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Introducing the notions of index and nullity for minimal submanifolds, J.
Simons [8] has developed the theory of these submanifolds. It is well known
that any compact complex submanifold in a K\"ahler manifold is a minimal
submanifold and, according to a theorem of J. Simons, the index of this sub-
manifold is zero and the nullity of it is equal to the real dimension of the
space formed by certain vector fields which are normal to the submanifold.
In this paper, applying this theorem we shall obtain detailed results about the
nullity of compact K\"ahler submanifolds in a complex projective space.

The paper is divided into three sections. \S 1 is devoted to recall basic
notions and results concerning minimal submanifolds. We shall also define
the Killing nullity and the analytic nullity for complex submanifolds of a K\"ahler

manifold. Then we restate the above theorem of Simons in the following
form. The nullity of a K\"ahler submanifold coincides with the real dimension
of the space of holomorphic sections of a holomorphic vector bundle, which
we call normal bundle, over the submanifold.

In \S 2, we shall consider K\"ahler C-spaces and especially compact Hermitian
symmetric spaces imbedded in a complex projective space $P_{N}(C)$ . Let $M$ be
a compact Hermitian symmetric space and put $M=G/U$ where $G$ is a complex
semi-simple Lie group and $U$ a parabolic subgroup of $G$ . By a recent result
of H. Nakagawa and R. Takagi [7], we know that every imbedding of $M$ in
$P_{N}(C)$ is defined in a canonical way, by a holomorphic linear representation
of $G$ . By virtue of this result, we see that the normal bundle $N(M)$ over $M$

imbedded in $P_{N}(C)$ is a holomorphic vector bundle associated to the principal
bundle $G$ over $M$ by a representation of the group $U$ . Thus we may apply
the generalized Borel-Weil theorem to calculate the dimension of the space of
holomorphic sections of $N(M)$ . Studying in detail the representations of $G$

and $U$ which appear, we determine in this way the nullity of $M$ in $P_{N}(C)$ for
this case (Theorem 2).

We shall discuss in \S 3 the Killing nullity and the analytic nullity of com-
pact K\"ahler submanifolds in a complex projective space $P_{N}(C)$ . We apply the
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results to estimate the minimal value for the nullities of these submanifolds.
Also we see that, for a compact Hermitian symmetric space $M$ imbedded in
$P_{N}(C)$ , any Jacobi field along $M$ in $P_{N}(C)$ is defined by a l-parameter family
of K\"ahler imbeddings of $M$ in $P_{N}(C)$ . The author does not know whether the
same conclusion holds in general or not.

The author would like to express his gratitude to Professor S. Murakami,
Professor M. Takeuchi and Doctor Y. Sakane for their useful suggestions and
encouragements.

\S 1. Index and nullity of compact minimal submanifolds.

1.1. Minimal submanifolds. Let $M$ be an $r$ dimensional Riemannian mani-
fold without boundary. Assume that $M$ is imbedded isometrically in a Rie-
mannian manifold $\overline{M}$. Let $\mathfrak{X}(M)$ be the set of all vector fields on $M$, and
$\mathfrak{X}(M)^{\perp}$ the set of all vector fields on $\overline{M}$ dePned along $M$ and normal to $M$.
Let $g$ (resp. g) denote the Riemannian metric of $M$ (resp. $\overline{M}$), and $\nabla$ (resp. V)

the Riemannian connection of $M$ (resp. $\overline{M}$). Let $B$ denote the second funda-
mental form of $M$ imbedded in $\overline{M}$. Then

$\overline{\nabla}_{X}Y=\nabla_{X}Y+B(X, Y)$ for $X,$ $Y\in \mathfrak{X}(M)$ ,

$\overline{\nabla}_{X}\xi=-A^{\xi}(X)+D_{X}\xi$ for $X\in \mathfrak{X}(M),$ $\xi\in \mathfrak{X}(M)^{\perp}$ ,

where $A^{\xi}(X)$ is defined by $g(A^{\xi}(X), Y)=\overline{g}(B(X, Y),$ $\xi$) and $D_{X}\xi=(\overline{\nabla}_{X}\xi)^{N}$, $($ $)^{N}$

denoting the orthogonal projection to the component normal to $M$ (S. Kobayashi
and K. Nomizu [2]).

A submanifold $M$ in $\overline{M}$ is said to be minimal, if $\sum_{i=1}^{r}B(e_{i}, e_{i})=0$ for each

point $m\in M$, where $\{e_{i}\}_{i=1}^{r}$ is an orthonormal frame of $T_{m}(M)$ , the tangent
space at $m$ of $M$.

1.2. Index and nullity. From now on we assume that $M$ is a compact,
minimal and oriented submanifold of $\overline{M}$.

For $\xi\in \mathfrak{X}(M)^{\perp}$ , we define $\nabla^{2}\xi\in\backslash t(M)^{\perp}$ by

$\nabla^{2}\xi(m)=\sum_{i=1}^{r}D_{ei}D_{E_{i}}\xi$ for $m\in M$ ,

where $\{e_{i}\}_{i=1}^{r}$ is an orthonormal frame of $T_{m}(M)$ and $\{E_{i}\}$ is a local orthonormal
frame field such that $(E_{i})_{m}=e_{i}$ , and $\nabla_{e_{j}}E_{j}=0$ .

Let $T_{m}(M)^{\perp}$ denote the orthogonal complement of $T_{m}(M)$ in $T_{m}(\overline{M})$ . We
define $\tilde{A}(v)$ and $\overline{R}^{\prime}(v)\in T_{m}(M)$ for $v\in T_{m}(M)^{\perp}$ by

$\overline{g}(\tilde{A}(v), w)=\sum_{i=1}^{r}g(A^{v}(e_{i}), A^{w}(e_{t}))$
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for all $w\in T_{m}(\rightarrow 4l)^{\perp}$ and

$\overline{R}^{\prime}(v)=\sum_{\iota--1}^{r}(\overline{R}(e_{i}, v)e_{i})^{N}$ ,

where $\{e_{\iota}\}_{i=1}^{r}$ is an orthonormal frame of $T_{m}(M)$ and $\overline{R}$ is the curvature tensor
of $\overline{M}$.

Now, we define a bilinear form $I$ on $\mathfrak{X}(M)^{\perp}$ by

$I(\xi, \eta)=\int_{M}\overline{g}(-\nabla^{2}\xi+\overline{R}^{\prime}(\xi)-\tilde{A}(\xi), \eta)v_{0}$

for $\xi,$ $\eta\in \mathfrak{X}(M)^{\perp}$ , where $v_{0}$ denotes the volume form on $M$ determined by the
metric $g$. It is known that $I$ is a symmetric form on $\backslash t(M)^{\perp}$ (J. Simons [8]).

DEFINITION. The index of $M$ in $\overline{M}$ is the dimension of the maximal sub-
space of $\mathfrak{X}(M)^{\perp}$ on which $I$ is negative definite, and the nullity of $M$ in $\overline{M}$ is
$\dim_{R}\{\xi\in \mathfrak{X}(M)^{\perp}|I(\xi, \eta)=0, \forall\eta\in \mathfrak{X}(M)^{\perp}\}$ .

The index of $M$ in $\overline{M}$ and the nullity of Min $\overline{M}$ are finite (J. Simons [8]).

We denote the nullity of $M$ in $\overline{M}$ by $n(M,\overline{M})$ or simply by $n(M)$ .
An element $\xi\in \mathfrak{X}(M)^{\perp}$ is called a Jacobi field on $M$ if it satisfies $\nabla^{2}\xi=$

$\overline{R}^{\prime}(\xi)-\tilde{A}(\xi)$ . Then it is easy to see that

$n(M)=\dim_{R}$ { $\xi\in\backslash \mathfrak{X}(M)^{\perp}|\xi$ is a Jacobi field on $M$ }.

Let $\{f_{t}\}$ be a l-parameter family of immersions of $\Lambda f$ into $\overline{M}$ such that $f_{0}$

is the immersion $f$ of $M$ into $\overline{M}$. If there exists a $C^{\infty}$-map $F:M\times(-\epsilon, \epsilon)\rightarrow\overline{M}$

such that $f_{t}(m)=F(m, l)$ , then we call $\{f_{t}\}$ a variation of $f$.
A variation $\{f_{t}\}$ of $f$ defines a vector field $E$ on $\overline{M}$ defined along $M$ in

the following way: let $\partial/\partial t$ be the standard vector field in $M\times(-\epsilon, \epsilon)$ and put

$E(m)=dF(\partial/\partial t(m, 0))$

for $m\in M$. We call $E$ the variation field of $\{f_{t}\}$ .
Let $A(t)$ be the volume of $f_{t}(M)$ that is $A(t)=\int.v_{t}$ where $v_{t}$ denotes the

volume form on $M$ determined by the induced metric $f_{t}^{*}\overline{g}$ . Then it is known
that $A^{\prime}(O)=0$ and $A^{\prime\prime}(0)=I(E^{N}, E^{N})$ (J. Simons [8]). Moreover, we know that,
if $\{f_{t}\}$ are minimal immersions for all $t\in(-\epsilon, \epsilon),$ $E^{N}$ is a Jacobi field on $M$.

By these observations, it follows in particular that if $Z$ is a Killing vector
Peld on $\overline{M}$, then $Z^{N}$ is a Jacobi field on $M$.

The Killing nullity of $M$ in $\overline{M}$ is now defined to be

$\dim_{R}$ { $Z^{N}\in \mathfrak{X}(M)^{\perp}|Z$ is a Killing vector field on $\overline{M}$ },

which we denote by $n_{k}(M,\overline{M})$ or simply $n_{k}(M)$ . It is obvious that

(1.1) $n(M)\geqq n_{k}(M)$ .



564 Y. KIMURA

1.3. K\"ahler submanifolds. From now on, we assume that $\overline{M}$ is a K\"ahler

manifold and $M$ is a compact complex submanifold of $\overline{M}$. Then $M$ is a K\"ahler

submanifold of $\overline{M}$. Let $J$ be the complex structure of $\overline{M}$. We also write $J$

for the complex structure of $M$.
We shall call a vector Peld $Z$ on $\overline{M}$ an analytic one if the Lie derivative

of $J$ with respect to $Z$ vanishes. Since $\overline{M}$ is K\"ahlerian, a vector field $Z$ on $\overline{M}$

is analytic if and only if it satisfies $\overline{\nabla}_{JW}Z=J\overline{\nabla}_{W}Z$ for every vector field $W$ on
$\overline{M}$. We shall also call $\xi\in \mathfrak{X}(M)^{\perp}$ an analytic one if it satisfies $ D_{JX}\xi=\backslash JD_{X}\xi$ for
every $X\in \mathfrak{X}(M)$ .

It is known that a compact K\"ahler submanifold $M$ is minimal and that
the index of $M$ is equal to $0$ . Furthermore, an element $\xi\in \mathfrak{X}(M)^{\perp}$ is a Jacobi
field on $M$ if and only if $\xi$ is analytic, and therefore

(1.2) $n(M)=\dim_{R}$ { $\xi\in \mathfrak{X}(M)^{\perp}|\xi$ analytic}

(J. Simons [8]).

PROPOSITION 1.1. Let $Z$ be an analytic vector field on M. Then $Z^{N}$ is a
Jacobi field on $M$.

PROOF. For any $X\in \mathfrak{X}(M)$ ,

$0=(\overline{\nabla}_{JX}Z-J\overline{\nabla}_{X}Z)^{N}=B(JX, Z^{T})-JB(X, Z^{T})+D_{JX}Z^{N}-JD_{X}Z^{N}$ ,

where $($ $)^{T}$ denotes the tangential projection of $T_{m}(\overline{M})$ onto $T_{m}(M)$ . Since $\overline{M}$

is a K\"ahler manifold, $\overline{\nabla}J=0$, and it follows that $B(JX, Z^{T})=JB(X, Z^{T})$ . Thus
$D_{JX}Z^{N}=JD_{X}Z^{N}$ , and the proposition follows from what we have recalled
above. $q$ . $e$ . $d$ .

DEFINITION. Let $\mathfrak{a}(\overline{M})$ denote the vector space of all analytic vector fields
on $\overline{M}$. We define the analytic nullity of $M$ in $\overline{M}$ by $\dim_{R}\{Z^{N}\in \mathfrak{X}(M)^{\perp}|Z\in \mathfrak{a}(\overline{M})\}$

and denote it by $n_{a}(M,\overline{M})$ or simply $n_{a}(M)$ .
By Proposition 1.1, we get immediately
COROLLARY 1.1.

$n(M)\geqq n_{a}(M)$ .

In particular, if the ambient space $\overline{M}$ is compact, then a Killing vector field
on $\overline{M}$ becomes analytic, and therefore we have

$n(M)\geqq n_{a}(M)\geqq n_{k}(M)$ .

1.4. Holomorphic sections of the normal bundle. Let $T(M)$ (resp. $T(\overline{M})$ )

be the holomorphic tangent vector bundle of $M$ (resp. $\overline{M}$). The quotient
bundle $T(\overline{M})|_{M}/T(M)$ is called the normal bundle of $M$ in $\overline{M}$ and is denoted
by $N(M)$ . Obviously $N(M)$ is a holomorphic vector bundle of $M$. Let $\Gamma(N(M))$

denote the vector space of all holomorphic sections of $N(M)$ .
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PROPOSITION 1.2. The vector sPace $\Gamma(N(M))$ is canonically isomorphic to
the space formed by analytic elements $\xi\in \mathfrak{X}(M)^{\perp}$ .

PROOF. We put dim $M=n$ and dim $\overline{M}=n+p$ . For any point $m_{0}\in M$, we
choose a neighborhood $\overline{U}$ of $m_{0}$ and a local coordinate system $(z^{1},$ $\cdots$ , $z^{n},$ $z^{n+1}$,

, $z^{n+p}$), $z^{j}=x^{j}+\sqrt{-1}y^{j}$ such that $(z^{1}|_{U}, \cdots, z^{n}|_{U})$ is a local coordinate
system in $U=M\cap\overline{U}$.

Let $T_{m}^{1,0}(\overline{M})$ (resp. $T_{m}^{1,0}(M)$) denote the space consisting of all complex tan-
gent vector of type $(1, 0)$ at $m$ of $\overline{M}$ (resp. $M$). Let $($ $)^{\perp}$ denote the natural
projection from $T_{m}^{1,0}(\overline{M})$ to $N_{m}(M)=T_{m}^{1,0}(\overline{M})/T_{m}^{1,0}(M)$ . Let $\pi$ be the projection
from $N(M)$ to $M$. Every element $v\in N(M),$ $\pi(v)\in U$, can be expressed uni-

quely in the form $v=\sum_{i}\lambda^{i}(\frac{\partial}{\partial z^{n+i}})^{\perp}$, and this gives a local triviality of $N(M)$

on $U$ .
Since $\overline{M}$ is K\"ahlerian, V satisfies the following formulas.

$\overline{\nabla}_{\partial/\partial z^{k}}\frac{\partial}{\partial\overline{z}^{t}}=0$ and $\overline{\nabla}_{\partial/\partial\overline{z}^{k}}\frac{\partial}{\partial z^{t}}=0$

for $k,$ $f=1,$ $\cdots$ , $n+P$ . From these formulas, we can see easily

(1.3) $D_{\partial/\partial z^{i}}(\frac{\partial}{\partial z^{n+j}})^{N}=0$ and $D_{\partial/\partial\overline{z}^{i}}(\frac{\partial}{\partial z^{n+j}})^{N}=0$

for $1\leqq i\leqq n,$ $1\leqq j\leqq P$ Since $\overline{\nabla}J=0$, we see that

(1.4) $\left\{\begin{array}{l}D_{\partial/\text{{\it \^{a}}} z^{i}}(\frac{\partial}{\partial z^{n+j}})^{N} is of type (1, 0),\\D_{\partial/\overline{0}\overline{z}^{i}}(\frac{\partial}{\partial\overline{z}^{n+j}})^{N} is of type (0,1).\end{array}\right.$

For a holomorphic section $V=\sum_{j=1}^{p}f_{j}(\frac{\partial}{\partial z^{n+j}})^{\infty}\in\Gamma(N(M))$ , where $f_{j}$ are

holomorphic, we define $\xi(V)\in \mathfrak{X}(M)^{\perp}$ by

$\xi(V)=\sum_{j=1}^{v}\{f_{j}(\frac{\partial}{\partial z^{n+j}})^{N}+\overline{f}_{j}(\frac{\partial}{\partial\overline{z}^{n+j}})^{N}\}$ .
Then we get

$D_{\partial/\partial z^{t}}\xi(V)=\sum_{j=1}^{7}\{\frac{\partial}{\partial}\frac{f_{j}}{z^{i}}(\frac{\partial}{\partial z^{n+j}})^{N}+f_{j}D_{\partial/\partial z^{i}}(\frac{\partial}{\partial z^{n+j}})^{N}\}$ .
Hence by (1.4)

$D_{J(\partial/\partial z^{i})}\xi(V)=JD_{\partial/\partial z^{i}}\xi(V)$ .
Similarly we have

$D_{J(\partial/\partial\overline{z}^{i})}\xi(V)=JD_{\partial/ff\overline{z}^{i}}\xi(V)$ .
Thus $\xi(V)$ is analytic.

Conversely suppose that $\eta\in \mathfrak{X}(M)^{\perp}$ is analytic. Then we can write locally
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$\eta=\sum_{j=1}^{p}\{a_{j}(\frac{\partial}{\partial x^{n+j}})^{N}-+b_{j}(\frac{\partial}{\partial y^{n+j}})^{N}\}$ . If we put $f_{i}=a_{j}+\sqrt{-1}b_{j}(1\leqq j\leqq p)$ , $\eta$

$=\sum_{J=1}^{p}\{f_{j}(\frac{\partial}{\partial z^{n+j}})^{N}+\overline{f}_{j}(\frac{\partial}{\partial\overline{z}^{n+j}})^{N}\}$ . Then we have

$D_{\partial/\partial\overline{z}^{i}}\eta=_{j=}fi_{1}\{\frac{\partial f_{j}}{\partial\overline{z}^{i}}(\frac{\partial}{\partial z^{n+j}})^{N}+\overline{f}_{j}D_{\partial/\theta\overline{z}^{i}}(\frac{\partial}{\partial\overline{z}^{n+j}})^{N}+^{\partial f_{j}}--\partial z^{t}(\frac{\partial}{\partial\overline{z}^{n+j}})^{N}\}$ .

Since $\eta$ is analytic, $ D_{\text{{\it \^{a}}}/\partial\overline{z}^{i}}\eta$ is of type $(0,1)$ . Therefore $f_{j}$ are holomorphic.

Putting $V=\sum_{j}f_{j}(\frac{\partial}{\partial z^{n+j}})^{\perp}\in\Gamma(N(M))$ , we have $\xi(V)=\eta$ . Thus we get a linear

isomorphism $\xi:\Gamma(N(M))\rightarrow$ { $\xi\in \mathfrak{X}(M)^{\perp}|\xi$ is analytic}. $q$ . $e$ . $d$ .
By Proposition 1.2 and (1.2), we get $n(M)=\dim_{R}\Gamma(N(M))$ . In other words,

$SN(M)$ being the sheaf of local holomorphic sections of $lV(M)$ , we have

(1.5) $n(M)=\dim_{R}H^{0}(M, SN(M))$ .

\S 2. The nullity of compact Hermitian symmetric spaces
in a complex projective space.

2.1. K\"ahler C-spaces. A simply connected compact K\"ahler homogeneous
manifold is called a K\"ahler C-space. Let $G$ be a simply connected complex
semi-simple Lie group. A complex Lie subgroup $U$ of $G$ is called a parabolic
subgroup if $U$ contains a maximal solvable Lie subgroup of $G$ . The quotient
manifold $M=G/U$ is a K\"ahler C-space and every K\"ahler C-space is obtained
in this way (H. C. Wang [9]).

Let $\mathfrak{g}$ be the Lie algebra of $G$, $(, )$ the Killing form of $g$ and $\mathfrak{h}$ a Cartan
subalgebra of $\mathfrak{g}$ . We denote the dual space of $\mathfrak{h}$ by $\mathfrak{h}^{*}$ , and we shall identify
an element $\lambda\in \mathfrak{h}^{*}$ with the element $H_{\lambda}\in \mathfrak{h}$, which is defined by $\lambda(H)=(H_{\lambda}, H)$ for
any $H\in \mathfrak{h}$ . We denote by $\Delta$ the root system of $\mathfrak{g}$ with respect to $\mathfrak{h}$ . Let $\Pi=$

$\{\alpha_{1}, \cdots, \alpha_{l}\}$ be the fundamental root system and $\Pi_{1}$ be a subsystem of $\Pi$, where
1 is the rank of $\mathfrak{g}$ . We may assume that $\Pi$ is the system of simple roots
with respect to a linear order in the real part $\mathfrak{h}_{0}=\{\alpha|\alpha\in\Delta\}_{R}$ of $\mathfrak{h}$ .

Let $Z\in \mathfrak{h}$ be the element defined by $(Z, \alpha_{j})=0$ for $\alpha_{j}\in\Pi_{1}$ and $(Z, \alpha_{k})=1$

for $\alpha_{k}\not\in\Pi_{1}$ . Let $\mathfrak{g}_{1}$ (resp. $\mathfrak{n}^{+}$ ) denote the O-eigenspace (resp. the sum of posi-
tive eigenspaces) of ad $Z$. Then $\mathfrak{u}=\mathfrak{g}_{1}+\mathfrak{n}^{+}$ contains a maximal solvable sub-
algebra of $\mathfrak{g}$ . Note that It is the normalizer of $\mathfrak{n}^{+}$ in $\mathfrak{g}$ . The normalizer $U$ of

$\mathfrak{n}^{+}$ in $G$ is a parabolic subgroup of $G$ which corresponds to the Lie subalgebra
$u$ . Conversely it is known that every parabolic subgroup of $G$ is obtained in
this way from a subsystem $\Pi_{1}$ of $\Pi$ . Let $G_{1}$ (resp. $N^{+}$ ) be a connected Lie
subgroup with the Lie algebra $\mathfrak{g}_{1}$ (resp. $\mathfrak{n}^{+}$ ). Then $U=G_{1}\cdot N^{+}$ (semi-direct).

In the following, we fix a Cartan subalgebra $\mathfrak{h}$ , a linear order in $\mathfrak{h}_{0}$ and
$\Pi_{1}$ . Take a compact real form $\mathfrak{g}_{u}$ such that $\mathfrak{g}_{u}\cap \mathfrak{h}=\sqrt{-1}\mathfrak{h}_{0}$ . The connected
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subgroup $G_{u}$ corresponding to the Lie algebra $\mathfrak{g}_{u}$ is a maximal compact sub-
group of $G$ . If we put $K=G_{u}\cap U$, then $M=G/U=G_{u}/K$ (as $C^{\infty}$-manifold).

We put $\lambda^{*}=\frac{2\lambda}{(\lambda,\lambda)}$ for $\lambda\in \mathfrak{h}$ . Let $\Lambda$ be an integral form strongly associ-

ated with $\Pi_{1}$ , namely such that $(\Lambda, \alpha_{i}^{*})=0$ for $\alpha_{i}\in\Pi_{1}$ and $(\Lambda, \alpha_{i}^{*})>0$ for $\alpha_{i}\not\in\Pi_{1}$ .
We shall denote by $(\rho_{\Lambda}, V)$ the irreducible representation of $G$ with the highest
weight $\Lambda$, and let $P(V)$ be the complex projective space consisting of all 1-
dimensional subspaces of $V$. Since the dimension of the weight space (v) in
$V$ for the highest weight $\Lambda$ is equal to 1, (v) is an element of $P(V)$ . Moreover
$G$ acts canonically on $P(V)$ via the representation $(\rho_{\Lambda}, V)$ , and it is known that
$U$ coincides with the isotropy subgroup of $G$ at (v). Therefore we get a G-
equivariant imbedding $f_{A}$ : $M\rightarrow P(V)$ .

REMARK. An imbedding $f:M\rightarrow P(V)$ is said to be full if there exists no
totally geodesic submanifold of $P(V)$ containing $f(M)$ . Then $f_{A}$ is a full im-
bedding, and conversely every full K\"ahler imbedding of a K\"ahler C-space in
$P_{N}(C)$ is obtained in this way (see H. Nakagawa and R. Takagi [7]).

2.2. The generalized Borel-Weil theorem. In view of (1.5), to determine
the nullity of $M$ it suffices to know the dimension of $H^{0}(M, SN(M))$ . In our
case, we shall calculate this by applying Bott’s generalized Borel-Weil theorem.
Let us first recall Bott’s results ( $c$ . $f$ . R. Bott [1]).

Let $D$ (resp. $D_{1}$ ) be the set of all dominant integral forms of $\mathfrak{g}$ (resp. $\mathfrak{g}_{1}$ )
with respect to the Cartan subalgebra $\mathfrak{h}$ . Choose an irreducible representation
$(\rho_{-\xi}^{1}, W_{-\xi})$ of $G_{1}$ with the lowest $weight-\xi,$ $\xi\in D_{1}$ . We extend it to the repre-
sentation of $U$ whose restriction to $N^{+}$ is trivial. We shall denote by $E_{W-\xi}$

the homogenenous vector bundle over $M=G/U$ associated by $\rho_{-\xi}^{1}$ with the
principal bundle $G\rightarrow M$ with group $U$ . Put $D_{1}^{0}=$ { $\xi\in D_{1}|\xi+\delta$ is regular},
where $\delta$ is the half of sum of all positive roots. Let $W$ be the Weyl group
of $\mathfrak{g},$

$W^{1}$ is the set of $\sigma\in W$ such that $\sigma(D)\subset D_{1},$ $n(\sigma)$ the index of $\sigma$ and
$(\rho_{-\lambda}, V_{-\lambda})$ the irreducible representation of $G$ with the lowest weight $-\lambda$ .

THEOREM OF BOTT [1], ( $c$ . $f$ . B. Kostant [3]). The notation being as above,
(1) if $\xi\not\in D_{1}^{0}$ , then $H^{j}(M, SE_{W_{-}\xi})=(0)$ for all $j=0,1,$ $\cdots$ ;
(2) if $\xi\in D_{1}^{0},$ $\xi$ is expressed uniquely as $\xi=\sigma(\delta+\lambda)-\delta$ , where $\lambda\in D$ and

$\sigma\in W^{1}$, and

$H^{j}(M, SE_{W_{-}\xi})=(0)$ for $j\neq n(\sigma)$ ,

dim $H^{n(\sigma)}(M, SE_{W_{-\xi}})=\dim V_{-\lambda}$ .

In particular, if $\xi\in D,$ $H^{j}(M, SE_{W_{-}\xi})=(0)(j\geqq 1)$ and dim $H^{0}(M, \mathfrak{S}E_{W-\xi})=$

dim $V_{-\xi}$ .
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2.3. Reduction to the case of full imbeddings.
THEOREM 1. Let $M$ be a Kahler aspace imbedded in $P_{N}(C)$ . Furthermore

assume that $M$ is fully imbedded in a totally geodesic submanifold $P_{n}(C)$ of
$P_{N}(C)$ . Then

$n(M, P_{N}(C))=n(M, P_{n}(C))+2(n+1)(N-n)$ .
From this theorem, we have immediately:
COROLLARY 2.1. If $P_{n}(C)$ is imbedded in $P_{N}(C)$ as a totally geodesic sub-

manifold, then
$n(P_{n}(C))=2(n+1)(N-n)$ .

PROOF OF THEOREM 1. Put $P_{N}(C)=6/U$, where $\hat{G}=SL(N+1, C)$ and $U$ is
the complex Lie subgroup of $\hat{G}$ defined by

$\hat{U}=\{A\in\hat{G}$ ; $A=(\frac{a}{0}|\frac{c}{B})$ , $a\in C^{*},$ $B\in GL(N, C)\}$ ,

where $C^{*}=C-\{0\}$ . We may assume $P_{n}(C)=\tilde{G}/\tilde{U}$, where

$\tilde{G}=\{(\frac{A}{0}||\frac{0}{E})\in\hat{G}$ ; $A\in SL(n+1, C),$ $E=\left(\begin{array}{ll}1. & 0\\0 & 1\end{array}\right)\}$

$*$ $)\}\rightarrow\{$

and $\tilde{U}=\tilde{G}\cap\hat{U}$.
By the remark at the end of 2.1, we may assume that the imbedding $f$ :

$M\rightarrow P_{n}(C)$ is induced by an irreducible representation $\rho_{\Lambda}$ : $G\rightarrow GL(n+1, C)$ .
Since $G$ is semi-simple, $\rho_{\Lambda}(G)\subset SL(n+1, C)$ . Therefore $\rho_{\Lambda}$ induces a homomor-
phism $G\rightarrow\tilde{G}$ , which we denote also by $\rho_{\Lambda}$ .

We denote the Lie algebra of $\hat{G},$ $U,\tilde{G}$ and $\iota y$ by $\hat{\mathfrak{g}},$ $\iota^{\wedge}1\tilde{\mathfrak{g}}$ and or, respectively.
Since $\hat{\mathfrak{u}}$ (resp. $\sim \mathfrak{u}$ ) is invariant under the adjoint action of $U$ (resp. $\tilde{U}$ ) on $\hat{\mathfrak{g}}$

(resp. Q), a representation of $U$ (resp. $O$) on $\hat{\mathfrak{g}}/\hat{\mathfrak{u}}$ (resp. $\tilde{\mathfrak{g}}/\tilde{u}$) is defined, which
we denote also by $ad$ . Then we see that $T(P_{N}(C))|_{M}$ (resp. $T(P_{n}(C))|_{M}$) is the
vector bundle associated with the bundle $G\rightarrow M=G/U$ by the representation
$(ad\circ\rho_{\Lambda},\hat{\mathfrak{g}}/\hat{\mathfrak{u}})$ (resp. $(ad\circ\rho_{\Lambda},$ $\emptyset/\tilde{\mathfrak{u}})$ ). Since

$\rho_{1},(x)=(\frac{a(x)}{}\frac{0}{}$

for $x\in U$, where $a(x)\in C^{*}$ and $\rho_{1}(x)\in GL(n, C)$ , we see that $ ad\circ\rho_{\Lambda}(x):\hat{\mathfrak{g}}/\hat{\mathfrak{n}}\rightarrow\hat{\mathfrak{g}}/\iota\iota\wedge$

(resp. $\emptyset/\sim_{\iota}(\rightarrow\tilde{g}/\sim 1\lambda)$ is given by
$\wedge 1$

$\hat{\mathfrak{g}}/\hat{\mathfrak{u}}\ni\{n1\{\{(*\overline{\frac{\xi}{\eta}}|$ $*$ $)\}\in\hat{\mathfrak{g}}/\hat{\mathfrak{u}}$$(*\overline{\frac{\rho_{1}(x)\xi a(x)^{-1}}{\eta a(x)^{-}}1}|$
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$*$ $)\}\in O/i1)$

.

1

(resp. $\emptyset/\tilde{u}\ni\{1\{*n\{\overline{\xi}|\wedge$

$*$ ) $\}\rightarrow\{(\rho_{1}(x)\xi*a(x)^{-1}|$

This implies that
$T(P_{N}(C))|_{M}=T(P_{n}(C))|_{M}\oplus E\frac{\oplus\cdots\oplus}{N-n}E$

where $E$ is the line

bundle associated with the principal bundle $G\rightarrow M$ by the representation $a^{-1}$ :
$U\ni x\rightarrow a(x)^{-1}\in C*$ . Therefore we see that as holomorphic vector bundles

$N(M, P_{N}(C))\cong N(M, P_{n}(C))\oplus EE\frac{\oplus\cdots\oplus}{N-n}$

where $N(M,\overline{M})$ is the normal bundle of $M$ in $\overline{M}$ ( $=P_{N}(C)$ or $P_{n}(C)$ ). Since
the lowest weight of $a^{-1}$ is $-\Lambda$ ,

$\dim_{C}H^{0}(M, SE)=\dim_{c}V_{-\Lambda}=n+1$

by Theorem of Bott, which proves our theorem.

2.4. Result on compact Hermitian symmetric spaces. Let $M=G/U$ be a
compact Hermitian symmetric space fully imbedded in $P_{n}(C)$ . It is well known
that $M$ is a product $M=M_{1}\times\cdots\times M_{k}$ , where $M_{s}=G_{s}/U_{s}$ are compact irreduci-
ble Hermitian symmetric spaces $(1\leqq s\leqq k)$ . For each $s$, let $\Pi^{s}$ be a fundamental
root system of the Lie algebra of $G_{s}$ and $\Pi_{1}s=\Pi^{s}-\{\alpha_{i_{s}}\}$ be a subsystem of
$\Pi^{s}$ which defines the parabolic subgroup $U_{s}$ of $G_{s}$ . We may assume that
$\Pi=\Pi^{1}\cup\cdots\cup\Pi^{k}$ and $\Pi_{1}$ , which defines the parabolic subgroup $U$ of $G$, is
$\Pi-\{\alpha_{i_{1}}, \cdots , \alpha_{i_{k}}\}$ . Let $\{\omega_{1}, \cdots , \omega_{t}\}$ be the fundamental weights with respect to
$\Pi=\{\alpha_{1}, \cdots, \alpha_{t}\}$ . A weight $\Lambda$ strongly associated with $\Pi_{1}$ is then of the form
$\Lambda=\sum_{s=1}^{k}p_{s}\omega_{i_{s}}(p_{s}>0)$ .

We denote by $(\rho_{\Lambda}^{*}, V^{*})$ the representation of $G$ contragredient to $(\rho_{\Lambda}, V)$ .
Since the highest weight space (v) of $V$ is U-invariant, $\rho_{\Lambda}$ defines a representa-
tion of $U$ on (v), which we denote by $(h, (v))$ . Then $V^{*}\otimes V$ is a G-module via
the representation $\rho_{\Lambda}^{*}\otimes\rho_{\Lambda}$ and $V^{*}\otimes(v)$ is a U-module via $\rho_{\Lambda}^{*}|_{U}\otimes h$ , and these
spaces are related as follows.

PROPOSITION 2.1. Supp0se that the G-module $V^{*}\otimes V$ and the U-module
$V^{*}\otimes(v)$ are decomp0sed into direct sums:

$V^{*}\otimes V=V^{\lambda_{1}}\oplus\cdots\oplus V^{\lambda_{l}}$ $(\lambda_{1}\geqq\ldots\geqq\lambda_{l})$ ,

$V^{*}\otimes(v)=W^{\mu_{1}}\oplus\cdots\oplus W^{\mu_{m}}$ $(\mu_{1}\geqq\ldots\geqq\mu_{m})$ (as $G_{1}$ -module),

where $V^{\lambda_{i}}$ (resp. $W^{\mu_{j}}$) is an irreducible G-module (resp. $G_{1}$-module) with highest
weight $\lambda_{i}$ (resp. $\mu_{j}$). Then, we have $l=m$ and $\lambda_{i}=\mu_{i}$ for all $i=1,$ $\cdots$ , $l$ .

We prepare some lemmas to prove this proposition. Let $\Delta^{\lambda}$ denote the set
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of weights of the irreducible representation of $G$ with the highest weight
$\lambda\in D$ .

LEMMA 2.1. For any $\mu\in\Delta^{\lambda}$ ,
$|\lambda|\geqq|\mu|$

and equality holds if and only if there exists $\sigma\in W$ such that $ u=\sigma\lambda$ .
PROOF. Take $\tau\in W$ so that $\tau\mu\in D$ . Since $\tau\mu\in\Delta^{\lambda},$ $\lambda=\tau\mu+\sum_{=1}^{l}m_{i}\alpha_{i}(m_{i}\geqq 0)$ .

For $|\tau\mu|=|\mu|$ ,

$|\lambda|^{2}=|\mu|^{2}+2\sum_{t=1}^{p}m_{i}(\tau\mu, \alpha_{i})+|\sum_{i=1}^{\iota}m_{i}\alpha_{i}|^{2}$

Since $(\tau\mu, \alpha_{i})\geqq 0$ for $i=1,$ $\cdots$ , 1, we get $|\lambda|\geqq|\mu|$ . Moreover, if equality holds,

we must have $\sum_{i=1}m_{i}\alpha_{i}=0$ and hence $\lambda=\tau\mu$ . The converse is obvious. $q$ . $e$ . $d$ .
LEMMA 2.2. Supp0se that

(2.1) $|\omega_{j}|\leqq|\omega_{i}|$ for $i=1$ , – , 1.

Then $\omega_{j}$ has the following property: for each $\mu\in\Delta^{\omega_{j}}(\mu\neq 0)$

(2.2) $\mu=\sigma\omega_{j}$ for some $\sigma\in W$ .

PROOF. Take $\tau\in W$ so that $\tau\mu\in D$ . Then $\tau\mu=\sum_{i=1}^{l}n_{i}\omega_{i}(n_{i}\geqq 0)$ . Note that

there exists an integer $k$ such that $n_{k}>0$ . Since $(\omega_{i}, \omega_{j})\geqq 0$ for any $i,$ $j$,

$|\mu|^{2}=|\sum_{=i1}^{\iota}n_{i}\omega_{i}|^{2}=\sum_{i.j=1}^{\iota}n_{i}n_{j}(\omega_{i}, \omega_{j})\geqq|\omega_{k}|^{2}$

By (2.1), we get $|\mu|\geqq|\omega_{j}|$ . Hence $|\mu|=|\omega_{j}|$ and $\mu=\sigma\omega_{j}$ for some $\sigma\in W$ by
Lemma 2.1. $q$ . $e$ . $d$ .

LEMMA 2.3. Let $M$ be lhe compact irreducible Hermitian symmetric sPace
associated with $\Pi_{1}=\Pi-\{\alpha_{j}\}$ . If $\omega_{j}$ has the Property (2.2), then

$(\omega_{j}-\mu, \alpha_{j}^{*})\geqq 0$ for any $\mu\in\Delta^{\omega_{j}}$ .

PROOF. Since $(\omega_{j}-\mu, \alpha_{j}^{*})\geqq 0$ if $\mu=0$, we assume $\mu=\sigma\omega_{j}$ for $\sigma\in W$. Then

$(\mu, \alpha_{j}^{*})=(\sigma\omega_{j}, \alpha_{j}^{*})=(\omega_{j}, \sigma^{-1}\alpha_{j}^{*})=(\omega_{j},$ $\frac{2\sigma^{-1}(\alpha_{j})}{(\alpha_{j},\alpha_{j})})$ .

Since $M$ is Hermitian symmetric, we can write a root $\sigma^{-1}(\alpha_{j})$ as $\sigma^{-1}(\alpha_{j})=\sum_{l=1}^{l}m_{i}\alpha$ ,

with $m_{j}\leqq 1$ . Thus

$(\omega_{j},$ $\frac{2\sigma^{-1}(\alpha_{j})}{(\alpha_{j},\alpha_{j})})=(\omega_{j},$ $\frac{2\sum m_{i}\alpha_{i}}{(\alpha_{j},\alpha_{j})})=m_{j}\leqq 1$ ,

and hence $(\omega_{j}-\mu, \alpha_{j}^{*})\geqq 0$ . $q$ . $e$ . $d$ .
LEMMA 2.4. Let $M$ be the compact irreducible Hermitian symmetric space
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associated with $\Pi_{1}=\Pi-\{\alpha_{j}\}$ . Then

$(\omega_{j}-\mu, \alpha_{j}^{*})\geqq 0$ for any $\mu\in\Delta^{\omega_{j}}$ .
PROOF. It is easy to see that a compact irreducible Hermitian symmetric

space satisfies (2.1), unless it is one of the following types:

$ AI\Pi$ , $CI$ , DIII.

If $M$ is of type AIII or DIII, we shall check that $\omega_{j}$ has the property
(2.2).

Assume that $M$ is of type AIII. Then

$\Pi=\{\alpha_{1}=\epsilon_{1}-\epsilon_{2}, \cdots, \alpha_{l}=\epsilon_{l}-\epsilon_{l+1}\}$

where $(\epsilon_{i}, \epsilon_{k})=1/2(l+1)\delta_{ik}$ ,

$\Pi_{1}=\Pi-\{\alpha_{j}\}$ $(1\leqq j\leqq l)$ ,

$\omega_{j}=\epsilon_{1}+\cdots+\epsilon_{j}$

and
$\Delta^{\omega_{j}}=\{\epsilon_{i_{1}}+\cdots+\epsilon_{t_{j}} ; i_{1}<\ldots<i_{j}\}$ .

Therefore we see easily that if $\mu\in\Delta^{\omega_{j}}$ is an element of $D$ that is $(\mu, \alpha_{i})\geqq 0$

for all $i=1,$ $\cdots$ , 1, then $\mu=\omega_{j}$ . Thus $\omega_{j}$ has the property (2.2).

Assume that $M$ is of type DIII. Then

$\Pi=\{\alpha_{1}=\epsilon_{1}-\epsilon_{2}, \alpha_{l-1}=\epsilon_{l-1}-\epsilon_{l}, \alpha_{l}=\epsilon_{l-1}+\epsilon_{l}\}$

where $(\epsilon_{i}, \epsilon_{k})=1/4(l-1)\delta_{ik}$ ,

$\Pi_{1}=\Pi-\{\alpha_{l-1}\}$ or $\Pi-\{\alpha_{l}\}$ ,

$\omega_{l- 1}=_{2}^{1}--(\epsilon_{1}+\cdots+\epsilon_{l-1}-\epsilon_{l})$ ,

and
$\omega_{l}=\frac{1}{2}(\epsilon_{1}+\cdots+\epsilon_{l-1}+\epsilon_{l})$ .

We see easily that

$\{\sigma(\omega_{l- 1}) ; \sigma\in W\}=\{--(\theta_{1}\epsilon_{1}+21\ldots+\theta_{l}\epsilon_{l})$ ; $\theta_{i}=\pm 1,$ $\Pi\theta_{i}=--\}$ ;

$\{\sigma(\omega_{l}) ; \sigma\in W\}=\{\frac{1}{2}(\theta_{1}\epsilon_{1}+\cdots+\theta_{l}\epsilon_{l})$ ; $\theta_{i}=\pm 1,$ $\Pi\theta_{i}=1\}$ .

We know that the dimension of the representation space of $\rho_{\omega_{l-1}}$ or $\rho_{\omega_{l}}$ is $2^{l-1}$ .
Since the number of elements of $\{\sigma(\omega_{l-1});\sigma\in W\}$ or $\{\sigma(\omega_{l});\sigma\in W\}$ is $2^{l-1},$

$\omega_{j}$

($j=l-1$ or 1) has the property (2.2).

Thus our lemma follows from Lemma 2.2 and Lemma 2.3 if $M$ is not of
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type $CI$.
Assume that $M$ is of type $CI$. We can put

$G=Sp(l, C)=\{x\in GL(2l, C);{}^{t}xJ^{\prime}x=J^{\prime}\}$

where

Let

$\mathfrak{h}=(\left(\begin{array}{llll}X_{1} & & & 0\\ & X_{l} & & \\ & & -x_{l} & \\0 & & & -x_{1}\end{array}\right);x_{i}\in C\}$

.

We denote by $X_{i}$ the element $\zeta$ of $\mathfrak{h}$ which is defined by

$\zeta[[x_{1}0$ $X_{l}-X_{l}$ $-x_{1}0))=x_{i}$ .

Then
$\Pi=\{\alpha_{1}=x_{1}-x_{2}, \alpha_{l-1}=x_{l- 1}-x_{l}, \alpha_{l}=2x_{l}\}$ ,

$\Pi_{1}=\Pi-\{\alpha_{l}\}$

and $\omega_{l}=x_{1}+\cdots+x_{l}$ .
Since $\rho_{\omega_{l}}$ is an irreducible component to the l-th alternative representation

of $SP(l, C)$ , a weight $\mu$ of $\rho_{\omega_{l}}$ is expressed by

$\mu=(x_{i_{1}}+\cdots+x_{i\gamma})-(x_{J_{1}}+\cdots+x_{j_{t}})$

where $i_{1}<\ldots<i_{\gamma},$ $j_{1}<\ldots<j_{t}$ and $r+t=l$ . Therefore it is clear that

$(\omega_{l}-\mu, \alpha_{t}^{*})\geqq 0$ . $q$ . $e$ . $d$ .

LEMMA 2.5. Let $M$ be a compact Hermitian symmetric sPace. Then

$(\Lambda-\mu, \alpha_{is}^{*})\geqq 0$ ($s=1,$ $\cdots$ , k) for any $\mu\in\Delta^{A}$ .

PROOF. Note that $\rho_{\Lambda}$ is an irreducible component of the representation
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$\rho_{1^{\otimes\cdots\otimes\rho_{k}}}\frac{\omega\{1^{\otimes\cdots\otimes\rho_{\omega i}}}{p_{1}}\frac{\omega ik^{\otimes\cdots\otimes\rho_{\omega i}}}{p_{k}}$

.

Then a weight $\mu$ of $\rho_{A}$ can be written as

$\mu=\mu_{1}^{1}+\cdots+\mu_{p_{1}}^{1}+\cdots+\mu_{1}^{k}+\cdots+\mu_{p_{k}}^{k}$ where $\mu_{l}^{s}\in\Delta^{\omega_{t_{s}}}$ .
But if $s^{t}\mp t$, we have

$(\nu, \alpha_{r_{S}}^{*})=0$ for any $\nu\in\Delta^{\omega_{i_{t}}}$ .
Thus

$(\Lambda-\mu, \alpha_{is}^{*})=(p_{s}\omega_{ts}-(\mu_{1}^{s}+\cdots+\mu_{ps}^{s}), \alpha_{ts}^{*})$

$=\sum_{j=1}^{p_{s}}(\omega_{t_{s}}-\mu_{j}^{s}, \alpha_{i_{s}}^{*})$ .

Since $(\omega_{i_{s}}-\mu_{j}^{9}, \alpha_{is}^{*})\geqq 0$ by Lemma 2.4., we get $(\Lambda-\mu, \alpha_{i_{S}}^{*})\geqq 0$ . $q$ . $e$ . $d$ .
Let $W_{1}$ be the subgroup of the Weyl group $W$ generated by the reflections

corresponding to $\alpha_{i}\in\Pi_{1}$ and denote by $\Delta_{1}^{+}$ the set of positive roots $\alpha=\sum_{i=1}^{l}m_{i}\alpha_{i}$

such that $m_{i_{S}}=0$ for $s=1,$ $\cdots$ , $k$ .
LEMMA 2.6. SuppOse $\mu\in\Delta^{\Lambda},$ $\gamma_{1}\in W_{1}$ and put $\delta_{1}=\frac{1}{2}\sum_{\alpha\in\Delta_{1}^{+}}\alpha$ . If $\Lambda-\mu+\gamma_{1}\delta_{1}-\delta_{1}$

$\in D_{1}$ , then $\Lambda-\mu+\gamma_{1}\delta_{1}-\delta_{1}\in D$ .
PROOF. Since $\gamma_{1}\delta_{1}-\delta_{1}=-\sum_{\alpha_{i}\in\Pi_{1}}m_{i}\alpha_{i}$ with $m_{i}\geqq 0$, we get $(\gamma_{1}\delta_{1}-\delta_{1}, \alpha_{is}^{*})\geqq 0$ for

$1\leqq s\leqq k$ . By Lemma 2.5 $(\Lambda-\mu, \alpha_{i_{S}}^{*})\geqq 0$ . Thus

$(\Lambda-\mu+\gamma_{1}\delta_{1}-\delta_{1}, \alpha_{\tau s}^{*})\geqq 0$ for $s=1,$ $\cdots$ , $k$ .
$q$ . $e$ . $d$ .

Now for $\lambda\in D$ , let $\Lambda l(\lambda)$ denote the multiplicity of $\rho_{\lambda}$ in $\rho_{\Lambda}^{*}\otimes\rho_{\Lambda}$ . For $\mu\in D_{1}$ ,
let $M_{1}(\mu)$ denote the multiplicity of the irreducible representation $\rho_{\mu}^{1}$ of $G_{1}$

with highest weight $\mu$ in $\rho_{A}^{*}|_{G_{1}}\otimes h|_{G_{1}}$ .
LEMMA 2.7. For $\lambda\in D$ and $\mu\subset-D_{1}$ , we have

(1) $ M(\lambda)=\sum_{\sigma\in W}\det$
$\sigma\cdot m(\Lambda+\delta-\sigma(\lambda+\delta))$ ,

(2)
$M_{1}(\mu)=\sum_{\tau\in W_{1}}$ det $\tau\cdot m(\Lambda+\delta-\tau(\mu+\delta))$ ,

where, for an integral form $\nu,$ $m(\nu)$ denotes the multiplicity of $\nu$ as a weight

of $\rho_{\Lambda}$ .
PROOF. For $\lambda\in D$ , let $\chi_{\lambda}$ denote the character of $\rho_{\lambda}$ . Since there is a

canonical bijection between representations of $G$ and representations of the
maximal compact Lie subgroup $G_{u}$ on complex vector spaces, it is enough to
prove the assertions for $G_{u}$ .

Let $w$ denote the number of elements of $W$, and put $H_{u}=G_{u}\cap\exp \mathfrak{h}$ and

$\xi_{\nu}(x)=\sum_{\sigma\in W}\det\sigma\cdot e^{\sigma o(\mathfrak{r})}$ for $x=\exp X\in H_{u}=G_{u}\cap\exp \mathfrak{h}$ .
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By Weyl’s integral formula and Weyl’s characteristic formula, we have

$M(\lambda)=\int_{Gu}\chi_{\Lambda}.7_{\Lambda}\cdot X_{\lambda}dg$

$=\frac{1}{w}\int_{Hu}\chi_{\Lambda}.Z_{\Lambda}\cdot X_{\lambda}|\xi_{\partial}|^{2}dx$

$=\frac{1}{w}\int_{Hu}\xi_{\Lambda+\delta}\cdot X_{\Lambda}\cdot\overline{\xi}_{\lambda+\delta}dx$

$=\frac{1}{w}\sum_{\alpha.\beta\in W}$ det $(\alpha\beta)\cdot\int_{H_{u}}e^{\alpha(t+\delta)-\beta(\lambda+\partial)}\circ X_{\Lambda}dx$

$=\frac{1}{w}\sum_{\alpha,\beta\in W}$ det $(\alpha\beta)\cdot m(\alpha(\Lambda+\delta)-\beta(\lambda+\delta))$

$=\frac{1}{w}\sum_{\alpha.\beta\in W}$ det $(\alpha^{-1}\beta)\cdot m(\Lambda+\delta-\alpha^{-1}\beta(\lambda+\delta))$

$=\sum_{\sigma\in W}\det\sigma\cdot m(\Lambda+\delta-\sigma(\lambda+\delta))$ ,

where $dg$ (resp. $dx$) is the normalized Haar measure on $G_{u}$ (resp. $H_{u}$). Thus
we have proved (1).

Since $\delta_{2}=\delta-\delta_{1}$ lies in the center of $\mathfrak{g}_{1}$ (B. Kostant [3]), $\tau(\delta_{2})=\delta_{2}$ for $\tau\in W_{1}$ .
We also have $\tau(\Lambda)=\Lambda$ for $\tau\in W_{1}$ since $\Lambda$ is a weight strongly associated with
$\Pi_{1}$ . Using these facts, we can prove (2) by the same way as for (1). $q$ . $e$ . $d$ .

PROOF OF PROPOSITION 2.1. since $M_{1}(\mu_{j})\neq 0$ for $j=1,$ $\cdots,$ $m$ , by Lemma
2.7, we may choose $\tau\in W_{1}$ so that

$v=A+\delta-\tau(\mu_{j}+\delta)\in\Delta^{i}$

Since $\tau(\delta_{2})=\delta_{2}$ , we have
$u=\Lambda+\delta_{1}-\tau(\mu_{j}+\delta_{1})$ .

So $\mu_{j}=\Lambda-\tau^{-1}0+\tau^{-1}\delta_{1}-\delta_{1}$ . Therefore we get $\mu_{j}\in D$ for $j=1,$ $\cdots,$ $m$ by Lemma
2.6.

Now we note that each element $\gamma\in W$ can be written uniquely as $\gamma=\gamma_{1}\cdot\gamma^{1}$

where $\gamma_{1}\in W_{1}$ and $\gamma^{1}\in W^{1}$ (B. Kostant [3]). Put $\mu=\Lambda+\delta-\gamma(\lambda+\delta)$ for $\lambda\in D$ .
We ]$prove$ that if $\mu\in\Delta^{\Lambda}$ then $\gamma\in W_{1}$ . Putting $\mu^{\prime}=\gamma_{1}^{-1}\mu$, we get

$\mu^{\prime}=\Lambda+\gamma_{1}^{-1}\delta-\gamma^{1}(\lambda+\delta)\in\Delta^{\Lambda}$ ,
and hence

$\Lambda-\mu^{\prime}+\gamma_{1}^{-1}\delta_{1}-\delta_{1}=\gamma^{1}(\lambda+\delta)-\delta$ .

Since $\gamma^{1}(\lambda+\delta)-\delta\in D_{1}$ (B. Kostant [3]), $\Lambda-\mu^{\prime}+\gamma_{1}^{-1}\delta_{1}-\delta_{1}\in D_{1}$ . By Lemma 2.6,
$\Lambda-\mu^{\prime}+\gamma_{1}^{-1}\delta_{1}-\delta_{1}\in D$, that is, $\gamma^{1}(\lambda+\delta)-\delta\in D$ . Hence $\gamma^{1}(\lambda+\delta)$ is a regular ele-
ment of $D$ . On the other hand $\lambda+\delta\in D$ . Thus we see that $\gamma^{1}$ is the identity,



Nullity of compact Kahler submanifolds 575

and $\gamma=\gamma_{1}\in W_{1}$ . We have thus proved that if $m(\Lambda+\delta-\gamma(\lambda+\delta))\neq 0$ , then $\gamma\in W_{1}$ .
By Lemma 2.7, it follows that for $\lambda\in DM(\lambda)=M_{1}(\lambda)$ , and therefore each $\lambda_{i}$

$(1\leqq i\leqq l)$ is equal to one and only one of $\mu_{j}’ s(1\leqq j\leqq m)$ . On the other hand,
since $\mu_{j}\in D,$ $\mu_{j}$ is equal to one of $\lambda_{i}’ s(1\leqq i\leqq l)$ . Proposition 2.1 is thus proved.

2.5. Determination of the nullity. We retain the same notation and as-
sumptions introduced in 2.4.

Since the weight space (v) is U-invariant, $\rho|_{U}$ induces the quotient repre-
sentation $(\overline{\rho}, V/(v))$ of $U$ . We denote by $(h^{*}, (v^{*}))$ the contra-gredient repre-
sentation of the representation $(h, (v))$ of $U$. We see easily that the restriction
$T(P_{n}(C))|_{M}$ to $M$ of the holomorphic tangent bundle $T(P_{n}(C))$ is the homo-
geneous vector bundle associated with the principal bundle $G\rightarrow M=G/U$ by
the representation $\overline{\rho}\otimes h^{*}:$

$T(P_{n}(C))|_{M}=G\times\overline{\rho}\otimes h^{*}(V/(v)\otimes(v^{*}))$ .

PROPOSITION 2.3. Let $\mathfrak{a}(P_{n}(C))$ denote the space of all analytic vector fields
on $P_{n}(C)$ . Then

$\dim_{R}H^{0}(M, S(T(P_{n}(C))|_{1f})=\dim_{R}\mathfrak{a}(P_{n}(C))$ ,

$H^{f}(M, S(T(P_{n}(C))|_{M})=(0)$ for $j=1,2,$ $\cdots$ .
PROOF. By Proposition 2.1, the U-module $V\otimes(v^{*})$ decomposes as $G_{1}$ -module

in the following way:

$V\otimes(v^{*})=W_{-\lambda_{1}}\oplus\cdots\oplus W_{-\lambda_{l}}$ $(\lambda_{1}\geqq\ldots\geqq\lambda_{l})$ ,

where $W_{-\lambda_{i}}$ is an irredudible component with the lowest weight $-\lambda_{i}$ .
Put $U_{i}=W_{-\lambda_{i}}+\cdots\perp W_{-\lambda_{l}}$ for $i=1,$ $\cdots$ , $l$ . Then we have

$V\otimes(v^{*})=U_{1}\supset U_{2}\supset\ldots\supset U_{l}\supset U_{l+1}=(0)$ .

Since $N^{+}\cdot U_{i}$ is a $G_{1}$-invariant subspace whose lowest weight is higher than
$-\lambda_{i}$ , it follows that $N^{+}\cdot U_{i}\subset U_{i+1}$ for $i=1,$ $l$ . Therefore $\rho_{\Lambda}|_{U}\otimes h^{*}$ induces
the quotient representation $g_{i}$ of $U$ on $\tilde{W}_{i}=U_{i}/U_{i+1}$ . It is clear that $g_{i}|_{N}+$ is
the trivial representation and $g_{i}|_{G_{1}}$ is an irreducible representation of $G_{1}$ with
the lowest weight $-\lambda_{j}$ .

Applying Theorem of Bott to the homogeneous vector bundle $E_{\tilde{W}_{i}}$ asso-
ciated to the principal bundle $G\rightarrow M$ by the representation $g_{i}$ , we see the fol-
lowings,

(2.3) $\dim_{C}H^{0}(M, SE_{\tilde{W}_{i}})=\dim_{c}V_{-\mu_{i}}$ ,

(2.4) $H^{f}(M, SE_{\tilde{W}_{i}})=(0)$ for $j=1,2,$ $\cdots$ .



576 Y. KIMURA

From the exact sequence of U-modules

$0\rightarrow U_{i+1}\rightarrow U_{i}\rightarrow\tilde{W}_{i}\rightarrow 0$ ,

we get the exact sequence of cohomology groups

$0\rightarrow H^{0}(M, SE_{U_{i+1}})\rightarrow H^{0}(M, SE_{U_{i}})\rightarrow H^{0}(M, SE_{\tilde{W}_{i}})$

$\rightarrow H^{1}(M, SE_{U_{i+1}})\rightarrow\cdots$ ,

where $E_{U_{j}}=G\times U$ . Using (2.3) and (2.4), we get

(2.5) $\dim_{c}H^{0}(M, SE_{U_{1}})=\sum_{i=1}^{\iota}\dim_{C}V_{-\lambda_{i}}$

(2.6) $H^{f}(M, SE_{U_{1}})=(0)$ for $j=1,2,$ $\cdots$ .
Since $(v)\otimes(v^{*})$ is the irreducible component of $G_{1}$ with the lowest weight $0$,

we have $W_{l}=U_{l}=(v)\otimes(v^{*})$ and $\lambda_{l}=0$ . Let $g^{\prime}$ denote the quotient representa-

tion of $U$ on $U_{1}/\pi_{l}$ induced by $\rho_{\Lambda}|_{U}\otimes h*$ . Then we easily see $g^{\prime}\cong\overline{\rho}\otimes h^{*}$ .
Therefore the exact sequence of U-modules

$0\rightarrow\pi_{l}\rightarrow U_{1}\rightarrow U_{1}/\pi_{l}\rightarrow 0$

induces the following exact sequence.

$0\rightarrow H^{0}(M, SE_{\tilde{W}_{l}})\rightarrow H^{0}(M, SE_{U_{1}})\rightarrow H^{0}(M, S(T(P_{n}(C))|_{M}))$

$\rightarrow H^{1}(M, SE_{\tilde{W}_{l}})\rightarrow H^{1}(M, SE_{U_{1}})\rightarrow H^{1}(M, S(T(P_{n}(C))|_{M}))$

$\rightarrow\cdots$

By (2.3), (2.4), (2.5) and (2.6),

$\dim_{c}H^{0}(M, S(T(P_{n}(C))|_{M}))=\sum_{l=1}^{l-1}\dim_{c}V_{-\lambda_{i}}$

$H^{j}(M, S(T(P_{n}(C))|_{M}))=(0)$ for $j=1,2,$ $\cdots$

Since $V\otimes V^{*}=V^{-\lambda_{1}}\oplus\cdots\oplus V^{-\lambda_{t}}$ and $\dim_{C}V_{-\lambda_{l}}=1$ , we get

$\dim_{c}H^{0}(M, S(T(P_{n}(C))|_{M}))=\dim_{c}V\otimes V^{*}-1=(n+1)^{2}-1$ .
On the other hand, we know

$\dim_{c}\mathfrak{a}(P_{n}(C))=(n+1)^{2}-1$ .

Therefore our proposition is proved.
Now we can prove the following theorem.
THEOREM 2. Let $M$ be a comPact Hermitian symmetric sPace imbedded fully

in $P_{n}(C)$ . Then
$n(M)=\dim_{R}\mathfrak{a}(P_{n}(C))-\dim_{R}\mathfrak{a}(M)$ .
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PROOF. By the exact sequence of holomorphic vector bundles

$0\rightarrow T(M)\rightarrow T(P_{n}(C))|_{M}\rightarrow N(M)\rightarrow 0$ ,

we get the following exact sequence

$0\rightarrow H^{0}(M, ST(M))\rightarrow H^{0}(M, S(T(P_{n}(C))|_{M}))\rightarrow H^{0}(M, SN(M))$

$\rightarrow H^{1}(M, ST(M))\rightarrow\cdots$ .
By a theorem of R. Bott [1], $H^{1}(M, ST(M))=(O)$ and therefore

$\dim_{R}H^{0}(M, SN(M))=\dim_{R}H^{0}(M, S(T(P_{n}(C))|_{M}))-\dim_{R}H^{0}(M, ST(M))$ .
By Proposition 2.3 and (1.5), we get our theorem. $q$ . $e$ . $d$ .

\S 3. Minimal value of the nullities of compact K\"ahler

submanifolds in a complex projective space.

3.1. Killing nullity. Let $M$ be a compact connected K\"ahler submanifold
of $P_{N}(C)$ . Furthermore assume that $M$ is fully imbedded in a totally geodesic
submanifold $P_{n}(C)$ of $P_{N}(C)$ .

LEMMA 3.1. Notation being as defined in 1.2, we get

$n_{k}(M, P_{N}(C))=\dim_{R}f(P_{N}(C))-\dim_{R}f(P_{N}(C), M)$ ,

where $f(P_{N}(C), M)=$ { $Z\in f(P_{N}(C))|Z_{m}\in T_{m}(M)$ for $m\in M$ }.
PROOF. Put $t^{N}=\{Z^{N}\in \mathfrak{X}(M)^{\perp}|Z\in f(P_{N}(C))\}$ . Then from the exact sequence

of vector spaces

$0\rightarrow f(P_{N}(C), M)\rightarrow f(P_{N}(C))\rightarrow f^{N}\rightarrow 0$ ,
we get

$n_{k}(M, P_{N}(C))=\dim_{R}f^{N}=\dim_{R}f(P_{N}(C))-\dim_{R}f(P_{N}(C), M)$ ,

which proves a lemma. $q$ . $e$ . $d$ .
Let $A(M)$ denote the Lie group of all holomorphic isometries of $M$ and

$A(P_{n}(C), M)$ (resp. $A(P_{N}(C), M)$ denote the Lie group of all holomorphic iso-
metries of $P_{n}(C)$ (resp. $P_{N}(C)$ ) which leave $M$ invariant. Then, we have the
following lemma.

LEMMA 3.2. Let $M$ be a compact connected Kahler manifold imbedded fully
in $P_{n}(C)$ . Then the Lie groups $A(P_{n}(C), M)$ and $A(M)$ are isomorphic in a
natural way.

This lemma is proved in the same way as Theorem 4.3 in H. Nakagawa
and R. Takagi [7], and so the proof is omitted.

LEMMA 3.3.
$\dim_{R}f(P_{N}(C), M)=\dim_{R}f(M)+(N-n)^{2}$
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PROOF. Since any Killing vector Peld on a compact K\"ahler manifold $P_{N}(C)$

(resp. $dM$) belongs to $\mathfrak{a}(P_{N}(C))$ (resp. $\mathfrak{a}(M)$ ) (Y. Matsushima [6]), the dimension
of $f(P_{N}(C), M)$ and $f(M)$ are respectively equal to the dimension of $A(P_{N}(C), M)$

and $A(M)$ .
For $g\in A(P_{N}(C), M)$ , we have $g(P_{n}(C))=P_{n}(C)$ , because $M$ is fully imbedded

in $P_{n}(C)$ . Therefore it follows that the group $A(P_{N}(C), M)$ is locally isomor-
phic to the product of $A(P_{n}(C), M)$ and the projective unitary group of degree
$N-n$ . Thus by Lemma 3.2

$\dim_{R}f(P_{N}(C), M)=\dim_{R}A(P_{N}(C), M)$

$=\dim_{R}A(P_{n}(C), M)+(N-n)^{2}$

$=\dim_{R}A(M)+(N-n)^{2}$

$=\dim_{R}f(M)+(N-n)^{2}$

This proves Lemma 3.3.
By Lemma 3.1 and Lemma 3.3, we get the following theorem.
THEOREM 3.

$n_{k}(M, P_{N}(C))=\dim_{R}f(P_{N}(C))-\dim_{R}f(M)-(N-n)^{2}$

Since the Euler characteristic of a K\"ahler C-space $X$ differs from zero,
there exists no non-zero parallel vector field on $X$. Therefore, by a theorem
of A. Lichnerowicz [5],

$\mathfrak{a}(X)=f(X)+Jf(X)$ (direct sum).

Applying this to the cases $X=M$ and $X=P_{n}(C)$ , from Theorem 2 and Theorem
3, we get the following theorem.

THEOREM 4. Let $M$ be a compact Hermitian symmetric space fully imbedded
in $P_{n}(C)$ . Then

$n(M)=2n_{k}(M)$ .

3.2. Minimal value for the nullities. As an application of Theorem 3,
we have the following theorem which gives the minimal value of the nullities.

THEOREM 5. Let $M$ be a $p$ dimensional compact Kahler submanifold of
$P_{N}(C)$ . Then

$n(M)\geqq 2(p+1)(N-p)$ .

Furthermore equality holds if and only if $M$ is a totally geodesic submanifold
$P_{p}(C)$ of $P_{N}(C)$ .

PROOF. For a totally geodesic submanifold $P_{p}(C)$ of $P_{N}(C)$ , we have

$n(P_{p}(C))=2(p+1)(N-p)$



Nullity of compact Kahler submanifolds

by Corollary 2.1.
Assume that $M$ is fully imbedded in a totally geodesic submanifold $P_{n}(C)$

of $P_{N}(C)$ . Let $M_{0}$ be a connected component of $M$, then $n(M_{0})\leqq n(M)$ . There-
fore we can assume that $M$ is connected. Note that, for a compact K\"ahler

manifold $M$ of dimension $p$,
$\dim_{R}f(M)\leqq p^{2}+2p$

(A. Lichnerowicz [4]).
By (1.1), Theorem 3 and the above remark, we see

$n(M)-2(p+1)(N-p)$

$\geqq n_{k}(M)-2(p+1)(N-p)$

$=\dim_{R}f(P_{N}(C))-\dim_{R}f(M)-(N-n)^{2}-2(p+1)(N-p)$

$\geqq N^{2}+2N-p^{2}-2p-(N-n)^{2}-2(p+1)(N-p)$

$=(N-p)^{2}-(N-n)^{2}$

$\geqq 0$ .
Thus $n(M)\geqq 2(p+1)(N-p)$ , and the equality holds if and only if $n=p$ , that is,
$M=P_{p}(C)$ . $q$ . $e$ . $d$ .

3.3. Analytic nullity. Let $M$ be a compact K\"ahler submanifold of $P_{N}(C)$ .
In the following we consider the analytic nullity.

LEMMA 3.4. Let $M$ be a compact connected Kahler submanifold of $P_{N}(C)$ .
Furthermore, supp0se that $M$ is imbedded fully in a totally geodesic submanifold
$P_{n}(C)$ of $P_{N}(C)$ . Then

$n_{a}(M)\geqq\dim_{R}\mathfrak{a}(P_{N}(C))-\dim_{R}\mathfrak{a}(M)-2(N+1)(N-n)$ .
PROOF. Let $H(M)$ denote the Lie group of all holomorphic automorphisms

of $M$ and $H(P_{n}(C), M)$ the Lie group of all holomorphic automorphisms of
$P_{n}(C)$ leaving $M$ invariant.

Let $\pi:C^{n+1}-(0)\rightarrow P_{n}(C)$ be the canonical projection. Since $M$ is imbedded
fully in $P_{n}(C),$ $\pi^{-1}(M)$ spans the vector space $C^{n+1}$ . Assume that the restric-
tion to $M$ of an element $\{f\}\in H(P_{n}(C), M),$ $f\in SL(n+1, C)$ , is the identity.
Since every non-zero vector of $\pi^{-1}(M)$ is an eigenvector of $f,$ $f$ is a diagonal
matrix. So we can prove that $\{f\}$ is the identity in the same way as Theo-
rem 4.3 in H. Nakagawa and R. Takagi [7]. Therefore the restriction of
$H(P_{n}(C), M)$ to $H(M)$ is an injective isomorphism to Lie groups and the result
follows in the similar way to in the proof of Lemma 3.3. $q$ . $e$ . $d$ .

We get the following theorem.
THEOREM 6. Let $M$ be a compact Hermitian symmetric space imbedded in

$P_{N}(C)$ . Then we have $n(M)=n_{a}(M)$ .
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PROOF. Assume that $M$ is fully imbedded in a totally geodesic submani-
fold $P_{n}(C)$ of $P_{N}(C)$ . By Theorem 1 and Theorem 2, we get

$n(M)=2(n^{2}+2n)-\dim_{R}\mathfrak{a}(M)+2(n+1)(N-n)$ .
On the other hand, by Lemma 3.4 we get

$n_{a}(M)\geqq 2(N^{2}+2N)-\dim_{R}\mathfrak{a}(M)-2(N+1)(N-n)$ .
Thus we have $n_{a}(M)\geqq n(M)$ . Obviously, $n(M)\geqq n_{a}(M)$ . Our theorem is proved.

COROLLARY 3.1. Let $M$ be a compact Hermitian symmetric space imbedded
by $f$ in $P_{N}(C)$ . Then, for $\xi\in \mathfrak{X}(M)^{\perp},$ $\xi$ is a Jacobi field on $M$ if and only if
there exists a variation $\{f_{t}\}$ of $f$ such that

(1) $f_{t}$ is a Kahler imbedding for each $t$ ,
(2) $E^{N}$ is equal to $\xi$ where $E$ is the variation field of $\{f_{l}\}$ .
PROOF. Assume $\xi$ is a Jacobi field on $M$. Since $n(\Lambda f)=n_{a}(M)$ there exists

an analytic vector field $Z$ on $P_{N}(C)$ such that $ Z^{N}=\xi$ . For the l-parameter
group of transformations $\{g_{t}\}$ generated by $Z$, we put $f_{t}=g_{t}\circ f$. Then $\{f_{t}\}$ is
clearly a variation of $f$ which satisfies (1) and (2). The converse is clear.

$q$ . $e$ . $d$ .
This corollary answers the following question raised by Simons [8] affirm-

atively in this case ”Given a Jacobi field on a compact minimal submanifold,
does it always arise from a l-parameter family of minimal submanifolds?”
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