, then we
have cmnigr2=0, Cmrig+s=0, -+, cman=0. Therefore, v m,=vi;m, Hence

! — 7 J— )
Qigmoi— Qigmoj and biomopq“biomopq .
Since i, and m, are arbitrary, we have aim;=aimn; and bimpe=bimp, for any
i, m, j, b, g. For a fixed i, the number of w;; in X is
’ ’ (2)

O WESEOMFERVEO)

and the number of wp, in X is
3)

$lwpE M| p=i+1} .

This completes the proof of the lemma.
Let V={v;|i=1, ---, I> be an [-dimensional vector space over K, For an
increasing sequence of natural numbers: 1<s5,<s,< - <sq4=/, put

Ssl.---,sd: {<vsm"|" IZ"‘ Amil; I 1§7’)’L§ d> l amiEK} ’

where [,, is a condition: i<sn, i#5S;, ***, Sm-1. The next lemma gives a well-
known cellular decomposition of the Grassmann manifold.

LEMMA 3. We have G4(V)= i Sspnsg and A°= Sy s, (e: é (sm—m))
A 1818 sl m=1
under a mapping

( y Amis ) —_ <Usm+ IE amivi[1§M§'d> .

REMARK. Let V be a vector space as in §1, 1. We now arrange the basis
{wi;;|1=7:=l;} of V in the following way

Wa, **° s wnlny ey, Weyy o0, w2l2; Wiy, *0 wlll'
Put

Si= {<NhWil(i)m+(§) Clijhwij‘*‘wE) b%quhwqul» la;, b= K} .
Then S, is an object similar to the ones in and we have
SING(V)¥=T,.

Therefore, T, is a locally closed subset of G (V).
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§3. Proof of the Theorem.

Let V be a finite dimensiopal vector space over a field K. For a nilpotent
transformation N of V, put

G (VN={WeG (V) NW)CW}.

If N*=0 and N*"'+0, then
G (Ker N)CG (V)" C G (Ker Nmintk:»)
By this inclusion formula, we have
G(V)¥=G,(Ker NV,
where n=min(k, v). Therefore, we may assume
V=Ker N".

In particular, if =1, then |

G(V)¥=G,(Ker N)=P(Ker N).
Let » be a quotient homomorphism of vector spaces:

V — V/Ker N*"1,
Let

{dy, -, dp}={dim r(W)£0| WeG(V)"},
and let '

D;={WeG (V) |dim r(W)=d;}, i=1, -, m.
Then we have the following partition:

G (VY —G(Ker N* W= 1 D;.

1stsm

PROPOSITION. Let T, be the set defined in §1, 3. Then we have
Gk(V)N:leLJ;L(N) Ti
where L,(N) is as in §1, 2.
Proor. We assume that for any N-stable proper subspace of V, this pro-
position is proved for appropriately defined /, s.
Step 1. Let D=D; be as above. Put d=d;. Let 7, be a morphism defined by

D —> Gy (V/Ker N*=1)  (W—s (W)).

Any element W of D has d linearly independent vectors which are not contained
in Ker N*~! and by the N-stability of W, W has at least nd linearly independent
vectors. Hence k=nd and therefore, 7, is surjective. Let {w,;|1=;;=[} be
a basis of V asin §1, 1. Put wp=w;n (1Zm<[,=I). Then
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V/Ker N '={r(wn)| 1m0,

Let S,...s, be as in §2, (change v, to r(wn)). If Weri (S .. sy
then by taking account of the N-stability of W, we can write
W:<{Nhusm| Oéhén_l: léméd}, { 2;] Citthawitjtla) t}>’
1=2,J¢
where

usm:wsm +ie;m amiwi+p§2bmpquq ’

(@mi» bmpgs €i,5, €K and I, is a condition: i<y, 1#5y5, =+, Sm-1). Let A(u,,) be
the minimum /4 such that

bmpe#0 and N'w, ,=w,,  for some m’ (1=m'=d).
Then h(u;,)<n—1. Put

uém:usm—

bmpeN"us._ ., where h=h(u,,).
m
thsm’ =Wpgq

By the definition of 7,, we have
h(uém)> h(usm) .

Replacing u,, by u{, in the above generators of W and continuing this pro-
cedure if necessary, we can take u,, to have the following form:
usm:wsm—l—ig)m amiwi_"pzz, pr)qEMI Do pgW pq »
where
M,={N"w, |1=sm=d, 0=h<n-—1}.

1

Similarly, we can take 'zEEZJ't Ci Wi, to have the following form:
R s CigieWiggy -
Put
Vi={wq;1122, wi & M),
Then, we have
WnV,=< 2 iy N Wiy5, |, 5.

icEZ.j;;witjt’—EMl

We remark that N(OWNV)CWNV, and dim(WNV,)=k—nd.
Step 2. We can now consider the following morphism

¥ ?’61(5s1.-... Sd) - Gk-nd(vl)N (W—WnV).
By the definition of V,, this morphism is surjective. By the induction hypothesis

Gir-na(V)= AL T,

'
UVELp.nqg(NIVyY
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where T, is defined for V, as T, for V. Let [eL,(N) be such that [(1)=
{sy, -+, sq} and [(1)=0"(i—1) for 1=2. If Weri¥(T. ), then by Step 1, we can take

W={{N"u,,|0=h=n—1, 1=sm=d}, {N"v:n!(1)}>,
where

U, =W, -+ Ami Wi+ b pqW

Uz’m:wimi)m‘i-(;) aimjwij+(32) bimpeWpq

(1) 2=i=n, 1=sm=d(), 0=h’'s=n—i,
@) J<V@m, jE U L),
(3/) Pgi‘f“l, W pe€E lML':{Nh’wil'(i)mi 25i=n, 1=m=d(@), 0=h'=n—1i}.
We remark that M,\JM, =M, (§1, 2). Let h'(u,,) be the minimum A’ such that

bmpe#0 and N wiyusy,, =W p, for some i and m’ (¢ and m’ are as in (1’)). Then
h'(us,)=n—2, Put

Us = Uy, —

hr bmquh, Vimr » Whel'e h,: h’(usm) .
N¥wipid,,, =Wpq

By the definition of (2'), we have
RIu,) > 1 (ug,)

Replacing u,, by u{, in the basis of W and continuing this procedure if
necessary, we can take u,, to have the following form:
usm:wsm_l_iEZI:m amiwi_*_pzz' Eq‘EMz bimpqW pg -
Hence
ri(Tw)=T,

where /€ L ,(N) is determined by I'& L,_,4(N) as above.
Step 3. By Step 2,

ral(ssl,..., sd): .J.L T[ ’
where the summation runs over [ L,(N) such that I[(1)={s,, -+, sq¢}. Therefore

D: A T[ .
lELp(N), #)=d
By the formula

Gk(V)N—‘Gk(Ker Nn—-l)N: 1 D,, ’

1stsm

the proof of the proposition is completed. :
We are now going into the in §1. We assume that k,=% and
le L,(N). If WeT,, then the projection

f:V—> Vl
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induces an N-module isomorphism

fW : W:__) Vl .
We consider the projection

7[":5——>Gk(v) (Wy, =, W)— W),
Then we have the following trivialization:

N T) = T'XF, (x=(W) — (z(x), (fw, W), -, fw,W:-1)).
Under this trivialization, we have

o (T ONGY =, T, XFY.
Thus the [Theoreml
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