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Let $V$ be a vector space of dimension $n$ over the real field. A lattice
$M\subset V$ is a subgroup of $V$ generated by $n$ linearly independent vectors. Let
$\Lambda$ denote the set of all lattices in $V$. The general linear group $GL(V)$ acts
transitively on $\Lambda$ and the stabilizer $GL(M)$ of a lattice $M$ is a discrete sub-
group of $GL(V)$ . We can introduce a topology in $\Lambda$ so that the natural map-
Ping of $GL(V)/GL(M)$ onto $\Lambda$ is a homeomorphism. Let $dx$ be the Lebesgue
measure on $V$. We define $D(M)$ by

$D(M)=\int_{V/M}dx$

where the integral is over a fundamental domain of $M$. We have the following:
MAHLER’S CRITERION; If $C$ is a closed subset of $\Lambda$ , then $C$ is compact if

and only if $D(M)$ is bounded on $C$ and there exists a neighborhood $U$ of $0$

such that $U\cap M=\{0\}$ for all $M\in C$ .
Let $q$ be a non-degenerate quadratic form on $V$. We denote the bilinear

form $q(x+y)-q(x)-q(y)$ by $b(x, y)$ . We also fix a Euclidean inner product
$(x, y)$ on $V\times V$ such that

$|q(x)|\leqq\Vert x\Vert^{2}=(x, x)$

for all $x\in V$. A lattice $M$ is called integral if $q(x)$ is an integer for every
$x\in M$. Let $G$ denote the group of all $\rho\in GL(V)$ such that $q(\rho x)=q(x),$ $x\in V$.
We have the following:

PROPOSITION 1. If $M$ is an integral lattice, then the orbit $O(M)=\{\rho M:\rho\in G\}$

$\subset\Lambda$ is closed.
PROOF. Our assertion is proved in general form in Mostow and Tamagawa

[3]. We give a sketch of the proof in this case. Let $x_{1},$
$\cdots$ , $x_{n}$ be a base of

$M$. For every $\sigma\in GL(V)$ put $S(\sigma)=(b(\sigma x_{i}, \sigma x_{j}))$ . $S(\sigma)$ is a $n\times n$ symmetric
matrix and if $\sigma\in G\cdot GL(M),$ $S(\sigma)$ is integral. Hence the set $\{S(\sigma);\sigma\in G\cdot GL(M)\}$

is closed and the set $G\cdot GL(M)$ is also closed.
If $M$ is an integral lattice, then $q$ induces a quadratic form $q_{Q}$ on the

rational vector space $QM\subset V$. We denote the Witt index of $q_{Q}$ by $\nu(M)$ . It is
obvious that $\rho M$ is integral for all $\rho\in G$ and $\nu(\rho M)=\nu(M)$ . If $\nu(M)=0$ then

Partially suPported by NSF Grant MPS71-03469.



356 T. TAMAGAWA

by Mahler’s criterion, the orbit $O(M)$ is compact (Mostow and Tamagawa [3]).

Let $dL$ denote a Haar measure on the orbit $O(M)=G/G\cap GL(M)$ .
C. L. Siegel proved that the volume

Vol $(O(M))=\int_{O(M)}dL$

is Pnite except in the case where $n=2$ and $\nu(M)=1$ . Usually the proof calls
for the reduction theory (cf. C. L. Siegel [2]). The purpose of this note is to
give a proof using the reduction theory as little as possible. If $n=3$ and $\nu(M)$

$=1$ or $n=4$ and $\nu(M)=2$ , the finiteness of Vol $(0(M))$ follows from the finite-
ness of Vol $(SL(2, R)/SL(2, Z))$ . Hence we consider the case where $n\geqq 5$ or
$n=4$ and $\nu(M)=1$ , and assume that the finiteness is already proved in the case
where the dimension is $n-2$ and the index is $\nu(M)-1$ . In the following lines,
$c_{1},$ $c_{2},$

$\cdots$ are positive constants.
For every $ M\in\Lambda$ , put

$h(M)={\rm Min}\{\Vert x\Vert, x\in M, x\neq 0\}$ .
We will prove the following:

THEOREM 1. If $0<\epsilon<1$ , then

$\int_{O(M) ,h(M)\leqq\epsilon}dL=O(\epsilon^{n-2})$ .

Since $D(\rho M)=D(M)$ for $\rho\in G$ , by Mahler’s criterion, the set $O(M)_{\epsilon}=$

$\{L;L\in O(M), h(L)\geqq\epsilon\}$ is compact. Therefore the finiteness of Vol $(O(M))$ fol-
lows immediately.

We denote by $G(M)$ the group $G\cap GL(M)$ . A vector $x\in M$ is called primi-
tive if $M/Zx$ is torsion free. Let $\Omega$ denote the set of all primitive isotropic
(with respect to q) vectors in $M$. The following Proposition is stated without
proof.

PROPOSITION 2. The set $\Omega$ decomPoses into a finite number of $G(M)$ -orbits.
Proposition 2 follows easily from Witt’s theorem. Let $x_{1},$

$\cdots$ , $x_{t}$ be a set
of representatives of orbits of $G(M)$ in $\Omega$ . For $x,$ $y\in M,$ $x\sim y$ means $y\in G(M)x$ .

Let $C$ denote the cone of all isotropic vectors in $V$. The group $G$ operates
on $C$ transitively and there exists an invariant measure $d_{0}x$ on $C$. We will
give an explicit form of $d_{0}x$. Let $u,$ $v,$ $z_{1},$

$\cdots$ , $z_{n- 2}$ be a base of $V$ such that
$q(u)=q(v)=0,$ $b(u, v)=1,$ $b(u, z_{i})=b(v, z_{i})=0$ for $i=1,$ $\cdots$ , $n-2$ . If $x\in C$, we have
$x=\xi u+\eta v+\zeta_{1}z_{1}+\cdots+\zeta_{n- 2}z_{n- 2}$ and $q(x)=\xi\eta+f(\zeta_{1}, \cdots , \zeta_{n- 2})=0$ . Hence we may
regard $\{\eta, \zeta_{1}, \cdots , \zeta_{n-2}\}$ as a coordinate system on $C$ (except for points where
$\eta=0)$ . We have

$d\xi d\eta d\zeta_{1}\cdots d\zeta_{n- 2}=\frac{1}{\eta}dtd\eta d\zeta_{1}\cdots d\zeta_{n- 2}$
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in $V$ where $t=q(x)=\xi\eta+f(\zeta_{1}, \cdots , \zeta_{n- 2})$ . Since $dt$ and $d\xi d\eta d\zeta_{1}\cdots d\zeta_{n- 2}$ are $G_{-}$

invariant, $d_{0}x=\frac{d\eta}{\eta}d\zeta_{1}\cdots d\zeta_{n-2}$ is invariant on $C$. From this explicit form of

$d_{0}x$, we have the following:
PROPOSITION 3. Let $d_{0}x$ be a G-invariant measure on C. We have

$d_{0}(tx)=t^{n- 2}d_{0}(x)$ $t>0$ .
COROLLARY. Let $\epsilon$ be a Positive number. If $n>2$ , we have

$\int_{NxN\leqq\epsilon}d_{0}x=c_{1}\epsilon^{n-2}$

Let $\varphi(x)$ be a smooth non-negative function on $V$ such that

$\varphi(x)=\{$

$1 \Vert x\Vert\leqq 1$

$0$ $\Vert x\Vert\geqq 2$ .
Put $\varphi_{\text{\’{e}}}(x)=\varphi(\epsilon^{-1}x)$ .

PROOF OF THEOREM 1. We consider the integral

$\int_{O(M)}\sum_{x\in\Omega}\varphi_{\epsilon}(\rho x)d(\rho M)=I(\varphi, \epsilon)$ .

If $ h(\rho M)\leqq\epsilon$ , then there exists a primitive $x\in M$ such that $\Vert\rho x\Vert\leqq\epsilon$ and $|q(x)|$

$\leqq\Vert\rho x\Vert^{2}<1,$ $q(x)=0$ . Therefore we have the inequality

$I(\varphi, \epsilon)>\int_{O(M)}dL$ .

By Proposition 2 we have $I(\varphi, \epsilon)=\sum_{i=1}^{t}I_{i}(\varphi, \epsilon)$ where

$I_{i}(\varphi, \epsilon)=\int_{O(M)}(\sum_{x\sim x_{i}}\varphi_{\epsilon}(\rho x))d(\rho M)$ .

Let $G(x_{1})$ denote the group of all $\rho\in G$ such that $\rho x_{1}=x_{1}$ . By a simple
transformation of the integral (cf. A. Weil [5]), we have

$I_{i}(\varphi, \epsilon)=c_{2}\int_{G/G(x_{i)}}\varphi_{\epsilon}(\rho x_{1})d\overline{\rho}\int_{G(x_{1})/G(x_{1},M)}d\rho_{1}$

where $G(x_{1}, M)$ is the group $G(x_{1})\cap G(M),$ $d\overline{\rho}$ is a Haar measure on $G/G(x_{1})$ ,

and $d\rho_{1}$ is a Haar measure on $G(x_{1})$ . The integral $\int_{G/G(x_{1})}\varphi_{\epsilon}(\rho x_{1})d\overline{\rho}$ is equal to

$c_{3}\int_{c}\varphi_{\epsilon}(x)d_{0^{X}}$ ,

which is equal to $c_{4}\epsilon^{n-2}$ by Proposition 3.
The group $G(x_{1})$ is a subgroup of $G$ and the nilpotent radical $H_{x_{1}}$ of $G(x_{1})$

is a vector group of dimension $n-2$ (cf. Tamagawa [4]). Let $y_{1}$ be an isotropic
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vector in $M$ such that $b(x_{1}, y_{1})\neq 0$ , and $G_{1}$ the orthogonal group of the restric-
tion $q_{U}$ of $q$ to $U=\{Fx_{1}+Fy_{1}\}^{\perp}$ . Then we have

$G(x_{1})=H_{x_{1}}G_{1}=G_{1}H_{x_{1}}$ .
Now $H_{x_{1}}/H_{x_{1}}\cap G(x_{1}, M)$ is compact. On the other hand, $M_{U}=M\cap U$ is a lattice
in $U,$ $q_{U}$ is non-degenerate and $M_{U}$ is integral. We also have $\nu(M_{U})=\nu(M)-1$ .
Now the group $G_{1}(M_{U})$ and $G_{1}\cap G(M)$ are commensurable. Using the finiteness
assumption, the volume of $G_{1}/G_{1}(M_{U})$ is finite, hence the volume of $G(x_{1})/G(x_{1}, M)$

is also finite. Now we have
$I_{l}(\varphi, \epsilon)=c_{5}\epsilon^{n-2}$

and
$I(\varphi, \epsilon)=\sum_{l}I_{i}(\varphi, \epsilon)=c_{6}\epsilon^{n- 2}$

The estimate given in Theorem 1 is good enough for many purposes. As
an example, we will prove the following.

PROPOSITION 4. We have

$\int_{O(M) ,h(\rho M)\leqq\epsilon}\sum_{x\in M}\varphi(\rho x)d(\rho M)=O(\epsilon^{n-\nu-2})$
,

if $n\geqq 5$ or $n=4$ and $\nu=1$ , where $\nu=\nu(M)$ .
PROOF. Put

$\sum_{x\in M}\varphi(\rho x)=f(\rho M)$ .

By the simplest reduction theory, we can Pnd a base $y_{1},$ $\cdots$ $y_{n}$ of $\rho M$ such
that

$c_{7}(\xi_{1}^{2}\Vert y_{1}\Vert^{2}+\cdots+\xi_{n}^{2}\Vert y_{n}\Vert^{2})<\Vert\xi_{1}y_{1}+\cdots+\xi_{n}y_{n}\Vert^{2}$

$<c_{8}(\xi_{1}^{2}\Vert y_{1}\Vert^{2}+\cdots+\xi_{n}^{2}\Vert y_{n}\Vert^{2})$ .
Put $\Vert y_{i}\Vert=\kappa_{i},$ $\kappa_{1}\leqq\kappa_{2}\leqq\ldots\leqq\kappa_{n}$ . We have the following estimate of $f(\rho M)$ :

$f(\rho M)=O(\prod_{i=1}^{n}(\kappa_{i}^{-1}+1))$ .

There exists $c_{9}>0$ such that $|b(y_{i}, y_{j})|<c_{9}\Vert y_{i}\Vert\Vert y_{j}\Vert$ . Therefore there exists $c_{10}>0$

such that if $\kappa_{\mu}\leqq c_{10}$ , we have

$b(y_{i}, y_{j})=0$ , $q(y_{i})=0$

for $i=1,$ $\cdots$ , $\mu$ because they are all integers. We now have $\kappa_{\nu+1}\geqq c_{10}>0$ , and
the estimate

$f(\rho M)=O(\epsilon^{-\nu})$

if $ h(\rho M)\geqq\frac{1}{2}\epsilon$ . By Theorem 1, the volume of the set



On indefinite quadratic forms 359

$\{\rho Af;\frac{\epsilon}{\Delta}\leqq h(\rho M)\leqq\epsilon\}$

is $O(\epsilon^{n-2})$ . Using $n-\nu-2\geqq n-\frac{n}{2}-2>0$ if $n\geqq 5$ or $4-1-2=1>0$ if $n=4$ and
$\nu=1$ , we have

$\int_{h(\rho M)\leqq\epsilon}f(\rho M)d(\rho M)=\sum_{l=1}^{\infty}\int_{\epsilon/2^{l}\leqq h(\rho M)\leqq\epsilon/2^{l- 1}}f(\rho M)d(\rho M)$

$=O(\epsilon^{n-\nu-2})$ .
THEOREM 2. Let $f$ be a smooth function on $V$ with compact support. If

$n\geqq 5$ or $n=4,$ $\nu(M)=1$ , we have

$\lim_{\delta\rightarrow 0}\delta^{n}\int_{O(M)}\sum_{x\in M}f(\delta\rho x)d(\rho M)=D(M)^{-1}$ Vol $(O(M))\int f(x)dx$ . (1)

PROOF. By Proposition 4, we have

$\int_{O(M) ,h(\rho M)<\epsilon}\sum_{x\in\ovalbox{\tt\small REJECT}}f(\delta\rho x)d(\rho M)=O(\delta^{-n}\epsilon^{n-\nu-2})$

and

$\delta^{n}\int_{h(\rho M)\leqq\epsilon}=O(\epsilon^{n-\nu-2})$ .

Clearly we can exchange the order of $\lim_{\delta\rightarrow 0}$ and $\int$ in the following

$\lim_{\delta\rightarrow 0}\delta^{n}\int_{h(\rho M)\geqq\epsilon}\sum_{x\in M}f(\delta\rho x)d\rho M$

because the set $\{pM;h(\rho M)\geqq\epsilon\}$ is compact. Therefore the left side of (1) is
equal to

$\int_{O(M)}\lim_{\delta\rightarrow 0}\delta^{n}\sum_{x\in M}f(\delta\rho x)d(\rho M)=D(M)^{-1}\int f(x)dx\cdot\int_{O(M)}d(\rho M)$ .
Q. E. D.

By the same method, we can prove the following:
THEOREM 3. Under the same assumptiOn as in Theorem 2, the following

integral converges for any function $f$ in the Schwartz class $S(V)$ :

$\int_{O(M)}\sum_{x\in M}f(\rho x)d(\rho M)$ .

Let $C_{1}$ denote the quadric $\{x;q(x)=1\}$ . If $\psi(x)$ is a continuous function
with compact support on $C_{1}$ , the invariant integral of $\psi$ on $C_{1}$ is defined by

$\int_{0\leqq q(x)\leqq 1}\phi(x)dx=\int_{c_{1}}\psi(x)d_{1}x$

where $\phi(x)$ is defined by
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$\emptyset(x)=\{$

$\psi(q(x)^{-1/2}x)$ $q(x)>0$

$0$ $q(x)\leqq 0$ .
If $x_{1}\in M,$ $q(x_{1})=t>0$ , we consider the integral

$\int_{O(M)}(\sum_{x\sim x_{1}}\phi(\rho x))d(\rho M)=I(\psi, x_{1})$ .

By the Weil transformation of $I(\psi, x_{1})$ , we have

$I(\psi, x_{1})=\mu(M, x_{1})\int_{c_{1}}\psi(x)d_{1}x$ ,

where $\mu(M, x_{1})$ is independent of $\psi$ . For a given integer $t>0$ , put

$\mu(M, t)=\sum\mu(M, x_{i})$

where $\chi_{i}$ runs through a complete set of representatives of $G(M)$ -orbits in the
set $\Omega_{t}=\{x;x\in M, q(x)=t\}$ . By the reduction theory, the number of $x_{i}$ is finite.
Now let $T$ be a large positive integer, and consider the integral

$\int_{O(M)}(\sum_{x\in M,q(x)\leqq T}I(\rho^{\chi}))d(\rho M)$

$=\int_{O(M)}( \sum_{x\in M,q(x)\leqq T}\phi(T^{-1/2}\rho x))d\rho$ .

By the definition, the integral is equal to

$\sum_{t=1}^{T}\mu(M, t)\cdot\int_{c_{1}}\psi(x)dx$ .
By Theorem 2, we have

$\sum_{\iota=1}^{T}\mu(M, t)\sim D(M)^{-1}$ Vol $(O(M))T^{n/2}$ .

It is now easy to see the convergence of the Siegel Z-function

$\sum_{t=1}^{\infty}\frac{\mu(M,t)}{t^{s}}=Z^{+}(M, s)$

if the real part of $s$ is $>\frac{n}{2}$ (cf. C. L. Siegel [1]). Siegel did not give a proof

of the convergence in his paper. He just wrote “Die Konvergentz der Reihe
entnimmt man der Reduktiontheorie”.
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