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Introduction.

The mean ergodic theorem was given first by von Neumann [10], and has
been generalized to semigroups of operators more general than the discrete
semigroup $\{T^{n} : n\geqq 0\}$ by Alaoglu and Birkhoff [1], Eberlein [2], and many
others, see [6, VIII. 10]. Let $\mathfrak{S}$ be a semigroup of bounded linear operators
on a Banach space. Then the mean ergodic theorem is concerned with the
existence and uniqueness of a fixed point of $\mathfrak{S}$ in the closed convex hull of
the orbit under $\mathfrak{S}$ . The main technique in the mean ergodic theorem is based
on various weak compactness properties of orbits, and the (left) amenability
condition for semigroups is useful in view of Day’s fixed point theorem [4].

In this paper, let (X, $\mathcal{F},$ $m$ ) be a $\sigma$ -finite measure space. We shall study
mean ergodic properties of semigroups of bounded linear operators on $L_{1}(X)$

$=L_{1}(X, \mathcal{F}, m)$ , and determine the structure of those semigroups for which the
mean ergodic theorem holds. In particular, we shall consider amenable semi-
groups of uniformly bounded positive linear operators on $L_{1}(X)$ , and also con-
sider general semigroups of positive linear contractions on $L_{1}(X)$ . In \S 1 we
shall obtain three decomposition theorems from the viewpoint of the mean
ergodic theory, aPplying Takahashi $[11, 12]$ and Nagel [9]. In \S 2 several
criteria will be given, in connection with the decompositions in \S 1, which are
equivalent to the condition that the mean ergodic theorem holds on the whole
space $L_{1}(X)$ . In \S 3 other necessary and sufficient conditions will be given for
the k-parameter semigroup and the discrete semigroup, by means of weak
compactness properties of orbits.

The authors would like to express their hearty thanks to Professor H.
Umegaki for his valuable suggestions.

\S 1. Decomposition theorems.

Throughout this paper, let (X, $\mathcal{F},$ $m$) be a $\sigma- finite$ measure space and let
$L_{1}(X)=L_{1}(X, \mathcal{F}, m)$ and $L_{\infty}(X)=L_{\infty}(X, \mathcal{F}, m)$ be the usual Banach spaces of
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(equivalence classes of) real-valued $\mathcal{F}$ -measurable functions on $X$ whose norms
are denoted by $\Vert\cdot\Vert_{1}$ and $\Vert\cdot\Vert_{\infty}$ respectively. The space $L_{\infty}(X)$ is the dual Banach
space of $L_{1}(X)$ by the bilinear form $\langle f, u\rangle=\int f\cdot udm$ , where $f\in L_{1}(X)$ and $ u\in$

$L_{\infty}(X)$ . Let $L_{1}^{+}(X)$ denote the class of nonnegative functions in $L_{1}(X)$ . For
$A\in \mathcal{F},$ $1_{A}$ denotes the characteristic function of $A$ , and $L_{1}(A)[L_{\infty}(A)]$ denotes
the class of functions $f$ in $L_{1}(X)[L_{\infty}(X)]$ such that $f=0a$ . $e$ . on $X\backslash A$ . Let
$f_{A}=f\cdot 1_{A}$ for $f\in L_{1}(X)$ . A linear operator $T$ on $L_{1}(X)$ or on $L_{\infty}(X)$ is called
positive if $f\geqq 0a$ . $e$ . implies $Tf\geqq 0a$ . $e.$ , and a contraction if I $T\Vert\leqq 1$ .

Let $\mathfrak{S}$ be an abstract semigroup and let $m(\mathfrak{S})$ be the Banach space of all
bounded real-valued functions on $\mathfrak{S}$ with the supremum norm. A bounded
linear functional $\mu$ of $m(\mathfrak{S})$ is called a mean on $m(\mathfrak{S})$ if $\Vert\mu\Vert=\mu(1)=1$ . If $\mu$ is
a mean on $m(\mathfrak{S})$ , then

$inf\{\xi(s):s\in \mathfrak{S}\}\leqq\mu(\xi)\leqq\sup\{\xi(s):s\in \mathfrak{S}\}$ , $\xi\in m(\mathfrak{S})$ .
A mean $\mu$ is called left [right] invariant if $\mu(_{s}\xi)=\mu(\xi)$ $[\mu(\xi_{s})=\mu(\xi)]$ for all
$\xi\in m(\mathfrak{S})$ and $s\in \mathfrak{S}$ , where $s\xi(t)=\xi(st)$ and $\xi_{s}(t)=\xi(ts)$ . An invariant mean is a
left and right invariant mean. A semigroup $\mathfrak{S}$ is called left [right] amenable
if there exists a left [right] invariant mean on $m(\mathfrak{S})$ , and amenable if there
exists an invariant mean on $m(\mathfrak{S})$ . It is well known [3, p. 516] that a com-
mutative semigroup is amenable.

Let $\mathfrak{S}$ be a semigroup of bounded linear operators on $L_{1}(X)$ , which is
called uniformly bounded if

$ M=\sup\{\Vert T\Vert : T\in \mathfrak{S}\}<\infty$ ,

$M$ will always denote this supremum. The orbit of $f\in L_{1}(X)$ under $\mathfrak{S}$ is de-
noted by $\mathfrak{S}f,$ $i$ . $e.,$ $\mathfrak{S}f=\{Tf:T\in \mathfrak{S}\}$ , and its [closed] convex hull by co $\mathfrak{S}f$

$[\overline{co}\mathfrak{S}f]$ . A function $f\in L_{1}(X)$ is called $\mathfrak{S}$ -invariant if $Tf=f$ for all $T\in \mathfrak{S}$ . A
set $A\in \mathcal{F}$ is called $\mathfrak{S}$ -closed if $f\in L_{1}(A)$ implies $Tf\in L_{1}(A)$ for all $T\in \mathfrak{S}$ . Tak-
ing adjoints, $\mathfrak{S}^{*}=\{T^{*} : T\in \mathfrak{S}\}$ is a semigroup of bounded linear operators on
$L_{\infty}(X)$ . If $\mathfrak{S}$ is amenable, then $\mu$ will always denote an invariant mean on
$m(\mathfrak{S})$ .

In this section we shall give three decomposition theorems. Theorems 1.1
and 1.2 are decomposition theorems for a semigroup of (uniformly bounded)

positive linear operators on $L_{1}(X)$ , and Theorem 1.3 is for a semigroup of
linear contractions on $L_{1}(X)$ .

THEOREM 1.1. Let $\mathfrak{S}$ be a semigroup of Positive linear operatOrs on $L_{1}(X)$ .
Then the space $X$ decomPoses uniquely (up to an equivalence) into two disjoint
measurable sets $P$ and $N$ with the following Properties:

(1) there exists an $\mathfrak{S}$ -invariant function $g\in L_{1}^{+}(X)$ such that $P=\{g>0\}$ ;
(2) if $f\in L_{1}^{+}(X)$ is $\mathfrak{S}$ -invariant, then $f\in L_{1}(P)$ ;
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(3) if $f\in L_{1}(P)$ , then $Tf\in L_{1}(P)$ for any $T\in \mathfrak{S}$ .
PROOF. Let $G$ be the set of all $\mathfrak{S}$-invariant $f\in L_{1}^{+}(X)$ , and $P$ the supremum

of $\{f>0\}(f\in G)$ which is taken as an element in the measure algebra. Then
there exists a sequence $\{g_{n}\}$ in $G$ such that $P=U\{g_{n}>0\}$ . Putting $g=$

$\sum\Vert g_{n}\Vert_{1}^{-1}2^{-n}g_{n}$ , we obtain a $g\in G$ such that $P=\{g>0\}$ . Thus the existence of
a set $P$ with properties (1) and (2) is proved and the uniqueness is clear. To
prove (3), let $f\in L_{1}^{+}(P)$ . Then $\Vert\min(f, ng)-f\Vert_{1}\rightarrow 0$ as $ n\rightarrow\infty$ by Lebesgue’s
convergence theorem, and so $\Vert T(\min(f, ng))-Tf\Vert_{1}\rightarrow 0$ for any $T\in \mathfrak{S}$ . Since
$T(\min(f, ng))\leqq T(ng)=0$ on $N=X\backslash P$ , it follows that $Tf\in L_{1}(P)$ for all $T\in \mathfrak{S}$ .

Q. E. D.
THEOREM 1.2. Let $\mathfrak{S}$ be a semigroup of uniformly bounded positive linear

operat0rs on $L_{1}(X)$ . Then the space $X$ decomp0ses uniquely (up to an equi-
valence) into two disjoint measurable sets $W$ and $V$ with the following pro-
perties:

(1) there exists a function $g\in L_{1}^{+}(X)$ such that $W=\{g>0\}$ and $\mathfrak{S}g$ is weakly
sequentially compact;

(2) if $f\in L_{1}^{+}(X)$ and $\mathfrak{S}f$ is weakly sequentially comPact, then $f\in L_{1}(W)$ ;
(3) if $f\in L_{1}(W)$ , then $Tf\in L_{1}(W)$ for any $T\in \mathfrak{S}$ .
Furthermore assume that $\mathfrak{S}$ is amenable. Then there exists a linear projec-

tion $Q$ of $L_{1}(W)$ onto the subspace of $\mathfrak{S}$ -invariant functions such that, for each
$f\in L_{1}(W),$ $Qf$ is a unique $\mathfrak{S}$-invariant function contained in $\overline{co}\mathfrak{S}f$, and such
that $Q=TQ=QT$ on $L_{1}(W)$ for all $T\in \mathfrak{S}$ .

PROOF. Let $G$ be the set of all $f\in L_{1}^{+}(X)$ such that $\mathfrak{S}f$ is weakly sequenti-
ally compact, and $W$ the supremum of $\{f>0\}(f\in G)$ in the measure algebra.
Take a sequence $\{g_{n}\}$ in $G$ such that $W=U\{g_{n}>0\}$ , and put $g=\sum\Vert g_{n}\Vert_{1}^{-1}2^{-n}g_{n}$ .
To show $g\in G$ , let $\{T_{k}\}$ be any sequence from $\mathfrak{S}$ . Since, for each $n,$ $\{T_{k}g_{n}\}_{k}$

has a weakly convergent subsequence, we can extract a subsequence $\{S_{j}\}$ of
$\{T_{k}\}$ such that $\{S_{j}g_{n}\}_{j}$ converges weakly to some $h_{n}\in L_{1}(X)$ with $\Vert h_{n}\Vert_{1}\leqq M\Vert g_{n}\Vert_{1}$

for each $n$ . Putting $h=\sum\Vert g_{n}\Vert_{1}^{-1}2^{-n}h_{n}$ , it is easy to see that $S_{j}g\rightarrow h$ (weakly).

Thus the existence of a set $W$ with properties (1) and (2) is proved and the
uniqueness is clear. We continue the proof as in Takahashi [11, pp. 140-141].

Let $f\in L_{1}(W)$ and $\epsilon>0$ be given. By Lebesgue’s convergence theorem, there
exists an $n>0$ such that

$\Vert|f|$ –min $(|f|, ng)\Vert_{1}<\epsilon/2M$ .
Putting $h=\min(|f|, ng)$ , we have

$|\langle Tf, 1_{A}\rangle|\leqq\langle T|f|, 1_{A}\rangle$

$=\langle Th, 1_{A}\rangle+\langle T|f|-Th, 1_{A}\rangle$

$\leqq\langle T(ng), 1_{A}\rangle+\Vert T(|f|-h)\Vert_{1}$
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$\leqq n\langle Tg, 1_{A}\rangle+\epsilon/2$ , $T\in \mathfrak{S},$ $A\in \mathcal{F}$ .

This shows that the countable additivity of the integrals $\langle Tf, 1_{A}\rangle$ is uniform
with respect to $T\in \mathfrak{S}$ . Thus it follows that $\mathfrak{S}f$ is weakly sequentially compact
(cf. [6, p. 292]), so that $\overline{co}\mathfrak{S}f$ is weakly compact (cf. [6, p. 430 and p. 434]).

Now we have $L_{1}^{+}(W)=G$ . If $f\in G$ , then, for any $T\in \mathfrak{S}$ , it follows from $\mathfrak{S}(Tf)$

$\subset \mathfrak{S}f$ that $Tf\in G$ . Hence (3) is obtained.
Furthermore assume $\mathfrak{S}$ to be amenable, and let $f\in L_{1}(W)$ . Since $\mathfrak{S}$ is left

amenable, Day’s fixed point theorem implies that co $\mathfrak{S}f$ contains an $\mathfrak{S}$ -invariant
function. For an $\mathfrak{S}$ -invariant function $h$ in co $\mathfrak{S}f$, since $\mathfrak{S}$ is also right amen-
able, it is easily verified that $\langle h, u\rangle=\mu_{T}\langle Tf, u\rangle$ for any $u\in L_{\infty}(X)$ , where
$\mu_{T}\langle Tf, u\rangle$ denotes $\mu(\xi)$ of $\xi(T)=\langle Tf, u\rangle$ . Thus we conclude that cr $\mathfrak{S}f$ con-
tains a unique $\mathfrak{S}$ -invariant function $Qf$ which is determined by the equation
$\langle Qf, u\rangle=\mu_{T}\langle Tf, u\rangle$ for any $u\in L_{\infty}(X)$ . Now the stated properties of $Q$ are
straightforward. Q. E. D.

THEOREM 1.3. Let $\mathfrak{S}$ be a semigroup of linear contractions on $L_{1}(X)$ . Then
the sPace $X$ decompOses uniquely (up to an equivalence) into two disjoint mea-
surable sets $P$ and $N$ with the following properties:

(1) there exists an $\mathfrak{S}$-invariant function $g\in L_{1}(X)$ such that $P=\{g\neq 0\}$ ;
(2) if $f\in L_{1}(X)$ is $\mathfrak{S}$-invariant, then $f\in L_{1}(P)$ ;
(3) if $f\in L_{1}(P)$ , then $Tf\in L_{1}(P)$ for any $T\in \mathfrak{S}$ .
Moreover there exists a linear Projection $Q$ of $L_{1}(P)$ onto the subsPace of $\mathfrak{S}_{-}$

invariant functions such that, for each $f\in L_{1}(P),$ $Qf$ is a unique $\mathfrak{S}$ -invariant
function contained in Er $\mathfrak{S}f$, and such that $Q=TQ=QT$ on $L_{1}(P)$ for all $T\in \mathfrak{S}$ .

PROOF. Let $|T|$ be the linear modulus of $T\in \mathfrak{S}$ (cf. [5]). Let $G$ be the
set of all $\mathfrak{S}$ -invariant $f\in L_{1}(X)$ , and $P$ the supremum of $\{f\neq 0\}(f\in G)$ . For
each $f\in G$ , since $|T||f|\geqq|Tf|=|f|$ and $|T|$ is a contraction, it follows that
$|T||f|=|f|$ for all $T\in \mathfrak{S}$ , so that $\{f\neq 0\}$ is $\mathfrak{S}$ -closed. To show that there
exists a $g\in G$ such that $P=\{g\neq 0\}$ , it suffices to show that if $f,$ $h\in G$ , then
$f+h_{\{f=0\}}$ is in $G$ . Put $A=\{f\neq 0\}$ and $B=\{h\neq 0\}$ . Since $A$ and $B$ are $\mathfrak{S}$ -closed,
it follows that $C=A\cap B$ is also $\mathfrak{S}$ -closed. Now it is easy to see that

$|T|(|h|_{B\backslash C})=|h|_{B\backslash C}$ , $T\in \mathfrak{S}$ ,

so that $B\backslash C$ is $\mathfrak{S}$ -closed. This shows that $h_{tf=0\}}=h_{B\backslash C}$ is in $G$ and hence
$f+h_{\{f=01}$ is in $G$ . Thus we have shown that the properties (1) $-(3)$ hold.

Now put $h=|g|$ and $v=|g|^{-1}g$ on $P$. For $T\in \mathfrak{S}$ , define a linear contrac-
tion $T^{\prime}$ on $L_{1}(P)$ by

$T^{\prime}f=v^{-1}T(vf)$ , $f\in L_{1}(P)$ .
Then $T^{\prime}h=h$ . For $f\in L_{1}(P)$ with $0\leqq f\leqq nh$ , we have
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$\Vert nh\Vert_{1}\leqq\Vert T^{\prime}f\Vert_{1}+\Vert nh-T^{\prime}f\Vert_{1}$

$\leqq\Vert f\Vert_{1}+\Vert nh-f\Vert_{1}=\Vert nh\Vert_{1}$ ,
so that

$nh=|T^{\prime}f|+|nh-T^{\prime}f|$ .
This implies $that^{\vee}.T^{\prime}f\geqq 0$ . Thus it is seen that $T^{\prime}$ is a positive contraction, in
fact $T^{\prime}=|T|$ on $L_{1}(P)$ . Hence we conclude that $\mathfrak{S}^{\prime}=\{T^{\prime} : T\in \mathfrak{S}\}$ is a semigroup
of positive linear contractions on $L_{1}(P)$ . By Nagel [9, p. 83], there exists a
linear projection $Q^{\prime}$ of $L_{1}(P)$ such that $Q^{\prime}f$ is a unique $\mathfrak{S}^{\prime}$ -invariant function
in $\overline{co}\mathfrak{S}^{\prime}f$ for each $f\in L_{1}(P)$ . Define a linear projection $Q$ of $L_{1}(P)$ by

$Qf=vQ^{\prime}(v^{-1}f)$ , $f\in L_{1}(P)$ .
Then it is readily verified that $Qf$ is a unique $\mathfrak{S}$ -invariant function in $\overline{co}\mathfrak{S}f$

for each $f\in L_{1}(P)$ , and the desired properties of $Q$ are clear. Q. E. D.
REMARK. If $\mathfrak{S}$ is a semigroup of positive linear contractions on $L_{1}(X)$ ,

then the decompositions in Theorems 1.1 and 1.3 are the same, because $\mathfrak{S}_{-}in-$

variance of $f\in L_{1}(X)$ implies that of $|f|$ .

\S 2. Conditions for the mean ergodicity.

The following theorem is concerned with the mean ergodic properties of
a semigroup of positive linear operators on $L_{1}(X)$ which has no nonzero in-
variant function.

THEOREM 2.1. Let $\mathfrak{S}$ be a semigroup of positive linear operat0rs on $L_{1}(X)$ .
Then the following conditions are equivalent:

(i) for each $f\in L_{1}(X),$ $\overline{co}\mathfrak{S}f$ contains $0$ ;
(ii) for each $f\in L_{1}(X)$ , $inf\{\Vert Tf\Vert_{1} : T\in \mathfrak{S}\}=0$ ;

(iii) the weak* closure of $\{T^{*}1:T\in \mathfrak{S}\}$ contains $0$ .
PROOF. It is trivial that (ii) implies (i).
$(i)\Rightarrow(ii)$ . Let $f\in L_{1}(X)$ and $\epsilon>0$ be given. We can choose $T_{1},$ $\cdots$ , $T_{n}\in \mathfrak{S}$

and $\alpha_{1},$
$\cdots$ , $\alpha_{n}>0$ with $\Sigma\alpha_{i}=1$ such that $\Vert\Sigma\alpha_{i}T_{i}|f|\Vert_{1}<\epsilon$ . Since $|T_{i}f|\leqq T_{i}|f|$ ,

we have
$\Sigma\alpha_{i}\Vert T_{i}f\Vert_{1}\leqq\Sigma\alpha_{i}\Vert T_{\iota}|f|\Vert_{1}$

$=\Vert\Sigma\alpha_{i}T_{i}|f|\Vert_{1}<\epsilon$ .
It follows that $\Vert T_{i}f\Vert_{1}<\epsilon$ for some $i$ , and thus (i) implies (ii).

$(ii)\Rightarrow(iii)$ . Let $f_{1},$ $f_{n}\in L_{1}(X)$ and $\epsilon>0$ be given. There exists a $T\in \mathfrak{S}$

such that $\Vert T(\sum|f_{i}|)\Vert_{1}<\epsilon$ , so that we have

$\Sigma|\langle f_{i}, T^{*}1\rangle|\leqq\Sigma\Vert Tf_{i}\Vert_{1}$

$\leqq\Vert T(\Sigma|f_{i}|)\Vert_{1}<\epsilon$ .
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Thus (ii) implies (iii).
$(iii)\Rightarrow(ii)$ . Since $\Vert Tf\Vert_{1}\leqq\langle|f|, T^{*}1\rangle$ , this implication is clear. Q. E. D.
Let $\mathfrak{S}$ be a semigroup of bounded linear operators on $L_{1}(X)$ . Let $A\in \mathcal{F}$

and $B=X\backslash A$ , and suppose that $A$ is $\mathfrak{S}$ -closed. For each $T\in \mathfrak{S}$ , define a bounded
linear operator $T_{B}$ on $L_{1}(B)$ by

$T_{B}f=(Tf)_{B}$ $(=(Tf)\cdot 1_{B})$ , $f\in L_{1}(B)$ .
It is easily checked that $T_{B}f_{B^{-}}-(Tf)_{B}$ for any $f\in L_{1}(X)$ , and $S_{B}T_{B}--(ST)_{B}$ for
any $S,$ $T\in \mathfrak{S}$ . Thus it is seen that $\mathfrak{S}_{B^{-}}-\{T_{B} : T\in \mathfrak{S}\}$ is a semigroup of bounded
linear operators on $L_{1}(B)$ .

Let $\mathfrak{S}$ be a semigroup of uniformly bounded positive linear operators on
$L_{1}(X)$ , and let $X=P+N=W+V$ be the decompositions in Theorems 1.1 and
1.2. We can define semigroups $\mathfrak{S}_{N}$ and $\mathfrak{S}_{V}$ of uniformly bounded positive
linear operators on $L_{1}(N)$ and $L_{1}(V)$ respectively. Similarly, for a semigroup
$\mathfrak{S}$ of linear contractions on $L_{1}(X)$ , taking the decomposition $X=P+N$ in Theo-
rem 1.3, we obtain a semigroup $\mathfrak{S}_{\Lambda^{r}}$ of linear contractions on $L_{1}(N)$ . Then we
have

THEOREM 2.2. Let $\mathfrak{S}$ be a semigroup of linear contractions on $L_{1}(X)$ . Let
$X=P+N$ be the decompOsitjOn given in Theorem 1.3. Then the following condi-
tions are equivalent:

(i) for each $f\in L_{1}(X),\overline{co}\mathfrak{S}f$ contains an $\mathfrak{S}$-invariant function;
(ii) for each $f\in L_{1}(N)$ , Er $\mathfrak{S}_{N}f$ contains $0$ .
PROOF. $(i)\Rightarrow(ii)$ . $Foreachf\in L_{1}(N)$ and $\epsilon>0,$ $wecanchooseT_{1},$ $\cdots,$

$T_{n}\in \mathfrak{S}$ ,
$\alpha_{1},$

$\cdots$ , $\alpha_{n}>0$ with $\sum\alpha_{i}=1$ and an $\mathfrak{S}$-invariant function $h$ such that

$\Vert\Sigma\alpha_{i}T_{i}f-h\Vert_{1}<\epsilon$ .
Since $h\in L_{1}(P)$ , it follows that

$\Vert\Sigma\alpha_{i}(T_{i})_{N}f\Vert_{1}=\Vert(\Sigma\alpha_{i}T_{i}f)_{N}\Vert_{1}<\epsilon$ .
Thus (i) implies (ii).

$(ii)\Rightarrow(i)$ . Let $f\in L_{1}(X)$ . We shall construct two sequences $\{g_{n}\}\subset L_{1}(P)$

and $\{h_{n}\}\subset L_{1}(N)$ by induction. Set $g_{1}=f_{P}$ and $h_{1}=f_{N}$ . If $g_{n-1}$ and $h_{n-1}$ have
been chosen, then we define $g_{n}$ and $h_{n}$ as follows. By assumption, we can
choose $T_{1},$ $\cdots$ , $T_{k}\in \mathfrak{S}$ and $\alpha_{1},$

$\cdots$ , $\alpha_{k}>0$ with $\Sigma\alpha_{i}=1$ such that

$\Vert(\sum\alpha_{i}T_{i}h_{n- 1})_{N}\Vert_{1}=\Vert\sum\alpha_{i}(T_{i})_{N}h_{n- 1}\Vert_{1}<1/n$ .
Define

$g_{n}=(\sum\alpha_{i}T_{i}(g_{n- 1}+h_{n-1}))_{P}=\sum\alpha_{i}T_{i}g_{n- 1}+(\sum\alpha_{i}T_{i}h_{n- 1})_{P}$ ,

$h_{n}=(\sum\alpha_{i}T_{i}(g_{n- 1}+h_{n- 1}))_{N}=(\sum\alpha_{i}T_{i}h_{n- 1})_{N}$ .
Now let $Q$ be a linear projection of $L_{1}(P)$ obtained in Theorem 1.3. It follows
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that $\{Qg_{n}\}$ is a Cauchy sequence in $L_{1}(P)$ . Indeed, if $m>n$ , then $ g_{m}+h_{m}\in$

co $\mathfrak{S}(g_{n}+h_{n})$ , and hence we have

$\Vert Qg_{m}-Qg_{n}\Vert_{1}\leqq\Vert h_{n}\Vert_{1}<1/n$ .
Thus $\{Qg_{n}\}$ converges strongly to an $\mathfrak{S}$ -invariant function $g$. Since $Qg_{n}\in\overline{co}\mathfrak{S}g_{n}$

and $g_{n}+h_{n}\in co\mathfrak{S}f$, it is easy to see that $g$ is contained in $\overline{co}\mathfrak{S}f$. Q. E. D.
In the following, assume that $\mathfrak{S}$ is a semigroup of uniformly bounded posi-

tive linear operators on $L_{1}(X)$ . Let $X=P+N=W+V$ be the decompositions
given in Theorems 1.1 and 1.2. Consider the following conditions:

(i) for each $f\in L_{1}(X),$ $\overline{co}\mathfrak{S}f$ contains an $\mathfrak{S}$ -invariant function;
(ii) for each $f\in L_{1}(N),$ $\overline{co}\mathfrak{S}_{N}f$ contains $0$ ;

(iii) for each $f\in L_{1}(N)$ , $inf\{\Vert T_{N}f\Vert_{1} : T\in \mathfrak{S}\}=0$ ;
(iv) the weak* closure of $\{T^{*}1_{N} : T\in \mathfrak{S}\}$ contains $0$ ;
(v) for each $f\in L_{1}(V),$ $\overline{co}\mathfrak{S}_{V}f$ contains $0$ ;

(vi) for each $f\in L_{1}(V)$ , $inf\{\Vert T_{V}f\Vert_{1} : T\in \mathfrak{S}\}=0$ ;
(vii) the weak* closure of $\{T^{*}1_{V} : T\in \mathfrak{S}\}$ contains $0$ .

Over these conditions, we have
THEOREM 2.3. The following statements (1) $-(3^{0})$ hold:
(1) If $\mathfrak{S}$ is amenable, then all the conditions $(i)-(vii)$ are equivalent.
(2) If $\mathfrak{S}$ is a semigroup of positive linear contractions, then the conditions

$(i)-(iv)$ are equivalent.
(3) If $\mathfrak{S}$ is a left amenable semigroup of pOsitive linear contractions, then

all the conditions $(i)-(vii)$ are equivalent.
PROOF. Since $(T_{N})^{*}=T^{*}$ on $L_{\infty}(N)$ , Theorem 2.1 gives the equivalence of

(ii), (iii) and (iv). Since $N\supset V$ , it is clear that (iv) implies (vii). On the other
hand, since $(T_{V})^{*}u=(T^{*}u)\cdot 1_{V}$ for any $u\in L_{\infty}(V)$ , Theorem 2.1 shows that (v)

and (vi) are equivalent and these are implied by (vii). To prove $(2^{o})$ and $(3^{o})$ ,

let $\mathfrak{S}$ be a semigroup of positive linear contractions. Then the equivalence
of (i) and (ii) is a special case of Theorem 2.2, and $(2^{o})$ is proved. Moreover
assume $\mathfrak{S}$ to be left amenable. To show $(3^{o})$ , it suffices to show that (vi)

implies (iii).
$(vi)\Rightarrow(iii)$ . Let $f\in L_{1}(N)$ and $\epsilon>0$ be given. By assumption, there exists

an $S\in \mathfrak{S}$ such that
$\Vert S_{V}f_{V}\Vert_{1}<\epsilon/2$ .

Put $g=S_{N}f-S_{V}f_{V}=(Sf)_{N}-(Sf)_{V}$ . Since $|g|\in L_{1}(W)$ , it follows as in the proof
of Theorem 1.2 that $\overline{co}\mathfrak{S}|g|$ is weakly compact, so that it contains an $\mathfrak{S}-$

invariant function $h\in L_{1}(P)$ by Day’s fixed point theorem. Thus there exist
$T_{1},$ $\cdots$ , $T_{n}\in \mathfrak{S}$ and $\alpha_{1},$

$\cdots$ , $\alpha_{n}>0$ with $\Sigma\alpha_{i}=1$ such that

$\Vert\Sigma\alpha_{i}T_{i}|g|-h\Vert_{1}<\epsilon/2$ ,
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so that we have
$\sum\alpha_{i}\Vert(T_{i})_{N}g\Vert_{1}\leqq\Vert\sum\alpha_{i}(T_{i})_{N}|g|\Vert_{1}$

$=\Vert(\Sigma\alpha_{i}T_{i}|g|)_{N}\Vert_{1}<\epsilon/2$ .
Taking an $i$ with $\Vert(T_{i})_{N}g\Vert_{1}<\epsilon/2$ , we have

$inf\{\Vert T_{N}f\Vert : T\in \mathfrak{S}\}\leqq\Vert(T_{i}S)_{N}f\Vert_{1}=\Vert(T_{i})_{N}(g+S_{V}f_{V})\Vert_{1}<\epsilon$ .

Thus (vi) implies (iii), and $(3^{o})$ is proved.
We shall now prove $(1^{O})$ . Let $\mathfrak{S}$ be amenable. It remains to show that

(i) implies (iii), and (vi) implies (i).
$(i)\Rightarrow(iii)$ . For each $f\in L_{1}(N)$ and $\epsilon>0$ , we can choose $T_{1},$ $\cdots$ , $T_{n}\in \mathfrak{S},$

$\alpha_{1},$
$\cdots$ ,

$\alpha_{n}>0$ with $\sum\alpha_{i}=1$ and an $\mathfrak{S}$-invariant function $h\in L_{1}(P)$ such that

$\Vert\Sigma\alpha_{i}T_{i}|f|-h\Vert_{1}<\epsilon$ .

As in the above proof of $(vi)\Rightarrow(iii)$ , it follows that $\Vert(T_{i})_{N}f\Vert_{1}<\epsilon$ for some $i$ .
Thus (iii) holds.

$(vi)\Rightarrow(i)$ . Let $f\in L_{1}(X)$ . Then there exists, for any $\epsilon>0$ , an $S\in \mathfrak{S}$ such
that

$\Vert S_{V}f_{V}\Vert_{1}<\epsilon/2M$ .
Putting $g=(Sf)_{W}$ , we can choose $S_{1},$ $\cdots$ , $S_{k}\in \mathfrak{S},$

$\alpha_{1},$
$\cdots$ , $\alpha_{k}>0$ with $\sum\alpha_{i}=1$ and

an $\mathfrak{S}$-invariant function $g_{0}$ such that

$\Vert g_{0}-\Sigma\alpha_{i}S_{i}g\Vert_{1}<\epsilon/2$ .
Since $S_{V}f_{V}=Sf-g$, we have

$\Vert g_{0}-\Sigma\alpha_{i}S_{i}Sf\Vert_{1}\leqq\Vert g_{0}-\Sigma\alpha_{i}S_{i}g\Vert_{1}+\Vert\Sigma\alpha_{i}S_{i}(g-Sf)^{I}||_{1}$

$<\epsilon$ .
Therefore, for each $u\in L_{\infty}(X)$ with $\Vert u\Vert_{\infty}=1$ , we have

$|\langle g_{0}, u\rangle-\mu_{T}\langle Tf, u\rangle|=|\mu_{T}\langle T(g_{0}-\Sigma\alpha_{i}S_{i}Sf), u\rangle|$

$\leqq M\epsilon$ .
Now, letting $\epsilon=1/n$ , there exists a sequence $\{g_{n}\}$ of $\mathfrak{S}$ -invariant functions such
that

$|\langle g_{n}, u\rangle-\mu_{T}\langle Tf, u\rangle|\leqq M/n$ , $\Vert u\Vert_{\infty}=1$ ,

and the distance from $g_{n}$ to (Yr $\mathfrak{S}f$ is smaller than $1/n$ . Thus it follows that
$\{g_{n}\}$ is a Cauchy sequence in $L_{1}(X)$ and so converges strongly to an $\mathfrak{S}$ -invari-
ant function which is contained in $\overline{co}\mathfrak{S}f$. Hence we obtain (i). Q. E. D.

Now consider the following conditions:
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(i) for each $f\in L_{1}(X),$ $\overline{co}\mathfrak{S}f$ contains an $\mathfrak{S}$-invariant function;
(iv’) there exists an $\mathfrak{S}$-invariant function $g\in L_{1}^{+}(X)$ such that the weak*

closure of $\{T^{*}1_{\{g=0\}} : T\in \mathfrak{S}\}$ contains $0$ ;
$(vii^{\prime})$ there exists a $g\in L_{1}^{+}(X)$ such that $\mathfrak{S}g$ is weakly sequentially comPact

and the weak* closure of $\{T^{*}1_{tg=0\}} : T\in \mathfrak{S}\}$ contains $0$ .
The conditions (iv’) and (vii’) are restatements of (iv) and (vii) in Theo-

rem 2.3 respectively. Hence the theorem below is obvious.
THEOREM 2.4. Over the above conditions, the following statements $(1^{o})-(3^{O})$

hold:
(1) If $\mathfrak{S}$ is amenable, then (i), (iv’) and (vii’) are equivalent.
(2) If $\mathfrak{S}$ is a semigroup of positive linear contractions, then (i) is equi-

valent to (iv’).
(3) If $\mathfrak{S}$ is a left amenable semigroup of positive linear contractions, then

(i), (iv’) and (vii’) are equivalent.
COROLLARY. Let $\mathfrak{S}$ be a semigroup of uniformly bounded positive linear

operatOrs on $L_{1}(X)$ satisfying the above condition (i). Let $\mathfrak{S}^{\prime}$ be a subsemigroup

of $\mathfrak{S}$ such that $\mathfrak{S}T\cap \mathfrak{S}^{\prime}\neq\emptyset$ for all $T\in \mathfrak{S}$ . Assume that $\mathfrak{S}$ and $\mathfrak{S}^{\prime}$ are amenable,
or that $\mathfrak{S}$ is a semigroup of positive linear contractions. Then, for each $f\in L_{1}(X)$ ,
E6 $\mathfrak{S}^{\prime}f$ contains an $\mathfrak{S}^{\prime}$ -invariant function.

PROOF. Let $g\in L_{1}^{+}(X)$ be an $\mathfrak{S}$-invariant function given in the above con-
dition (iv’). To prove the corollary, it suffices to show that (iv’) holds also
for $\mathfrak{S}^{\prime}$ with the same $g$. Let $f\in L_{1}^{+}(X)$ and $\epsilon>0$ be given. Take a $T\in \mathfrak{S}$ such
that $\langle f, T^{*}1_{A}\rangle<\epsilon$ where $A=\{g=0\}$ . If an $S\in \mathfrak{S}$ is chosen so that $ST\in \mathfrak{S}^{\prime}$ ,
then, since $S^{*}1_{A}\leqq M\cdot 1_{A}a$ . $e$ . on $X$, we have

$\langle f, (ST)^{*}1_{A}\rangle=\langle f, T^{*}S^{*}1_{A}\rangle$

$\leqq M\langle f, T^{*}1_{A}\rangle<M\epsilon$ .
This shows that the weak* closure of $\{T^{*}1_{A} : T\in \mathfrak{S}^{\prime}\}$ contains $0$ . Q. E. D.

REMARKS. (1) If $\mathfrak{S}$ is a [left] amenable group, so is every subgroup (cf.
[3, p. 516]).

(2) Let $\mathfrak{S}$ be a [left] amenable semigroup and $\mathfrak{S}^{\prime}$ a subsemigroup of $\mathfrak{S}$ .
Assume that there exists a [left] invariant mean $\mu$ on $m(\mathfrak{S})$ with $\mu(1_{\mathfrak{S}^{\prime}})>0$ ,
where $1_{\mathfrak{S}^{\prime}}$ is the characteristic function of $\mathfrak{S}^{\prime}$ . Then $\mathfrak{S}^{\prime}$ is [left] amenable
(cf. [3, p. 518]). For the amenable case, it also follows that $\mathfrak{S}t\cap \mathfrak{S}^{\prime}\neq\emptyset$ for all
$t\in \mathfrak{S}$ . For if $\mathfrak{S}t\cap \mathfrak{S}^{\prime}=\emptyset$ for some $t\in \mathfrak{S}$ , then, since $1_{\mathfrak{S}t}+1_{\mathfrak{S}^{\prime}}\leqq 1$ , we have

$\mu(1_{\mathfrak{S}t})<\mu(1_{\mathfrak{S}t}+1_{\mathfrak{S}^{\prime}})\leqq 1$ ,
which contradicts

$\mu(1_{\mathfrak{S}t})=\mu_{s}(1_{\mathfrak{S}t}(st))=\mu(1)=1$ .
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\S 3. Mean ergodic theorems.

For the $k$ -parameter semigroup, the following theorem asserts that the
mean ergodic theorem holds on $L_{1}(X)$ if and only if every orbit is ”almost”
weakly sequentially compact.

THEOREM 3.1. Let $\mathfrak{S}=\{T(\tau):\tau\in Rt\}$ be a strongly measurable k-parameter
semigroup of uniformly bounded positive linear operators on $L_{1}(X)$ , where $R_{k}^{+}=$

$\{(t_{1}, \cdots , t_{k}):t_{1}, \cdots , t_{k}>0\}$ . Then the following conditions are equivalent:

(i) for each $f\in L_{1}(X)$ , the average $s(t_{1}\cdots t_{k})^{-1}\int_{0}^{t_{1}}\cdots\int_{0}^{t_{k}}T(s_{1}, s_{k})fds_{1}\cdots ds_{k}$

converge strongly as $t_{1},$ $\cdots$ , $ t_{k}\rightarrow\infty$ ;
(ii) for each $f\in L_{1}(X)$ and each compact set $ C\subset R\xi$ (with the usual topOlOgy

of $R_{k}^{+}$ ), the set $\{T(\alpha\tau)f:\alpha\geqq 1, \tau\in C\}$ is weakly sequentially compact in $L_{1}(X)$ ;
(iii) there exists a $C\subset R_{k}^{+}$ with the nonempty interior such that, for any

$f\in L_{1}(X)$ , the set $\{T(\alpha\tau)f;\alpha\geqq 1, \tau\in C\}$ is weakly sequentially compact in $L_{1}(X)$ .
PROOF. We first observe from standard arguments of mean ergodic

theory [8, pp. 16-17] that the condition (i) is equivalent to the following:
$(i^{\prime})$ for each $f\in L_{1}(X),\overline{co}\mathfrak{S}f$ contains an $\mathfrak{S}$ -invariant function. It is clear

that (ii) implies (iii). We shall prove that $(i^{\prime})$ implies (ii), and (iii) implies $(i^{\prime})$ .
$(i^{\prime})\Rightarrow(ii)$ . Let $f\in L_{1}(X)$ and $C$ a compact subset of $R_{k}^{+}$ . To prove the

weak sequential compactness of $\{T(\alpha\tau)f;\alpha\geqq 1, \tau\in C\}$ , let $\{\tau_{n}\}$ be any sequence
in $\{\alpha\tau;\alpha\geqq 1, \tau\in C\}$ . If $\{\tau_{n}\}$ is bounded, then there is a subsequence $\{\sigma_{j}\}$ con-
vergent to some $\tau_{0}\in R_{k}^{+}$ . Since $T(\tau)f$ is strongly continuous in $R_{k}^{+}$ (cf. [7, $p$ .
328]), it follows that $T(\sigma_{j})f\rightarrow T(\tau_{0})f$ (strongly). If $\{\tau_{n}\}$ is unbounded, then we
may assume, by extracting a subsequence if necessary, that $\tau_{1}<\tau_{2}<\ldots$ , where
$(s_{1}, \cdots , s_{k})<(t_{1}, \cdots , t_{k})$ means $s_{t}<t_{i}$ for $i=1,$ $\cdots$ , $k$ . Let $X=P+N$ be the decom-
position in Theorem 1.1, and define a k-parameter semigroup $\mathfrak{S}_{N}=\{T(\tau)_{N}$ :
$\tau\in R_{k}^{+}\}$ by the manner in the preceding section. Since $\tau_{n}>\tau$ eventually for
any fixed $\tau\in R_{k}^{+}$ and by Theorem 2.3,

$inf\{\Vert T(\tau)_{N}f_{N}\Vert_{1} : \tau\in R_{k}^{+}\}=0$ ,

it follows that
$\Vert(T(\tau_{n})f)_{N}\Vert_{1}=\Vert T(\tau_{n})_{N}f_{N}\Vert_{1}\rightarrow 0$ .

Since
$T(\tau_{m})f=T(\tau_{m}-\tau_{n})T(\tau_{n})f$

$=T(\tau_{m}-\tau_{n})(T(\tau_{n})f)_{P}+T(\tau_{m}-\tau_{n})(T(\tau_{n})f)_{N}$ , $m>n$ ,

and $\{T(\tau_{m}-\tau_{n})(T(\tau_{n})f)_{P} : m>n\}$ is weakly sequentially compact for any fixed
$n$ , we conclude that $\{T(\tau_{n})f\}$ is weakly sequentially compact (cf. [6, p. 292]).

Thus $(i^{\prime})$ implies (ii).
$(iii)\Rightarrow(i^{\prime})$ . Let $C\subset R_{k}^{+}$ be taken as in (iii). We may assume that $C$ is
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convex. Set $D=\{\alpha\tau;\alpha\geqq 1, \tau\in C\}$ and $\mathfrak{S}^{\prime}=\{T(\tau):\tau\in D\}$ . Then $\mathfrak{S}^{\prime}$ is an amen-
able subsemigroup of $\mathfrak{S}$ . Let $f\in L_{1}(X)$ . Since, by assumption, Zi6 $\mathfrak{S}^{\prime}f$ is weakly
compact, Day’s fixed point theorem gives an $\mathfrak{S}^{\prime}$ -invariant function $g$ contained
in $\overline{co}\mathfrak{S}^{\prime}f$. We now show that $g$ is also $\mathfrak{S}$-invariant. For $\sigma\in R_{k}^{+}$ , since
$ D\cap(\sigma+D)\neq\emptyset$ , there is a $\tau\in D$ with $\sigma+\tau\in D$ . Then $T(\tau)$ and $T(\sigma+\tau)$ are in

$\mathfrak{S}^{\prime}$ , and we have
$T(\sigma)g=T(\sigma)T(\tau)g=T(\sigma+\tau)g=g$ .

Thus (iii) implies $(i^{\prime})$ . Q. E. D.
For the discrete semigroup, we give the following theorem.
THEOREM 3.2. Let $T$ be a Positive linear oPerator on $L_{1}(X)$ with sup { $\Vert T^{n}\Vert$ :

$ n\geqq 0\}<\infty$ . Then the following conditions are equivalent:

(i) for each $f\in L_{1}(X)$ , the averages $n^{-1}\sum_{i=0}^{n-1}T^{i}f$ converge strongly as $ n\rightarrow\infty$ ;

(ii) for each $f\in L_{1}(X)$ , the set $\{T^{n}f:n\geqq 0\}$ is weakly sequentially compact
in $L_{1}(X)$ ;

(iii) there exists a T-invariant function $g\in L_{1}^{+}(X)$ such that $T^{*n}1_{\{g=0\}}\rightarrow 0a$ . $e$ .
on $X$.

PROOF. The proof of the equivalence of (i) and (ii) is similar to that of
Theorem 3.1, and so we omit the details. To prove the equivalence of (i) and
(iii), it suffices, in view of Theorem 2.4, to show that, for $u=1_{\{g=0\}}$ with a $T_{-}$

invariant $g\in L_{1}^{+}(X)$ , the weak* closure of $\{T^{*n}u:n\geqq 0\}$ contains $0$ if and only
if $T^{*n}u\rightarrow 0a$ . $e$ . on $X$. Putting $u_{0}=\lim\sup T^{*n}u$ , we have $u_{0}\leqq M\cdot T^{*k}u$ for all
$k$ where $ M=\sup\Vert T^{n}\Vert$ . Thus, if the weak* closure of $\{T^{*n}u:n\geqq 0\}$ contains
$0$ , then $u_{0}=0$ and so $T^{*n}u\rightarrow 0a$ . $e$ . on $X$. The converse is clear. Q. E. D.

REMARK. The following example shows that the condition (ii) in Theorem
3.2 cannot be extended to more general semigroups. Let $T$ be a shift operator
on the bilateral $l_{1}$ space, and let $\mathfrak{S}=\{T^{n} : n\geqq 0\}\cup\{0\}$ . Then $\mathfrak{S}$ is a commuta-
tive semigroup of positive linear contractions on $l_{1}$ such that

(1) for each $f\in l_{1}$ , (Yiii $\mathfrak{S}f$ contains $0$ ;
(2) for each nonzero $f\in l_{1},$ $\mathfrak{S}f$ is not weakly sequentially compact.
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