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On indefinite quadratic forms
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Let V be a vector space of dimension n over the real field. A lattice
MCYV is a subgroup of V generated by n linearly independent vectors. Let
A denote the set of all lattices in V. The general linear group GL(V) acts
transitively on 4 and the stabilizer GL(M) of a lattice M is a discrete sub-
group of GL(V). We can introduce a topology in 4 so that the natural map-
ping of GL(V)/GL(M) onto A is a homeomorphism. Let dx be the Lebesgue
measure on V. We define D(M) by

D(M)=( dx

ViM

where the integral is over a fundamental domain of M. We have the following :
MAHLER’s CRITERION: If C is a closed subset of /4, then C is compact if
and only if D(M) is bounded on C and there exists a neighborhood U of 0
such that UnM={0} for all MC.
Let ¢ be a non-degenerate quadratic form on V. We denote the bilinear
form g(x+y)—q(x)—q(y) by b(x,y). We also fix a Euclidean inner product
(x,%) on VXV such that

lg(0| = | x]*=(x, x)

for all xeV. A lattice M is called integral if ¢(x) is an integer for every
x€M. Let G denote the group of all p=GL(V) such that g(px)=q(x), x€ V.
We have the following :

PROPOSITION 1. If M is an integral lattice, then the orbit OM)={pM: p= G}
A is closed.

PROOF. Our assertion is proved in general form in Mostow and Tamagawa
[3] We give a sketch of the proof in this case. Let x,, -, x, be a base of
M. For every g=GL(V) put S(o)=(b(ox;, 0x;)). S(o) is a nXn symmetric
matrix and if 6=G-GL(M), S(o) is integral. Hence the set {S(0); c=G-GL(M)}
is closed and the set G-GL(M) is also closed.

If M is an integral lattice, then ¢ induces a quadratic form ¢¢ on the
rational vector space QMC V. We denote the Witt index of gy by »(M). It is
obvious that pM is integral for all p=G and v(oM)=v(M). If v(M)=0 then
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by Mahler’s criterion, the orbit O(M) is compact (Mostow and Tamagawa [3)).
Let dL denote a Haar measure on the orbit OM)=G/GNGL(M).
C. L. Siegel proved that the volume

Vol (O(M)) = f 2

is finite except in the case where n=2 and y(M)=1. Usually the proof calls
for the reduction theory (cf. C.L. Siegel [2]). The purpose of this note is to
give a proof using the reduction theory as little as possible. If n=3 and v(M)
=1 or n=4 and v(M)=2, the finiteness of Vol (O(M)) follows from the finite-
ness of Vol(SL(2, R)/SL(2, Z)). Hence we consider the case where n=5 or
n=4 and v(M)=1, and assume that the finiteness is already proved in the case
where the dimension is n—2 -and the index is y(M)—1. In the following lines,
¢y, Cy, -+ are positive constants.
For every Me A, put

h(M)=Min {||x], x& M, x+0} .

We will prove the following :
THEOREM 1. If 0<e<1, then

f dL=0(e""?).
oM

MM)=e

Since D(pM)=D(M) for peG, by Mahler’s criterion, the set O(M).=
{L; LeO(M), h(L)=¢} is compact. Therefore the finiteness of Vol (O(M)) fol-
lows immediately.

We denote by G(M) the group GNGL(M). A vector x& M is called primi-
tive if M/Zx is torsion free. Let £ denote the set of all primitive isotropic
(with respect to ¢q) vectors in M. The following Proposition is stated without
proof.

PROPOSITION 2. The set £2 decomposes into a finite number of G(M)-orbits.

follows easily from Witt’s theorem. Let x,, ---, x, be a set
of representatives of orbits of G(M) in 2. For x, yeM, x~y means y=G(M)x.

Let C denote the cone of all isotropic vectors in V. The group G operates
on C transitively and there exists an invariant measure dox on C. We will
give an explicit form of dyx. Let u,v, 2, -+, 2,-, be a base of V such that
qu)=q)=0, b(u, v)=1, b(u, z;)=0b(v, z;)=0 for i1=1, ---, n—2. If x€C, we have
x=&u+nv+L2;+ -+ +8n-g2n-, and ¢(x)=En+f(Ly, -+, {r-2)=0. Hence we may
regard {7, {;, -, {s-»} as a coordinate system on C (except for points where
7=0). We have

JEdy dl,y - dCy y= %dl‘ dy de, -+ dCn_,
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in V where t=q(x)=&n+7(C,, =+, {u-z). Since dt and dé dydf,--- d{,-, are G-
invariant, de:-a;]ldC1 -+ dl,_, is invariant on C. From this explicit form of

d,x, we have the following :
PROPOSITION 3. Let dyx be a G-invariant measure on C. We have

do(tx)=1""2d,(x) t>0.

COROLLARY. Let e be a positive number. If n>2, we have
j dox=c,e"2,
zl=e

Let ¢(x) be a smooth non-negative function on V such that
1 lxl=1

ﬂ@z{
0 x|l =2.

Put ¢.(x)=¢p(c7x).
PrOOF OF THEOREM 1. We consider the integral

j‘o(M) 1§Q¢€(px)d<‘oM): 1(90’ 5) .

If h(oM)=e¢, then there exists a primitive x&M such that |px|=¢ and |q(x)]
<|pxl*<1, g(x)=0. Therefore we have the inequality

t
By we have I(p, &)= X I;(¢, &) where
i=1

Ip, 9={ (3 eLo0)d(pM).

o)

Let G(x,) denote the group of all p=G such that px;=x,. By a simple
transformation of the integral (cf. A. Weil [5]), we have

Ii(QD, €>—_— Cz‘fG/G(x‘)@E(pxl)dﬁj. d‘Ol

Gz /G Ty, M)
where G(x,, M) is the group G(x)NG(M), dp is a Haar measure on G/G(x,),

and dp, is a Haar measure on G(x,). The integral fG/G( )gos(pxl)dﬁ is equal to
z1

cafcwe(x)dox ,

which is equal to c,e"* by
The group G(x;) is a subgroup of G and the nilpotent radical H,, of G(x,)
is a vector group of dimension n—2 (cf. Tamagawa [4]). Let y, be an isotropic
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vector in M such that b(x,, ¥,)#0, and G, the orthogonal group of the restric-
tion gy of ¢ to U={Fx,+Fy,}*. Then we have

G(xy) = Hxlcl - Glel .

Now H,,/H, NG(x;, M) is compact. On the other hand, My=MNU is a lattice
in U, qy is non-degenerate and My is integral. We also have v(My)=v(M)—1.
Now the group G,(My) and G,\G(M) are commensurable. Using the finiteness
assumption, the volume of G,/G,(My) is finite, hence the volume of G(x,)/G(x,, M)
is also finite. Now we have
Ii(p, &) =cse"?
and
I, &)= ;[i(go, §)=cee" 2.

The estimate given in [Theorem 1 is good enough for many purposes. As
an example, we will prove the following.
PROPOSITION 4. We have

.;O(M) 1§M¢(‘0x)d(‘0M):O(en—v—2) ’

h(pM)=e

if n=5 or n=4 and v=1, where y=y(M).

ProoOF. Put
2 plpx)=f(pM).
reEM
By the simplest reduction theory, we can find a base y,, -+, ¥, of pM such

that
C(ELPYilP+ o +EL2NYRl?) <NEiyi+ - +Enall?

< es(E I yall* - + &1 yal®)

Put || y;ll=k;, £,=k,< --- <k,. We have the following estimate of f(oM):
floM)=0(II (k7" +1)) .
i=1

There exists ¢,>0 such that [6(y;, ¥;) | <coll¥:lllly;1l. Therefore there exists ¢;0>0
such that if £,=c;,, we have

b(yi, y5)=0, q(y:)=0

for i=1, ---, ¢ because they are all integers. We now have &,,,=¢,,>0, and

the estimate
oM)=0(e™)

if h(pM)g%e. By Theorem 1, the volume of the set
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{oM; 5-=hoM) =<}

is O(e*"%). Using n—u—2§n——nz— —2>0 if n=5 or 4—1—2=1>0 if n=4 and
y=1, we have

I LUODES FloM)d(pM)

=1Y¢/2lsh(oM)ISe/2l-1
=0(""%).

THEOREM 2. Let f be a smooth function on V with compact support. If
n=5 or n=4, v(M)=1, we have

Lim ™[ % f(@px)d(pM)=DM)™ Vol (OM) [ fwdx. (1)

-0 oM) xeM

PrROOF. By we have

jO(M) 3 f(Bpx)d(oM)y=0(5 """ >"2)

xeEM
h(pM)<e

and
n —_ n-v-2
5 f I =0(e">2) .

Clearly we can exchange the order of lim and j in the following

30
lim 6" > f(0px)doM
50 n(pMdze xEM

because the set {oM; h(oM)=e} is compact. Therefore the left side of (1) is
equal to
: n N — -1 .
{ lima 3 f(3px)d(oM)=D(M) [redx-| s LOMD).

00y 50
Q.E.D.
By the same method, we can prove the following :
THEOREM 3. Under the same assumption as in Theorem 2, the following
integral converges for any function f in the Schwartz class S(V):

S ooy S/ o2)d(p M)

emM

Let C, denote the quadric {x; g(x)=1}. If ¢(x) is a continuous function
with compact support on C,, the invariant integral of ¢ on C, is defined by

G(dx={_px)d.x

j‘ogq(ax)ﬁ

where ¢(x) is defined by
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i $lg(x)™x)  q(0)>0
d={

q(x)=0.
If x,;eM, q¢(x,)=t>0, we consider the integral

3(0x)d(o M) = I(¢, x,) .
ooy 2 Hox0dlp M) = (g, x)
By the Weil transformation of I(¢, x,), we have
I, x)=p(M, )| ¢p(x)dux,
Cq
where p(M, x,) is independent of ¢. For a given integer >0, put

u(M, =23 (M, x;)

where x; runs through a complete set of representatives of G(M)-orbits in the
set 2,={x;x=M, q(x)=t}. By the reduction theory, the number of x; is finite.
Now let T be a large positive integer, and consider the integral

j‘O(M)( xZ‘JM ﬁ(P’C))d(pM)

q(x)ET

_ 7 -1/
_jo(M>( x:‘/—?w (T px))dp .
G(r)ST

By the definition, the integral is equal to

T
> uM, - ,, 0.
By we have

T
2 (M, ty~ D(M)™* Vol (O(M))T™*.
=1
It is now easy to see the convergence of the Siegel Z-function

é\i ﬁ@t‘{izqu, s)

if the real part of s is >—%— (cf. C.L. Siegel [I]). Siegel did not give a proof

of the convergence in his paper. He just wrote “Die Konvergentz der Reihe
entnimmt man der Reduktiontheorie”.
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