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Abstract. In this paper, we treat of an E-manifold pair $(M, N)$

with $N$ a $Z$-set in $M$ where $E$ is an infinite-dimensional locally convex
linear metric space which is homeomorphic to $E^{\omega}$ or $E_{f}^{\omega}$ . And we study

the condition under which $M$ can be embedded in $E$ such that $N$ is the
topological boundary under the embedding (Anderson’s Problem in [2]).
Moreover we extend the results on topological stability and deficiency, the
Homeomorphism Extension Theorem and the results in [18].

\S $0$ . Introduction.

For each space $X$, we denote by $X^{\omega}$ the countable infinite product of $X$

by itself. And for each space $X$ with a base point $0,$ $X_{f}^{\omega}=\{(x_{i})\in X^{\omega}|x_{i}=0$

for almost all $i$ }. A closed subset $K$ of a space $X$ is a Z-set in $X$ if for each
non-empty homotopically trivial open set $U$ , $U\backslash K$ is also non-empty and
homotopically trivial ([1]). An E-manifold is a paracompact manifold modelled
on a space $E$. As a modelled space, let $E$ be a locally convex linear metric
space (LCLMS) homeomorphic $(\cong)$ to $E^{\omega}$ or $E_{f}^{\omega}$ . In an E-manifold pair $(M, N)$ ,
$N$ is a Z-set in $M$ if and only if $N$ is a collared closed set in $M$ (collared in
the sense of M. Brown [7] (see 4-4 in this paper). Then $(M, N)$ may be con-
sidered as a manifold-with-boundary, $N$ being the boundary. Thus the study
of E-manifolds-with-boundary becomes the study of such E-manifold pairs. How-
ever circumstances of infinite-dimensional manifolds are different from finite-
dimensional case (e.g., see Examples 1 and 2 of Sect. 7 in this paper).

In this paper, we study the problem for such an E-manifold pair $(M, N)$ :
Under what condition can $M$ be embedded in $E$ such that $N$ is a toPological
boundary under the embedding ? This problem for separable $l^{2}$-manifold pairs
was raised by R. D. Anderson in [2]. In the previous paper [20], we found a
sufficient condition of this problem: $N$ contains some deformation retract of
$M$. And we saw that even if $N$ is homeomorphic to $E,$ $M$ cannot always be
embedded such a way. But we have an easy example of E-manifold pairs
which do not satisfy the above condition but which can be embedded such a
way.
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By the result of Toru\’{n}czyk (Theorems 3.1 and 3.2 in [25]), every complete
metrizable $AR(ANR)X$ admitting a closed embedding into $E$ is an E-factor
(an E-manifold factor), i.e., $X\times E\cong E$ ( $X\times E$ is an E-manifold). Let $D$ is a
2-dimensional closed disk with two holes in $R^{2}$ . Then

$(M, N)=(D\times E, (bd_{R^{2}}D)\times E)$

is an E-manifold pair with $N$ a Z-set in $M$ which does not satisfy the above
condition. But $M$ can be embedded in $E$ such that $N$ is the topological bound-
ary of $M$ in $E$.

In Sect. 6, we shall find a little more mild sufficient condition including
this example. Furthermore in Sect. 5, we shall obtain a necessary and sufficient
condition under which $M$ can be embedded in $E$ such that $N$ is the topological
boundary of $M$ and such that the closure (or each component of the closure)

of the complement of $M$ is contractible.
In Sect. 2, we generalize the results on topological stability (Geoghegan-

Henderson [12] Theorem 1 and Schori [21] Theorem 2.2) and the results on
E-deficient sets in E-manifolds (Chapman [9] Theorem 3.1 and Cutler [10]

Lemma 3), and in Sect. 3, the Homeomorphism Extension Theorem (HET)

which was established by Anderson-McCharen [4] and was extended by
Chapman [9]. In Sect. 4, we generalize the results of [18].

The author whishes to thank Professor Y. Kodama for encouraging me
to write this paper and for his helpful comments.

\S 1. Notations.

Let $\alpha,$
$\beta$ be collections of subsets of a set $X$. We write

st $(\alpha;\beta)=$ {st $(A;\beta)|A\in\alpha$ }

where st $(A;\beta)=\cup\{B\in\beta|A\cap B\neq\emptyset\}$ , and then st $(\alpha)=st^{1}(\alpha)=st(\alpha;\alpha)$ and
inductively $st^{n}(\alpha)=st$ (st $(\alpha);\alpha$ ). We say that a refines $\beta$ (or a is a refine-
ment of $\beta$ ) provided that for each $ A\in\alpha$ there is some $ B\in\beta$ containing $A$ . Let
$\gamma$ be another collection of subsets of $X$. It is easy to see that st (st $(\alpha;\beta);\gamma$ )

refines both st ( $\alpha$ ; st $(\beta;\gamma)$ ) and st ( $\alpha$ ; st $(\gamma;\beta)$ ). Maps $f,$ $g:Y\rightarrow X$ are said to
be $\alpha$ -near (or $f$ is $\alpha$ -near to g) provided that for each $y\in Y,$ $f(y)=g(y)$ or
$f(y)$ and $g(y)$ are both contained in some $ A\in\alpha$ . We write

$\alpha\times Y=\{A\times Y|A\in\alpha\}$ .
Let $X,$ $Y$ be topological space and let $X^{\prime}\subset X,$ $Y^{\prime}\subset Y$. Continuous map

$f,$ $g:(X, X^{\prime})\rightarrow(Y, Y^{\prime})$ are said to be homotopic (or $f$ is homotopic $(\sim)$ to g)

if there is a homotopy $h:(X\times I, X^{\prime}\times I)\rightarrow(Y, Y^{\prime})(I=[0,1])$ sucb that $h_{0}=f$ and
$h_{1}=g$ where $h_{t}$ : $(X, X^{\prime})\rightarrow(Y, Y^{\prime})(t\in I)$ is defined by $h_{t}(x)=h(x, t)$ for each $ x\in$

X. Let $\alpha$ be an open cover of $Y$. A homotopy (an isotopy) $h:X\times I\rightarrow Y$ is
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said to be an $\alpha$ -homotopy ( $\alpha$ -isotopy) provided that for each $x\in X$ there is
some $ U\in\alpha$ containing $h(\{x\}\times I)$ . Continuous maps $f,$ $g:X\rightarrow Y$ are said to be
$\alpha$ -homoiopic (or $f$ is $\alpha$ -homotopic to g) if there is an $\alpha$ -homotopy $h:X\times I\rightarrow Y$

such that $h_{0}=f$ and $h_{1}=g$. An isotopy $h:X\times I\rightarrow Y$ is said to be ambient if
$h_{t}(X)=Y$ for each $t\in I$, and said to be invertible if $\overline{h}:X\times l\rightarrow Y\times I$ defined by
$\overline{h}(x, t)=(h(x, t),$ $t$) for each $(x, t)\in X\times I$ is an embedding.

$AR$ ’ and “$ANR$ ’ mean ”absolute retract for metric spaces” and ”absolute
neighbourhood retract for mertic spaces” respectively. As concerns $AR$ and
$ANR$ , refer to the books of K. Borsuk [6] and S.-T. Hu [15].

\S 2. Remarks on $E$ -stability and $E$ -deficiency.

In this section, we generalize the Geoghegan-Henderson’s result on strong
E-stability (Theorem 1 in [12] and the Schori’s Stability Theorem for open
sets in an LTS (Theorem2.2 in [21]) and we give an alternative proof of Theorem
4.1 in [9] and its extension. T. A. Chapman showed the equivalence of E-
deficiency and $l^{2}$-deficiency for an LMS $E\cong E^{\omega}$ in [9]. We show the equiva-
lence of E-deficiency and $l_{f}^{2}$-deficiency for an LMS $E\cong E_{f}^{\omega}$ and, as its corollary,
we get the extension of Cutler’s result on negligibility of E-deficient sets
(Lemma 3 in [10]).

Let $E$ be an $LTS$. A space $X$ is said to be E-stable if $X\times E\cong X$. A
subset $K$ of an E-stable space $X$ is said to be E-deficient in $X$ if there is a
homeomorphism $h:X\rightarrow X\times E$ such that $h(K)\subset X\times\{0\}$ . An embedding $f:Y\rightarrow X$

is said to be E-deficient if $f(Y)$ is E-deficient in $X$.
Although the following lemma is proved by the same way as Theorem

2.2 in [21], we give the proof to make sure, because some detailed remarks
are required and this is important.

2-1. LEMMA. Let $E$ be an $LTS,$ $F=E^{\omega}$ $ or=E\varphi$ and $X$ a space such that
each finite pr0duct $X\times E^{n}$ is perfectly normal. If $\alpha$ is an open collection in
$X\times F$ and $ W=\cup\alpha$ , then there exists an I-preserving continuous map $\sigma^{a}$ ; $X\times F$

$\times E\times I\rightarrow X\times F\times I$ such that
i) $\sigma^{\alpha}(x, 0,0, t)=(x, 0, t)$ for each $(x, 0,0, t)\in X\times F\times E\times I$,

ii) $\sigma_{0}^{a}$ : $X\times F\times E\rightarrow X\times F$ is the projection,
iii) $\sigma_{t}^{\alpha}|(X\times F\backslash W)\times E:(X\times F\backslash W)\times E\rightarrow X\times F\backslash W$ is the pr0jecti0n for each

$t\in I$,
iv) $\sigma^{\alpha}|W\times E\times(0,1$] $:W\times E\times(O, 1$] $\rightarrow W\times(0,1$] is a homeomorphism,
v) $\sigma^{\alpha}|W\times\{0\}\times I:W\times\{0\}\times I\rightarrow W\times I$ is a closed embedding, and

vi) for each $x\in W$, there is some $ U\in\alpha$ such that $\sigma^{\alpha}(\{x\}\times E\times I)\subset U\times I$.
PROOF. We denote $x=(x_{0} ; x_{1}, x_{2}, \cdots)\in X\times F$ . For each positive integer $n$ ,

let $p_{n}$ : $X\times F\rightarrow X\times E^{n}$ be the natural projection, i.e., $p_{n}(x)=(x_{0} ; x_{1}, x_{n})$ for
$x\in X\times F$ . $D^{3}.fine$ an I-preserving continuous map $\theta:(X\times F)\times E\times I\rightarrow(X\times F)\times I$
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by

$\theta(x, y, t)=(x_{0}$ ; $x_{1},$ $x_{n},$ $y$ cos $(1-2^{n}t)\pi+x_{n+1}$ sin $(1-2^{n}t)\pi$ ,

$y$ sin $(1-2^{n}t)\pi-x_{n+1}$ cos $(1-2^{n}t)\pi,$ $-x_{n+2},$ $-x_{n+3},$ $\cdots$ ; t)

for each $(x, y, t)\in(X\times F)\times E\times[2^{-(n+1)}, 2^{-n}]$

and
$\theta(x, y, O)=(x, 0)$ for each $(x, y, 0)\in(X\times F)\times E\times\{0\}$ .

Then $\theta|X\times F\times E\times(0,1$] $:X\times F\times E\times(0,1$] $\rightarrow X\times F\times(0,1$] is a homeomorphism.
And note that if $t\leqq 2^{-n}$ , then $p_{n}\theta_{t}(x, y)=p_{n}(x)$ for $(x, y)\in(X\times F)\times E$ . Let $\beta$

be a basic open cover of $W$ which refines $\alpha$ . By Lemma 5.2 in [21], there is

a collection $\{K_{n}|n\in N\}$ of closed sets in $X\times F$ such that $ n=1UK_{n}=W\infty$ and for

each $n,$ $p_{n}^{-1}p_{n}(K_{n})=K_{n}\subset intK_{n+1}\cap\cup\{B\in\beta|p_{n}^{-1}p_{n}(B)=B\}$ . For each $x\in W$, put
$n(x)=\min\{n\in N|x\in K_{n}\}$ . Then $x\in K_{n(x)}\backslash K_{n(x)-1}$ . By perfect normality, there
is a sequence $\{k_{n}|n\in N\}$ of continuous maps $k_{n}$ ; $p_{n}(K_{n}\backslash intK_{n- 1})\rightarrow[2^{-(n+1)}, 2^{-n}]$

such that
$k_{n}^{-1}(2^{-(n+1)})=p_{n}(bdK_{n})=bdp_{n}(K_{n})$

and
$k_{n}^{-1}(2^{-n})=p_{n}(bdK_{n-1})=bdp_{n}(K_{n-1})$

where $ K_{0}=\emptyset$ . Define a continuous map $k:W\rightarrow(O, 1$] by $k(x)=k_{n(x)}p_{n(x)}(x)$ fo
$x\in W$. Then for each $x=(x_{0} ; x_{1}, x_{2}, )\in W$,

$k(x)=k(x_{0} ; x_{1}, \chi_{n(x)}** )\leqq 2^{-n(x)}$ .
Now define $\sigma^{\alpha}$ ; $(X\times F)\times E\times I\rightarrow(X\times F)\times I$ by

$\sigma^{\alpha}(x, y, t)=\left\{\begin{array}{ll}(\theta_{tk(x)}(x, y), t) & for each (x, y, t)\in W\times E\times I\\(x, t) & for each (x, y, t)\in(X\times F\backslash W)\times E\times I.\end{array}\right.$

Then it is trivial that this map satisfies conditions i), ii) and iii). We must
examine the continuity of this map and the other conditions.

vi) Let $x\in W$. Since $x\in K_{n(x)}$ , there is some $ B\in\beta$ such that

$p_{n(x)}^{-1}p_{n(x)}(B)=B\ni x$ .
For each $y\in E$ and each $t\in(O, 1$]

$p_{n(x)}\sigma_{t}^{a}(x, y)=p_{n(x)}\theta_{tk(x)}(x, y)=p_{n(x)}(x)\in p_{n(x)}(B)$

because $tk(x)\leqq 2^{-n(x)}$ . Then $\sigma^{\alpha}(\{x\}\times E\times I)\subset B\times I$. Since $\beta$ is a refinement of
$\alpha$ , there is some $ U\in\alpha$ such that $\sigma^{a}(\{x\}\times E\times I)\subset U\times I$.

iv) Define a continuous map $\sigma^{\prime}$ : $W\times(O, 1$] $\rightarrow W\times E\times(0,1$] by

$\sigma^{\prime}(x, t)=(\theta_{tk(x)}^{-1}(x), t)$ for each $(x, t)\in W\times(O, 1$].

Let $(x, t)\in W\times(O, 1$] and $\sigma^{\prime}(x, t)=(x^{\prime}, y^{\prime}, t)\in W\times E\times(O, 1$]. Since $x=\theta_{tk(x)}(x^{\prime}, y^{\prime})$
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and $tk(x)\leqq 2^{-n(x)},$ $p_{n(x)}(x)=p_{n(x)}\theta_{tk(x)}(x^{\prime}, y^{\prime})=p_{n(x)}(x^{\prime})$ therefore $k(x)=k(x^{\prime})$ . Then
$\sigma^{a}\sigma^{\prime}(x, t)=\sigma^{\alpha}(x^{\prime}, y^{\prime}, t)=(\theta_{tk(x^{\prime})}(x^{\prime}, y^{\prime}),$ $t$) $=(\theta_{tk(x)}(x^{\prime}, y^{\prime}),$ $t$) $=(x, t)$ .

Now let $(x, y, t)\in W\times E\times(O, 1$] and $\sigma^{\alpha}(x, y, t)=(x^{\prime}, t)\in W\times(O, 1$ ]. Since $x^{\prime}=$

$\theta_{tk(x)}(x, y)$ and $tk(x)\leqq 2^{-n(x)},$ $p_{n(x)}(x^{\prime})=p_{n(x)}\theta_{tk(x)}(x, y)=p_{n(x)}(x)$ therefore $k(x^{\prime})=$

$k(x)$ . Then
$\sigma^{\prime}\sigma^{a}(x, y, t)=\sigma^{\prime}(x^{\prime}, t)=(\theta_{tk(x^{\prime})}^{-1}(x^{\prime}), t)=(\theta_{tk(x)}^{-1}\theta_{tk(x)}(x, y),$ $t$ ) $=(x, y, t)$ .

Continuity of $\sigma^{\alpha}$ ; We may examine that $\sigma^{\alpha}$ is continuous at $(x, y, 0)\in$

$W\times E\times\{0\}(1)$ and at $(x, y, t)\in(X\times F\backslash W)\times E\times I(2)$ .
1) Let $V$ be any neighbourhood of $\sigma^{\alpha}(x, y, O)=(x, 0)$ in $X\times F\times I$. Then there

are a positive integer $n$ and an open set $U$ in $X\times F$ such that $p_{n}^{-1}p_{n}(U)=U$

and $(x, O)\in U\times[0,2^{-n})\subset V\cap W\times I$. For each $(x^{\prime}, y^{\prime}, t^{\prime})\in U\times E\times[0,2^{-n})$ ,

$p_{n}\sigma_{t}^{\alpha}(x^{\prime}, y^{\prime})=p_{n}\theta_{t^{\prime}k(x^{\prime})}(x^{\prime}, y^{\prime})=p_{n}(x^{\prime})\in p_{n}(U)$ ,

then $\sigma_{t}^{\alpha},(x^{\prime}, y^{\prime})\in U$ . Therefore $\sigma^{a}(x^{\prime}, y^{\prime}, t^{\prime})\in U\times[0,2^{-n})\subset V$.
2) Now let $V$ be any neighbourhood of $\sigma^{\alpha}(x, y, t)=(x, t)$ in $X\times F\times I$. Then

there are a positive integer $n$ , an open set $U^{\prime}$ in $X\times F$ and a neighbourhood
$J$ of $t$ in $I$ such that $p_{n}^{-1}p_{n}(U^{\prime})=U^{\prime}$ and $(x, t)\in U^{\prime}\times J\subset V$. Then $U=U^{\prime}\backslash K_{n}$ is
a neighbourhood of $x$ in $X$. Let $(x^{\prime}, y^{\prime}, t^{\prime})\in U\times E\times J$. If $x^{\prime}\not\in W,$ $\sigma^{\alpha}(x^{\prime}, y^{\prime}, t^{\prime})=$

$(x^{\prime}, t^{\prime})\subset U\times J$. If $x^{\prime}\in W,$ $n(x^{\prime})>n$ because $x^{\prime}\not\in K_{n}$ . Then $t^{\prime}k(x^{\prime})\leqq 2^{-n(x^{\prime})}<2^{-n}$

therefore $p_{n}\sigma_{t^{\prime}}^{\alpha}(x^{\prime}, y^{\prime})=p_{n}\theta_{t^{\prime}k(x^{\prime})}(x^{\prime}, y^{\prime})=p_{n}(x^{\prime})\in p_{n}(U)\subset p_{n}(U^{\prime})$ , that is, $\sigma_{t^{\prime}}^{\alpha}(x^{\prime}, y^{\prime})\in$

$U^{\prime}$ . Therefore $\sigma^{\alpha}(x^{\prime}, y^{\prime}, t^{\prime})\in U^{\prime}\times J\subset V$.
v) It is trivial that $\sigma^{\alpha}|W\times\{0\}\times I$ is a continuous injection. We may

observe that this is a closed map. Let $A$ be a closed set in $W\times\{0\}\times I$ and
$(x, t)\in c1\sigma^{\alpha}(A)\subset W\times I$. When $t\neq 0$ ,

$(x, t)\in c1\sigma^{\alpha}(A)\cap W\times(O, 1]=\sigma^{a}(A\cap W\times E\times(0,1])\subset\sigma^{\alpha}(A)$

by iv). When $t=0$ , we will see that $(x, 0, O)\in A$ then $(x, 0)=\sigma^{\alpha}(x, 0, O)\in\sigma^{\alpha}(A)$ .
For each neighbourhood $V$ of $(x, 0,0)$ in $W\times\{0\}\times I$, there are a positive
integer $n$ and an open set $U$ in $W$ such that $p_{n}^{-1}p_{n}(U)=U$ and $(x, 0, O)\in U\times$

$\{0\}\times[0,2^{-n})\subset V$. Since $U\times[0,2^{-n}$ ) is a neighbourhood of $(x, 0)$ in $W\times I$, there
is some $(x^{\prime}, 0, t^{\prime})\in A$ such that $\sigma^{\alpha}(x^{\prime}, 0, t^{\prime})\in U\times[0,2^{-n})$ . Because $t^{\prime}<2^{-n},$ $p_{n}(x^{\prime})$

$=p_{n}\sigma_{t}^{a},(x^{\prime}, O)\in p_{n}(U)$ , that is, $x^{\prime}\in U$ . Then $(x^{\prime}, 0, t^{\prime})\in U\times\{0\}\times[0,2^{-n})\subset V$. There-
fore $ A\cap V\neq\emptyset$

) so $(x, 0, O)\in c1A=A$ . $\square $

2-2. THEOREM. Let $E\cong E^{\omega}$ $or\cong Ep$ be a perfectly normal LTS and $G$ an
open set in an E-stable perfectly normal space X. Then for each open cover $\alpha$

of $G$ , there exists an I-preserving continuous map $\Delta^{\alpha}$ ; $X\times E\times I\rightarrow X\times I$ such that
i) $\Delta_{0}^{a}$ ; $X\times E\rightarrow X$ is the projection,

ii) $\Delta_{t}^{a}|(X\backslash G)\times E:(X\backslash G)\times E\rightarrow X\backslash G$ is the pr0jecti0n for each $t\in I$,
iii) $\Delta^{\alpha}|G\times E\times(0,1$] $:G\times E\times(O, 1$] $\rightarrow G\times(0,1$] is a homeomorphism, and
iv) for each $x\in G$ , there is some $ U\in\alpha$ such that $\Delta^{\alpha}(\{x\}\times E\times I)\subset U\times I$.
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PROOF. Let $F=E^{\omega}$ or $=E_{f}^{\omega}$ . Since $X$ is E-stable, there is a homeomor-
phism $h:X\rightarrow X\times F$. Then $\Delta^{\alpha}=(h^{-1}\times id_{I})\sigma^{h(a)}(h\times id_{E\times I}):X\times E\times I\rightarrow X\times I$ is a
desired map. $\square $

A space $X$ is said to be strongly E-stable if for each open cover $\alpha$ of $X$,

there is an I-preserving continuous map $\Delta^{\alpha}$ ; $X\times E\times I\rightarrow X\times I$ such that $\Delta_{0}^{\alpha}$ : $ X\times$

$E\rightarrow X$ is the projection, $\Delta^{\alpha}|X\times E\times(0,1$] $:X\times E\times(O, 1$] $\rightarrow X\times(0,1$] is a homeomor-
phism and for each $x\in X$, there is some $ U\in\alpha$ such that $\Delta^{\alpha}(\{x\}\times E\times I)\subset U\times I$.
As a corollary, we get the Geoghegan-Henderson’s result on strong E-stability
(Theorem 1 in [12]) whose original proof holds a technically wrong part.

2-3. COROLLARY. Let $E\cong E^{\omega}$ or $ E\cong E\varphi$ be a perfectly normal LTS and $X$ a
Perfectly normal sPace. Then $X$ is E-stable if and only if each oPen subset of $X$

is strongly E-stable.
2-4. COROLLARY. Each open set in a perfectly normal LTS $E\cong E^{\omega}$ $or\cong E_{f}^{\omega}$

is strongly E-stable.
The following theorem is an extension of Theorem 4.1 in [9].

PROOF. Let $F=E^{\omega}$ or $=E_{f}^{\omega}$ . Since $K$ is E-deficient in $X$, there is a
homeomorphism $h:X\rightarrow X\times F$ such that $h(K)\subset X\times\{0\}$ . Define a closed embed-
ding $i:X\times F\rightarrow X\times F\times E$ by $i(x, y)=(x, y, 0)$ for each $(x, y)\in X\times F$. Then $g=$

$(h^{-1}\times id_{I})\sigma^{h(\alpha)}(ihXid_{I}):X\times I\rightarrow X\times I$ is a desired isotopy. $\square $

The following result is a generalization of Theorem 3.1 in [9].

2-6. THEOREM. Let $E\cong E^{\omega}$ $(or\cong Ef)$ be an LMS and $K$ a subset of an E-
stable sPace X. Then $K$ is E-deficient if and only if $K$ is $l^{2}$ -deficient (or $l_{f}^{2}$ -deficient).

PROOF. If $E\cong E^{\omega}$ , this is Theorem 3.1 in [9].

If $E\cong E_{f}^{\omega}$ , the Bartle-Graves-Michael’s Theorem [17] induces $E\cong E\times R_{f}^{\omega}$ by
the same argument as in the proof of Theorem 3.1 in [9]. Since $R_{f}^{\omega}\cong l_{f}^{2}$ , we
have $E\cong E\times l_{f}^{2}$ . This enables us to see that E-deficiency implies $l_{f}^{2}$-deficiency
by the argument of the proof of Theorem 3.1 in [9]. For the opposite im-
plication, the following remarks enable us to apply the arguments of the proof
of Theorem 3.1 in [9] in the case $E\cong E_{f}^{\omega}$ . The homeomorphism in Lemma 3.1
in $4[9]$ is obtained from the homeomorphism $f:E\times[0,1$ ) $\times E^{\omega}\rightarrow C[E]\times E^{\omega}$ de-
fined by

$f(x_{0}, t, x_{1}, x_{2}, )=(x_{n}$ cos $(1-2^{n}t)\pi+x_{n+1}$ sin $(1-2^{n}t)\pi,$ $t,$ $-x_{0},$ $\cdots,$ $-x_{n- 1}$ ,

$-x_{n}$ sin $(1-2^{n}t)\pi+x_{n+1}$ cos $(1-2^{n}t)\pi,$ $x_{n+2},$ $x_{n+3},$ )

for each $(x_{0}, t, x_{1}, x_{2}, )\in E\times[2^{-(n+1)}, 2^{-n}]\times E^{\omega}$

2-5. THEOREM. Let $E\cong E^{\omega}$ $ or\cong E\varphi$ be a Perfectly normal LTS and $K$ an
E-deficient subset of an E-stable perfectly normal sPace X. Then for each open
cover $\alpha$ of $X$, there exists an invertible $\alpha$ -isotopy $g_{t}$ : $X\rightarrow X(t\in I)$ such that

i) $g_{0}=id$ ,
ii) $g_{t}|K=id$ for each $t\in I$, and

iii) $g_{t}$ : $X\rightarrow X$ is an E-deficient closed embedding for each $t\in(O, 1$ ].
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and

$f(x_{0},0, x_{1}, x_{2}, )=(0, -x_{0}, -x_{1}, -x_{2}, )$

for each $(x_{0},0, x_{1}, x_{2}, )\in E\times\{0\}\times E^{\omega}$

Then Lemma 3.1 in [9] is valid for $E\cong E_{f}^{\omega}$ by restricting this homeomorphism.
Since ( $S_{1}$ , S\’i) in an $(l^{2}, l_{f}^{2})$-manifold pair (DePnition (4) in [14]) where $S_{1}=\{x\in l^{2}$

$|\Vert x\Vert=1\}$ and $S_{1}^{\prime}=\{x\in l_{f}^{2}|\Vert x\Vert=1\}$ and since $S_{1}\cong l^{2}$ (Klee’s result [16] III 1.3),

we have $S_{1}^{\prime}\cong l_{f}^{2}$ by Theorem 2 in [14]. $\square $

An invertible isotopy pushing $K$ off $X$ is an invertible isotopy $h_{t}$ : $X\rightarrow X$

$(t\in I)$ such that $h_{0}=id,$ $h_{1}(X)=X\backslash K$ and that $h_{t}$ is onto for each $t\in[0,1$ ). A
subset $K$ of $X$ is extractible from $X$ if for each open cover $\alpha$ of $K$ in $X$, there
is an invertible $\alpha$-isotopy pushing $K$ off $X$. The following corollary is a
generalization of Lemma 3 in [10].

PROOF. The invertible continuous family of invertible isotopies pushing
the origin off $l^{2}$ which is defined on pp. 284-286 of [3] can be restricted to
$l_{f}^{2}$ and we have the invertible continuous family of invertible isotopies pushing
the origin off $l_{f}^{2}$ . Then the proof of Lemma 3 in [10] holds also true for $ E\cong$

$E_{\Psi}$ . $\square $

2-7. COROLLARY. Let $E\cong E^{\omega}$ or $\cong E\varphi$ be an LMS and $X$ an E-stable metric
space. Then an E-deficient locally closed subset $K$ of $X$ is extractible from $X$.

\S 3. The homeomorphism extension theorem.

In this section, we generalize the HET in [9]. For this purpose, we pro-
vide the extension results of Lemma 5.1 and 5.2 in [9].

Let $X$ be a metric space with a metric $d$ . For an open cover $\alpha$ of $X$,

define a continuous function $e:X\rightarrow R^{+}$ by

$ e(x)=\sup$ { $s\in R^{+}|B_{s}(x)\subset U$ for some $ U\in\alpha$ }

where $R^{+}$ is the positive real half-line and $B_{s}(x)$ means the open ball with the
center $x$ and the radius $s$ . This function is called a majorant for $\alpha$ with
respect to $d$ (see [10] 2). If $d(f(y), g(y))<ef(y)$ for each $y\in Y,$ $g:Y\rightarrow X$ is
$\alpha$-near to $f:Y\rightarrow X$.

The following theorem is an extension of Lemma 5.1 in [9]. We prove
this by means of the technique in the proof of 2-1 and consequently, we can
omit the condition of local convexity in Lemma 5.1 in [9].

3-1. THEOREM. Let $E\cong E^{\omega}$ $ or\cong E\gamma$ be an $LMS,$ $M$ an E-stable metric space
and let $X$ be a space which can be embedded as a closed subset of E. If $f:X\rightarrow M$

is a continuous map such that $f|A$ is an E-deficient closed embedding of a closed
subset $A$ of $X$ in $M$, then for each open cover $\alpha$ of $M$, there is an $\alpha$ -homotopy
$f_{\iota^{*}}:$ $X\rightarrow M(t\in I)$ such that
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i) $f_{0}^{*}=f$,
ii) $f_{t}^{*}|A=f|A$ for each $t\in I$, and

iii) $f_{1}^{*}:$ $X\rightarrow M$ is an E-deficient closed embedding.
PROOF. Since $E\cong E^{\omega}$ (or $\cong E_{f}^{\omega}$), $E\cong E\times l^{2}$ (or $\cong E\times l_{f}^{2}$) (cf. the proof of 2-6).

Since $l^{2}\times I\cong l^{2}$ and $l_{f}^{2}\times I\cong l_{f}^{2}$ by Klee’s result [16] III 1.3 and Chapman’s result
[8] 2.12 or Toru\’{n}czyk’s result [24], $E\times I\cong E$ . Let $F=E^{\omega}$ or $=E_{f}^{\omega}$ , then $F\times I$

$\cong E$ .
Let $\beta$ be a star-refinement of $\alpha$ . By 2-5, there is an invertible $\beta$-isotopy

$g_{t}$ : $M\rightarrow M(t\in I)$ such that $g_{0}=id,$ $g_{t}|f(A)=id$ for each $t\in I$ and $g_{1}(M)$ is E-
deficient closed in $M$. Then there is a homeomorphism $h:M\rightarrow M\times F\times I$ such
that $hg_{1}(M)\subset M\times\{0\}\times\{0\}$ . Let $p;M\times F\times I\rightarrow M$ be the projection. Note that
$hg_{1}(x)=(phg_{1}(x), 0,0)$ for each $x\in M$. Let $\theta:M\times F\times E\times I\rightarrow M\times F\times I$ be the I-
preserving continuous map defined in the proof of 2-1, $i:X\rightarrow E$ a closed
embedding, $d_{X},$ $d_{M}$ and $d_{E}$ metrics bounded by 1/4 on $X,$ $M$ and $E$ respectively,
$d$ the metric on $X$ defined by $d(x, y)=d_{X}(x, y)+d_{M}(f(x), f(y))$ and $ e:M\times F\times I\rightarrow$

$R^{+}$ a majorant for $h(\beta)$ with respect to the metric $d^{*}$ on $M\times F\times I$ defined
by

$d^{*}((x, (y_{i}),$ $t$)
$,$

$(x^{\prime}, (y_{i}^{\prime}),$ $t^{\prime}$ )) $=d_{M}(x, x^{\prime})+\sum_{l=1}^{\infty}2^{-i}d_{E}(y_{i}, y_{i}^{\prime})+2^{-1}|t-t^{\prime}$ .

Define a continuous map $k:X\rightarrow R$ by $k(x)=d(x, A)=\inf\{d(x, y)|y\in A\}$ for each
$x\in X$. Then $e$ is bounded by 1 and $k$ is bounded by 1/2 and non-negative.
And $k^{-1}(0)=A$ .

Define a homotopy $f_{t}^{\prime}$ : $X\rightarrow M(t\in I)$ by

$f_{t}^{\prime}(x)=h^{-1}\theta(phg_{1}f(x), 0, i(x), tk(x)ehg_{1}f(x))$ for each $x\in X$ .
It is easy to see that $f_{0}^{\prime}=g_{1}f$ and $f_{t}^{\prime}|A=f|A$ for each $t\in I$. Since

$k(x)ehg_{1}f(x)\leqq 1/2$ for each $x\in X$ ,

it is easy to see that $f_{t}^{\prime}(X)$ is E-deficient in $M$. Although we must show that
$f_{1}^{\prime}$ is a closed embedding, we may show that $f_{1}^{\prime}$ is a closed map as it is obviously
a continuous injection. Let $\{x_{n}\}$ be any sequence in $X$ such that $\{f_{1}^{\prime}(x_{n})\}$ is
convergent in $M$. Then $\{\theta(phg_{1}f(x_{n}), 0, i(x_{n}), k(x_{n})ehg_{1}f(x_{n}))\}$ converges some
$(x, y, t)$ in $M\times F\times I$. Since $\theta$ is $I$-preserving, $k(x_{n})ehg_{1}f(x_{n})$ converges to $t$ .

i) In case of $t\neq 0$ : Since $k(x_{n})ehg_{1}f(x_{n})\neq 0$ for sufficiently large $n$ ,
$\{(phg_{1}f(x_{n}), 0, i(x_{n}), k(x_{n})ehg_{1}f(x_{n}))\}$ convergent to $\theta^{-1}(x, y, t)$ . Then $\{i(x_{n})\}$ is
convergent. Since $i$ is a closed embedding, $\{x_{n}\}$ is also convergent.

ii) In case of $t=0$ : By definitions, it is easily seen that

$\{d^{*}(\theta(phg_{1}f(x_{n}), 0, i(x_{n}), k(x_{n})ehg_{1}f(x_{n})), hg_{1}f(x_{n}))\}$

converges to $0$ . Then $\{hg_{1}f(x_{n})\}$ converges to $(x, y, 0)$ . Therefore $y=0$ . For
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sufficiently large $n,$ $d^{*}(hg_{1}f(x_{n}), (x, 0,0))<\frac{1}{3}e(x, 0,0)$ , then there is some $ U\in$

$h(\beta)$ such that $B_{e(x,0,0)/3}(hg_{1}f(x_{n}))\subset B_{2e(x,0,0)/3}(x, 0, O)\subset U$. Therefore $ ehg_{1}f(x_{n})\geqq$

$--e(x, 0,0)31$ so $ehg_{1}f(x_{n})\neq 0$ for sufficiently large $n$ . Therefore $\{k(x_{n})\}$ con-
verges to $0$ . Moreover $\{f(x_{n})\}$ converges to $x^{\prime}=(hg_{1})^{-1}(x, 0,0)$ because $hg_{1}$ is
a $clo$ } $ed$ embedding. For each $n$ , there is $x_{n}^{\prime}\in A$ such that $d(x_{n}, x_{n}^{\prime})<2k(x_{n})$ .
Since $d_{M}(f(x_{n}^{\prime}), x^{\prime})\leqq d_{M}(f(x_{n}^{\prime}), f(x_{n}))+d_{M}(f(x_{n}), x^{\prime})<2k(x_{n})+d_{M}(f(x_{n}), x^{\prime})$ , $\{f(x_{n}^{\prime})\}$

converges to $x^{\prime}$ . Then $\{x_{n}^{\prime}\}$ is convergent in $A$ because $f|A$ is a closed
embedding. Since $\{d(x_{n}, x_{n}^{\prime})\}$ converges to $0,$ $\{x_{n}\}$ is also convergent.

For each $x\in X,$ $d^{*}(\theta(phg_{1}f(x), 0, i(x), tk(x)ehg_{1}f(x)), hg_{1}f(x))<2tk(x)ehg_{1}f(x)<$

$ehg_{1}f(x)$ , then there is some $ U\in\beta$ such that $\theta(phg_{1}f(x), 0, i(x), tk(x)ehg_{1}f(x))$ ,

$hg_{1}f(x)\in h(U)$ , that is, $f_{t}^{\prime}(x),$ $g_{1}f(x)\in U$ . Therefore $f_{t}^{\prime}$ : $X\rightarrow M(t\in I)$ is a $\beta$-homo-
topy such that $f_{0}^{\prime}=g_{1}f,$ $f_{t}^{\prime}|A=f|A$ for each $t\in I$ and $f_{1}^{\prime}$ : $X\rightarrow M$ is an E-deficient
closed embedding. The desired $\alpha$-homotopy $f_{t}^{*}:$ $X\rightarrow M(t\in I)$ is defined by

$f_{t}^{*}(x)=\left\{\begin{array}{ll}g_{2t}f(x) & for 0\leqq t\leqq\frac{1}{2}\\f_{2t- 1}^{\prime}(x) & for \frac{1}{2}\leqq r\leqq 1. \square \end{array}\right.$

Next we extend Lemma 5.2 is [9]. This can be proved by the same way
as [9] but we give an alternative proof.

PROOF. Since $E\cong E^{\omega}$ or $\cong E_{f}^{\omega},$ $E\times R\cong E$. Since $K$ is E-deficient in $M$,

there is a homeomorphism $f:M\rightarrow M\times E\times R$ such that $f(K)\in M\times\{0\}\times\{0\}$ . By
the Henderson’s Open Embedding Theorem [13], there is an open embedding
$g:M\rightarrow E$ . Define a continuous map $h^{\prime}$ : $M\times E\times R\rightarrow E\times E\times R$ by

$h^{\prime}(x, y, t)=(g(x), y, t+k(x))$ for each $(x, y, t)\in M\times E\times R$

where $k:M\rightarrow R$ is a continuous map defined by $k(x)=d(g(x), E\backslash g(M))^{-1}(d$ is
a metric on $E$ ). Then $h^{\prime}(M\times E\times R)=g(M)\times E\times R$ is open in $E\times E\times R$ and
$h^{\prime}f(K)\subset h^{\prime}(M\times\{0\}\times\{0\})\subset E\times\{0\}\times R$ . It is easy to see that $h^{\prime}$ is an embedding
and that $h^{\prime}(M\times\{0\}\times\{0\})$ is closed in $E\times\{0\}\times R$ . Let $f^{\prime}$ : $E\times E\times R\rightarrow E$ be a
homeomorphism. Then $h=f^{\prime}h^{\prime}f$ is a desired open embedding. $\square $

HET: Let $E\cong E^{\omega}$ $ or\cong E\varphi$ be an $ARLMS,$ $M$ an E-manifold and $K$ an $ E\rightarrow$

deficient closed set in M. If $\alpha$ is an open cover of $M$ and if $h_{t}$ : $K\rightarrow M(t\in I)$

is an $\alpha$ -homotopy such that $h_{0}=id$ and $h_{1}$ is an E-deficient closed embedding,
then for each open cover $\beta$ , there exists an ambient invertible st $(\alpha; \beta)$ -isotopy
$\overline{h}_{t}$ : $M\rightarrow M(t\in I)$ such that $\overline{h}_{0}=id$ and $\overline{h}_{1}|K=h_{1}$ .

PROOF. Now, this theorem can be proved by the same argument as the

3-2. LEMMA. Let $E\cong E^{\omega}$ $or\cong E_{f}^{\omega}$ be an $LMS,$ $M$ a connected E-manifold
and $K$ an E-deficient closed set in M. Then there exis $ts$ an open embedding
$h:M\rightarrow E$ such that $h|K:K\rightarrow E$ is an E-deficient closed embedding.
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proof of Theorem 2 in [9] since Lemma 5.1 and 5.2 in [9] have been extended.
But to avoid using the unpublished result of D. W. Henderson*) which is used
in the proof of Theorem 2 in [9] and to improve the limitation by covers,
we show that the case $ K\cap h_{1}(K)=\emptyset$ induces the general case. Note that in
the case $ K\cap h_{1}(K)=\emptyset$ we obtain our limitation in the proof of Theorem 4.2 in
[4] with obvious modifications.

Let $\gamma$ be a star-refinement of $\beta$ . By Theorem 2.1 in [11] which is also
valid for $E\cong E_{f}^{\omega}$ with suitable modifications, $K\cup h_{1}(K)$ is also E-deficient. Then
there is a homeomorphism $k:M\rightarrow M\times R$ such that $k(K\cup h_{1}(K))\subset M\times\{0\}$ . Let
$e:M\times R\rightarrow R^{+}$ be a majorant for $k(\gamma)$ with respect to the product metric $d$ .
Define an ambient invertible isotopy $f_{t}$ : $M\times R\rightarrow M\times R(t\in I)$ by

$f_{t}(x, s)=\left\{\begin{array}{ll}(x, (1+\frac{t}{2})s+\frac{t}{4}e(x, 0)) & if -\frac{1}{2}e(x, O)\leqq s\leqq 0,\\(x, (1-\frac{t}{2})s+\frac{t}{4}e(x, 0)) & if 0\leqq s\leqq\frac{1}{2}e(x, 0),\\(x, s) other & wise.\end{array}\right.$

If $d((x, s),$ $(x, 0))<\frac{1}{2}e(x, 0)$ then $d(f_{t}(x, s),$ $(x, 0))<\frac{1}{2}e(x, 0)$ and if $d((x,s),$ $(x, 0))$

$\geqq\frac{1}{2}e(x, 0)$ then $f_{t}(x, s)=(x, s)$ . Thus $f$ is a $k(\gamma)$-isotopy. Then $k^{-1}f_{t}k:M\rightarrow M$

$(t\in I)$ is an ambient invertible $\gamma$-isotopy such that $k^{-1}f_{0}k=id$ and

$ k^{-1}f_{1}k(K\cup h_{1}(K))\cap(K\cup h_{1}(K))=\emptyset$ .

Since $k^{-1}f_{t}kh_{t}$ : $K\rightarrow M(t\in I)$ is a $st(\alpha;\gamma)$-homotopy such that $k^{-1}f_{0}kh_{0}=id$ and
$k^{-1}f_{1}kh_{1}$ is an E-deficient closed embedding and $ K\cap k^{-1}f_{1}kh_{1}(K)=\emptyset$ , there exists
an ambient invertible $st(st(\alpha;\gamma);\gamma)$-isotopy $g_{t}$ : $M\rightarrow M(t\in I)$ such that $g_{0}=id$

and $g_{1}|K=k^{-1}f_{1}kh_{1}$ . Then $k^{-1}f_{t}^{-1}kg_{t}$ fulfills our requirements. $\square $

\S 4. The relative stability theorem and the relative
approximation theorem by embeddings.

In this section, we establish the relative ST (Stability Theorem) which
will hold a basic part in our Embedding Theorems in Sect. 6 and we gener-
alize the result of [18] which is called the relative ATE (Approximation

Theorem by Embeddings).

A characterization of Anderson’s Z-sets in $Q$ or $s(\cong R^{\omega})$ by H. Toru\’{n}czyk

$*)$ Recently, this appeared in Trans. Amer. Math. Soc., 213 (1975), 205-217. But its
proof is complicated.
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in [22] can be generalized to one of $Z$-sets in any paracompact Hausdorff
space $X$ which is locally homotopically trivial, i.e., admitting a fundamental
neighbourhood system consisting of homotopically trivial open sets: $K$ is a Z-
set in $X$ if and only if $K$ is a closed set in $X$ such that for each continuous
map $f:I^{n}\rightarrow X$ and for each open cover $\alpha$ of $X$, there exists a continuous map
$g:I^{n}\rightarrow X\backslash K$ which is $\alpha$ -near to $f$. Thus if $E\cong E^{\omega}$

$or\cong E_{f}^{\omega}$ is an $LMS$ , then E-
deficient closed sets in an E-stable locally homotopically trivial metric space are
Z-sets by 2-7. Conversely, T. A. Chapman showed in [9] that Z-sets in E-
manifold are E-deficient in case that $E\cong E^{\omega}$ is a Fr\’echet space. The author
does not know whether it is true in more general case that $E\cong E^{\omega}$ or $\cong Ep$ is
an $(LC)LMS$ . But H. Toru\’{n}czyk showed that closed submanifolds of an E-
manifold which are Z-sets are E-deficient in case that $E\cong E^{\omega}$ $or\cong E_{f}^{\omega}$ is an
LCLMS (Lemma 6.2 in [24]).

We require the following lemma.
4-1. LEMMA. Let $E\cong E^{\omega}$ $or\cong E$? be an LCLMS, $M$ be an E-manifold and

let $K$ be an E-deficient closed set in M. Then for each open cover $\alpha$ of $M$,
there exists a homeomorphism $h:M\times E\rightarrow M$ such that $h(x, O)=x$ for each $x\in K$

and $h$ is $\alpha$ -near to the projection $p;M\times E\rightarrow M$.
PROOF. Note that Theorem 2.2 in [11] $i3$ also valid for $E\cong E_{f}^{\omega}$ with suita-

ble modifications. This lemma is derived from this theorem, the ST (with 2-3)

and the HET as all the same as Lemma 2.1 in [18]. $\square $

4-2. PROPORITION. Let $E\cong E^{\omega}$ $or\cong Ep$ be an LCLMS, $M_{1}$ and $M_{2}$ be E-
manifolds, $M_{1}$ be connected (more generally, $M_{1}$ can be embedded as a closed set
in $E$ ) and let $f:M_{1}\rightarrow M_{2}$ be a continuous map. Then for each open cover $\alpha$ of
$M_{2}$ and for each E-deficient closed set $K$ in $M_{1}$ , there exist an open embedding
$g:M_{1}\rightarrow M_{2}$ and a closed embedding $h:M\rightarrow M$ such that $g,$

$h$ are $\alpha$ -homotopic to
$f$ and $g(K),$ $h(K)$ are E-deficient closed sets in $M_{2}$ .

4-3. COROLLARY. Let $E,$ $M_{1},$ $M_{2}$ be as above and let $f:M_{1}\rightarrow M_{2}$ be a con-
tinuous map such that for some E-deficient closed set $K$ in $M_{1},$ $f|K$ is an E-deficient
closed embedding. Then for each open cover $\alpha$ of $M_{2}$ there exist an open em-
bedding $g:M_{1}\rightarrow M_{2}$ and a closed embedding $h:M_{1}\rightarrow M_{2}$ such that $g,$

$h$ are $\alpha-$

homotopic to $f$ and $f|K=g|K=h|K$.
The proofs of the above proposition and corollary are all the same as

Proposition 2.2 and Corollary 2.5 in [18]. And the following ATE is derived
from 4-2, the HET and 2-7 by the same way as the proof of Theorem 2.6
(2.6) in [18].

RELATIVE ATE: Let $E\cong E^{\omega}$ or $\cong E\Psi$ be an LCLMS, $(M_{i}, N_{i})$ be an E-

manifold pair with $N_{t}$ a Z-set in $M_{i}(i=1,2),$ $M_{1}$ be connected (more generally,
$M_{1}$ can be embedded as a closed set in $E$ ) and let $f:(M_{1}, N_{1})\rightarrow(M_{2}, N_{2})$ be con-
tinuous. Then for each open cover $\alpha$ of $M_{2}$ , there exist an open embedding
$g:(M_{1}, N_{1})\rightarrow(M_{2}, N_{2})$ and a closed embedding $h:(M_{1}, N_{1})\rightarrow(M_{2}, N_{2})$ such that $g$ ,
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$h$ are $\alpha$ -homotopic to $f:(M_{1}, N_{1})\rightarrow(M_{2}, N_{2})$ . Furthermore $g(M_{1})\cap N_{2}=g(N_{1})$ , that
is, $g:(M_{1}, N_{1}, M_{1}\backslash N_{1})\rightarrow(M_{2}, N_{2}, M_{2}\backslash N_{2})$ .

4-4. COROLLARY. Let $E\cong E^{\omega}$ $or\cong Ep$ be an LCLMS and let $(M, N)$ be an
E-manifold pair with $N$ a Z-set in $M$ such that $M$ is connected (more generally,
$M$ can be embedded as a closed set in $E$ ). Then

i) there exists an open embedding $i:M\rightarrow E\times E$ such that $i(N)=i(M)\cap E\times\{0\}$ ,
ii) there exists an open embedding $j:M\rightarrow E\times[0,1$ ) such that $ j(N)=j(M)\cap$

$E\times\{0\}$ .
From 4-4, it is derived that in an E-monifold pajr $(M, N),$ $N$ is a Z-set

in $M$ if and only if $N$ is a collared closed set in $M$ (see the foot note (2) in
[20]). But this result is directly derived from Theorem 1 in [7] and Proposi-
tion 5.1 in [11].

Now we establish the relative ST:
RELATIVE ST: Let $E\cong E^{\omega}$ or $\cong Ep$ be an LCLMS and let $(M, N)$ be an

E-manifold pair with $N$ a Z-sel in M. Then for each open cover $\alpha$ of $M$, there
exists a homeomorphism $h:(M\times E, N\times E)\rightarrow(M, N)$ which is $\alpha$ -homotopic to the
projection $p;(M\times E, N\times E)\rightarrow(M, N)$ .

PROOF. Let $\beta$ be an open cover such that $st^{2}(\beta)$ refines $\alpha$ and $i:M\rightarrow M\times E$

be defined by $i(x)=(x, 0)$ for each $x\in M$. By 4-1, there is a homeomorphism
$f:M\times E\rightarrow M$ such that $fi|N=id$ and $f$ is $\beta$-near to $p$ . And there is a homeo-
morphism $g:N\times E\rightarrow N$ which is $\beta$ -near to $p$ by the Schori’s Stability Theorem
[21] and 2-3. Since $ig:N\times E\rightarrow M\times E$ is an E-deficient closed embedding which
is $(\beta\times E)$ -near to id and since $N\times E$ is an E-deficient closed set in $M\times E$ , there
exists a homeomorphism $h:M\times E\rightarrow M\times E$ such that $h|N\times E=ig$ and $h$ is
(st $(\beta)\times E$ )-near to id. Thus $fh:M\times E\rightarrow M$ is a homeomorphism such that
$fh|N\times E=fig=g$. Since $ph,$ $p;M\times E\rightarrow M$ are $st(\beta)$ -near and since $fh,$ $ph$ :
$M\times E\rightarrow M$ are $\beta$-near, then $fh$ is $st^{2}(\beta)$-near (then, $\alpha$-near) to $p;M\times E\rightarrow M$.
As the modification of 2.6 to 2.6’ in [18], we obtain the theorem by 4-4. $\square $

\S 5. Embedding theorem with compliment conditions.

In this section, we consider the conditions for an E-manifold pair $(M, N)$

with $N$ a Z-set in $M$ under which $M$ can be embedded in $E$ such that $N$ is
the topological boundary of $M$ and the closure (or each component of the
closure) of the complement of $M$ is contractible.

By a cone over a metric space $X$, we mean the topological space

$(C(X), \tau)=(\{0_{X}\}\cup X\times(0,1],$ $\tau$ )

where $\tau$ is the topology generated by open sets in $X\times(O, 1$] and sets $\{0_{X}\}\cup$

$X\times(O, t)(0<t<1)$ . Let $d$ be a bounded metric on $X$. By the Arens-Eelles’
Theorem [5] (for a shorter proof, see [23]) $X$ has an isometric closed copy
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$X^{\prime}$ in some ball $B$ of some normed linear space $E$ . It is easy to see that the
natural map of $C(X)$ onto $\{(tx, t)\in E\times R|t\in[0,1], x\in X^{\prime}\}$ is a homeomorphism.
Then these may be identified. Moreover, note that $ C(X)\cong\{(tx+(1-t)x_{0}, t)\in$

$E\times R|t\in[0,1],$ $x\in X^{\prime}$ } where $x_{0}$ is any given point of $E$. If $X$ is an $ANR$ ,
then $C(X)$ is a neighbourhood retract of $C(B)$ . Since

$C(B)\cong\{(tx, t)\in B\times[0,1]|x\in B, t\in[0,1]\}$

is a retract of an $ARB\times[0,1],$ $C(X)$ is an $ANR$ . Hence $C(X)$ is an $AR$

because it is contractible. (This may be derived from Lemma 4.1 in [24] as
in the proof of Theorem 4.2 in [24].)

By a mapping cylinder of a continuous map $f:X\rightarrow Y$ of a metric space $X$

to a metric space $Y$, we mean the topological space

$(M(f), \tau)=(Y\times\{0\}\cup X\times(0,1],$ $\tau$)

where $\tau$ is the topology generated by open sets in $x\times(O, 1$] and sets

$V\times\{0\}\cup f^{-1}(V)\times(0, t)$ ,

$V$ is open in $Y$ and $0<t<1$ . By the Arens-Eelles’ Theorem, $X$ and $Y$ have
homeomorphic bounded closed copies $X^{\prime}$ and $Y^{\prime}$ in some normed linear spaces
$E$ and $F$, respectively. Let $f^{\prime}$ : $X^{\prime}\rightarrow Y^{\prime}$ be induced from $f:X\rightarrow Y$. Then it is
easy to see that the natural map $M(f)$ to

$\{(tx, (1-t)f^{\prime}(x), t)\in E\times F\times R|t\in[0,1], x\in X^{\prime}\}\cup\{(0, y, O)\in E\times F\times R|y\in Y^{\prime}\}$

is a homeomorphism. When $Y$ is a one-point space and $f:X\rightarrow Y$ is constant,
$M(f)$ is a cone $C(X)$ over $X$.

The following lemmas are useful in the proofs of our Embedding Theorems.
5-1. LEMMA. Let $X$ be an ANR and $Y$ a contractible closed subset of $X$.

Then the quotient map $q:(X, Y)\rightarrow(X/Y, X/Y)$ is a homotopy equivalence.
PROOF. Since $X$ has the homotopy extension property for (X, $Y$ ), there

is a homotopy $f_{t}$ : $(X, Y)\rightarrow(X, Y)$ such that $f_{0}=id$ and $f_{1}|Y$ is a contraction
of $Y$. This homotopy $f_{t}$ induces a homotopy $\overline{f}_{t}$ : $(X/Y, Y/Y)\rightarrow(X/Y, Y/Y)$

such that $\overline{f}_{t}q=qf_{t}$ . And $f_{1}$ induces a continuous map $g:(X/Y, Y/Y)\rightarrow(X, Y)$

such that $gq=f_{1}$ because $f_{1}(Y)$ is single point. Then $ gq=f_{1}\sim f_{0}=id:(X, Y)\rightarrow$

(X, $Y$ ) and $qg=\overline{f}_{1}\sim\overline{f}_{0}=id:(X/Y, Y/Y)$ . $\square $

5-2. LEMMA. Let $E\cong E^{\omega}$ $or\cong Ep$ be an LCLMS. If $M,$ $X$ and $M\cap X$ are
E-manifolds and if $M\cap X$ is a Z-set in each of $M$ and $X$, then $M\cup X$ is also
an E-manifold.

PROOF. Since $M\cap X$ is bicollared in $M\cup X$, and since $E\times R\cong E$ , the proof
is easy. $\square $

5-3. THEOREM. Let $E\cong E^{\omega}$ $or\cong Ep$ be an LCLMS and let $(M, N)$ be an
E-manifold pair with $N$ a Z-set in $M$ such that dens $M=dens$ E. Then there
exists an embedding $h:M\rightarrow E$ such that $bd_{E}h(M)=h(N)$ and $c1_{E}(E\backslash h(M))$ is
contractible if and only if $M/N$ is contractible.
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PROOF. First, assume $M\subset E,$ $bd_{E}M=Nandc1_{E}(E\backslash M)$ is contractible. Since
$N=bd_{E}(E\backslash M)$ is collared in $M,$ $c1_{E}(E\backslash M)$ is a neighbourhood retract of $E$ ,
that is, an $ANR$ . Hence $c1_{E}(E\backslash M)$ is an $AR$ . It is straightforward to see
that $c1_{E}(E\backslash M)$ is a strong deformation retract of $E$ . Therefore $M/N\cong E/$

$c1_{E}(E\backslash M)$ is contractible.
Next, assume $M/N$ is contractible. By the Triangulation Theorem (Theo-

rem 3.4 (a) in [25]), there is a homeomorphism $h:N\rightarrow|K|\times E$ where $K$ is
some locally finite-dimensional simplicial complex. By the Torun’czyk’s result
(Theorem 3.1 in [25]), $C(|K|)\times E\cong E$ . Since $M(ph)\cong C(|K|)\times E$ where $p;|K|\times E$

$\rightarrow E$ is the projection, and since $M\times\{1\}\cap M(ph)=N\times\{1\}$ is a Z-set in each of
$M\times\{1\}$ and $M(ph),$ $F=M\times\{1\}\cup M(ph)$ is an E-manifold by 5-2. By 5-1,
$(F, M(ph))$ is homotopic to $(F/M(ph), M(ph)/M(ph))\cong(M/N, N/N)$ , therefore $F$

is contractible. By the Classification Theorem in [13], $F\cong E$. And then
$bd_{F}M\times\{1\}=N\times\{1\}$ and $c1_{F}(F\backslash M\times\{1\})=M(ph)\cong E$. This completes the proof. $\square $

The above proof contains the alternative shorter proof of Case II-i) of
Theorem in [19]. Although the following corollary is directly proved in a
general case, to use it in 5-5, we give its proof.

5-4. COROLLARY. Let $(M, N)$ be as 5-3. If $M/N$ is contractible, the in-
clusion $i:N\rightarrow M$ induces an isomorphjsm $i_{*}:$ $H_{*}(N)\rightarrow H_{*}(M)$ .

PROOF. It is well known that $H_{*}(M, N)\cong H_{*}(M\times\{1\}\cup C(N), C(N))$ . By
above proof, $M\times\{1\}\cup C(N)$ and $C(N)$ are contractible. Then $H_{*}(M, N)=0$ . $\square $

Let $\{X_{n}\}$ be a (finite or infinite) sequence of subsets of $M$. A sequence
$\{L_{n}\}$ of paths in $M$ is a chain of paths in $M$ connecting $\{X_{n}\}$ provided $\{L_{n}\}$

is pair-wise disjoint (i.e., $ L_{n}\cap L_{n^{\prime}}=\emptyset$ if $n\neq n^{\prime}$ ) and each $L_{n}$ intersects only two
members $X_{n}$ and $X_{n+1}$ at its end-points.

If $M$ is a connected E-manifold and $\cup\{X_{n}\}$ and each $X_{n}$ are $E$-dePcient
closed subsets of $M$, by 2-7, we can inductively show the existence of a chain
of paths in $M$ connecting $\{X_{n}\}$ .

5-5. THEOREM. Let $E\cong E^{\omega}$ $or\cong E:f$ be an LCLMS and let $(M, N)$ be an
E-manifold pair with $N$ a Z-set in $M$ such that $M$ is connected and $N$ has at
most countable many components. Then following conditions are equivalent:

i) There is an embedding $h:M\rightarrow E$ such that $h(N)=bd_{E}h(M)$ and each
comp0nent of $c1_{E}(E\backslash h(M))$ is contractible.

ii) For any ordering $\{N_{n}\}$ of all comp0nents of $N$ and for any chain of
paths $\{L_{n}\}$ in $M$ connecting $\{N_{n}\},$ $M/N\cup\cup\{L_{n}\}$ is contractible.

iii) There are some ordering $\{N_{n}\}$ of all comp0nents of $N$ and some chain
of paths $\{L_{n}\}$ in $M$ connecting $\{N_{n}\}$ such that $M/N\cup\cup\{L_{n}\}$ is contractible.

PROOF. $ii$) $\Rightarrow iii$) is trivial.
$i)\Rightarrow ii)$ : Assume $M\subset E,$ $N=bd_{E}M$ and each component of $c1_{E}(E\backslash M)$ is

contractible. By the same argument as the proof of 5-3, $c1_{E}(E\backslash M)$ is an $ANR$ .
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Because $M$ is collectionwise normal, $c1_{E}(E\backslash M)\cap U\{L_{n}\}=N\cap\cup\{L_{n}\}$ is totally
disconnected, then it is an $ANR$ . Hence $c1_{E}(E\backslash M)\cup\cup\{L_{n}\}$ is also an $ANR$ .

Let $D$ be a component of $c1_{E}(E\backslash M)$ . Then $D$ is a contractible $ANR$ , that
is, an $AR$ . Since $M$ is connected, so is $c1_{E}(E\backslash D)$ . Because $bd_{E}D=N\cap D$ is
open and closed in $N,$ $bd_{E}D$ is a collared closed submanifold of $M$ (see 4-4).

Since $M$ is a neighbourhood of $bd_{E}D$ in $c1_{E}(E\backslash D),$ $(c1_{E}(E\backslash D), bd_{E}D)$ is an E-
manifold pair with $bd_{E}D$ a Z-set in $c1_{E}(E\backslash D)$ . By 5-3 and 5-4,

$H_{0}(bd_{E}D)=H_{0}(c1_{E}(E\backslash D))=0$ .
Thus $bd_{E}D$ is a connected open and closed subset of $N$. Hence $bd_{E}D$ is a
component of $N$. And so, let $\{D_{n}\}$ be a sequence of all components of $c1_{E}$

$(E\backslash M)$ such that $bd_{E}D_{n}=N_{n}$ . Since each $D_{n}$ is an $AR$ , it is easily shown that
$c1_{E}(E\backslash M)\cup\cup\{L_{n}\}=U\{D_{n}\}\cup\cup\{L_{n}\}$ deforms to a path or a half open path in
inself. Then $c1_{E}(E\backslash M)\cup U\{L_{n}\}$ is a contractible $ANR$ , that is, an $AR$ . Again
by the same argument in the proof of 5-3, $M/N\cup\cup\{L_{n}\}=E/c1_{E}(E\backslash D)\cup\cup\{L_{n}\}$

is contractible.
$iii)\Rightarrow i)$ : By the Triangulation Theorem (3.4 (a) in [25]), there are homeo-

morphisms $h_{n}$ : $N_{n}\rightarrow|K_{n}|\times E$ where $K_{n}’ s$ are some locally finite-dimensional
simplicial complexes. Similarly as the proof of 5-3, $M(p_{n}h_{n})\cong E$ where $p_{n}$ ;

$|K_{n}|\times E\rightarrow\{n\}\times E$ is the projection. Since $\cup\{M(p_{n}h_{n})\}$ is an E-manifold and
since $M\times\{1\}\cap\cup\{M(p_{n}h_{n})\}=\cup\{N_{n}\times\{1\}\}=N\times\{1\}$ is a Z-set in each of $M\times\{1\}$

and $\cup\{M(p_{n}h_{n})\},$ $F=M\times\{1\}\cup U\{M(p_{n}h_{n})\}$ is also an E-manifold by 5-2.
Let

$I_{n}=\{(n+t, (1-t)p_{n}h_{n}(a_{n})+tp_{n}h_{n}(b_{n}))|0\leqq t\leqq 1\}\subset R\times E$ and

$J_{n+1}=\{(n+1, (1-t)p_{n+1}h_{n+1}(b_{n})+tp_{n+1}h_{n+1}(a_{n+1}))|0\leqq t\leqq 1\}\subset\{n+1\}\times E$

where $a_{n}\in N_{n}$ and $b_{n}\in N_{n+1}$ are the end-points of $L_{n}$ . Take a continuous map
$f:N\cup\cup\{L_{n}\}\rightarrow U\{\{n\}\times E\}\cup U\{I_{n}\}$ such that $f|L_{n}$ : $L_{n}\rightarrow I_{n}$ is a homeomorphism

and $f|N_{n}=p_{n}h_{n}$ for each $n$ . Since $F\cap\cup\{M(f|L_{n})\}$ is an ANR because it is
homeomorphic to a disjoint union of intervals and since $F$ and $U\{\Lambda f(f|L_{n})\}$ are
ANR’s,

$M\times\{1\}\cup M(f)=M\times\{1\}\cup\cup\{M(f|N_{n})\}\cup\cup\{M(f|L_{n})\}=F\cup\cup\{M(f|L_{n})\}$

is also an $ANR$ . And it is easy to see that $M\times\{1\}\cup M(f)=F\cup\cup\{M(f|L_{n})\}$

collapses to $F$ , hence homotopic to $F$. Note that each $J_{n}$ is a strong deforma-
tion retract of $\{n\}\times E$ because $J_{n}$ and $\{n\}\times E$ are AR’s. Since one can deform
$M(f)$ to $\cup\{\{n\}\times E\}\cup\cup\{I_{n}\}$ , and to $U\{J_{n}\}\cup\cup\{I_{n}\},$ $M(f)$ is contractible. By
5-1, $(M\times\{1\}\cup M(f), M(f))$ is homotopic to $(M\times\{1\}\cup M(f)/M(f), M(f)/M(f))\cong$

$(M/N\cup\cup\{L_{n}\}, N\cup\cup\{L_{n}\}/N\cup\cup\{L_{n}\})$ . Then $M\times\{1\}\cup M(f)$ is contractible,

therefore $F$ is a contractible E-manifold, that is, homeomorphic to $E$ by the
Classification Theorem in [13]. And we have $bd_{F}M\times\{1\}=\cup\{N_{n}\times\{1\}\}=N\times\{1\}$
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and $c1_{F}(F\backslash M\times\{1\})=U\{M(P_{n}h_{n})\}\cong U\{C(|K_{n}|)\times E\}$ . This complete the proof. $\square $

5-6. PROPOSITION. Let $E\cong E^{\omega}$ or $\cong Ep$ be an LCLMS and let $(M, N)$ be
an E-manifold pair with $N$ a Z-set in M. If there is an embedding $h:M\rightarrow E$

such that $bd_{E}h(M)=h(N)$ then there is an embedding $h^{\prime}$ : $M\rightarrow E$ such that
$bd_{E}h^{\prime}(M)=h^{\prime}(N)$ is bicollared in $E$ and $c1_{E}(E\backslash h^{\prime}(M))(\cong E\backslash h^{\prime}(M)$ has the same
homotopy type as $c1_{E}(E\backslash h(M))$ .

PROOF. Since $N$ is collared in $M$ (see 4-4), there is an open embedding
$g:N\times[0,1)\rightarrow M$ such that $g(x, O)=x$ for each $x\in N$. Let $h^{\prime}$ : $M\rightarrow E$ be defined
by

$h^{\prime}(x)=\left\{\begin{array}{ll}h(x) & for x\in M\backslash g(N\times[0,2/3))\\hg(id\times k)(x) & for x\in g(N\times[0,2/3])\end{array}\right.$

where $k:I\rightarrow I$ be defined by $k(s)=(1/2)s+(1/3)$ for $s\in I$.
It is clear that

$bd_{E}h^{\prime}(M)=h^{\prime}(N)=hg(N\times\{1/3\})$

is bicollared in $E$ and that $c1_{E}(E\backslash h(M))=E\backslash h(M\backslash g(N\times\{0\}))$ is a deformation
retract of E-manifolds $c1_{E}(E\backslash h^{\prime}(M))=E\backslash h(M\backslash g(N\times[0,1/3]))$ and $E\backslash h^{\prime}(M)=$

$E\backslash h(M\backslash g(N\times[0,1/3)))$ . By the Classification Theorem [13], $c1_{E}(E\backslash h^{\prime}(M))\cong$

$E\backslash h^{\prime}(M)$ . $\square $

REMARK. In 5-3, the condition that $c1_{E}(E\backslash h(M))$ is contractible may be
changed for the condition $c1_{E}(E\backslash h(M))\cong E\backslash h(M)\cong E$ by the above proposition.
Similarly, in 5-5, the condition that each component of $c1_{F}(E\backslash h(M))$ is con-
tractible may be changed for the condition that each component of $c1_{E}(E\backslash h(M))$

$\cong E\backslash h(M)$ is homeomorphic to $E$ .

\S 6. Another embedding theorem.

In this section, we extend the result of [20]. Although we obtain a suf-
ficient condition in the following theorem for our embedding problem, we seem
to be away from a necessary and sufficient condition at the observation of
Example 4 in the next section.

PROOF. Let $M^{\prime}\subset N\cup L$ (where $L=\cup\{L_{n}\}$ ) be a deformation retract of $M$

then a strong deformation retract of $M$ ([15] Ch. VII Theorem 2.1). Since $M^{\prime}$

is connected because so is $M$, we may assume that $L\subset M^{\prime}$ and $ M^{\prime}\cap N_{n}\neq\emptyset$

6-1. THEOREM. Let $E\cong E^{\omega}$ or $\cong E\varphi$ and let $(M, N)$ be an E-manifold pair
with $N$ a Z-set in $M$ such that $M$ is connected. If there exists a chain of paths
$\{L_{n}\}$ in $M$ connecting some (finite or infinite) sequence $\{N_{n}\}$ consisting of some
components of $N$ such that $N_{n}\neq N_{n^{\prime}}$ if $n\neq n^{\prime}$ and $N\cup U\{L_{n}\}$ contains a deforma-
tion retract of $M$, then there exists an embedding $h:M\rightarrow E$ such that $bd_{E}h(M)$

$=h(N)$ .
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for each $N_{n}$ . By the Triangulation Theorem (3.4 (a) in [25]), there is a
homeomorphism $h:N\rightarrow|K|\times E$ where $K$ is some locally finite-dimensional
simplicial complex. Let $K_{n}$ be the subcomplex of $K$ such that $K_{n}|\times E=h(N_{n})$

and let $a_{n}\in N_{n}$ and $b_{n}\in N_{n+1}$ be the end-points of $L_{n}$ . Then

$|K_{n}^{\prime}|=|K_{n}|\times\{(1-t)ph(b_{n- 1})+rph(a_{n})|0\leqq t\leqq 1\}\subset|K_{n}|\times E$

is a strong deformation retract of $K_{n}|\times E$ where $p;|K|\times E\rightarrow E$ is the projec-
tion. Then deforming $N\cup L$ to a complete ANR $N^{\prime}\cup L$ where $N^{\prime}$ is an E-
deficient set (i.e., a Z-set) in $N$, we may also assume that $M^{\prime}$ is a complete
$ANR$ . Since $M^{\prime}\times\{1\}\cap U\{C(N_{n}^{\prime}\cap M^{\prime})\}=\cup\{(N_{n}^{\prime}\cap M^{\prime})\times\{1\}\}$ is an ANR where
$N_{n}^{\prime}=N^{\prime}\cap N_{n},$ $M^{\prime}\times\{1\}\cup\cup\{C(N_{n}^{\prime}\cap M^{\prime})\}$ is also an $ANR$ . By the same argument
as the proof of $iii$) $\Rightarrow i$ ) in 5-5, it can be shown that $\lrcorner M^{\prime}\times\{1\}\cup\cup\{C(N_{n}^{\prime}\cap 1\mathfrak{h}l^{\prime})\}$ is
contractible, then an $AR$ .

By the $Toru\acute{n}$czyk’s result (Theorem 3.1 in [25]),

$F^{\prime}=(M^{\prime}\times\{1\}^{l}\cup\{C(N_{n}^{\prime}\cap M)\})\times E\cong E$ .

Since $N\times\{1\}\times E\cap U\{C(N_{n}^{\prime}\cap M)\times E\}=U\{(N_{n}^{\prime}\cap M)\times\{1\}\times E\}\subset N^{\prime}\times\{1\}\times E$ is a
Z-set in each $N\times\{1\}\times E$ and $\cup\{C(N_{n}^{\prime}\cap M)\times E\}$ ,

$N\times\{1\}\times E\cup F^{\prime}=N\times\{1\}\times E\cup\cup\{C(N_{n}^{\prime}\cap M)\times E\}$

is an E-manifold by 5-2. Since

$M\times\{1\}\times E\times\{0\}\cap(N\times\{1\}\times E\cup F^{\prime})\times[0,1]=N\times\{1\}\times E\times\{0\}$

is a Z-set in each $M\times\{1\}\times E\times\{0\}$ and $(N\times\{1\}\times E\cup F^{\prime})\times[0,1]$ ,

$F=M\times\{1\}\times E\times\{0\}\cup(N\times\{1\}\times E\cup F^{\prime})\times[0,1]$

is also an E-manifold. Since $F$ has the same homotopy type as

$M\times\{1\}\times E\cup N\times\{1\}\times E\cup F^{\prime}=M\times\{1\}\times E\cup F^{\prime}$

and since $M^{\prime}\times\{1\}\times E=M\times\{1\}\times E\cap F^{\prime}$ is a strong deformation retract of $ M\times$

$\{1\}\times E,$ $F$ has the same homotopy type as $F^{\prime}\cong E$ , hence $F\cong E$ by the Clas-
sification Theorem [13]. Since $bd_{F}M\times\{1\}\times E\times\{0\}=N\times\{1\}\times E\times\{0\}$ , it is
easy to construct a desired embedding by the relative ST. $\square $

\S 7. Examples.

First, we give two examples, seeing the relation between the topological
boundary of an E-manifold embedded in $E$ as a closed set and its collared
submanifold. (First example is suggested by Prof. Y. Kodama.)

EXAMPLE 1. Let $B_{0}=S_{0}=\{0\}$ , $B_{n}=\{(x, y)\in R^{2}|((x-(2/3^{n}))^{2}+y^{2}\leqq(1/3^{n})^{2}\}$ ,
$S_{n}=bd_{R^{2}}B_{n}=\{(x, y)|(x-(2/3^{n}))^{2}+y^{2}=(1/3^{n})^{2}\}$ for each $n>0$ and let $ M=\cup\{B_{n}\}\times$

$E\subset R^{2}\times E\cong E$ . Then $M$ is an E-manifold because $U\{B_{n}\}$ is a finite-dimensional
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compact $AR$ . But $bd_{R^{2}\times E}M=(\bigcup_{n}S_{n})\times E$ is not an E-manifold because $\bigcup_{n}S_{n}$ is
not an $ANR$ .

EXAMPLE 2. Let $B=\{(x, y, 0)\in R^{3}|x^{2}+y^{2}\leqq 1\}$ and let $I=\{(0,0, z)\in R^{3}|$

$0\leqq z\leqq 1\}$ . Then $F=(B\cup I)\times E,$ $M=B\times E$ and $bd_{F}M=\{0\}\times E$ are homeomorphic
to $E$ because $B\cup I,$ $B$ and $\{0\}$ are finite-dimensional compact AR’s. And $bd_{F}M$

is not a Z-set in $M$, that is, not collared in $M$.
By Example 1, we see that the topological boundary of an E-manifold

embedded in $E$ as a closed set is not generally an E-manifold. By Example
2, we see that the submanifold being the topological boundary of an E-manifold
embedded in $E$ as a closed set is not generally a collared submanifold. These
show the difference of infinite-dimensional manifolds and finite-dimensional
manifolds.

In relation to Theorem 5-3, the following question rises: In an E-manifold
pair $(M, N)$ with $N$ a Z-set in $M$, the condition that $M/N$ has the homotopy
type of $S^{n}$ is the necessary and sufficient condition under which $M$ can be
embedded in $E$ such that $N$ is the top0l0gical boundary of $M$ and such that the
closure of the complement of $M$ has the homotopy type of $S^{n},$ $isn’ t$ it ? The
answer of this problem is “NO !” in case of $n=1$ . This problem was raised
by T. Watanabe when the author had a chat with him. The following
example was obtained then.

EXAMPLE 3. Let $(M, N)=(I\times E, \{0,1\}\times E)$ . Then $(M, N)$ is an E-manifold
with $N$ a Z-set in $M$ such that $M/N$ is homotopic to $S^{1}$ . When $M$ is embedded
in $E$ with $N$ being the topological boundary, $c1_{E}(E\backslash M)$ is homotopic to $S^{0}=$

$\{0,1\}$ . In fact, assume that $(M, N)$ is embedded in such a way. By 5-6, we
may also assume that $N$ is bicollared in $E$ . As same as the example in [20],

it is easy to see that $(E, M)$ is homotopic to $(I\cup X, I)$ where $X$ is some space
such that $I\cap X=\{0,1\}$ . Then $c1_{E}(E\backslash M)$ has the same homotopy type as a
one point union of two spaces $A$ and $B$ . Since $A\cup B$ contract to $\{p\}=A\cap B$ ,

we can obtain a contraction of $A$ to $\{p\}$ using a contraction of $A\cup B$ to $\{P\}$

and a retraction of $B$ to $\{p\}$ . Thus $A$ and $B$ are contractible. Therefore
$c1_{E}(E\backslash M)$ is homotopic to $S^{0}$ .

We leave the question: Under what condition can $M$ be embedded in $E$

such that $N$ is the top0l0gical boundary under the embedding and such that the
closure of the complement of $M$ in $E$ has the homotopy type of $S^{n}$ ?

The last example shows that the condition in 6-1 is not necessary.
EXAMPLE 4. Let $T$ be a solid torus in the unit-ball $B$ in $R^{3}$ . Then

$c1_{B}(B\backslash T)$ and $bd_{B}T$ are finite-dimensional compact ANR’s. We have an E-
manifold pair $(M, N)=(c1_{B}(B\backslash T)\times E, (bd_{B}T)\times E)$ with $N$ a Z-set in $M$ which

does not satisfy the condition in 6-1. But $bd_{B\times E}M=N$ and $B\times E\cong E$ .
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