J. Math. Soc. Japan
Vol. 29, No. 2, 1977

Embeddings of infinite-dimensional manifold pairs
and remarks on stability and deficiency

By Katsuro SAKAI

(Received March 23, 1976)

Abstract. In this paper, we treat of an E-manifold pair (M,N)
with N a Z-set in M where E is an infinite-dimensional locally convex
linear metric space which is homeomorphic to E® or E¥. And we study
the condition under which M can be embedded in E such that N is the
topological boundary under the embedding (Anderson’s Problem in ).
Moreover we extend the results on topological stability and deficiency, the
Homeomorphism Extension Theorem and the results in [ 18].

§ 0. Introduction.

For each space X, we denote by X“ the countable infinite product of X
by itself. And for each space X with a base point 0, X¢={(x;)€ X*|x;=0
for almost all 7}. A closed subset K of a space X is a Z-set in X if for each
non-empty homotopically trivial open set U, U\K is also non-empty and
homotopically trivial ([1]). An E-manifold is a paracompact manifold modelled
on a space E. As a modelled space, let E be a locally convex linear metric
space (LCLMS) homeomorphic (=) to E“ or E4. In an E-manifold pair (M, N),
N is a Z-set in M if and only if N is a collared closed set in M (collared in
the sense of M. Brown (see 4-4 in this paper). Then (M, N) may be con-
sidered as a manifold-with-boundary, N being the boundary. Thus the study
of E-manifolds-with-boundary becomes the study of such E-manifold pairs. How-
ever circumstances of infinite-dimensional manifolds are different from finite-
dimensional case (e.g., see Examples 1 and 2 of Sect. 7 in this paper).

In this paper, we study the problem for such an E-manifold pair (M, N):
Under what condition can M be embedded in E such that N is a topological
boundary under the embedding? This problem for separable [*-manifold pairs
was raised by R.D. Anderson in [2] In the previous paper [20], we found a
sufficient condition of this problem: N contains some deformation retract of
M. And we saw that even if N is homeomorphic to £, M cannot always be
embedded such a way. But we have an easy example of E-manifold pairs
which do not satisfy the above condition but which can be embedded such a
way.
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By the result of Torunczyk (Theorems 3.1 and 3.2 in [25]), every complete
metrizable AR (ANR) X admitting a closed embedding into £ is an FE-factor
(an E-manifold factor), i.e.,, XXE=FE (XXE is an E-manifold). Let D is a
2-dimensional closed disk with two holes in R®. Then

(M, N)=(DXE, (bdp:D)XE)

is an E-manifold pair with N a Z-set in M which does not satisfy the above
condition. But M can be embedded in £ such that N is the topological bound-
ary of M in E.

In Sect. 6, we shall find a little more mild sufficient condition including
this example. Furthermore in Sect. 5, we shall obtain a necessary and sufficient
condition under which M can be embedded in E such that N is the topological
boundary of M and such that the closure (or each component of the closure)
of the complement of M is contractible.

In Sect. 2, we generalize the results on topological stability (Geoghegan-
Henderson Theorem 1 and Schori Theorem 2.2) and the results on
E-deficient sets in E-manifolds (Chapman [9] Theorem 3.1 and Cutler
Lemma 3), and in Sect. 3, the Homeomorphism Extension Theorem (HET)
which was established by Anderson-McCharen and was extended by
Chapman [9] In Sect. 4, we generalize the results of [18].

The author whishes to thank Professor Y. Kodama for encouraging me
to write this paper and for his helpful comments.

§ 1. Notations.

Let a, B be collections of subsets of a set X. We write
st(a; p)={st(4;plAcqa}

where st(A; B)=U{BeB|ANB+0}, and then st(a)=st'(a)=st(a:a) and
inductively st™ (a)=st (st" ' (a);a). We say that a refines 8 (or a is a refine-
ment of j3) provided that for each A=a there is some B containing A. Let
v be another collection of subsets of X. It is easy to see that st(st(a; 3);7)
refines both st (a;st(8;7)) and st(a;st(r; B)). Maps f,g:Y—X are said to
be a-near (or f is a-near to g) provided that for each yeVY, f(y)=g(y) or
f(¥) and g(y) are both contained in some A=a. We write

axY={AxY|A=a}.

Let X, Y be topological space and let X'CX, Y'CY. Continuous map
f,g:(X, X)—(Y, Y’) are said to be homotopic (or f is homotopic (~) to g)
if there is a homotopy 2 : (XX I, X'XI)—(Y, Y") (I=[0, 1]) such that h,=f and
h,=g where h,: (X, X)—(Y, Y’) (¢t«I) is defined by h,(x)=h(x,t) for each x&
X. Let a be an open cover of Y. A homotopy (an isotopy) hA: XXI—-Y is
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said to be an a-homotopy (a-isotopy) provided that for each x=X there is
some Ue<a containing A({x} X I). Continuous maps f, g: X—Y are said to be
a-homotopic (or f is a-homotopic to g) if there is an a-homotopy h: XX I-Y
such that A,=f and h,=g. An isotopy h:XXI—Y is said to be ambient if
h(X)=Y for each t<I, and said to be invertible if h: XxI—Y xI defined by
h(x, t)=(h(x, t), t) for each (x, )€ Xx [ is an embedding.

“AR” and “ANR” mean “absolute retract for metric spaces” and “absolute
neighbourhood retract for mertic spaces” respectively. As concerns AR and
ANR, refer to the books of K. Borsuk and S.-T. Hu [15]

§2. Remarks on E-stability and E-deficiency.

In this section, we generalize the Geoghegan-Henderson’s result on strong
E-stability (Theorem 1 in and the Schori’'s Stability Theorem for open
sets inan LTS (Theorem 2.2 in[217]) and we give an alternative proof of Theorem
4.1 in [9] and its extension. T.A. Chapman showed the equivalence of FE-
deficiency and [*-deficiency for an LMS E=E” in [9] We show the equiva-
lence of E-deficiency and [}-deficiency for an LMS E=FE¢ and, as its corollary,
we get the extension of Cutler’'s result on negligibility of E-deficient sets
(Lemma 3 in [10].

Let E be an LTS. A space X is said to be E-stable if XXE=X. A
subset K of an FE-stable space X is said to be E-deficient in X if there is a
homeomorphism /4 : X—XXE such that A/{(K)C Xx{0}. An embedding f:Y—-X
is said to be E-deficient if f(Y) is E-deficient in X.

Although the following lemma is proved by the same way as Theorem
2.2 in [217], we give the proof to make sure, because some detailed remarks
are required and this is important.

2-1. LEMMA. Let E be an LTS, F=E® or =E% and X a space such that
each finite product XX E™ is perfectly normal. If a is an open collection in
XXF and W=\Ua, then there exists an I-preserving continuous map o%: XXF
X EXI->XXFxI such that

i) 6%x,0,0,t)=(x,0,1t) for each (x,0,0, ) e XX FXEXI,

ii) of: XXFXE—XXF is the projection,

iii) o (XX F\W)XE (XX F\W)XE—=XXF\W 1is the projection for each
tel,

iv) o%|WXEX(0, 1]: WXEX(0, 1J-WX(0, 1] ts a homeomorphism,

v) o | WX {0} XI: Wx {0} xI-WxXI is a closed embedding, and

vi) for each x&W, there is some Uca such that o*({x} X EXI)CUXI.

Proor. We denote x=(x,; xy, x,, )€ XXF. For each positive integer n,
let p,: XXF—XXE™" be the natural projection, i.e. p.(x)=(x,;x;, -+-, x,) for
x€ XX F. Deafine an I-preserving continuous map 6 : (XX F)XEXI—-(XXF)XI
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by
0(x, y, 1)=(xy; X1, ***, Xn, ¥ €08 (1=2")T+ X4, sin (1—2"1)7,
ysin (1—2"t)7’r—xn+1 cos (1—2"1)T, —Xp12, —Xnigy = 1)
for each (x, 3, ) E(XXF)XEX[2-™+b 2777
and

6(x, y, 0)=(x, 0) for each (x, y, 0)e(XXF)XEX {0} .

Then G| XXFXEX(0,1]: XXFXEX(0,1]-XXFx(0,1] is a homeomorphism.
And note that if t=27", then p.0,(x, y)=p.(x) for (x,y)e(XXF)xXE. Let S
be a basic open cover of W which refines «. By Lemma 5.2 in [21], there is

a collection {K,|neN} of closed sets in XX F such that OKnZW and for
n=1

each n, p;'p(K,)=K,.Cint K, N\\I{BE|p;'p.(B)=B}. For each x=W, put
n(x)=min {neN|x€K,}. Then x&K,\K,»-,. By perfect normality, there
is a sequence {k,|nEN} of continuous maps k,:p,(K,\int K,_,)—[2 **> 27"]
such that

kp' (27 ) = pp(bd K,) = bd pu(Ky)
and

k;1<2_n) :pn(bd Kn-l) =bd pn(Kn——l)

where K,=0. Define a continuous map k: W—(0, 1] by k(X)=F.nPn(x) fo
xeW. Then for each x=(x,; x4, X, ---)EW,
k(x):k(xo 3 X1y %y X *; *v "') é 27
Now define 0% : (XX F)XEXI—-(XXF)XI by
(Orren(x, ¥), 1) for each (x,3, H)EWXEXI
o"(x,5, 0=
(x, 1) for each (x, v, H) (XX F\W)XEXI.

Then it is trivial that this map satisfies conditions i), ii) and iii). We must
examine the continuity of this map and the other conditions.
vi) Let xeW. Since x&K,,), there is some B j such that

p;(lx)pn(a:)(B): B=x.
For each yeF and each t=(0, 1]

Pn(z)ﬂf”(x’ y) - pn(z)atk(x)(x’ y) - pn(x)(x> Epn(z‘)(B)

because tk(x)<2"™®, Then o*({x} X EXI)CBXI. Since B is a refinement of
a, there is some U<ca such that ¢*({x} X EX)CUX L.
iv) Define a continuous map ¢’ : WXx(0, 11-W X Ex(0, 1] by

o'(x, 1) = (0kz(x), 1) for each (x, He Wx(0, 1].
Let (x, )eWx(0, 1] and o'(x, t)=(x/, ¥/, ) e WX EX (0, 1]. Since x=0, 5 (%', ¥’)
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and tR(X) =277, Py (X) =Dnmrlircer (X', ¥)=Prcn(x) the;refore k(x)=Fk(x’). Then
o.aa./(x, t):g‘“(x’, y/y t):(atk(z’)(xly y,)7 t):(ﬂtk(.z‘)(xl7 y,)9 t):(x» t) .
Now let (x,y, t)eWXEX(0,1] and o¢%(x, y, )=, HeWx(0,1]. Since x'=

Oieen(x, ¥) and tR(X)S27™P, DX ) =Dncnylircar(X, ¥)=Ducr(x) therefore k(x")=
k(x). Then

0’'a%(x,y, )=0"(x, ) = (Oias(x), 1) = (OiryO11cr(x, ¥), ) =(x, 3, 1) .
Continuity of ¢: We may examine that ¢® is continuous at (x,y, 0)
WX EX{0}(1) and at (x, ¥, t)e(XXF\W)X EXI(2).
1) Let V be any neighbourhood of ¢%(x, v, 0)=(x, 0) in XX FXI. Then there

are a positive integer n and an open set U in XXF such that p;'p,(U)=U
and (x,0)eUX[0, 27MCVAWXI. For each (x/,y, t)eUXEX[0,2™™),

D0t (X, V)= Pl o (x', ¥) = pu(x)EPa(U),
then of(x’, y)eU. Therefore a*(x’,y’, ') UX[0, 27" V.

2) Now let V be any neighbourhood of ¢*(x, v, )=(x, ) in XX FXI. Then
there are a positive integer n, an open set U’ in XXF and a neighbourhood
J of tin I such that p;'p,(U)=U’ and (x,)eU’'XJCV. Then U=U\K, is
a neighbourhood of x in X. Let (x/,y,t)eUXEX]. If x¥’«€W, o*(x',y, t")=
(x,tYcUx]J. If ¥eW,n(x’)>n because x’&K,. Then t'k(x)<27"*L27"
therefore p,0%(x, ¥ )=pp0, (X', ¥)=pa(x") Ep(U)CTP,(U’), that is, of(x’, ") &€
U’. Therefore o*(x’, y', thYeU X JC V.

v) It is trivial that o®| WX {0} XI is a continuous injection. We may
observe that this is a closed map. Let A be a closed set in WX {0} X7 and
(x, t)yecle®(A)CTWxI. When t+0,

(x, Hyeclo(ANWX (0, 1T= (AN X EX(0, 1])Ca%( A)

by iv). When t=0, we will see that (x, 0, 0)= A then (x, 0)=0%x, 0, 0)=c“(A).
For each neighbourhood V of (x,0,0) in WX {0} X/, there are a positive
integer n and an open set U in W such that p;'p,(U)=U and (x, 0, 0)eUX
{0} x[0,2"™C V. Since UX[0,27") is a neighbourhood of (x, 0) in WX, there
is some (x/, 0, )= A such that o%(x’, 0, t"Y=UX[0, 27"). Because #’'<27", p,(x")
=po8(x’, 0)=p,(U), that is, x’=U. Then (x/, 0, ') U X {0} x[0, 2-")C V. There-
fore ANV=#0, so (x,0,0)=sclA=A. O

2-2. THEOREM. Let E=E® or =E¢ be a perfectly normal LTS and G an
open set in an E-stable perfectly normal space X. Then for each open cover «
of G, there exists an I-preserving continuous map 4%: XX EXI—XXI such that

i) 43:XXE—X is the projection,

ii) 4¢|[(X\G)XE :(X\G)XE—X\G is the projection for each t<],

iii) 4*|GXEX(0,1]: GXEX(0,1J-Gx(0, 1] is a homeomorphism, and

iv) for each x=G, there is some Usa such that 4%({x} X EXI)CUXL
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PrROOF. Let F=E“ or =FE¢%. Since X is E-stable, there is a homeomor-
phism h:X—XXF. Then 4°=(h'Xid;)e"®(hXidg.;): XXEXI-XXI is a
desired map. O

A space X is said to be strongly E-stable if for each open cover a of X,
there is an I-preserving continuous map 4%: XX EXI—-XXI such that 4§: XX
E—X is the projection, 4| XX EX (0, 1]: XX ExX(0, 1]—-Xx(0, 1] is a homeomor-
phism and for each r< X, there is some U<a such that 4°({x} X EX)CUXI.
As a corollary, we get the Geoghegan-Henderson’s result on strong E-stability
(Theorem 1 in [12]) whose original proof holds a technically wrong part.

2-3. COROLLARY. Let E=E® or E=E¢ be a perfectly normal LTS and X a
perfectly normal space. Then X is E-stable if and only if each open subset of X
is strongly E-stable.

2-4. COROLLARY. FEach open set in a perfectly normal LTS E=E® or =FE¢
s strongly E-stable.

The following theorem is an extension of Theorem 4.1 in [9].

2-5. THEOREM. Let E=E® or =E¢% be a perfectly normal LTS and K an
E-deficient subset of an E-stable perfectly normal space X. Then for each open
cover a of X, there exists an invertible a-isotopy g,: X—X (t€I) such that

i) g=id,

i) g.|K=id for each t<l, and

iii) g,: X—X is an E-deficient closed embedding for each t=(0, 1].

PROOF. Let F=E” or =FE%. Since K is E-deficient in X, there is a
homeomorphism & : X—XXF such that A(K)C Xx {0}. Define a closed embed-
ding i: XX F->XXFXE by i(x, y)=(x,y,0) for each (x,y)€XXF. Then g=
(h*Xid;)e™®(th Xid;) : XX [-XXI is a desired isotopy. O

The following result is a generalization of Theorem 3.1 in [9].

2-6. THEOREM. Let E=E® (or =FEY¢) be an LMS and K a subset of an E-
stable space X. Then K is E-deficient if and only if K is [>-deficient (or [3-deficient).

ProOF. If E=E®, this is Theorem 3.1 in [9]

If E=E9, the Bartle-Graves-Michael’s Theorem induces E=EXRY¢ by
the same argument as in the proof of Theorem 3.1 in [9] Since R%=0[, we
have E=EXI% This enables us to see that E-deficiency implies [}-deficiency
by the argument of the proof of Theorem 3.1 in [9] For the opposite im-
plication, the following remarks enable us to apply the arguments of the proof
of Theorem 3.1 in [9] in the case E=FE%. The homeomorphism in Lemma 3.1
in T9] is obtained from the homeomorphism f:EX[0, 1) XE“—C[E]XE® de-
fined by

J(x0, 1, X1y Xgy +) = (X €08 (1 =2"1)+ Xy 8in (1—2"0)7, 8, —Xo, **+, — Xy,

—x, sin (1—2")T+ X1 €08 (1—2"D)T, Xpy0y Xnis, **)

for eaCh (xo’ ti X1y Xy '“)EEX[z—(TH‘Dy 2-n]><Ew
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and
f(xo’ 09 X1y Xy "'):(07 —Xoy — X1y — Xy, ) ‘
for each (x,, 0, x;, x,, ~--)EEX {0} X E“.

Then Lemma 3.1 in [9] is valid for E=E% by restricting this homeomorphism.
Since (S, S7) in an (/% [})-manifold pair (Definition (4) in [14]) where S,={x<[?
[|x]|l=1} and Si={x<[||x]|=1} and since S;=[* (Klee's result I 1.3),
we have S{=/% by Theorem 2 in [14] O :

An invertible isotopy pushing K off X is an invertible isotopy h,: X—X
(tel) such that h,=id, h,(X)=X\K and that A, is onto for each t<[0,1). A
subset K of X is extractible from X if for each open cover a of K in X, there
is an invertible a-isotopy pushing K off X. The following corollary is a
generalization of Lemma 3 in [10].

2-7. COROLLARY. Let Ex=E® or =E% be an LMS and X an E-stable metric
space. Then an E-deficient locally closed subset K of X is extractible from X.

PROOF. The invertible continuous family of invertible isotopies pushing
the origin off /* which is defined on pp. 284-286 of [3] can be restricted to
%2 and we have the invertible continuous family of invertible isotopies pushing
the origin off /7. Then the proof of Lemma 3 in holds also true for E=
E¢. O

§ 3. The homeomorphism extension theorem.

In this section, we generalize the HET in [9]. For this purpose, we pro-
vide the extension results of Lemma 5.1 and 5.2 in [9].

Let X be a metric space with a metric d. For an open cover a@ of X,
define a continuous function e¢: X—R* by

e(x)=sup {seR*|B,(x)CU for some Uca}

where R* is the positive real half-line and B,(x) means the open ball with the
center x and the radius s. This function is called a majorant for a with
respect to d (see 2). If d(f(»), g(y)<ef(y) for each yevY, g:Y—-X is
a-near to f:Y—X. ‘

The following theorem is an extension of Lemma 5.1 in [9] We prove
this by means of the technique in the proof of 2-1 and consequently, we can
omit the condition of local convexity in Lemma 5.1 in [9].

3-1. THEOREM. Let E=E“ or =FE¢ be an LMS, M an E-stable metric space
and let X be a space which can be embedded as a closed subset of E. If f: X—M
1S a continuous map such that f|A is an E-deficient closed embedding of a closed
subset A of X in M, then for each open cover a of M, there is an a-homotopy
f¥: X—M (te]) such that
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i =/,

i) fX|A=flA for each t<l, and

iii) fi¥: X—M is an E-deficient closed embedding.

PrROOF. Since E=E® (or =F%), EXEX[ (or =EXI}) (cf. the proof of 2-6).
Since [*XI=[* and [5X 1=} by Klee’s result III 1.3 and Chapman’s result
2.12 or Torunczyk’s result [24], EXI=E. Let F=E“ or =FE%, then FXI
=F.

Let 8 be a star-refinement of @. By 2-5, there is an invertible pS-isotopy
g, : M—M (teI) such that g,=id, g,|f(A)=id for each t=Il and g, (M) is E-
deficient closed in M. Then there is a homeomorphism h: M—MXFXI such
that Ag,(M)CMx {0} x{0}. Let p: MXFXI—M be the projection. Note that
hg(x)=(phg(x), 0, 0) for each xeM. Let §: MXFXEXI-MXFXI be the I-
preserving continuous map defined in the proof of 2-1, i: X—E a closed
embedding, dx, dy and dy metrics bounded by 1/4 on X, M and F respectively,
d the metric on X defined by d(x, ¥)=dx(x, y)+du(f(x), f(¥)) and e: MX FXI—
R* a majorant for A(f8) with respect to the metric d* on MXFXI defined
by

a*((x, (y2), O, (x', (30), 1)) = du(x, x/)+§12—idE(yiy yo+27 =t

Define a continuous map k: X—R by k(x)=d(x, A)=inf {d(x, ¥)|]ys A} for each
x&X. Then e is bounded by 1 and % is bounded by 1/2 and non-negative.
And 271(0)=A.

Define a homotopy f/: X—M (tel) by

fix)=h"0(phg, f(x), 0, i(x), tk(x)ehg,f(x)) for each x= X.
It is easy to see that f{=g,f and f;|A=f|A for each t=I. Since

k(x)ehg, f(x)=1/2 for each xe X,

it is easy to see that fi(X) is E-deficient in M. Although we must show that
/1 is a closed embedding, we may show that f] is a closed map as it is obviously
a continuous injection. Let {x,} be any sequence in X such that {f{(x,)} is
convergent in M. Then {0(phg, f(x,), 0, i(x,), k(x,)ehg, f(x,))} converges some
(x,3,t) in MXFxI. Since 8 is I-preserving, k(x,)ehg,f(x,) converges to t.

i) In case of t#0: Since Fk(x,)ehg, f(x,)#+0 for sufficiently large n,
{(phg,f(x,), 0, i(x,), k(x,)ehg, f(x,))} convergent to 6 '(x,y,t). Then {i(x,)} is
convergent. Since ¢ is a closed embedding, {x,} is also convergent.

ii) In case of t=0: By definitions, it is easily seen that

{d*(0(phg, f(xa), 0, i(xa), k(xn)ehg, f(x)), hgi f(x,))}

converges to 0. Then {hg f(x,)} converges to (x, 5, 0). Therefore y=0. For
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sufficiently large n, d*(hg,f(x,), (x, 0, 0))<—:1§~e(x, 0, 0), then there is some U<
h(B) such that Be(x,o,o)/3(hglf<xn)>cBQe(x,O,O)/?»(xr 0,0)cU. Therefore ehg, f(x,)=
%—e(x, 0, 0), so ehg,f(x,)#0 for sufficiently large n. Therefore {k(x,)} con-

verges to 0. Moreover {f(x,)} converges to x'=(hg,)"'(x, 0, 0) because hg, is
a closed embedding. For each n, there is x,=A such that d(x,, x,)<2k(x,).
Since du(f(x7), X )=dy(f(x2), (X)) +du(F(x3), ) <2k(x)+dy(f(x), x7), {F(x0)}
converges to x’. Then {x;} is convergent in A because f|A is a closed
embedding. Since {d(x,, x;)} converges to 0, {x,} is also convergent.

For each x€ X, d*(0(phg,f(x), 0, i(x), tk(x)ehg, f(x)), hg, f(x))<2tk(x)ehg, f(x)<
ehg, f(x), then there is some U< such that 6(phg, f(x), 0, i(x), tk(x)ehg, (X)),
hg, f(x)eh(U), that is, fi(x), &.f(x)eU. Therefore f;: X—M (t) is a S-homo-
topy such that fo=g,f, fi] A=f|A for each t€[ and f{: X—M is an E-deficient
closed embedding. The desired a-homotopy fF: X—M (t=I) is defined by

2o f(%) for 0= 1<
FHx) = 1
f;c—l(x) for Tétél' O

Next we extend Lemma 5.2 is [9] This can be proved by the same way
as but we give an alternative proof.

3-2. LEMMA. Let ExE® or =E$ be an LMS, M a connected E-manifold
and K an E-deficient closed set in M. Then there exists an open embedding
h: M—E such that h|K:K—FE is an E-deficient closed embedding.

PROOF. Since E=E® or =E¢, EXR=E. Since K is E-deficient in M,
there is a homeomorphism f: M—MXEXR such that f(K)eMx {0} x{0}. By
the Henderson’s Open Embedding Theorem [13], there is an open embedding
g:M—E. Define a continuous map h': MXEXR—EXEXR by

h'(x,y, )=(g(x), y, t+k(x))  for each (x,y, )EMXEXR

where k2: M—R is a continuous map defined by k(x)=d(g(x), E\g(M))™* (d is
a metric on E). Then W(MXEXR)=g(M)XEXR is open in EXEXR and
WIK)CTh (MX {0} X {0})CTEX {0} XR. Itis easy to see that A’ is an embedding
and that A/(MX{0}x{0}) is closed in EX {0} XR. Let f/:EXEXR—E be a
homeomorphism. Then h=f'h’f is a desired open embedding. O

HET: Let E=E® or =E% be an AR LMS, M an E-manifold and K an E-
deficient closed set in M. If a is an open cover of M and if h,: K—M (teI)
i1s an a-homotopy such that h,=id and h, is an E-deficient closed embedding,
then for each open cover B, there exists an ambient invertible st (a; p)-isotopy
hy: M—M (t€I) such that h,=id and h,|K=h,.

ProOF. Now, this theorem can be proved by the same argument as the
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proof of Theorem 2 in since Lemma 5.1 and 5.2 in [9] have been extended.
But to avoid using the unpublished result of D. W. Henderson® which is used
in the proof of Theorem 2 in [9] and to improve the limitation by covers,
we show that the case KN4, (K)=0 induces the general case. Note that in
the case KN\h,(K)=0 we obtain our limitation in the proof of Theorem 4.2 in
with obvious modifications.

Let 7 be a star-refinement of 8. By Theorem 2.1 in which is also
valid for E=FE¢ with suitable modifications, K\Uh,(K) is also E-deficient. Then
there is a homeomorphism #2: M—MXR such that 2(K\Uh(K))CMx{0}. Let
¢: MXR—R* be a majorant for k(y) with respect to the product metric d.
Define an ambient invertible isotopy f,: MXR—MXR (tl) by

[ (5 (145 )ste(s, 0) it —e(x, =520,

fix, s)=[ (5, (=L )sttoe 0)  if 0=s5tex, 0),

(x, ) otherwise.

If d((x, ), (x, 0))<-3-¢(x, 0) then d(f,(x, ), (x, 0)<—e(x, 0) and if d(x,5), (x, 0)

> 1 o(x 0) then fi(x, )=(x,5). Thus f is a k(y)-isotopy. Then k=f.k: M—M
(teI) is an ambient invertible y-isotopy such that 27'fk=id and

k™1 1 R(K\S Ry (KN KV hy(K))=0.

Since k~'f,kh,: K—M (tel) is a st(a; y)-homotopy such that k~'f kh,=id and
k™'f,kh, is an E-deficient closed embedding and KNk~ f,kh,(K)=0, there exists
an ambient invertible st(st(a;y);7)-isotopy g.: M—M (tI) such that g,=id
and g,|K=Fk"'f,kh,. Then k7 f;'kg; fulfills our requirements. 0O

§4. The relative stability theorem and the relative
approximation theorem by embeddings.

In this section, we establish the relative ST (Stability Theorem) which
will hold a basic part in our Embedding Theorems in Sect. 6 and we gener-
alize the result of which is called the relative ATE (Approximation
Theorem by Embeddings).

A characterization of Anderson’s Z-sets in Q or s (=R*) by H. Toruficzyk

*) Recently, this appeared in Trans. Amer. Math. Soc., 213 (1975), 205-217. But its
proof is complicated.
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in [22] can be generalized to one of Z-sets in any paracompact Hausdorff
space X which is locally homotopically trivial, i.e., admitting a fundamental
neighbourhood system consisting of homotopically trivial open sets: K is a Z-
set in X if and only if K is a closed set in X such that for each continuous
map f:1"-X and for each open cover a of X, there exists a continuous map
g:I"=X\K which is a-near to f. Thus if E=E® or =E¢ is an LMS, then E-
deficient closed sets in an E-stable locally homotopically trivial metric space are
Z-sets by 2-7. Conversely, T.A. Chapman showed in [9] that Z-sets in E-
manifold are E-deficient in case that E=E® is a Fréchet space. The author
does not know whether it is true in more general case that E=E“ or =E?% is
an (LC) LMS. But H. Torunczyk showed that closed submanifolds of an E-

manifold which are Z-sets are E-deficient in case that E=E® or =Ep is an
LCLMS (Lemma 6.2 in [24]).

We require the following lemma.

4-1. LEMMA. Let E=E? or =E¢ be an LCLMS, M be an E-manifold and
let K be an E-deficient closed set in M. Then for each open cover a of M,
there exists a homeomorphism h: MXE—M such that h(x, 0)=x for each x€K
and h is a-near to the projection p: MXE—M.

PrROOF. Note that Theorem 2.2 in is also valid for E=E% with suita-
ble modifications. This lemma is derived from this theorem, the ST (with 2-3)
and the HET as all the same as Lemma 2.1 in [18] O

4-2. PROPORITION. Let E=E® or =E¢ be an LCLMS, M, and M, be E-
manifolds, M, be connected (more generally, M, can be embedded as a closed set
in E) and let f: M,—M, be a continuous map. Then for each open cover a of
M, and for each E-deficient closed set K in M,, there exist an open embedding
g: M,—M, and a closed embedding h: M—M such that g, h are a-homotopic to
f and g(K), h(K) are E-deficient closed sets in M,.

4-3. COROLLARY. Let E, M,, M, be as above and let f:M,—M, be a con-
tinuous map such that for some E-deficient closed set K in M, f|K is an E-deficient
closed embedding. Then for each open cover a of M, there exist an open em-
bedding g: M,—M, and a closed embedding h: M,—M, such that g, h are a-
homotopic to f and f|K=g|K=h|K.

The proofs of the above proposition and corollary are all the same as
Proposition 2.2 and Corollary 2.5 in [I8] And the following ATE is derived
from 4-2, the HET and 2-7 by the same way as the proof of Theorem 2.6
(2.6") in [18].

RELATIVE ATE: Let E=E® or =E¢ be an LCLMS, (M;, N;) be an E-
manifold pair with N; a Z-set in M; (i=1, 2), M, be connected (more generally,
M, can be embedded as a closed set in E) and let f: (M, N,)—(M,, N,) be con-
tinuous. Then for each open cover a of M, there exist an open embedding
g: (M, N)—(M,, N,) and a closed embedding h:(M,, N,)—(M,, N,) such that g,
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h are a-homotopic to f: (M, N,)—(M,, N,). Furthermore g(M)N\N,=g(N,), that
is, &: (My, Ny, MA\N)—(M,, Ny, M,\N,).

4-4. COROLLARY. Let E=E® or =FE¢ be an LCLMS and let (M, N) be an
E-manifold pair with N a Z-set in M such that M is connected (more generally,
M can be embedded as a closed set in E). Then

i) there exists an open embedding ©: M—E X E such that i(N)=i(M)"\E X {0},

ii) there exists an open embedding j: M—EX[0,1) such that j(N)=j(M)N
Ex{0}.

From 4-4, it is derived that in an E-monifold pair (M, N), N is a Z-set
in M if and only if N is a collared closed set in M (see the foot note (2) in
[207). But this result is directly derived from Theorem 1 in and Proposi-
tion 5.1 in [11].

Now we establish the relative ST :

RELATIVE ST: Let E=E® or =E¢ be an LCLMS and let (M, N) be an
E-manifold pair with N a Z-sel in M. Then for each open cover a of M, there
exists a homeomorphism h:(MXE, NXE)—(M, N) which is a-homotopic to the
projection p:(MXE, NXE)—(M, N).

PrOOF. Let 8 be an open cover such that st?(8) refines « and i: M—MXE
be defined by i(x)=(x, 0) for each x€M. By 4-1, there is a homeomorphism
f: MXE—M such that fi|N=id and f is B-near to p. And there is a homeo-
morphism g: NXE—N which is S-near to p by the Schori’s Stability Theorem
and 2-3. Since ig: NXE—-MXE is an FE-deficient closed embedding which
is (BX E)-near to id and since NXE is an E-deficient closed set in MXE, there
exists a homeomorphism h:MXE—MXE such that A|{NXE=ig and h is
(st (B)XE)-near to id. Thus fh:MXE—M is a homeomorphism such that
fhINXE=fig=g. Since ph, p: MXE—M are st(B8)-near and since fh, ph:
MXE—M are [-near, then fh is st’(8)-near (then, a-near) to p:MXE—M.
As the modification of 2.6 to 2.6’ in [18], we obtain the theorem by 4-4. O

§5. Embedding theorem with compliment conditions.

In this section, we consider the conditions for an E-manifold pair (M, N)
with N a Z-set in M under which M can be embedded in E such that N is
the topological boundary of M and the closure (or each component of the
closure) of the complement of M is contractible.

By a cone over a metric space X, we mean the topological space

(C(X), ©)=({0x} VY XX(0, 1], )

where 7 is the topology generated by open sets in XX(0, 1] and sets {0x}\J
Xx(0,t) (0<t<l). Let d be a bounded metric on X. By the Arens-Eelles’
Theorem (for a shorter proof, see [23]) X has an isometric closed copy
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X’ in some ball B of some normed linear space E. It is easy to see that the
natural map of C(X) onto {(tx,t)e EXR|t<[0, 1], x€ X’} is a homeomorphism.
Then these may be identified. Moreover, note that C(X)={(tx+(1—0)x, 1)
EXR|te[0,1], x€ X’} where x, is any given point of E. If X is an ANR,
then C(X) is a neighbourhood retract of C(B). Since

C(B)={(tx, t)e BX[0, 1]|x€B, t<[0, 1]}

is a retract of an AR BX[0,1], C(X) is an ANR. Hence C(X) is an AR
because it is contractible. (This may be derived from Lemma 4.1 in as
in the proof of Theorem 4.2 in [24].)

By a mapping cylinder of a continuous map f: X—Y of a metric space X
to a metric space Y, we mean the topological space

(M(f), )= (Y x {0}V Xx(0, 1], 7)
where 7 is the topology generated by open sets in XX (0, 1] and sets
VXA0} U H(V)X(0, 1),

V is open in Y and 0<t<1. By the Arens-Eelles’ Theorem, X and Y have
homeomorphic bounded closed copies X’ and Y’ in some normed linear spaces
E and F, respectively. Let f/: X’—Y"’ be induced from f:X—Y. Then it is
easy to see that the natural map M(f) to

{(tx, A—=0)f"(x), heEXFXR|t<[0, 1], x€ X'}\V{(0, y, ))eEXFXR|ycY’}
is a homeomorphism. When Y is a one-point space and f: X—Y is constant,
M(f) is a cone C(X) over X.

The following lemmas are useful in the proofs of our Embedding Theorems.

5-1. LEMMA. Let X be an ANR and Y a contractible closed subset of X.
Then the quotient map q:(X, Y)—(X/Y, X/Y) is a homotopy equivalence.

ProoFr. Since X has the homotopy extension property for (X, Y), there
is a homotopy f,:(X, Y)—(X,Y) such that f,=id and f,|Y is a contraction
of Y. This homotopy f, induces a homotopy f,:(X/Y,Y/Y)—(X/Y,Y/Y)
such that f,g=qf,. And f, induces a continuous map g:(X/Y, Y/Y)—(X,Y)
such that gg=/f, because f,(Y) is single point. Then gq=f,~f,=id: (X, Y)—
(X, Y) and gg=f~f,=id: (X/Y, Y/Y). O

5-2. LEMMA. Let E=E” or =E% be an LCLMS. If M, X and MNX are
E-manifolds and if MNX is a Z-set in each of M and X, then M\UX is also
an E-manifold.

ProOOF. Since MM X is bicollared in M\U X, and since EXR=E, the proof
is easy. 0O

5-3. THEOREM. Let E=E® or =E% be an LCLMS and let (M, N) be an
E-manifold pair with N a Z-set in M such that dens M=dens E. Then there
exists an embedding h: M—E such that bdgh(M)=h(N) and clg(E\Nh(M)) is
contractible if and only if M/N is contractible.
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PrRoOOF. First, assume MCFE, bdzM=N and clg(E\M) is contractible. Since
N=bdg(E\M) is collared in M, clz(E\M) is a neighbourhood retract of E,
that is, an ANKR. Hence clg(E\M) is an AR. It is straightforward to see
that clg(E\M) is a strong deformation retract of E. Therefore M/N=E/
clz(E\M) is contractible.

Next, assume M/N is contractible. By the Triangulation Theorem (Theo-
rem 3.4 (a) in [25]), there is a homeomorphism 4:N—|K|XE where K is
some locally finite-dimensional simplicial complex. By the Torunczyk’s result
(Theorem 3.1 in [25]), C(|K|)X E=E. Since M(ph)=C(|K|)XE where p: |K|XE
—FE is the projection, and since MX {1} "\M(ph)=Nx {1} is a Z-set in each of
Mx {1} and M(ph), F=MX{1}\UM(ph) is an E-manifold by 5-2. By 5-1,
(F, M(ph)) is homotopic to (F/M(ph), M(ph)/ M(ph))=(M/N, N/N), therefore F
is contractible. By the Classification Theorem in [13], F=E. And then
bdpMx {1} =Nx {1} and clz(F\MX {1} )=M(ph)=E. This completes the proof. O

The above proof contains the alternative shorter proof of Case II-i) of
Theorem in [19] Although the following corollary is directly proved in a
general case, to use it in 5-5, we give its proof.

5-4. COROLLARY. Let (M, N) be as 5-3. If M/N is contractible, the in-
clusion 1: N—M induces an isomorphism ix: He(N)—Hx(M).

PrOOF. It is well known that Hx(M, N)=H (MX{1}\UC(N), C(N)). By
above proof, MX {1}\UC(N) and C(N) are contractible. Then Hy«(M, N)=0. O

Let {X,} be a (finite or infinite) sequence of subsets of M. A sequence
{L,} of paths in M is a chain of paths in M connecting {X,} provided {L,}
is pair-wise disjoint (i.e., L, L, =0 if n=n’) and each L, intersects only two
members X, and X,,, at its end-points. '

If M is a connected E-manifold and U{X,} and each X, are E-deficient
closed subsets of M, by 2-7, we can inductively show the existence of a chain
of paths in M connecting {X,}.

5-5. THEOREM. Let E=E® or =E¢ be an LCLMS and let (M, N) be an
E-manifold pawr with N a Z-set in M such that M is connected and N has at
most countable many components. Then following conditions are equivalent:

i) There is an embedding h: M—E such that h(N)=bdzh(M) and each
component of clg(E\M(M)) is contractible.

ii) For any ordering {N,} of all components of N and for any chain of
paths {L,} in M connecting {N,}, M/N\U\U{L,} is contractible.

iii) There are some ordering {N,} of all components of N and some chain
of paths {L,} in M connecting {N,} such that M/N\I\J{L,} is contractible,

PROOF. ii)>iii) is trivial.

i)=>ii): Assume MCE, N=bdzM and each component of clz(E\M) is
contractible. By the same argument as the proof of 5-3, clz(E\M) is an ANR.
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Because M is collectionwise normal, clz(E\M)N\U{L,}=NN\U{L,} is totally
disconnected, then it is an ANR. Hence clz(E\M)U\U{L,} is also an ANR.

Let D be a component of clz(E\M). Then D is a contractible ANR, that
is, an AR. Since M is connected, so is clg(E\D). Because bdz;D=NND is
open and closed in N, bdzD is a collared closed submanifold of M (see 4-4).
Since M is a neighbourhood of bdgD in clg(E\D), (clg(E\D), bdgD) is an E-
manifold pair with bdgD a Z-set in clg(E\D). By 5-3 and 5-4,

Hy(bdg D)= Hy(clz(E\D))=0.

Thus bdgD is a connected open and closed subset of N. Hence bdgD is a
component of N. And so, let {D,} be a sequence of all components of clg
(E\M) such that bdzD,=N,. Since each D, is an AR, it is easily shown that
clg(EA\MYJ\U{L,}=U{D,}\JU{L,} deforms to a path or a half open path in
inself. Then clg(E\M)J\J{L,} is a contractible ANR, that is, an AR. Again
by the same argument in the proof of 5-3, M/N\U\UJ{L,}=FE/clg(E\D)JU{L,}
is contractible.

iili)>i): By the Triangulation Theorem (3.4 (a) in [25]), there are homeo-
morphisms h,:N,—|K,|XE where K,’s are some locally finite-dimensional
simplicial complexes. Similarly as the proof of 5-3, M(p,h,)=E where p,:
|K,| XE—{n}xXE is the projection. Since \U{M(p,h,)} is an E-manifold and
since MX {1I}N\\U{M(ph)} =U{N, X {1}}=NXx {1} is a Z-set in each of MX {1}
and \U{M(p,h,)}, F=Mx {1}V U{M(p,h,)} is also an E-manifold by 5-2.

Let

Li={(n+t, 1—t)pphp(a,)+tph, (b)) |0=t=1}CRXE and
Jorr=1{(n+1, (A=) pnsrhns1(bp)+ tpr;+1hn+1(an+1)) 0=t=1}C{n+1} XE

where a,< N, and b, N,,, are the end-points of L,. Take a continuous map
i NUU{L,} = U{{n} XE}UU{IL,} such that f|L,:L,—I, is a homeomorphism
and f|N,=bp.h, for each n. Since FN\U{M(f|L,)} is an ANR because it is
homeomorphic to a disjoint union of intervals and since F and \U{M(f|L,)} are
ANR’s,

MXA{IPUM(f) = MX AL INHMF [N VUM | La)} =F I U{M(f | La)}

is also an ANR. And it is easy to see that MX {1}UM(f)=FU\JU{M(f|L,)}
collapses to F, hence homotopic to F. Note that each J, is a strong deforma-
tion retract of {n} X E because J, and {n} XE are AR’s. Since one can deform
M(f) to U{{n} XxE}UU{L,}, and to \U{J,}\YU{L,}, M(f) is contractible. By
5-1, (MX {1}\UM(f), M(f)) is homotopic to (M X {1}\IM(f)/M(f), M(f)/M(f))=
(M/NU\U{L,}, NUU{L,}/NUU{L,}). Then MX{1}\UM(f) is contractible,
therefore F is a contractible E-manifold, that is, homeomorphic to E by the
Classification Theorem in [13]. And we have bdpM X {1} =\U{N, X {1}} =NX {1}
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and clz(F\MX {1)=\U{M(p.h,)} =\J{C(|K,|)X E}. This complete the proof. O

5-6. PROPOSITION. Let E=E® or =FE% be an LCLMS and let (M, N) be
an E-manifold pair with N a Z-set in M. If there is an embedding h: M—E
such that bdgh(M)=h(N) then there is an embedding h': M—E such that
bdgh/(M)=h/'(N).is bicollared in E and clg(E\W'(M))(=E\h (M) has the same
homotopy type as clg(E\h(M)).

PRrROOF. Since N is collared in M (see 4-4), there is an open embedding
g2:NX[0, 1)>M such that g(x, 0)=x for each x&N. Let h': M—E be defined
by
h(x) for xe M\g(NX[0, 2/3))

hg(id X k)(x) for xeg(Nx[0, 2/3])

where &: [—I be defined by k(s)=(1/2)s+(1/3) for s=1.
It is clear that

hY(x) = {

bdgh/(M)=h'(N)=hg(Nx{1/3})

is bicollared in E and that clg(E\RM(M))=E\R(M\g(Nx{0})) is a deformation
retract of E-manifolds clg(E\R'(M))=E\R(M\g(NX[0, 1/3])) and E\W(M)=
E\R(M\g(Nx[0,1/3))). By the Classification Theorem [13], clz(E\h'(M))=
E\xn(M). O

REMARK. In 5-3, the condition that clg(E\R(M)) is contractible may be
changed for the condition clg(E\A(M))=E\h(M)=FE by the above proposition.
Similarly, in 5-5, the condition that each component of clz(E\h(M)) is con-
tractible may be changed for the condition that each component of clz(E\A(M))
=~ E\h(M) is homeomorphic to E.

§6. Another embedding theorem.

In this section, we extend the result of [20]. Although we obtain a suf-
ficient condition in the following theorem for our embedding problem, we seem
to be away from a necessary and sufficient condition at the observation of
Example 4 in the next section.

6-1. THEOREM. Let Ex=E® or =E9 and let (M, N) be an E-manifold pair
with N a Z-set in M such that M is connected. If there exists a chain of paths
{L,} in M connecting some (finite or infinite) sequence {N,} consisting of some
components of N such that N,# N, if n#n’ and N\I\J{L,} contains a deforma-
tion retract of M, then there exists an embedding h: M—E such that bdgh(M)
=h(N).

ProoF. Let M'CNVUL (where L=\U{L,}) be a deformation retract of M
then a strong deformation retract of M ([15] Ch. VII Theorem 2.1). Since M’
is connected because so is M, we may assume that LCM and M'\N,#0
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for each N,. By the Triangulation Theorem (3.4 (a) in [25]), there is a
homeomorphism h: N—|K|XE where K is some locally finite-dimensional
simplicial complex. Let K, be the subcomplex of K such that |K,|XE=h(N,)
and let a,€N, and b, N,,, be the end-points of L,. Then

| Kol = Ka | X {Q—=0Dh(bn-)+1ph(a,) 0=t = 1} C | K, | XE

is a strong deformation retract of |K,|XE where p: |K|XE—E is the projec-
tion. Then deforming N\UL to a complete ANR N’UL where N’ is an E-
deficient set (i.e., a Z-set) in N, we may also assume that M’ is a complete
ANR. Since M’ X{L}N\U{C(N,AM")}=U{(N,n\M')x{1}} is an ANR where
N,=N'N\N,, M' X {1} \VU{C(N,N\M")} is also an ANR. By the same argument
as the proof of iii)=>i) in 5-5, it can be shown that M’ X {1}\UU{C(N,NM")} is
contractible, then an AR.
By the Torunczyk’s result (Theorem 3.1 in [25)),

F=MXx{1}VU{C(N.NM))P)XE=E.

Since NX{1} XENU{CIN;NM)XE}=U{(N;JAM)X {1} XE}CN' X {1} XE is a
Z-set in each Nx {1} XE and \U{C(N,NM)XE},

NXA{I} XEUF' = NX {1} X EVU{C(N,N\M)X E}
is an E-manifold by 5-2. Since
MX{I} XEX{O})N(NX {1} XEUVF)X[0, 11=NX {1} X Ex {0}
is a Z-set in each M X {1} XEX {0} and (NX {1} X EUF")X[0, 1],
F=Mx{1} XEX{0}\J(NX {1} X EUF")x[0, 1]
is also an E-manifold. Since F has the same homotopy type as
MX {1} XEUNXA{1} XE\UF' = MX {1} X EJF’

and since M'X {1} XE=MXx {1} XENF’ is a strong deformation retract of MX
{1} XE, F has the same homotopy type as F’'=F, hence F=FE by the Clas-
sification Theorem [13] Since bdrMX {1} X EX {0} = NX {1} XEX {0}, it is
easy to construct a desired embedding by the relative ST. O

§7. Examples.

First, we give two examples, seeing the relation between the topological
boundary of an FE-manifold embedded in E as a closed set and its collared
submanifold. (First example is suggested by Prof. Y. Kodama.)

ExXaMPLE 1. Let B,=S,={0}, B,={(x, y)eR*|((x—(2/3"))*+y*=(1/3")*},
S,=bdgB,={(x, y)|(x—(2/3™)*+y*=(1/3")*} for each #>0 and let M=\U{B,} X
ECR*}XE=E. Then Mis an E-manifold because \U{B,} is a finite-dimensional
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compact AR, But bdze.zM=(US,)X E is not an E-manifold because US, is
not an ANR. " "

ExaMPLE 2. Let B={(x,y, 0)eR*|x*+3y*<1} and let [I={(0, 0, z)€R?|
0=2z<1}. Then F=(BUI)XE, M=BXE and bdpM={0} X E are homeomorphic
to £ because BUI, B and {0} are finite-dimensional compact AR’s. And bdzM
is not a Z-set in M, that is, not collared in M.

By Example 1, we see that the topological boundary of an E-manifold
embedded in £ as a closed set is not generally an FE-manifold. By Example
2, we see that the submanifold being the topological boundary of an £-manifold
embedded in £ as a closed set is not generally a collared submanifold. These
show the difference of infinite-dimensional manifolds and finite-dimensional
manifolds.

In relation to Theorem 5-3, the following question rises: In an E-manifold
pair (M, N) with N a Z-set in M, the condition that M/N has the homotopy
type of S™ is the necessary and sufficient condition under which M can be
embedded in E such that N is the topological boundary of M and such that the
closure of the complement of M has the homotopy type of S™ isn’t it? The
answer of this problem is “NO!” in case of n=1. This problem was raised
by T. Watanabe when the author had a chat with him. The following
example was obtained then.

ExaMPLE 3. Let (M, N)=(IXE, {0,1} XE). Then (M, N) is an E-manifold
with N a Z-set in M such that M/N is homotopic to S'. When M is embedded
in E with N being the topological boundary, clzg(E\M) is homotopic to S°=
{0, 1}. In fact, assume that (M, N) is embedded in such a way. By 5-6, we
may also assume that N is bicollared in E. As same as the example in [20],
it is easy to see that (E, M) is homotopic to (/\UX, I) where X is some space
such that /" X=1{0,1}. Then clg(E\M) has the same homotopy type as a
one point union of two spaces A and B. Since A\UB contract to {p}=ANDB,
we can obtain a contraction of A to {p} using a contraction of AUB to {p}
and a retraction of B to {p}. Thus A and B are contractible. Therefore
clz(E\M) is homotopic to S°.

We leave the question: Under what condition can M be embedded in E
such that N is the topological boundary under the embedding and such thai the
closure of the complement of M in E has the homotopy type of S™?

The last example shows that the condition in 6-1 is not necessary.

ExAMPLE 4. Let T be a solid torus in the unit-ball B in R®’. Then
clz(B\T) and bdzT are finite-dimensional compact ANR’s. We have an E-
manifold pair (M, N)=(clz(B\T)XE, (bdzT)XE) with N a Z-.set in M which
does not satisfy the condition in 6-1. But bdz.zM=N and BXE=E.
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