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Introduction.

Let P(x, D) be a partial differential operator of order m with C= coefficients
in an open subset £ of R™. According to Treves [6], a local subelliptic esti-
mate for P near a point x, of £ is an estimate of the form

(0.1) lulln-1+s=CllPully,  for all ueCy(U),

where ¢ is a number such that 0<J=1, C is a positive constant, and U is an
open neighborhood of x, in £.

In [6] Treves established for 5:_2_131—{—_1' when P is an operator of
principal type in £ having the property :

(0.2) Let P,(x, D) be the principal part of P. For any (x,, £ 2 X (R™\{0})
and any complex number z such that P,(x,, £°)=0, d: Re (2P,)(x,, &°)
#0, the function Im (zP,)(x, &), restricted to the bicharacteristic strip
of Re(zP,)(x, &) through (x,, &°), has only zeros of even order less
than or equal to 2%.

He reduced the proof of to the estimate

(0.3) lul 1o +lDulo=ClDu—if(x, t, Dojulle,  usCHU),

2k+

where Ilulli,szjj(l+]5[2)’(1+72)3[ﬁ(§, 7)|2dédr for every real numbers 7, s, C is

a positive constant, 8(x,t, D) is a first order pseudo-differential operator defined
in an open neighborhood of 0 in R™' having the following property (0.4), and
U is an appropriate open neighborhood of 0.

(0.4) There is an open neighborhood W of 0 in R® and a number £,>0
such that, for every (x,&)eWX(R™\{0}) B(x,t,&) as a function of
t, |t| <t,, has only zeros of even order less than or equal to 2%.
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On the other hand in he proved that it is necessary for P to be hypo-
elliptic that it satisfies the condition:

(0.5) For every x,, &% and z as in (0.2), the function Im(zP,) does not
vanish identically in any neighborhood of (x, &°) on the bicharacter-
istic strip of Re (zP,) through that point.

In this paper we attempt to investigate an operator of a first order with
two independent variables which satisfies neither (0.2) nor (0.5), and deduce
results which are analogous to but necessarily weaker than those of Tréves
[6] The operator we investigate is

06) L=2 +igoy

where ¢(x) and o(t) are real valued functions defined in the intervals (a, b),
—o00=a<b=<+o0, and (a, B), —co=a<0< B=-oo, respectively satisfying

0.7) p=C>((a, b)) and all derivatives of ¢ are bounded,

(0.8) c=C>(a, B)), o(t)=0 in (a, B), and zeros of ¢ are all of finite order.

This operator has a simple form; however, near a point where ¢ vanishes the

situation becomes complicated. In fact denoting by P=7+i¢(x)o()§ the symbol

of %- =—}~——g}-+¢(x)o(t)—a%, we see that Im P vanishes identically along the

bicharacteristic strip of = through (x,, ¢, &° 0) if ¢(x,)=0, and so the conditions
(0.2) and (0.5) with z:% are violated for L. Hence the operator L is not
hypoelliptic near such a point and [0.I] does not hold for L. Nevertheless, we
can construct a parametrix in some weak sense for the operator L to establish

some smoothness result with respect to the variable ¢ for the solution of the
equation :
(0.9) Lu=f.
Also with the help of this parametrix we can show the local solvability of
which is already proved in or by the energy integral method.

The author wishes to express his hearty thanks to Prof. H. Tanabe for his

valuable advices and to the referee who helped the author improve the exposition
through the paper.

§1. Outline of the construction of a parametrix.

We consider the solution of Lu=f of the form

(1.1) u(x, t) :42-—17;f exp (iéj‘:o(s)ds>v(x, &)d¢,
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where v is a function to be found.
Calculating formally, we have

(1.2) Lu="8 [ exp (it :a(s) ds)(£v(x, )+ 6(x)2v(x, £)de .

Remark that if ¢(#)>0 in (e, B)

13 gW=52[exp (it[ oas)(f exp (it [ ot ds)g(rrar')is
for every g=C7((«, B)).

So, we can expect that when the solution of the equation
A _a_ — — & / /
(L) &olx, )+ g0 g o(x, = [ exp (—i& [ ols)ds) f(x, )dt

is substituted into the right-hand side of u(x, t) will give an approximate
solution of Lu=f/.

Thus we introduce the operator S: which gives a solution of the ordinary
differential equation with a real parameter &:

(1.4) Ev(x)—%—¢(x)%v(x) = f(x), a<x<b.
Then may be expressed as

(1.5) u(x, t) ZT}JJ exp (i&f:a(s) cis) Sg(j. exp <—i§j:la(s) ds)f( . z")a’t’)d{-‘ .

If xeM={x=(a,b)|¢(x)=0} and £+0, S;f(x) is necessarily equal to -;—f(x).

In each component I,,=(a,, b,) of (a, b))\M we define S; f(x) separately as follows :

j;exp<éj':?%§ds>ﬁf( 2dy, x€I, and E¢(x)>0 in I,

(1.6)  S:f(0)= , - .
—L#exp@jxjﬁg ds)z(ﬁf(y)a’y, xel, and £¢(x)<0 in I,.

It is intended that S:f(x) has nice properties in the whole interval (a,b). To
be correct, S: is defined only for large |&|, and in (1.5) S: should be replaced
by X(£)Ss, where X is a function belonging to C=(R') which is equal to 0 for
small |&|, and equal to 1 for large |&| (see in §3). Taking account of
the right-hand side of (1.5), we introduce the following two operators:

17 Te@=["exp(~it[ od)a0it, =R, g=L(a, ),

(18 To0)=[exp (itf o(ds)2©)de, a<i<p, FeLRY.
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To show that u defined by (1.5) is an approximate solution of Lu=f with
nice properties we must prove the differentiability of Sgf(x) with respect to x
and estimate the sup-norms of S:f and Tg. In order to obtain the L’.estimate
of u, those of S:f, Tg, and T§ must be established. These properties about
S:f, Tg, and T# are stated and proved in the two propositions in §2. The
technical difficulties in this paper lie mainly in the proofs of these propositions.
In the proof of [Proposition 2.1, by an appropriate partial integration we rewrite
the right members of (1.6) in the form which is convenient to establish the
desired estimates (see and Lemma 24). In the proof of the L
estimate of 7% we must be careful near a point #,€(«, B) where o(t) vanishes.
Noting that ¢ has only isolated zeros of even order, we use the change of

t
variable r:j‘ a(s)ds and reduce the proof to the inequality
to

w9 [IAOredt=CfIf @ gldE,  0<a<i, feCHRY,

where C, is a positive constant depending only on a. The L*.estimate of Tg
follows from that of T'# since T is the dual of 7. The evaluation of |Tg(&)]
is derived easily by using the change of the variable stated above and some
partial integration.

§2. Preliminary propositions.

ProprosITION 2.1. Let ¢ satisfy (0.7). We consider the equation
2.11) Eo(D)+ (v =F2),  a<x<b,

with a real parameter £, For every positive integer j, there exists a constant
C;>0, such that for |£|>C; we can find a linear mapping Sz: C{™((a, b))—C’((a, b))
having the following properties.

212 ESfD)HIDSef0)=f1), a<x<b,
@13 S =S{ ),

2.14) When Sgf is considered as a function of (x,&), —-aa;p—ng 1S infinitely

differentiable with respect to & in |&|>C; for 0=p=j, and continuous
in (a,b)x{&}| |&|>C;}. Furthermore, for every non negative integer
N the following two inequalities hold with a constant C>0 independent

of f.
2140 |22 sfw|=cat g sup 3 )|
(2.14.1) OEN gxP V¢ x|= aiggb ool dat X)is
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@14 [ | swlascarien =] 5 [Lsoofdn

Jor feC{(a,0)), 1§1>C;, and 0=p=j.

PrROOF. Set M={x(a,b)|$(x)=0} and decompose (a, b)\M into a disjoint
union of open intervals (a,, bu).es. For every f=Ci*'((a, b)) we define S;f by
the following formula.

(F/0), x=M,  ££0

(2.1.5) S:f(x) = j;ko(% Y, E)-@—(Iyd)f(y)dy , x€1, and £¢(x)>0 in I,

L——j:”ko(x, 9, E)ﬁf(y)dy, otherwise,

Yy
where k(x,y, E):exp(éf ?if%?)ds) and [,=(a,, b,). The integrals of the right-
hand side of (2.1.5) are well defined for large |&|, since in the last both cases
we have

@18 kxy,osexp ([ G as)=| 52 it 161z sup 191

During the course of the proof of this proposition we shall take & with |&]
sufficiently large.

For every integer m=0, we denote by P, the differential operator

—;;E—_’}W and we define the operators K;,, 0=/=<j, in the following manner:

[ ki3, P, &)dy, xE1, and £6(0>0 in I,
@17 Kfxo={
—f ki3, ©Pof(3,8)dy, x<l, and E()<0 in I,

for every f€C{"((aq, b)),

{ :#kl(x, 9, &Py Py f (3, &)dy, x€l, and E¢(x)>0 in I,
(21.8) K, f(x, &)= ,
—f "ki5,3, O PLf(3,8)dy, x<l, and £(9<0 in L,
for every feCi{*'((a,b)) and 1=I[=<j, where k,(x,, E):exp<§y%ﬂds).
Then the next three lemmas hold. *
LEMMA 2.2
(a) S:feC’*(1,) and

(2:2.1) ES:f()+6() - Sefm)=f(x)  in L.
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(b) For every integer I, 0<I<j, and x<1,

(22.2) 57 i, 3, O

_ J(x) z -
= E+(lﬁ)¢’(x) —fa#km(x, ¥, E)Pa Sy, §)dy
if E¢(x)>0 in I,
—1 by
(2.23) Sy), 3, ©7G)dy

= e Rt s 7 P,

if E(x)<0 in I,
ProoF. (a) It is easily verified that S:f belongs to C'(,) and that we

have

(2.2.4) A S =55 (fD—ESefte)  in L.

From these we see that Ssf=C’*'(I,) and (2.2.1) holds.
(b) We prove only [(2.2.2). can be proved in the similar method.

(2.2.5) the left-hand side of
—(° 1
=, s 3, 55 ANy

(% Okyy 1
—ja# oy (x, 5, 8) EFI+D6 () S(»dy

| 1
:}LTO{[le(x, ¥, &) EH(+1Do'(y) f(y)]ymw.;.s

‘ 0
~§. s O35 Cergnga 7))

Therefore we have only to prove that

(2.2.6) lim k(. 0,k ) s Ao e =0

If a,=a, this is trivial since /=0 near a from the hypothesis of Proposition 2.1l
When a,>a, we have [2.2.6) by the following inequality.

_ VE+(I4+1)g’
(2.2.7) ki (x, 3, &) =exp <Jlx '5“—525@))2(3—)d5>
| 6 lﬂz), L [,SZZ(;Q e
= ¢(x) 1l o(x) P(x)
if lfléailing'(x)l . Q.E.D.

LEMMA 23. For every x&1, we have the next four equalities.



Parametrix of a linear partial differential operator

© Sef=LE Koz, 0.

@ e Sef) =—¢f7>Kof<x, O =r e —Kfx, ).
(&) e SfD=505 5 90 OKif(x, §

= = ot o DL s ort 9K fx, ©),
2=p=y,
where we define ¢F(x,&), 1=I<p—1, inductively by the following formulas.
Pix, &) =(§+¢'(x)

d?
P, &) =5 ()

231 G O=_ T ,Cpr it (A, O+E+PF A §),

o zélép__l ’
G5 (x, &) =(E+pd’ (x)h-1(x, ).
(f) Let x,eM'={x<(q, b)|¢’(x)::0}. Then we have

d - P f(x, &) +1 f(x’ 5)
FrAWR IR AIC O ru(an ey P IR SRey T

at x, if p=2.
ProOF. (c) If é¢(x)>0 in I, we have

(2.3.2)

(233) Sefx) =, ki, 3, &5 F9)dy

= 1 o ay ko(x, 3, )f(9)dy .

Hence one can prove (c) by using the same partial integration as in the Proof
of (b).
Another case where £@(x)<0 in I, can be treated in the same manner.
(d) The first equality follows from (c) above and (2.2.1). The
second follows from [Cemma 2.2 (b).
(e) We shall prove (e) by induction on p. Here we remark that the second
equality of (e) follows from (b) if the first equality is proved.
p=2, differentiating both sides of (2.2.1), we have

(234)  (&+¢’ (X))“S;f(X)stﬁ(X) dxz Sef(x)= (x)
Hence by (d)
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(235) 9 fr S =G~ + p (gL — s, ©)

=(E+¢ (D)K. f(x, &) .
Thus (e) is proved for p=2.
Next we shall prove (e) for p+1 under the assumption that (e) is valid
for p=2.
Differentiating both sides of (2.2.1) p times with respect to x, we have

236 L= % 0.0 000 P s+ T8 (- Lsis)

2=5j=p—1

Y () S () 6(0) e Se1(x)

Hence by the hypothesis of the induction one can write

dp+1
(2.3.7) ¢z Sef
=429 C, L ik oK
= dzP f+2<j§p_ J-1 JxpHIg ¢L 1S +H(E+po) §§1071¢l 1S
1=i=j-1

rf  d*¢ dP+i-ig . P, .. P.f’

H oo erg §§p oCimv gzmer P E )

12155~

Py P
-<E+p¢ )1<lSp 1¢'l E-{-(l—l—l)gﬁ' ] .

Thus to prove (e) for p+1, it suffices to show that the bracket term in the
right-hand side of vanishes identically, in other word we must show that

avf _ d*¢ f pri_Pro Py
(23-8) dxp - dxp 5_}_¢/ +1§§p ¢L+1 E—fl‘(l+l)¢/ ’ ].'72—2.

We prove (2.3.8) also by induction on p. When p=2, a straightforward com-
putation shows that

vt s Pof

— A f, / 7\ v

Hence we have [2.3.8) for p=2. Assume that [2.3.8) holds for »=2. Then
differentiating both sides of [(2.3.8) one can write

dp+1 p+l 7
(2310)  Foh =000 j_(q), +58P.r

Py P /
+1§L§)_1 ax P ’+(l—l—l)¢’ + 2 %H Py P

=l=sp—

Therefore to prove [(2.3.8) for p+1 we must show that
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d 0 P, P, f
ea)  GERSE D S it 5, PP P

_ P
=, 2 P s+<1+1>¢' :

)
++

V4
Since gb{’“_%f? by definition (2.3.1) we see that to prove (2.3.11) it suffices to
prove

(2312)  gpn=(9hi— Lo gt (EHURDE),  1sisp-l, pz2.

This we prove by induction on p. First, when p=2, a direct computation
shows that (2.3.12) is valid. We shall show (2.3.12) for p=3, assuming that
(2.3.12) is already proved for the numbers less than or equal to p—1.

Case 1. [=1. By definition (2.3.1)

¥4

(2.313) =149

(2.3.14) =3 G Kl ¢ F(E+H(pF+1)g )PP+
0. 2 2§]§pp+1 J-1dxpt2-j 1 1 :
(2315)  gpt= 2 Cp Gl e

Hence

+ ar+t- ]¢ +1 -a_ ]

(23.16) et = % Oy g (91— #l)

1o B Gy Coa
F(E+D+HDGNPT 4 p11Cpor9" PP
—p¢”¢f’—(é+p¢’)%¢%’-

Since by definition (2.3.1) ¢"'= Iz gb’ 7;?— for j=2, we can rewrite
as follows:
(2316 PR AT =GP+ (EH (D)~ (E+59)]
+ 0" (—pCo-2p:1Cp-1—D)
=gPri(E+2¢7).

Thus (2.3.12) has been proved for [=1.
Case 2. [=p—1. As in the Case 1, one can write by (2.3.1)

(23.17) B2 grt =, Con - 1+<s+<p+1>¢ o3

"3~ (E+D9) o
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On the other hand, by the hypothesis of the induction we have
0
(2.3.18) g Pb-1=E+H(0=1)¢") ¢}

Hence, keeping in mind that ¢35i=,C,_,¢”¢B8+(E+p@ )3, by (2.3.1), we
obtain

(2319) gz ¢1;;+1

=(p1Cp-1—D)P"PB_ 1+ @' P+ (E+pP)NE+(P—1)¢ )3
= (p+1Cp-1=D)P" P31+ ' PRI H(EH(D— D)@' NP — pCop-20" ¢ 50)
=(E+pp")PpH .

Thus (2.3.12) has been proved for [=p—1,.
Case 3. 2=[<p—2. By (2.3.1) one can write

(2.3.20) qig_a;ax gt
= p+1Cp- 19" P+ (E+(Dp+ 1)@ )7+

pta-j

d X
(r:CroraCre) S G087 45

+15j=p—1
drti-ig 9 . 0
—[Hg]zép_lpcj-l—wax,,ﬂf D g0

dr+i-i
pcy U pFi- qj <¢l+1——¢1)
dp+i-t
1+1

+p+1Cp-1 8" PE+H(E+H(DF1)9) 97+ +,C 1W“4 !

pCp-zszS”sb’i—pszS"Wz—<$+p¢’)WW@.

I+1sj=p-1

On: the other hand, by the hypothesis of the induction

(2.3.21) ¢jl+1__%¢jl — (S+l¢/)¢fl_1

(2.3.22) G 6 — (g

Substituting and [2.3:22) into (2.3.20), we have
a +1

(2.3.23) "‘fo_a—x 0
+1-j

p+1-j .
= B Comr grrs G,

lsjsp—-1

+1-1
s T Gl i Co s P (0 1))R
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dp +1-~ lqs
+ Cl Uy ptI-l th _pcp—2¢”¢lz—p¢”¢’g

—(§+p NPT —(§+19)9%-)

+1

Sincet > . 2Ci- 1227“;?—5/). =PE—(E+-poN)dE_, by (2.3.1), a direct compu-
Sj=p—

tation shows that

(2.3.24) P grt =G+ D

which completes the proof of (2.3.12).

(f) When p=2, (2.3.2) can be proved by a direct computation. Let us
consider the case where p=3.

(2.3.25) the left-hand side of (2.3.2)

0p% Py Prf B
1§t§;-—1 8xL 5—}1—([+1)¢/ + E} 1¢€Pz+1"'P1f

0gh Py ) I -
2<L§;‘,)—1 ax $+([_|_1)¢/ + Ep_ngLPHl Plf

0% P.f
gy TPy P

Remarking that ¢€-1=(¢€“—%¢€)/(E+l¢/), 2<I<p—1, by (23.12) and that
¢’(x,)=0, we have when x=x,
(2.3.26) the left-hand side of (2.3.2)

= 1P P, f D1 P.f . y
_zsz§_1¢z+ E—{—(l—{—l)gﬁ’ +44 E+2¢’ +¢p Py Pif

p+1 PL"'Plf
DKy =u(En

which completes the proof of (f). ~ Q.E.D.
LEMMA 2.4. For every non negative integers N and I, there exists a constant
C>0 such that for every fCi**((a,b)), x€1,, and |&|=C we have

oy c
(24.1) ‘Wsef(x)( < AFTEyv+ Sup [ f(0)] .

.AC#

(24.2) lﬁ%[ﬁf(x’ E)‘§ (l_i_lgl)xgax oo sup X [fPM)].

€Ly 15k=si+1

@43, |5k serco

dr Sy, D1

1 oy 2 C k 2
(2.4.4) L#‘Wa_éTK’f(x’ E)‘ dx:é <1+|E|)2 (max ((,1DFN+D L/j <k §[+|f< )(x)] dx.
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ProoF. It is easy to see that if £¢(x)>0 in [, and x=y, or if £4(x)<0 in
I, and x=<y, then the following inequality holds for sufficiently large |&|.

(24.5) ’agzv Xp(f%y&@) ds)| = ey oxe (f ¢(S)

where C and ¢ are positive constants independent of &, x and y. On the other

hand, remembering that P,= df.ix —E—_FIW, we have with a constant C>0 which

may depend on N or /,

@48) | Pusn O| s Eper s @I, a<a<s,

@47 [P P Ol G S AP, a<x<b,
3 Sy

1sksi+1

for all feCit'((a, b)). »
We now prove only for the case where £4(x)>0 in I,. Another

case where £@(x)<0 in I, can be treated in the same manner. We have by
(2.4.5)

oy C z v c§ 1
248 | S| g S, oxe (1505 45) oo O &

Hence the next inequality (2.4.9) yields (2.4.1).

(2.4.9) f; eXp (f ¢~(s> ) IsD(y)l D=7 Ié‘l

On the other hand by the definitions (2.1.7) and (2.1.8) of K, and by (2.4.6) and
(2.4.7) we have for some constant C>0 independent of f,

@410 |t e Kufn, ©)

<

C ‘ vegE N 1
= g, o0 (56 TR0 B 1

1 v §'(s)
Here we have used the relation W_ 30) exp (j ds), x,y€l,. Com-

B(s)
bining both (2.4.10) and [2.4.9), we obtain (2.4.2).
In view of (24.8) and (2.4.10), to prove (2.4.3) and (2.4.4) we have only to
show the following inequality.

(2.4.11) j .

ol 1"—2E )L 1ol as]° c :
J. exp(§ =y )zl e dy| de =y ey S, g0y

where g L%(I,) and C is a positive constant depending only on ¢.

(24.12) the left-hand side of (2.4.11)

= L,L(f eXP(f ' ¢~(§) d5>1¢(1y)|dy)
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X (j:#exp (ny&%— ds) Pﬁ%’ﬁ lg(y)| 2cly)afx
6|1T J, (f:,f"pg S )G eI )
Fero ([ 50 5 ) w0

IA

14

1

Since j ¢(¢ (s) ds_j G ds for sufficiently large |£|, we have

1 ~NF
0, b vy 9 (5
(2.4.13) L equ CE¢(956>(3)(13>|¢(1x)|dx§j‘y”exp(fx gzzﬁ(x) ds>l¢(1x)]dx

< o
= CI &l
Therefore
. 2
o T - A1) £ 2dy.
(24.14)  the lefe-hand side of (2410 = yErye ], 1810
This proves (2.4.11). Q.E.D.

We return to the Proof of [Proposition 2.1l

(21.1). Since it is already proved in that S;f=C7*1(I,) for every
p<s 4, we have only to prove that S;f is j-times continuously differentiable at
every point in M={x=(q,b)|#(x)=0}. Let x, be any point in M. We shall
show that S:f is j-times continuously differentiable at x, and that we have

( ‘é-f<x0> ’ p =0 ’
(2110) L Sete) =) st . p=1,
(b (x()! E) y
\1SL§J 1 $+ l+1)¢ (xo) Pf(xm S) 2§P§].

Case 1. x, is not an accumulation point of M. This means that x,=a,

or b, for some p=A. We have by Lemma 2.3 and Lemma 2.4 (2.4.2)
S:f(x)= (0| =0

(2.1.11) lim

r—xo
er#

(2.1.12) ‘];_];'Irl‘l()'d S f(x) Si;gf()}() :O’
xel 1]

(2.1.13) 11_.1‘]:’1']O ddp S: f(x) 1<l;p . E‘{TQ[)(}‘({;XT?@— - P f(x 5) 2§p§]’
xcfﬂ

which complete the proof.
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Case 2. x, is an accumulation point of M. By definition (2.1.5) of S;f and
©
1 0 , x=M,
(2.1.14) ng(x)——f—f(x) =
—K,f(x, &), x&I, for some usA.

Since ¢(x,)=0, we see from (2.4.2) that
. 1 _
(2.1.15) 1;130(55 fD) = Ax))=0.

Hence S:f is continuous at x,. Furthermore since ¢=0 at x, in infinite order,
we see from (2.4.2) that the right-hand side of (2.1.14) is differentiable and its
derivative vanishes at x,. This proves (2.1.10) for p=1. Thus we have from
Case 1 above and (d)
0118 -4 S =] e
- dx ™ §+¢'(x) —K, f(x, &), xel, for some peA.
Hence by (2.4.2) the right-hand side of (2.1.16) is continuous, dif-
ferentiable, and vanishes at x,. Using (e), (f) and (2.4.2)
and repeating the same reasoning as above, we see that S:f is p times con-
tinuously differentiable at x, and (2.1.10) holds.

(2.1.2). Since the differentiability of S:f is already proved in [2.1.1), (2.1.2)
follows immediately from (2.2.1) and the definition of S:f in M=
{x=(a, b)| p(x)=0}.

(2.1.3). When x= M, both sides of (2.1.3) are equal to zero by definition of
S:f. If xeM and x<I, for some p=4, (d) shows that

(2.1.17) B4 Sef (1) = K. f (x, )= S($-1- 7)),

which proves (2.1.3).
b
(2.1.4). The infinite differentiability of 70;7ng with respect to & for large

|&| follows from Lemma 2.3, Lemma 2.4 (2.4.2) and (2.1.10). On the other hand
by definition (2.3.1) of ¢?

aN
(2.1.18) [stﬂx, s>] <C+eDY,

where C is a positive constant independent of x and &. Hence the inequalities
(2.14.1) and (2.1.4.2) follow from Lemma 2.3, Lemma 2.4, and (2.1.18). Q.E.D.
We introduce some notations. For every g L'((«, B)) we define Tg(&) by

@25.1) Te(®)=| j exp (—i¢| Ota(s)ds)g(t)dt . ceR.

For #= LY(R") we define T&{) by
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(25.2) T2(0)= [ exp (i¢ | Oto(s)ds>§(5)d$ , a<i<p.

PROPOSITION 2.5. Let K be any compact subset of (a, 8) and k be the maxi-
mum of orders of zeros of ¢ in K,
(@) Take any X=Cg(K). Then for every r=0 there exists a constant C>0

such that
k

(25.3) IxTgi=cl+16197 ™ | 48)|%ds, F=L(RY).

(b) For every s_Z_—z—(k%_—ly, there exists a constant C>0 such that for every
ge L' ((«a, B)) with support in K we have

(25.4) fa+18m1Tg@ e = Clgl,,

2(k+1)

(c) There exists a constant C>0 such that

(255) I Ta()] <+ 1€ sup (12| +120))

for every geCi((a, B)) with support in K.

Proor. (a) We may assume that e Cy(RY). Let t;, 1=<i<N, be zeros of
o in K and k; be the order of zero of ¢ at t;,, We note that k; is even since
=0 in (@, B). For every ¢=Cy(R") we define ¢; as follows:

(2.5.6) o=o([ t}r(s)ds) . a<i<B.

Take ¢=C7(R") such that ¢=1 near 0 and supp ¢ is so small that supp ¢,
1<i<N, are mutually disjoint and compact in (e, B).
We can write

(25.7) 1ITe= 3 oxTE+01—

VSbi)ng .

1]

By the fact that 60 near supp (1— ZNgbi)X one can easily derive
15t

258 0= 2 ¢ 1TEl = Cj(l-l— 1§1971&&)1dE,  Fe L(RY),

where C is a positive constant independent of 7. Hence it suffices to prove
for ¢, XT# instead of XT84 First we consider the case where r=0. We
can write (possibly after shrinking supp ¢)

(2.5.9) o(t) =a,(t)(t—1)*, o()>0, mnear supp¢;.
By the change of variable

t
(2.5.10) c={ o(ds, a<i<$,

g
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we have

(2511 || xTE3
<cflg@)® e
| 7| %+t

fexp igeexp (ig [ oto)ds) #@de

k

= [+ 160w e e,

where C and C’ are positive constants independent of §. Here we have used
the well-known inequality (cf:[2] Lemma 8.12)

(2512 [IfOI e dt=Cfle1 A 1dg,  0<a<l, [eCiRY,

where C, is a positive constant depending only on a. This proves for
r=0. Differentiating XT# less than or equal to » times, we see by for
r=0, that holds also when r is any positive integer. Therefore we have
for all =0 by the interpolation theory.

(b) This is nothing but the dual of (a).

(¢) Using the same ¢; as in the proof of (a) we can write

(2.5.13) Tg= 3 T(¢$:)+T(1— 3 $J9).

Since ¢+#0 in a neighborhood of Knsupp(l— X ¢;) we have

1SN

@ELY 1T 3, 400 =CA+IEN™ sup (120 +1g’OD),

for every geCl((a, B)) with support in K, where C is a positive constant in-
dependent of f.
Next we consider about 7(¢,f). By partial integration
A t
(25.14)  T(¢g:f)(8) =j exp (—15{0 U(S)ds)gbi(t)g(t)dt
lt—ti|§(1+1ei)_‘k11T
1 : . t d
+ig exp (l—zefo o(s)ds)-4-(

ft—tgl=(1+18D  RiTl

‘f’;’ g)(Ddt

1
t=ty+(1+1&1)  kitl

+—1-1g[exp (— ifj:o(s) dS)“(%f(%)'f(f)] :

t=ty—(1+1§) BFl

for sufficiently large |&].
On the other hand by we have with a constant C;>0

(2.5.15) |0(1t) Here=

AL

and
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d 1 - 1
(25.16) l?i?( o(d) )Iéci [t—t;[Fitt
in a neighborhood of supp ¢;. (2.5.14), [2.5.15) and [(2.5.16) yield
(25.17) TN SO IENFT sup (LADI+17O))

for every feCi((a, B)) with support in K, where C is a constant >0 independent

of f. Then follows immediately from [2.5.13} and [(2.5.17).

§3. Construction of a parametrix.

We introduce some notations.

H,y={feS'(RoX R0 = [[A+16170+ 7191 AE, ©)1*dede <o},
He()={fe 9@ |ofcH, for every 0=CF(Q)},

H (Q)=€(Q)NH,,,

HY, (2)={feH}(2)]| t-projection of supp f[C K&E(a, B)},

where 7, s are any real numbers, £2=(q, b)x(a, 8) and K is any compact set in
(a, B). 5 5

THEOREM 3.1. Denote by L the differential operator ~at~—{—i¢(x)a(z‘)—ax— defined
in 2=(a,b)x(a, B), and assume that ¢ and o satisfy (0.7) and (0.8) respectively.
Then, for every positive integer j, there exist linear mappings E;, R; and R} such
that

(3.L1) E;: Hio(Q) — Hig(Q),

(3.1.2) R;: Hy () — HI(Q),

(3.1.3) R} H) () — HY9),

for any real numbers v, s and § and they have the following properties.
(3.1.4) LE;f=f+R;f in 2, [feH(2),

(3.1.5) E;,Lf=f+R;f in £ for all fe H ()

such that Lfe H{(Q).

(3.1.6) Let K be any compact subset of (a, B) and k be the maximum of
orders of zeros of o in K. Take any weC(2) and denote by 1,
the maximum of orders of zeros of o in the t-projection of supp w.

Let 5:%<7;,11f+?—1k—1)' Then we have with a positive constant
C independent of f,
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a?
o

SCp-e, 0P =, feHyx(2).

3.1.7) Let K and w be as in (3.1.6), then for any real numbers r,s,§ we
have with a positive constant C independent of f,

loR;fl.s =Clifllrs,
loR;fl.s SClflrs,  FEH (D).

PROOF. At first we define E;, R; and R for feC§(2). Take X;(§)eC>(R*)
such that X;(§)=0 for |£|=2C;+1 and X;j(§)=1 for [£|=3C;+1, where C; is
the constant determined in [Proposition 2.1l From now on in this proof we
drop the subscript j for E;, R;, R; and X;. We define operators U and E by
the following formulas. :

(3.1.8) Uf(x, &)= X(E)SE({ exp (—igj‘ol'g(s)ds)f(., t/)a’t/)(x) )

(3.1.9) Ef(x, 1) =5 exp (i& oto(s)ds> Uf(x, &)dE .

Ef is well defined and j times continuously differentiable with respect to x by
Proposition 2.1l (2.1.4) and [Proposition 2.5 (2.5.5). Furthermore one can write

(3110) 5 Bf(x, =5t [ exp (i6 [ ‘o()ds)-r US(x, )48, 0=p=j.

We prove (3.1.6) for feCix(R2)={p=C7(£2)|t-projection of supp ¢ C K},
where K is a compact set in (a, ). Take the functions ¢,, ¢,=Cq((«, B)) such
that ¢, (resp. ¢,) is equal to 1 in a neighborhood of the f-projection of supp @
(resp. K) and the maximum of orders of zeros of ¢ in supp ¢, (resp. supp ¢,)
is equal to [, (resp. k). Then, applying [Proposition 2.5 (2.5.3), [Proposition 2.1]
(2.1.4.2) and Proposition 2.5 [(2.5.4) successively to (3.1.10) we have

oo,

={flgs00x, 0o Egar(x, 0 dedt

=C.[[19:0)17{[ exp (i8] o) ds )30y U f ), ] dxd

<c.ffarien | 2 v, offdxds

=c,ffa+1g1ymm | 1o 2 o fexo (it [ “ods)guefc, vnar| axaz
¢, 3 ffarieny | [ exp (=g [ o(ds)gult) Lo fix, 1) av| dxde
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SClSl, to 1yt
+1) 2(k+1)

écallfll%,-a,

where C;, 1=<i<5, is a positive constant independent of f=C§x(2). Thus (3.1.6)
has been proved for feCgx(2).

On the other hand if feCg(2) and =0 in (q, b)xX M’, where M’ is an
open set including M:{te(a, B)le(t)=0}, we have, by [Proposition 2.1 (2.1.4.1)
for any positive integer N

j exp (—iéj:a(s) ds)f(x, 1) dt’\

(3.1.11) | Uf(x, &) £ -5« (1_‘_'51) sup

a<lx<b

Cu.r

(I+1en>

where Cy,; is a positive constant dependent on f and N but independent of
x, &. Hence Ef is continuously differentiable with respect to ¢ also and the
order of integration and differentiation can be interchanged. By
2.1 (2.1.2) and the Fourier inversion formula we can write for f as is stated

above

(3.1.12) LEf(x,t)
=90 fexp (it [ "o(s)ds) (80 s, )+ 6002 US(x, ) de

IIA

"(” exp(zsf a(s)ds )( jexp(—zgj a(s)ds) fe, 1)t )dg
+ 50 [exp (it [ o(s)ds)1(&—1)
x( j exp(—i¢ j os) ds) f(x, t')dt')dé

=, 0+ 52 [ fexo(ie [ o(s)ds) (1@ 1), t)drde

For general feC{(2) approximating it in L?-norm by functions as above with
supports contained in a common compact set K in £, we see, by (3.1.6) for
feCgx(2) and p=0, that (3.12) also holds for feCg(£2).

Here we define R as follows:

(3113)  Rf(x,t)
=20 (fexp(it ; a(s)ds)(1(E)—Df(x, t)drds,  feCH(Q).

Then we have (3.14) for every feC{(£2) and the first inequality in (3.1.7) is
immediate.
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Next we shall prove for feCy(2). Integrating partially with respect
to t/, we obtain from [Proposition 2.1 (2.1.2) and [Proposition 2.1 (2.1.3)

(8114)  ULf(x &)
= it(e){eS: (fexo(—ig[ "a9ds)otIf(-, t)dtr)(w)

600555 (fexp(—i [ o(9as)o )1, 1))}

= iX(E)j‘exp (~i§J:o(s) ds)o(t’)f(x, )dt .

Hence

(115)  ELf(x, = [exp(it[ :a(s) ds)

x2(&)( fexp(—it[ :'a(s)ds)a(t/) Fx, v)dt)de

Note that we have by [Proposition 2.5 (2.5.5)

(3.1.16) | fexo(—ief " o(5)ds)o(t)f(x, )dt"

l ' exp(—zéj‘ a(s)ds 35 (x, t')dt’l

C
IR “<“"<
for large |€|, feCyx(2),

where K is a compact subset in («, §8), & is the maximum of orders of zeros
of ¢ in K, and C is a positive constant independent of f. By the assumption

liA

L x, 0]+ 5 1))

(0.8) on g, the change of variable T“‘f o(s)ds is a homeomorphism between
(e, B) and (a’, B"), where a’= lim a(s)ds and f'= lim j a(s)ds. Also by (0.8),
the zeros of ¢ in («, B) are all 1solated Hence we have
j'exp(—ifjozla(s)ds)a(t’)f(x, t’)dt’:fexp (—ige)f(x, o/)dz’,
feCax(),
where z-’:j:a(s)ds and f(x, o/)=f(x, #). For every fixed x&(a, b), flx, 7) is a

continuous function of 7 with compact support. Therefore by [(3.1.16) and the
Fourier inversion formula we get

fix, )= 1(x, )
=5 [exp (ig2)( [ exp (—ige)fx, v)de")de
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=%—jexp(i&j(jo(s)ds)(jexp(—iﬁ-‘j:la(s)ds>o(t’)f(x, t’)dt’)d& .
Hence we have by (3.1.15)
(3.1.17) ELf(x,t)=f(x,t)

%J f eXp(iEj :"(S)ds)<x(€)—l)o(t’)f(x, t)dt de

feCix(8).
Now define R’f by

(3118)  R/f(x, )= [exp (it :0(5) ds)(U(E)—D)a(t")f(x, t')dt'dé .
Then
(3.1.19)  ELf=f+R'f for every feCi(2).

The second inequality in (3.1.7) is immediate from (3.1.18).
Finally we shall extend E, R and R’. Take peC§f(R,xR,) such that

[[pdxai=1 and set pu(x, )=-2p(-%, -L). For every feH},(2) we define
Efe9'(2) in the following manner.
(3.1.20) (Ef, g>=lim{E(pe+f), &7, geCy().

And for fe H} (£2), where » and s are any real numbers, we define Rfs9/(2)
and R’fe 9'(2) as follows:

(12D (RS, g>=lim(R(pe*f), 87, 8eCr(2).
3.1.22) (R'f, g)=lim (R (pxf), 87, g=CF(D).

Since is already proved for feCy(2), these definitions are well

defined and it is not difficult to verify that holds for extended
E, R and R’. Q.E.D.

REMARK. Let (x,,t,) be any pointin £. By (3.1.7) we have, for sufficiently
small neighborhood 2, of (x,,t,)

3128 | jg |R,f(x, )] 2dxdt§—%— {f I nldxdt, e HY(@).

Combining this with (3.1.4) we see that L is locally solvable at (x,, t,).

§4. Lt-estimate.

LEMMA 4.1. For every positive integer j, let E; be the parametrix constructed
in Theorem 3.1. Let p be any positive integer and assume that fe H{(£2) and

<¢7967)kfeH3.o(Q) for 1<k<p. Then we can write



22 T. AKAMATSU

(4.1.1) SE = 2 0B ((45) )

0 9 \™
+0ét+m2§p—1ap"’m W(SIBBT) (f+R; 1),

where 6y, 05,1, =C=((, B)) are appropriate functions of t independent of f.
PROOF. At first we shall prove the next two relations.

(4.12) (62 Er=E((32)7). 1=k=p,

(4.13) (2R =R ((32)7), 1sk=p.

Clearly it suffices to prove these for k=1. By [Proposition 2.1] (2.1.3), (3.1.10)
and we have

4.1.2) (6-2)Er=E(($-2)7)  for every feCr(@).

As for Rj, by its definition (3.1.13),

(4.13) (6 2R =R(($2)7)  for every feCr(@).

Let p. be the function selected for the extension of E, R and R’ in the proof
of Then

(4.1.4) li_rgf*pe=f in H,,
and

. af FAFN. T
(4.1.5) 1:53[95(”07*93)"@? £0.|=0 in Hy,.

Since the supports of the left-hand sides of (4.1.4) and are contained in
a common compact set in £ if ¢ is sufficiently small, [4.1.2) and [(4.1.3) follow
from [(4.1.2}, (4.1.3), (4.14), [4.1.5), and Theorem 3.1 (3.1.6), (3.1.7). The proof
of is by induction on p. When p=1 (4.1.1) is immediate from
3.1 (3.14) and [4.1.2). Assuming that holds for p=1 we shall prove
for p+1. Differentiating both sides of with respect to ¢, we have

ap+1

w1 ot =3 (¢ 50) )

0 0 \*
+ 2 oo E(($57) /)

1sks

A

ot 0 \™
+“a?(0§l+§§ e i (#5r) U+RN).

On the other hand by (3.1.4), and [4.1.3) we can write
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a a k i a k+1
@.L7) 2t E((997) ) =—19E(($57) 1)
+(b50) 1+ (3 ) R
From [(4.1.6) and [(4.1.7) we obtain for p+1. Q.E.D.

LEMMA 4.2. For every positive integer j, let E; be the parametrix constructed
in Theorem 3.1. Take any functions w, 8= Cy(2) such that 3=0 near supp o,
and fix any integer p such that 0=p=j. Then wE;&f)cH,, for any positive
integer q if fe HR§(2), and we have with a constant C>0 independent of f

(4.2.1) l0E;(@/)lp,e =Clfllpe, FfEHRHD).

PrROOF. We may assume that f=C{(£2). By the continuity of S; in the
sup-norm in x (cf. Proposition 2.1 (2.1.4.1)) we can write for large |&|

4.2.2) Se( [ exp (it :'a<s)ds)a £, 1)) (x)

= [ exp (—if :'o(s)ds>55(a”) F)(x, )dt”
Hence we have for 0<p/<p
(423) L (@EG)x, 0
= 2 0pulx,0f exp (i€ [ o9)ds)

x(f exp (=it [ o(s)ds)-gor (1,@)SK@N}Hx, )dt)de,
ZC 7;’;." g;rff (x,t). Let d=dist (supp w, supp &) and take
p(t)eC=(R") such that p(t)=0, ltlé%, and p(t)=1, ltlg—g—. We now set
(424)  Fi.(xt8)

= [ exp (—ig[ 091 ds) 1= plt—t") 4 {HAESL@N (x, 11",
(4.2.5) Fyp(x,t, &)

s o ~
= exp (it [ o(s)ds)olt—1) 5o (XS @) (x, 1)t

Then (4.2.3) can be rewritten as follows:

where w, (%, {)=T

o?
(4.2.6) W(ij(@'f))(X, t)

= 3 opx, t)fexp (iS fota(S)dS)Fl,r(x, t, §)d§

osrsp’!

+ 2 0plx, 0 exp (it Ot(;(s) d5)Faye(x, 1, £)dE

0srs
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At first we shall estimate the Ho,q norm of the first term of the right-hand
side of (4.2.6). Since (x,t)&supp @ if (x, t)=supp w,  (Csuppw) and if t—¢
esupp (1—p), we have by (2.1.10)

U27) @ o OA—pli— 1) o (L (O)SH@N} (5, 1)=0 it xeM.

Let x&M. We see that |x—y| g—g— if (x,t)esupp wy  (Csuppw), t—t
csupp (1—p) and if (y, #’)=supp &. Hence, then, for any non negative integer
a

1 Y gtag'(
428) racar exe (4505 4)

e af 41
= exp (el e exp (§, 305 45) 1305y
for sufficiently large |&|, either a,<y=x<b, and &¢(x)>0 in [, or a,<x=y<b,
and £4(x)<0 in I,, where ¢{ and c; are positive constants independent of x,y
and & Therefore by (2.4.6) and (24.7) we have for any non
negative integer ¢’

429) | (sl D= 0=t g (H(OS @A 5, 1)

(0 xeM,
C(x, )X (&) exp (—cl'|&])

Xj:,u °Xp (Ly?gf%ds) ‘ ¢(1y) | 0§§§7

S @1, )]y,

< xel, for some psd, £4(x)>0 in I,,
Clx, )X (&) exp (—cl'|€1)

<. oo (J -5 )ratonn 2. oy @0 ey,

\ xel, for some ped, £4(x)<0 in I,,

where C(x,t)=0 is an appropriate function belonging to C}(£2) and independent
of f, and ¢, ¢{ are positive constant independent of f and x,¢, &, 3, ¢. From
(4.2.4) and (4.2.9) the next inequality is immediate.

4210) [ 2wy, DF (5, 1,8)
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0 xeM,
Clx, DX;(8) exp (—al€l)

x Yy cz‘f 1
Xj.ja,; exp (jx é(s) ds) [o()] 0;%&
! xel, for some ped, E4(x)>0 in I,,

Clx, )X ;(§) exp (—cil &)

O Vo, 1
<, e (0, 559 om. 2
L xel, for some ped, £4(x)<0 in I,,

@), 0|y

A

@, )|y,

where c¢;, ¢, are positive constants independent of f and x,¢, &, 5, ¢. Now by
(2.4.11) it is not difficult to show that

(4.2.11) the H,, norm of the first term of the right-hand side of (4.2.6)
=Cll&fllp,0-

Next we shall estimate the H,, norm of the second term of the right-hand
side of (4.2.6). Take a function ¢(§)eCF(R") such that ¢(0)=1. Then

(4212) @y 0n 0 exp (i :o(s) d)F o, 1, §)dE
= 151_’1? Wy (X, t)” exp (iéf:a(s)ds>

X p(t— )4 (8) e (L, (E)SH@N} (x, 1)t

Sinrce .u—zqg% when t—{’=supp p,

(4.2.13)

j to(s) ds
t' ar
and (x, t')=supp WS;-(wf).

=C>0 for some positive constant C if (x,t)& supp @, ,

By partial integration with respect to & we have, for large positive integer N,

(4.2.14) the right-hand side of (4.2.12)
t
=wpy .(x, t) H exp (iéfﬁa(s) ds)

EDY ot~y w(x, v, E)didE

e 5 o(ds)

7V
where G, y(x,t', &) =—=z5 a"N axT {X;(8)Se(@f)}(x,t"). If we apply [Proposition 2.]
(2.14.2) to (4.2.14) it is not difficult to see that
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(4.2.15) the H,, norm of the second term of the right-hand side of (4.2.6)
=Claflp0-.

Combining (4.2.6), (4.2.11) and (4.2.15), we obtain [(4.2.1). Q.E.D.
THEOREM 4.3. Let I, ] and N be any non negative integers.
(a) Assume that u, (-0-)(Lu), and -2 (6-2-) (Lu)e Hy5(2) for 0k<]
and 0=Zl4+m=J—1. Then us HY5(2).
(b) Under the same assumptions as in (a), take any two functions w, 3= C3(2)
such that &=1 near supp w, and let l,and ly be the maximum of orders

of zeros of ¢ in the t-projections of supp w and supp @ respectively.
Then we have with a constant C>0 independent of u

s |(62) @)

(99) @1, IOl ro+ It )

431 Jouls,, =C( 3

0<k=J 1,-4

0st+msJ—1

where f=Lu and 6 =—5 5 (1w+1 lm-i—l)

PrOOF. We shall apply [Theorem 3.1, Proposition 4.1 and Proposition 4.2
with j=I+1. We have

(4.3.2) L(6u) =& Lu+(Lé)u=af+(Lé)u.

By the hypothesis of both @f and (L&)u belong to H{(2). Hence
L(@u)e Hj ,(£2) and we have, by [Theorem 3.1 [(3.1.5),

(4.3.3) Ep i L(@u) = Gu+ Ry (8u) = Er,(Gf)+ Erni(Ld)u) .

Since @=1 near supp ® we can write
(4.34) wu=oE(8f)+wE;,(L&)u)—wR,(Gu).

Let i, be any non negative integers such that 0=i<[ and 0=;=<J By
Leibniz’ formula, we have

oiti orte
(4.3.5) W(wu) E Cth,;,pq oxPotT E; (@))

N/\ n
II/\ N/\

+ AT a?czat] (wEI+1((Lw)u)) axwat.; (C()R1+1(a)u)) ’

oiti-p-q
By the hypothesis of about f=Lu, we can apply
04

to WE,H(G)]‘), g=1. Hence we can rewrite (4.3.5) as follows:

where ®y,j,p,0= iCi-p ;C;
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s o
(4.3.5) oxiot (wu)— Wi,5,0y0 FI Ern(@f)
§ s Ere(($5) @)
15hS0sj
+os§:_ Wi,5,0,q% pylym ATD axp o <¢ ax> (wf+RI+1(‘Uf)>

0=l+m=q—-1=j~-1
ot
+ axzat_; (wEI+1((Lw)u>) zat] (G)RI.H((DM))
Since L&=0 near supp @, we may apply Lemma 412 to the fourth term_in the
right-hand side of (4.3.5). Next we apply (3.1.6) and (3.1.7) to
the terms in the right-hand side of (4.3.5)’ involving E;,, R;4; and R7y,. Then
we have with a constant C>0 independent of u, f

47 2
436 ] |—a%7’tj—(wu) dxdt
<C(0<Ie$]
(¢ a—) @, +ILamltottauls, x).
Hence ue Hp5(£2) and (43 1) is immediate from (4.3.6). Q.E.D.

References

[1] R. Beals and C. Fefferman, On the local solvability of linear partial differential
equations with C= coefficients, Ann. of Math., 97 (1973), 482-498.

[ 2] H. Kumano-go, Pseudo-differential operators and their applications, La Funkcialai
Ekvacioi, Vol. XXII N-ro 2/3 (1970), (Japanese).

[3] L. Nirenberg and F. Tréves, Solvability of a first order linear partial differential
equation, Comm. Pure Appl. Math., 16 (1963), 331-351.

[4] L. Nirenberg and F. Tréves, On local solvability of linear partial differential
equations, Part I: Necessary conditions, Comm. Pure Appl. Math., 23 (1970), 1-38.

[5] L. Nirenberg and F. Tréves, On local solvability of linear partial differential
equations, Part II: Sufficient conditions, Comm. Pure Appl. Math., 23 (1970),
459-510

[6] F. Tréves, A new method of proof of the subelliptic estimates, Comm. Pure
Appl. Math., 24 (1971), 71-115.

[7] F. Tréves, Hypoelliptic partial differential equations of principal type, Sufficient
conditions and necessary conditions, Comm. Pure Appl. Math., 24 (1971), 537-570.

Toyohiro AKAMATSU

Department of Mathematics
Faculty of Science

Osaka University
Toyonaka, Osaka

Japan



	Introduction.
	\S 1. Outline of the construction ...
	\S 2. Preliminary propositions.
	\S 3. Construction of ...
	THEOREM 3.1. ...

	\S 4. $L^{2}$ -estimate.
	THEOREM 4.3. ...

	References

