On an integer associated with an algebraic group

By Morikuni GOTO

(Received Feb. 16, 1976)

§1. Introduction.

Let G be a connected (real or complex) Lie group with Lie algebra g. In general, the exponential map $\exp: \mathfrak{g} \to G$ is not onto. But recently Markus in [3] and Lai in [2] pointed out that for some algebraic Lie groups G we can associate a natural number q such that for any g in G, the q-th power g^q of g lies in $\exp \mathfrak{g}$. In this note, we shall consider an algebraic group theoretic version of these results.

Throughout the paper, k will denote an algebraically closed field (of characteristic 0 or prime). By an algebraic group, we shall mean a linear algebraic group, i.e. a (Zariski) closed subgroup of GL(m, k). The purpose of this note is to prove the following theorem.

THEOREM. For a given algebraic group G over an algebraically closed field k, we can associate a natural number q such that for any g in G there exists a connected abelian subgroup of G containing g^q .

As a general reference we will presume that the reader is familiar with Borel [1]. The author is pleased to acknowledge his gratitude to F. Grosshans for valuable suggestions and discussions during the preparation of the present paper.

§ 2. char k = p > 0.

Let G be an algebraic group in GL(m, k). Let g be in G, and let g=xy=yx, where x is semisimple and y unipotent, be the Jordan decomposition of g. Let r be the smallest natural number with $p^r \ge m$. We set $q=p^r$, and we have $y^q=1$, see p. 142 in Borel [1], and so $g^q=x^q$. Since g^q is semisimple, it is contained in some maximal torus, which is connected and abelian.

§ 3. char k=0.

Let G_0 denote the connected component of G containing the identity 1. Then G_0 is of finite index, say i, in G, and for every $g \in G$ the *i*-th power g^i of g is contained in G_0 . Hence it suffices to consider connected groups G. Let G be a connected algebraic group and let B be a Borel subgroup of G. Every element of G is conjugate to some element of B. Since B is solvable, the proof reduces to the solvable case.

After this, let us suppose that G is a closed connected solvable subgroup of GL(m, k). Let N be the unipotent radical and H a maximal torus of G. Then we have a semidirect product decomposition (Levi decomposition)

$$G = HN$$
, $H \cap N = 1$.

Let n denote the Lie algebra of N. Since N is a closed normal subgroup, we have Ad(g)n=n for $g\in G$. For $x\in H$, let f(x) denote the restriction of Ad(x) to n. Then

$$H \ni x \longmapsto f(x) \in GL(\mathfrak{n})$$

is a morphism and the image f(H) is a torus. Hence we can find distinct characters χ_1, \dots, χ_l of H and a direct sum decomposition $\mathfrak{n}=\mathfrak{n}_1 \oplus \dots \oplus \mathfrak{n}_l$ such that

 $(f(x) - \chi_j(x))\mathfrak{n}_j = 0$ for $x \in H$ $j = 1, \dots, l$.

For any set of integers $J = \{j_1, \dots, j_s\}$ with

$$1 \leq j_1 < j_2 < \cdots < j_s \leq l$$
,

we put $H(J) = \{x \in H; \chi_{j_1}(x) = \dots = \chi_{j_s}(x) = 1\}$. Then H(J) is a closed subgroup of H. Let q(J) denote the index of the identity component $H(J)_0$ in H(J), and q the least common multiple of all q(J). We shall prove that this q satisfies the requirement.

Let g be in G. We can find a semisimple x and a unipotent y such that g=xy=yx. There exists $z \in N$ with $zxz^{-1} \in H$, and $zgz^{-1}=(zxz^{-1})(zyz^{-1})$, where zxz^{-1} is semisimple, zyz^{-1} is unipotent, and they commute with each other. Therefore, without changing the notations, let us suopose that $x \in H$.

Let C(x) denote the centralizer of x in G. Then C(x) is connected and C(x)=HY, $Y \subset N$. Since $y \in N$ and xy=yx, we have $y \in Y$.

Let u be in N. Then u-1 is nilpotent and the power series $\log u = \sum_{j=1}^{\infty} (-1)^{j+1} (u-1)^j / j$ is a polynomial in u, and the Lie algebra n is given by $n = \log N = \{\log u; u \in N\}$. Since $\log u$ is nilpotent, $\exp(\log u)$ is a polynomial in $\log u$ and reduces to $u : \exp(\log u) = u$. We have that $\exp(k \log u)$ is a closed connected one-dimensional subgroup of N containing u. Since xy = yx, we have that $x \cdot \log y = \log y \cdot x$ and $f(x) \log y = \log y$. Let us put $J = \{j; \chi_j(x) = 1\}$. Then the Lie algebra of Y is given by $\eta = \sum_{j \in J} \eta_j$. We have that $\log y \in \eta$ and $Y_1 = \exp(k \log y) \subset Y$.

On the other hand, since f(H(J))=id. on \mathfrak{H} , we have that H(J) and Y are elementwise commutative. Hence $H(J) \cdot Y_1$ is an abelian group. Since Y_1 is

162

connected and $H(J)_0$ is the identity component of H(J), we have that $H(J)_0 \cdot Y_1$ is connected, and $g^{q(J)} = x^{q(J)} y^{q(J)}$ is in $H(J)_0 \cdot Y_1$.

§4. An alternate proof for reductive groups.

Let G be a reductive algebraic group. Suppose that the root system R of G has an indecomposable decomposition $R=R_1\cup\cdots\cup R_p$ with each R_j being one of the following forms

$$A_n$$
 p arbitrary B_n, C_n, D_n $p \neq 2$ G_2, F_4, E_6, E_7 $p \neq 2, 3$ E_8 $p \neq 2, 3, 5$

In this case the number of conjugacy classes of centralizers of elements of G is finite, see p. 107 in Steinberg [4]. This means that there exist closed subgroups C_1, \dots, C_t such that for any g in G, the centralizer C(g) can be written as $C(g)=zC_iz^{-1}$ for some $z \in G$ and some $i=1, \dots, t$. Let Z_i denote the center of C_i . Then Z_i is closed. Let q_i be the index of the identity component $(Z_i)_0$ in Z_i . Since g is in the center of C(g), which coincides with zZ_iz^{-1} , we have $g^{q_i} \in z(Z_i)_0 z^{-1}$, which is connected and abelian. Hence we can take the least common multiple of q_1, \dots, q_t as q.

Added May 27, 1976.

The author learned from D. A. Kajdan that the theorem he used in 4 was proved by G. Lustig recently only assuming the field is algebraically closed.

Bibliography

- [1] A. Borel, Linear algebraic groups, Benjamin, 1969.
- [2] H.L. Lai, Surjectivity of exponential map on semisimple Lie groups, (to appear).
- [3] L. Markus, Exponentials in algebraic matrix groups, Advances in Math., 11 (1973), 351-367.
- [4] R. Steinberg, Conjugacy classes in algebraic groups, Springer, 1974.

Morikuni Goto

Mathematics Department University of Pennsylvania Philadelphia, Pa. 19104 U.S.A.