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Introduction.

In a preceding paper [2], we gave an algorithm to compute the 3-rank of
the ideal class groups of pure cubic fields @( ¥m). It consists of finding the
coefficients of a certain linear representation by way of a table of Hilbert
norm residue symbols in Q(~/—3). It works for most of the values of m, but
fails when all the prime factors of m except 3 are ==+1 (mod9). Namely,
for this type of m, there may be ambiguous classes containing no ambiguous
ideal in the extension Q(~/—3, ¥m)/Q(~/—3), and if so, the table must include
an extra column corresponding to such a class. But it is far from easy to
find such a class and we are left with an incomplete table.

Now the purpose of this paper is to show that for the type of m described
above we can always obtain the correct value of the 3-rank by applying the
algorithm to this incomplete table (cf. §5, [Theorem 4). As an example, we
shall show in the last section that the 3-rank is 2 for m=3-17-271.

Notation used throughout the paper:

F,: the finite field with 3 elements.

C,: the ideal class group of an algebraic number field k.

d®C,=dimr,(C,/C,?), i.e. the 3-rank of C,.

Y(K/k): the conductor of an abelian extension K/k.

{: a fixed primitive cube root of 1.

§1. Summary of the algorithm.

For a detailed account of the algorithm, we refer the reader to [2], §1,
and we use the same notation as there. So, for a cube free m, 2=Q(¥m),
k=Q(~/—3) and K=k(¥m). ¢ and ¢ are generators of G(K/k) and G(K/Q)
respectively. K and K, are the unramified class fields over K corresponding
to the ideal groups C% and Ck“ respectively. Then d‘“Cg is equal to the sum

*) This work is part of the author’s thesis at the University of Tokyo.
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of the number of rational prime factors p of m such that p=1 (mod 3) and
the multiplicity of the eigenvalue 1 of the action of z defined by p—7pzr™! on
G(I?/Kl) (considered as a vector space over F).

Let C% be the subgroup of Cx of G(K/k)-invariant elements and Dy be the
subgroup of Cx generated by G(K/k)-invariant ideals in K. We note that
(C% : Dg)=1 or 3. Renumbering the prime factors of {(K/k) in k as p,, ---, b,,
the result of [2] is as follows.

THEOREM 1. We can choose for each p;, 1=0,---,t, an element o,=0y;, €
G(K/k) so that 1), 2) and 3) below hold.

1) For any 1,7, he{0, --- , t}, we have

Los, Uj] =[o;, 0,10, ‘7]‘] .
2) For any 1<{0, ---, t}, we have
TOp T = Oy, modulo G(R'/Kl) .

3) G(K’/Kl) 1s the commutator subgroup of G(I?/k) and is generated by the
elements [o,, 0,], i=1,---,t. For any set of integers (b,, --+, b,), they satisfy the
linear relation

t
].1 [0.0; ai]bi = 1

if and only if the following system of equations has a solution in (w, x,):

( Ci’im >WI;I< ﬂgim >Ij:Cbi’ 1=1,--,1.

Here the index j runs through 0, .-+, f or 0, -+, {41 according to whether C§{=D,
or not. In both cases, x; for j=0,---, ¢ is an arbitrarily chosen element of %
generating p;. If C§+# Dy, take any ideal U in K contained in C¢ but not ir
Dy, and take as m., an arbitrarily chosen element of %2 generating Ng/ ().
(We removed the first equation in [2], Theorem by virtue of the product
formula for norm residue symbols.)

Since the commutator [x, y] in G(I?/k) is bilinear and depends only on the
cosets of x and y modulo G(K/Kl), 1), 2) and 3) above are sufficient for know-
ing the action of 7 on G(I?/Kl). In subsequent sections we shall concentrate
ourselves upon this action.

§ 2. Preliminary results.

First we change [Theorem 1, 3) into a form more convenient for applica-
tion. Express the system of equations in 3) in the following additive form
for the exponents of {:
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Ax=b,
where
a, w b,
A= , X= x.o , b= ,
a, : bl:

and a; are row vectors having the exponents of { in <~I,3m) and (—%’ﬂ>
1 T

as their components. Everything is considered in F,. To distinguish from
the matrix representing z, we call A the “table”.

THEOREM 2. Suppose that among the row vectors of A, a,, -+, a, are linearly
independent and that

a;= 2 ¢;;a;, i=r+1,-,1¢.
J=1
Then in G(K/K,), the elements [0,, 0,.,], -+, [0y, 0] are linearly independent and
t
[00’ 0;] :i=1;-||;.1[:0'0, O'i]—cij , j: 1, e .

PrROOF. By the theory of linear equations, Ax=b has a solution if and
only if we have

T
bizzcijbj, i:T+1,"',t.
Jj=1
Hence by [Theorem 1, 3), the set of relations for the [o,, 0;]'s are given by

107

r t E c -
11[o,, 0,1 11 Loy, 0170 " =1, (by, -, by) EFL.
Jj=1 i=r

It now suffices to put (by, -+, b,)=(0, -+, 0) or (0,---,1,---,0). q.e.d.

Next we show that the row vectors of A are subject to some natural
restrictions. For this, let {p,, -, ps, qi, -, ¢;} be the set of rational primes
totally ramified in £, where p;=1 (mod 3) and ¢;=—1 (mod 3). In the follow-
ing we shall always use the letters p and ¢ in this sense. Put p,=m;7; in k.
If 3 is totally ramified, we count it among the ¢’s and put ¢=+/—3. Then
{(my), (73), (¢;) | i=1, ---, s, j=1,---,t} is exactly the set of prime factors of
f(K/k) in k. With these conventions, we take as =z, in [Theorem 1|, 3), the
elements

Ty oty Ty Ty oy Tsy Gy 00 5 Gty Tpgy

and arrange them always in this order. Here 7., is the element also denoted
by 7., in [Theorem 1, 3), and we suppose that it is a rational number. Such
a choice is always possible (cf. [1], p. 212, (b). The argument for this fact
is independent of the assumption of [1] that there are only ¢'s). We use
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boldface letters p;, P; and q; to denote the row vectors corresponding to p=
(my), (7;) and (gy).
LEMMA 1. Divide the row vectors into subvectors as follows:

(e,a,b,c,d),

where e, a, b, ¢ and d are row vectors having as their components the exponents
] om Ty, MY Ty MY Gy, M N> Tpyq, M .
of L in ( » ), ( » >s, ( 5 )s, (wp——> s and <—~‘—"$~—) respectively
(of course, we do not have the last one if C§=Dg). Then
1) Each q has the form (e, a, —a,0, 0).
2) If p=(e,a,b, e, d), we have p=(e, —b, —a, —e¢, —d).

Proor. If (—a’—;—n~>:C’” for a prime pin k and a<=k*, we have by complex
conjugation (a,ﬁm >=C*I. q. e d.
LEMMA 2. If the row vectors p;, D, and q; satisfy a rvelation

2 Ui pit ; v+ ; wiq; =0,
they also satisfy the “conjugate relation”
LZ u; P+ ; viDi+ ZZ wiq:=0.

ProoF. Divide the row vectors into subvectors as in Lemma 1. Then the
first relation is equivalent to the set of four or five relations for these sub-
vectors. Multiplying by —1 if necessary, we get the second relation. q.e.d.

§$ 3. Representation of <.

In this section we take into account the different types of prime factors
of {(K/k), and express the matrix representing 7 in terms of the coefficients
appearing in the relations among the row vectors of the table A. To avoid
studying too many different cases we assume that at least one prime of type
p is totally ramified in £. This is sufficient for our purpose, since the other
case is already settled in [I] So, in the rest of the paper, let

po, pl; e ;ps; ql) ) Qt

be the set of rational primes totally ramified in™2 and put p,=mu;%; in k. If
3 is totally ramified, we count it among the ¢’s™and put g=+/—3. Also we
use 0;, o; and p; to denote the elements o, for p=(x;), (7;) and (g;) respectively,
and take o, as g, in [Theorem 1, 3). Thus Avconsists of the row vectors p,,
Dy, Dy, Py, , Ps, @, -+, q;,. We distinguish two cases.
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o S S _ t
Case I po€ D Fpit D Fpit 5 Fugi.
= i= =

S 8 4

Case II. p,< 1_21 F;p;,+ :Ql F.p,+ i_Zngqi .

We first treat Case I. Suppose that among the row vectors of A,
pl) o ;pa,, pl) ot :ﬁa: pa+1, o 71_)b) qu ) qc

are linearly independent and

o A h - .
pi: 2 Piapa+ E Piapa+ 2 Plﬂpﬁ—{_ E P?Tq?’! ’L: a—[-l) e, S.
a=1 a=1 B=a+1 r=1

a —_ b — c
Di= ZlRiapa+ Ria'r)a+ E Rlﬁp13+ EleTQT ’ 7':0; b+1, S,
a= =

f=a+1

1p4°

a a b — 4 .
q;.= angiapa+ ElQial_’a—*— ,BZEQ-%—IQ’;‘BI)B_*— EngTqT s 1= C+1, Tty t.

In order to facilitate the calculations, we adopt the matrix notation and ex-
press the above three sets of relations in the following way:

Poi1\ = (Piaﬁiap-iﬁpgT) Dq (2) I‘JO = (RiaﬁiaﬁiﬁRgr) Do
(1) 7a' plz«%—l pa
: Dg : Dp
Ds qr ’ ﬁs ar ’
Qev1 \ = (Qia@iﬂ@iﬁ Q%) Py
3) : Pa
: Pg
q; qr

Here, e. g., (P;,) stands for the matrix

Pa+1,1 Pa+1,a

Ps,l o Ps,a

and we shall add, if necessary, a line like “7=a+1, ---, s” to indicate the set
of indices. Also, in this section and in §5, we make the convention that the
indices @, 8 and 7 always run the sets {1,--,a}, {a+1,--,b} and {1, -, c}
respectively.

PROPOSITION 1. In Case I, we can take as a basis of G(I?/Kl) the following
elements:

[00) 60]7

[00) aa+l]) Tty [007 0-3]) [0.0) O—.b-)-l]) Tt I:UO; 63]; [007 pH»l]; tty [00) (ot] ’
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and the matrix representing © w.r.t. this basis (taken in this order) is

o1 | —1-Ryp| —1ee—1| —1ew—1| =1 =1
i=at+1,--,6{ 0 | =Py 0 0 0
i=b+1,,s{| 0| =Py 0 I 0
i=b+1,,s{| 0 | —R I 0 0
i=ctl, -, {0 | —Qu 0 0 I

ProoF. By [Theorem 1, 1), 2), and the bilinearity of [x, ], we
see for f=a+1, -, b,

tloy, 05]c7 =157, 65" 1="[d0, 35]1="[00, 0], 7]

:[UO’ 6-0:'“1'“1_?0‘3 IS_I [00’ ai]—ﬁi'g Ii.[ I:O'O) 61':]—:5’{‘8 fI [00’ [01,]_6”3.

t=a+1 i=b+1 t=c+1

For the other elements of the basis, we see

[0y, GoJt =0y, 5,17,

Lo, 0,1t =" 0y, 6,1 [0y, 7:], i=b+1,-,s,

Loy, 3]t ="[0,, 5,17 [0,, 0;], i=b+1,--,5,

eloy, piJe =05, 5] [0y, p], i=ctl, 1. qed,

Next we treat Case II. Suppose that among the row vectors of A,

Do, P1; " Pay Py *** , Pay Pa+1s *** 5 Py Q15 5 9

are linearly independent. By assumption, p, does not appear in the expres-
sions for the remaining vectors. We suppose, therefore, that the relations are
again given by (1), (2) and (3) in Case I, except that we do not have the row
for p, this time. Then [a,, ,]=1, and hence

PROPOSITION 2. In Case I, we can take as a basis of G(k/Kl) the follow-

ing elements:

[00; 0a+1]) Tty [00, Us], [00’ 5b+1]; Ty [00; 38]; [0'0’ Pc+1]; Tty [00) lot] ’

and the matrix vepresenting © w.r.t. this basis (taken in this order) is

i=at1, -, b{[ —Py 0
i=b+1, -, s{| —Py 0
i:b+1,--~,s{ —Rg I
i=ctl, ot =0y 0

0
I
0
0

N oo ©
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PROPOSITION 3. In both cases, the multiplicity of the eigenvalue 1 of © on
G(K/K,) is equal to the sum of (s—b)+(t—c) and the multiplicity of the eigen-
value —1 of the matrix (f_’iﬁ), i, p=a+1,--,b.

PrOOF. It suffices to divide the matrix into suitable blocks. q.e.d.

We call the matrix (151-5), i, B=a+1, -, b, the essential part.

PROPOSITION 4. The coefficient matrices in (1), (2) and (3) satisfy the fol-
lowing relations:

0O 0 I 0), i=a+1,--,b.

(RiaR-iH-R-i‘gRgT), 1:[)—«}—1, .S,
(5) (Q‘iaQia O Q?T)+(Qi2)(PlaﬁiaFﬂﬁP3T) = (Qia@ia@iﬂQ%’), l:c—i-—l’ TN t.

In both (4) and (5), A=a+1, -, b.
PrOOF. We have only to apply to (1) and (3), and replace (pp)
which appear in the right hand sides by (1) for i=a+1,---,b. q.e.d.
REMARK. If there exists a prime ¢ (including ~/—3), we can also take
oy for o, in [Theorem 1, 3). Then 7o,c~'=0;! modulo G(K/K)), and it is easy
to see that we get a matrix of the same form as that in

@) (PraPia® PY+(Pi)(PraP P osP) = |

§4. A bound for the difference.

If m contains a rational prime #==+1 (mod 9) other than 3, we know that
¢=Dg (cf. [2], §2, Remark 2), and the complete table is available through
a simple calculation of cubic power residue symbols in %2 (cf. [2], §3). So, in
the rest of the paper, we assume that all the prime factors of m except 3 are
=+1 (mod9). Now for this type of m, we do not even know whether C¢=Dg
or not, and hence the table without the column for the extra element =,,,
should always be considered as potentially incomplete. For this reason, we
call it the “temporary table” (regardless of whether C§=Dx or not).

Now suppose that we have C§+Dg. Denote the temporary table by B,
its row vectors by p, p, ¢ and the complete table by A. We show in this
section, that “by applying to B” in a suitable sense we can still
define a representation space for 7, and that the multiplicity of the eigenvalue
1 of 7 on this space differs at most by 1 from that on G(K/K,). Then in the
next section, we shall show that the two multiplicities are at least congruent
modulo 3.

To show the first assertion, we put ourselves in a somewhat abstract
situation. Namely, let I be a finite set of indices and 7 be a permutation of
order 2 on I. Let {)?(i, Nli,jel, i#j} be a set of indeterminates and V be
the vector space over F; having {)?(i, 7)} as a basis. Then 7z induces an auto-
morphism of order 2 on V by
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«(X(i, )= X(<(3), <(7).
Let V¥, be the subspace of V generated by the set
{XG, N+X3, 1), X, N+X(G, h)+Xh, 1) |i,5,hel, i#], i, j#h}.
170 is z-invariant, so that V=V/V, is again a z-vector space. We denote the
images of X(i, ) in V by X(, j).
LEMMA 3. If we fix an element i, 1, the elements X(i,, ), j#1,, constitute
a basis of V.
PROOF. Put x;;=X(i, ))+X(Jj, 1), i#J, and y,;= X0, )+ X(J, i0)+ X(iy, 1), i#],
1, J#1. Then we see
Xij=Xji, Yij+Vji=Xij T XjioT Xigis
XG, )+ X, B+ X(h, ) =i, n+Ini— Xigi— Xij— Xion -
Hence, if n is the number of elements of the set I, 17'0 is generated by
(g)+<n51):(n——l)2 elements. q.e.d.

Now take as I the set of prime factors {,, ---, 9} of {(K/k) in k, 7 being
understood in the obvious sense (we go back to the notation in [Theorem 1, 3)
for a moment for the sake of simplicity), take b, as 7,, and put

W= {ﬁ) b; X(p,, v;) € V | By=(b,) has a solution},
=1

W' = { 3 b X(9,, p) € V | Ax=(b;) has a solution} ,
=1

where y is the set of unknowns corresponding to the coefficient matrix B.
Then it is easily verified that W and W’ are subspaces of V and that WCW".
On the other hand, it is cle~ar that the map )?(pi, p))—Lo,, O'pj] induces a 7-
homomorphism of V onto G(K/K,), and [Theorem 1, 3) implies that W’ is its
kernel. Hence W’ is z-invariant and V/W’ is r-isomorphic to G(I?/Kl).
LEMMA 4. W is t-invariant.
PROOF. Returning to the notation at the beginning of § 3, if

— s s t
Y =b,X(x,, ﬁo)+i§ by X(m,, m;)+ 1§ b X(m,, )+ 1=21 ¢ X(mo, q4)

is an element of W, there exists a vector y such that
By:t(EOy bl) Tty bs; El; Tty 53; Cly ot s ct) .

By the same calculation as in §3, we see
- S S o t
f(Y)={~b— 2 b= Bbi— 3 e} X(zo, )

s s t
+ 1_:21 b X(m,, w;)+ i:ZI b X(m,, @)+ 1=21 c; X(mo, q5) .



Complete determination of the 3-class rank 381

But if ‘y=(y, ‘Y., ‘Y,, 'Y,) is the division of y corresponding to that of the row
vectors of B as in [Lemma 1|, the same Lemma shows that ‘y’=(y, —‘y., —¥:,

—'y,;) satisfies :
B/y/:t(gm 51’ Ty 587 bb T bs’ Cl) ) CL) ’

where B’ is the matrix obtained from B by replacing p, with p,. Since we

have

8 b t
Po=—py— 2 Pi— ,Epi‘_ Z(Ii
1=1 =1 1=1

by the product formula, we get the conclusion. q.e.d.

By Lemma 4, V/W is also a r-vector space. When we say “the space
defined by from the temporary table B”, we shall mean the factor
space V/W just defined. By construction, Propositions 1, 2 and 3 are valid
on V/W, too. Now G(K'/Kl) is z-isomorphic to a factor space of V/W. So,
if {vy, -, v,} is a basis of V/W consisting of eigenvectors of = (such a basis
does exist, because 7 is of order 2 on V/W, cf. [3], §1), we can choose a
basis of G(I?/Kl) among the images of v, ---,v,. But clearly rank(A)=
rank (B)+1, and hence

THEOREM 3. The multiplicity of the eigenvalue 1 of © on G(k/Kl) differs
at most by 1 from that on the space defined by Theorem 2 from the temporary

table.

§5. A congruence for the difference.

Always supposing that C{# Dy, let A and B be respectively the complete
table and the temporary one as in §4, and denote by pi, p; and g} the row
vectors of A corresponding to p=(x;), (#%;) and (¢;). Then by Lemma 1, q;=
(g;, 0), and if we put p;=(p,, x;), we have p;=(p;, —x;). If rank (A)=rank (B),
the row vectors of the two tables satisfy the same set of relations and we
obtain the same multiplicity of the eigenvalue 1. So assume that rank (A)=
rank (B)+1. Then we can get a maximal set of linearly independent row
vectors in A by adding a new vector to the set of vectors corresponding to
those of a maximal set in B. Assuming that the row vectors of B satisfy
the relations given.in §3, there are three cases (whether we are in Case I or
in Case Il w.r.t. B).

Case a). We can find a new vector among p.,,, -, P;. Then we suppose
(without loss of generality) that it is pj,;.

Case b). We can not find a new vector among ph.,, -, P, but can find
one among Piiy, -+, Pi, Doty -+, Po. Then we suppose that it is pj.;.

Case c). Otherwise.

LEMMA 5. In Case a), the multiplicities of the eigenvalue 1 obtained from
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A and B are congruent modulo 3.
Proor. We have by (1) in § 3,

Pl \:<P1 PP 5Pl | P\ + [ 0 €ans
1 3 p P
( ) : / pfg : :
D, ar 0,¢, /,
where ¢;,=0, =1 and &,.,7#0 by assumption. Then we get for i=a+2,---, D,

P§:<PiaﬁiaﬁiﬁPgr) Pu + 515a+1{P;+1 - (Pa+1,aﬁa+1,apa+l,ﬂpa 1r) Pa }

pa 1_’;"
P,s P;s
ar q;

Hence the essential part from A is
(132,9):(ﬁi@—sisauﬁaﬂ,ﬁ) ) i, B=a+2,-,b
But (1’) implies for i=a-1, ---, b (recall pj=(p;, x;), etc.),
(xi):(Pia)(xa)—(ﬁia)(xa)_(ﬁiﬂ)(xﬁ)+(5i) .
Multiplying the two sides by (P.y), i, A=a+1, -, b, we get by (4),

(Pid)(x2) = — (P 1. )(x) H(Pio)(Xa)— (%) +(Pi)(e2) -

This shows (P,)(e)=(e;), i, A=a+1, -+, b. Since (¢;)#0, we see that 1 is an
eigenvalue of (P;3), and moreover,
b -

> Pa+1,252:5a+19
i=a+1

h

0]' multiplying by 5@.{.1, 2_21826a+1ﬁa+1,2:1. Then

- b - b
tr(Pi,Q)"“lz 2 Pu— 2 &6 a+1,z"‘tr(P ﬁ)

t=a+1 t=a+1

where in the left hand side, ¢, =a+1, ---, b. Since the essential parts obtained
from A and B both have only #1 as their eigenvalues, the above equality
shows that the multiplicities of the eigenvalue —1 in the two are congruent
modulo 3. now gives the conclusion. g.e.d.

LEMMA 6. In Case b), the multiplicities of the eigenvalue 1 obtained from
A and B are equal.

ProoOF. By assumption, we have by (1) and (2) in § 3,

p:l+1 - (PlrvPIIrPl 3P1T) pd -+ 0) O
1;/ : P(x Dol
1 o | |00

\ Dbt qy S UR-PN
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p;:+1 - (Rb+1,aﬁb+1,a—b+1,ﬁR2+1,T) I_’;t +(0: Ep41)s b1 70
(2”) Do

Then by the same calculation as in Lemma 4, we see that the essential part
from A is

( P ‘ 0

P,,+1,5-sb+1€b+1Rb+1,[3

), i, B=a+1,--,b.

€b+18p+1

But (17) and (27) imply in particular

Xar1 :(1)iaﬁiaﬁi3) Xa
(*) : ) — X, |,
Xp ’—Xﬂ
xb+1:(Pb+1,a»)(xa)"‘(Fbﬂ,a)(xn)—(ﬁbﬂ,ﬂ)(xﬁ)+5b+1 ’
—Xp1 = (Rb+1,aﬁb+1,aﬁb+1,ﬂ) xa) 41

= (Prs1, )X = (Pos1,) () (Po1,0)(Xg) FEp11

where in the last equality, we used (4) and (*). Hence &.1554,
=—1. q.e.d.

LEMMA 7. In Case c), the multiplicities of 1 obtained from A and B are
equal,
PrROOF. By assumption we have again (*) in the proof of Then,

applying the two sides of (5) to “(x, —x, —xg), we get for
i=c+1, -, 1,

(Gim)<xlr)—'((\)iﬁ>(’rr\') 'i—(éi,‘f)(xﬁ) - (Qitr)(xa>—<Cjirr)(xrr)_(6i.9)(xﬂ) .

Hence the two sides are equal to 0, and this means that we can not find a
new vector among ¢..;, -+, q;, either. Then we are necessarily in Case I with
the vectors in B, but in Case II with those in A, and there is no change in
the essential part. q.e.d.

combined with [Theorem 3, [Lemma 6 and [Lemma 7] now give

THEOREM 4. If all the prime factors of m except 3 are ==+1 (mod9), the
multiplicity of the eigenvalue 1 of © on G(I?/Kl) is equal to that on the space
defined by Theorem 2 from the temporary table.

As an algorithm for d‘®Cy, therefore, we can make calculations as if we
had Cg=Dx.
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§ 6. Example.

Let m=3-17-271=24°—3. Then Ng/q (24— ¥m )=3 and the same argument
as in [1], § 2, Remark shows that Cg+Dg. The temporary table is

e Tan Ton 17 V=3

(Te) | 0 —1 0 1 0
(Fy) | O 0 1 -1 0
a | o 1 -1 0 0

(vV=3) | 0 0 0 0 0,

where we put {=(—1++/-3)/2, 7;n=(29+94/—3)/2. We are in Case Il in
the sense of §3, and by virtue of we get dPCg=2.
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