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\S 1. Introduction.

Let $G$ be a connected (real or complex) Lie group with Lie algebra $\mathfrak{g}$ . In
general, the exponential map $exp:\mathfrak{g}\rightarrow G$ is not onto. But recently Markus in
[3] and Lai in [2] pointed out that for some algebraic Lie groups $G$ we can
associate a natural number $q$ such that for any $g$ in $G$ , the q-th power $g^{q}$ of
$g$ lies in exp $\mathfrak{g}$ . In this note, we shall consider an algebraic group theoretic
version of these results.

Throughout the paper, $k$ will denote an algebraicaIly closed field (of char-
acteristic $0$ or prime). By an algebraic group, we shall mean a linear algebraic
group, $i$ . $e$ . a (Zariski) closed subgroup of $GL(m, k)$ . The purpose of this note
is to prove the following theorem.

THEOREM. For a given algebraic group $G$ over an algebraically closed field
$k$ , we can associate a natural number $q$ such that for any $g$ in $G$ there exists a
connected abelian subgroup of $G$ containing $g^{q}$ .

As a general reference we will presume that the reader is familiar with
Borel [1]. The author is pleased to acknowledge his gratitude to F. Grosshans
for valuable suggestions and discussions during the preparation of the present
paper.

\S 2. char $k=p>0$ .
Let $G$ be an algebraic group in $GL(m, k)$ . Let $g$ be in $G$ , and let $g=xy=yx$ ,

where $x$ is semisimple and $y$ unipotent, be the Jordan decomposition of $g$. Let
$r$ be the smallest natural number with $P^{r}\geqq m$ . We set $q=p^{r}$ , and we have $y^{q}=1$ ,
see p. 142 in Borel [1], and so $g^{q}=x^{q}$ . Since $g^{q}$ is semisimple, it is contained
in some maximal torus, which is connected and abelian.

\S 3. char $k=0$ .
Let $G_{0}$ denote the connected component of $G$ containing the identity 1.

Then $G_{0}$ is of finite index, say $i$ , in $G$ , and for every $g\in G$ the i-th power $g^{f}$

of $g$ is contained in $G_{0}$ . Hence it suffices to consider connected groups $G$ .
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Let $G$ be a connected algebraic group and let $B$ be a Borel subgroup of $G$ .
Every element of $G$ is conjugate to some element of $B$ . Since $B$ is solvable,
the proof reduces to the solvable case.

After this, let us suppose that $G$ is a closed connected solvable subgroup
of $GL(m, k)$ . Let $N$ be the unipotent radical and $H$ a maximal torus of $G$ .
Then we have a semidirect product decomposition (Levi decomposition)

$G=HN$ , $H\cap N=1$ .
Let $\mathfrak{n}$ denote the Lie algebra of $N$. Since $N$ is a closed normal subgroup, we
have $Ad(g)n=n$ for $g\in G$ . For $x\in H$, let $f(x)$ denote the restriction of $Ad(x)$

to $\mathfrak{n}$ . Then
$H\ni x\leftrightarrow f(x)\in GL(\mathfrak{n})$

is a morphism and the image $f(H)$ is a torus. Hence we can find distinct
characters $\chi_{1}\ldots$ $\chi_{l}$ of $H$ and a direct sum decomposition $\mathfrak{n}=\mathfrak{n}_{1}\oplus\cdots\oplus \mathfrak{n}_{l}$ such
that

$(f(x)-\chi_{j}(x))\mathfrak{n}_{j}=0$ for $x\in H$ $j=1,$ $\cdots$ , 1.

For any set of integers $J=\{j_{1}, \cdots , j_{s}\}$ with

$1\leqq j_{1}<j_{2}<\ldots<j_{s}\leqq l$ ,

we put $H(J)=\{x\in H;\chi_{j_{1}}(x)=\ldots=x_{j_{S}}(x)=1\}$ . Then $H(J)$ is a closed subgroup
of $H$. Let $q(J)$ denote the index of the identity component $H(J)_{0}$ in $H(J)$ , and
$q$ the least common multiple of all $q(J)$ . We shall prove that this $q$ satisfies
the requirement.

Let $g$ be in $G$ . We can find a semisimple $x$ and a unipotent $y$ such that
$g=xy=yx$. There exists $z\in N$ with zxz $\in H$, and $zgz^{-1}=(zxz^{-1})(zyz^{-1})$ , where
$zxz^{-1}$ is semisimple, $zyz^{-1}$ is unipotent, and they commute with each other.
Therefore, without changing the notations, let us suopose that $x\in H$.

Let $C(x)$ denote the centralizer of $x$ in $G$ . Then $C(x)$ is connected and
$C(x)=HY,$ $Y\subset N$. Since $y\in N$ and $xy=yx$ , we have $y\in Y$.

Let $u$ be in $N$. Then $u-1$ is nilpotent and the pOwer series log u $=$

$\sum_{j=1}(-1)^{j+1}(u-1)^{j}/j$ is a polynomial in $u$ , and the Lie algebra $\mathfrak{n}$ is given by

$\mathfrak{n}=\log N=\{\log u;u\in N\}$ . Since log $u$ is nilpotent, exp $(\log u)$ is a polynomial
in log $u$ and reduces to $u$ : exp $(\log u)=u$ . We have that exp ( $k$ log u) is a closed
connected one-dimensional subgroup of $N$ containing $u$ . Since $xy=yx$ , we have
that $x$ . logy $=\log y\cdot x$ and $f(x)$ logy $=\log y$ . Let us put $J=\{j;\chi_{j}(x)=1\}$ . Then
the Lie algebra of $Y$ is given by $\mathfrak{h}=\sum_{j\in J}\mathfrak{n}_{j}$ . We have that $\log y\in \mathfrak{h}$ and $Y_{1}=$

exp ( $k$ log $y$) $\subset Y$.
On the other hand, since $f(H(J))=id$. on $\mathfrak{h}$ , we have that $H(J)$ and $Y$ are

elementwise commutative. Hence $H(J)\cdot Y_{1}$ is an abelian group. Since $Y_{1}$ is
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connected and $H(J)_{0}$ is the identity component of $H(J)$ , we have that $H(J)_{0}\cdot Y_{1}$

is connected, and $g^{q(J)}=x^{q(J)}y^{q(J)}$ is in $H(J)_{0}\cdot Y_{1}$ .

\S 4. An alternate proof for reductive groups.

Let $G$ be a reductive algebraic group. Suppose that the root system $R$ of
$G$ has an indecomposable decomposition $ R=R_{1}\cup$ $\cup R_{p}$ with each $R_{j}$ being
one of the following forms

$A_{n}$ $p$ arbitrary
$B_{n},$ $C_{n},$ $D_{n}$ $P\neq 2$

$G_{2},$ $F_{4},$ $E_{6},$ $E_{7}$ $P\neq 2,3$

$E_{8}$ $P\neq 2,3,5$ .
In this case the number of conjugacy classes of centralizers of elements of $G$

is finite, see p. 107 in Steinberg [4]. This means that there exist closed sub-
groups $C_{1},$

$\cdots,$
$C_{t}$ such that for any $g$ in $G$ , the centralizer $C(g)$ can be written

as $C(g)=zC_{i}z^{-1}$ for some $z\in G$ and some $i=1,$ $\cdots$ , $t$ . Let $Z_{i}$ denote the center
of $C_{i}$ . Then $Z_{i}$ is closed. Let $q_{i}$ be the index of the identity component $(Z_{i})_{0}$

in $Z_{l}$ . Since $g$ is in the center of $C(g)$ , which coincides with $zZ_{i}z^{-1}$ , we have
$g^{qj}\in z(Z_{i})_{0}z^{-1}$ , which is connected and abelian. Hence we can take the least
common multiple of $q_{1},$ $\cdots q_{t}$ as $q$ .

Added May 27, 1976.
The author learned from D. A. Kajdan that the theorem he used in 4 was

proved by G. Lustig recently only assuming the field is algebraically closed.
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