J. Math. Soc. Japan
Vol. 28, No. 4, 1976

On the arithmetic of quaternion algebras II

By Arnold PIZER*

(Received Sept. 30, 1975)

§1. Introduction.

The purpose of this paper is to develop an aspect of the arithmetic of
quaternion algebras that will allow us to generalize (see [9]) results of Eichler
21, and [4]) and Hijikata-Saito ([6]) on the representability of modular
forms by theta series. Specifically we define a certain type of order in rational
quaternion algebras, construct corresponding “Brandt” Matrices, obtain some
properties of these matrices, and finally obtain a trace formula for them
Theorem 26). In [9], we give a relation which holds between the trace of
the Brandt Matrix and the traces of Hecke Operators from which we obtain
results on the representability of modular forms by theta series in the case of
I'(N), N not a perfect square. This paper is independent of [8].

§2. Orders.

Let A, denote the unique (up to isomorphism) quaternion division algebra
over @, Let L denote the unique unramified quadratic extension field of Q.
Then %A, can be represented as the subalgebra of the 2X2 matrix algebra

p

where — denotes conjugation of L/Q,. The canonical trace (tr) and norm (N)
of A, are respectively the trace and determinant in the matrix representation.
In order to make the typography simpler, we will often denote the matrix

<10;,§ g) €U, by [a, 8]. For any ring S we denote by U(S) the unit group

of S. For a non-negative integer 7 let OF,={[«a, p"fleU,la, FER,} where
R, denotes the integers of L. Then O, is an order of A,. It is easy to
see (either directly or by calculating the discriminants) that " is the maximal
order of U,.

A, =

a, ﬁEL]
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DEFINITION 1. An order 2O of ¥, is said to have level p**! for r=0, 1, 2,
3, -+ if © is isomorphic (over Z,) to OF,.
A,Qq,L is isomorphic to M(2, L) and we can extend the conjugation of

— sp-1
L/Q, to A,RQL by letting — operate on L. Explicitly (;c g)—:(gy b :E)

An element G U,QL is actually in %, (=A,®1) if .and only if G=GC. DP\,Rz,R
= <§T+1Rp Jlg) is the type of order studied by Hijikata in [5]. There is a close

analogy between orders of level p*"*' in 9, and those isomorphic to D%, QR
in A,QL. This is illustrated by the following two results.

PROPOSITION 2. An order O in W, has level p*"** for some r if and only
if © contains a subring isomorphic to R,

PrROOF. One direction is immediate. For the other, we can assume (by
conjugating if necessary) that £ contains Rp:{(g g)laeRp}. Let A=[a, ]
9. By adding an element of R, to A, if necessary, we can assume Tr (A)
=0. Since N(A)sZ,, we see that a and S are both in R,. Letting r=
min {v,(3)|[x, y]=O}, we have O=07,,.

PrROPOSITION 3. [N(DEL): URE)Q3]1=2 and [1,0] and [0, p"] are the
coset representatives of U(QP.,)Q7 in N(OE,) where N(OR,)={Ac ;| AP, A™
=0}

PrOOF. It is easy to see that [0, p"]0,,.,[0,p"1'=D,,,; and thus
U(R,,+0)Q%00, p" 1S N(Oyr4,). Conversely, let A= N(,,+,). Then A normalizes

9,,,,QR and hence by 2.2 of [5] we have either AeU(ﬁHRpTg)L“ or
AEU(§'+1RPT§)Lr<p9+1 p(r) . In the former case let B=A and in the latter

let B=A[0, pJ". Thus B=U( 5”‘ Rprf;)ps for some s€Z. But B=B implies
BeU(D,,4,)p° and hence AEU(Der)Qg or AEU(Dzr+1>Q£[Oy Pl

§ 3. Optimal embeddings.

The major tool we will need in obtaining a trace formula for Brandt
Matrices is the optimal embedding theory for O,,,,=90®.,. For r=0, this is
well known (and trivial) (see [4], p. 97). The analogous theory (which we
will implicitly use) in the case of a split quaternion algebra over @, was de-
veloped by Eichler ([T], [4]) and in the general case by Hijikata ([5] §2, see
also §3). Let K be a semi-simple algebra of dimension 2 over Q, [i.e. K
is a quadratic field extension of Q, or K=Q,PQ,] and let o be an order of K
(with 0®;,0,=K).

DEFINITION 4. An embedding (injective @, homomorphism) ¢: K—%, is
called an optimal embedding of 0 into O,,,; if G(K)NDyr4;=¢(0). Two such
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optimal embeddings ¢, and ¢, are equivalent mod U(J,,,,) if there exists A<
U(D,,,,) so that ¢,(a)=A""¢,(a)A for all a=K.

Let us fix some notation. [f p=2, let v:—l%ib— and u=5. If p+2, let
v=+/u where u is an integer which is a quadratic non-residue modp. Then
L=Q,(v) and R,=R=Z,+Z,v is the set of integers of L. We will keep this
notation for the remainder of this paper.

PROPOSITION 5. Let K=Q,(g) with Z,+Z,g an order of K. Then ¢ is an
optimal embedding of Z,+Z,g nto O,y tf and only if ¢(g)=[a, p"f] with
a, BER and where either BEU(R) or a=a-+bv with beU(Z,).

ProOOF. Z,+Z,g is optimally embedded in ©,,,, if and only if Z,+Z,¢(g)
=D, 1N Q,+Q,¢(g)) and from this the proposition follows easily.

Let K, o be as in We denote by A(c) the discriminant of o.
A(o) is defined mod U(Z,)* and we will write A(0)=d to mean A(0)=dU(Z,).
If K=Q,(g) and 0=Z,+Z,g, then A(0)=tr (g)*—4N(g).

PROPOSITION 6. Let G=[a, p"B1€D,,,, with a=a+bv. Assume o=identity
gives an optimal embedding of 0=2,+Z,G into O,.,,. Then

i) If b is a unit, then A(o)=u

ii) If b is not a unit, then

a) If 0<r,(b)y=s=r, then A(o)=p*u
b) If p#2 and v,(b)>r, then A(p)=p*"*' or p*"*'u
If p=2 and v,(b)=r+1, then A(0)=22"**3 or 2°7+*7
If p=2 and v, (b)>r+1, then A(0)=2*"*"*u’ where u'=1,3,5, or 7.

Proor. This follows by a direct verification using

Our main task in the next two sections will be to count the number of
inequivalent mod U(£,,,,) optimal embeddings of an order o into O,,,,. For
this we will need the following two lemmas.

LEMMA 7. [UD)) : U©,,+1)1=p*" and further a set of representatives of
U(D,) mod U(D,,,,) is given by [1, y] where y ranges over R (mod p"). In fact
if [a, B1€U®,), then [a, Bl=[w, p70][1, y] where y=8/a(mod p") for some w,
o= k.

Proor. It suffices to prove the last statement and this is easy.

LEMMA 8. Let G, HeDy,,,. Then G and H are conjugate by an element
of U,,4,) if and only if G(=GR1) and H are conjugate in O, QR by an
element of U(Dyr1,QR).

ProOOF. Let us fix r and write ©=9,,.,. Assume AGA'=H for some
AcsUDQR). If we can find a YeU(D®R) commuting with G such that AY
eU(D) we will be done. But AYeU(D) if and only if AY€U(OXR) and
AY=AY=AT7, i.e. A'A=TYY"'. Letting B=A"'A, we have

i) BeU(O®R)
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iiy BB=1
and

iili) B commutes with G.
We claim there exists ze L such that z+ZB=X<U(O®R) and X commutes
with G. Note first that z= L implies that X commutes with G. Let B=

(?prﬂbp; ,a, b c,desR. Then BE€U(DRR) implies a, d=U(R) and BB=1 im-

plies ad=ad=1 (modp). Thus a=—1 (modp) = d=—1 (modp). If ax—1
(mod p), then z=1 works and if a=—1 (mod p), then z=v works. Now XB=
X>B=X"1X. Letting Y=X"!, we have A*A=YY ! where ¥ commutes with
G and AYeU(OQ®R). This completes the proof.

§4. The case p+2.

Assume in this section that p#2. Further we assume K/Q, and o are as
in and we write £,,., for OF,,.

LEmMmA 9. [v, 0] and [, 0] are not conjugate by any element of U(D,).

Proor. This is immediate.

PrOPOSITION 10. If A(0)=u, then o has exactly 2 inequivalent mod U(D,, 1)
optimal embeddings into sy ys.

PrROOF. We can assume 0=2Z2,--Z,v. By [Proposition 5 and Lemma 9 ¢,(v)
=[v, 0] and ¢,(v)=[7, 0] give non-equivalent optimal embeddings. Suppose ¢
is an optimal embedding. Then ¢(v)=[bv, p"y]=G (say) with beU(Z,) and
yeR. Then —u=N@)=N(G)=—0b*u—p*"*'yy implies b=+1 (p). Suppose b=
1(p) (=b=1(p*"*"). G and [v, 0] are conjugate by an element of A*. Since
W=U@)QUUD)() ()@ we must have [w, xICv, 01w, x17=bv, p"3] for
some [w, x]eU(D,). This gives bz%’ hence b—1=0(p*"*H=>x=0(p")
>lw, x]eU®,r4y). Thus ¢ is equivalent to ¢,. The case b=—1(p) gives ¢
equivalent to ¢,.

PrROPOSITION 11. If A(0)=p*u with 1<s<r, then o has exactly 2p°—2p*!
inequivalent mod U(D,,4,) optimal embeddings into Oyppy.

PrROOF. We can assume 0=Z2,+Z,p°v. Let ¢ be an optimal embedding.
Then ¢(p*v)=G (say) is conjugate to either [p°v, 0] or [p°7, 0] by an element
of U(D,) (see proof of [Proposition 10). Suppose G is conjugate by U(D,) to
[p°v, 0] (the other case is similar). Then by G is conjugate by
U(9,,,,) to some

S S+1..= S5
CL, 7ICp, 030, 717 = [ PRI (2B T 4 (say)
where yeR (mod p°). But G conjugate to A by U(D,,.,) implies Z,+Z,A is
optimally embedded in ©O,,,, which is true if and only if (by Proposition35)
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—I:ﬁ?:prﬁ’ for some 3'eU(R) if and only if y=p""*8 for some f=U(R).

As y€R (mod p"), we have y=p"°3 where S=R (modp*), S€U(R). Thus G
is conjugate by U(D,,,,) to some

1 puepTsEy e .
() [: l_pzr—zsﬂ‘sﬂ ’ 1‘p2r_zs+lﬁﬁj 3 (say)

with SR (mod p*), B€U(R). Let j3, be defined as in (1) by replacing 8 by 5,
with 8;€R (mod p*), B,€U(R). We claim

(2) f is conjugate to 3, by U(D,,,,) if and only if 83=3,5.(p").
By Lemma 8, 7 is conjugate to 3, by U(D,,,,) if and only if 5 is conjugate to
3, by U(,,,,@R) which is true if and only if <(l) p9>,§((1) p‘g) is conjugate

to <(1) p9>51<(1) p—?) by (é p?) U0, QR) <(1) p-(g):U(;prﬂzp gﬁ)- Our
claim is now reduced to showing

1 ._ psv—lrp_z""“ﬂﬁ 252—) _>_—_B
1_p2r—2s+1 5‘3 <2p21'+]‘3v psz)+p2r—s+1‘8ﬂ (Say)

is conjugate by U(f‘frﬂzp ?) to
b

L (pv+p B 2p,0 _>: B
1__p2r—25+1[81‘31 <2p2r+1‘511} psﬁ+p27-s+lﬁl‘81 1 (SaY)

if and only if B3=S,5 (modp’). As elements of (ffmz ?;) are upper
' y ¥4

. ara1 . Z ZN\ o .
triangular mod p*"*!, B conjugate to B, by U(pg’;ﬂzp Zi) implies
PuApTHBE  puEpT BBy
3) 1_p27‘—23+1135 = 1‘p2r-2s+1ﬁ1‘§1 (mod p**7).

But one easily sees that (3) is equivalent to 33=p,8, (mod p*). For the con-
verse, we have that 83=p3,53, (mod p*) implies (3) holds. Let

5= 280 3, = 28,0
l_pzr—zs+lﬂﬁ ! 1_p2r—2s+1‘81‘@1 ’

and
89+ 2r-s+14073 s —+ 2r-s+10 2 .
= %ﬁi*%ég— PR,
/1 0 Z V4 . . . .
Then C—<t5;‘ 55;‘)6[](1)5“21, Zz) and direct verification (using the fact

that CBC™ and B, have the same norm and trace) shows CBC'=B,. This
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proves our claim (2). The last part of the proof of our claim is essentially
Hijikata’s proof of Lemma 2.5 part (ii) in [6]. As S ranges over all units in
R (mod p*), B ranges over all units in Z, (mod p*) and the number of such
units is p*—p°~'. Thus (2) shows that there are exactly p*—p* ' inequivalent
mod U(9,,,,) optimal embeddings ¢ of o into O,,,, with ¢(p°v) conjugate by
U, to [p'v, 0]. Similarly, there are exactly p*—p*~' inequivalent optimal
embeddings with ¢(p°v) conjugate by U(2,) to [p°#, 0]. This completes the
proof of [Proposition 11

PROPOSITION 12. If A(o)=p*"*'u’ where w'=1 or u, then o has exactly p"
nequivalent mod U(D,,,,) optimal embeddings into Oy, .,.

ProOOF. Define and fix an element we L by letting w=1 if u'=1 and N(w)
=u if w'=u. We can assume 0=2,+Z,p"v/pu’. Let ¢ be an optimal embed-
ding. Then ¢(p” v/pu’ )=G (say) is conjugate to [0, p"w] by an element of
U®,) (since [0, w] centralizes [0, p"w]). Thus by [Cemma 7, G is conjugate
by U(D,,1;) to some

Tl =g Tl 2=
@ L0, pralrt, 1 = [P PRPED ot (say)
where yeR (mod p™). To complete the proof of Proposition 12, we need only

LEMMA 13. Let S={awv|a=Z, (mod p")}.

i) Let a, 8BS and define &, f as in (4). Then & is conjugate to B by
U(‘/Dzrﬂ)‘::}a:ﬁ-

ii) Let G be as itn Proposition 12. Then G is conjugate to some &, a<S.

PrROOF. 1) « is conjugate to B by U(D,,.)=a& is conjugate to 5 by
U(D,,.«QR). This is equivalent (see proof of (2) in the proof of
11 to pam—aw) _ pT(Bw—pw)

I—pad 1—p85
this gives a=b (mod p") which implies a=b, hence a=}.

ii) We need only show that each 7, y&R mod p" is conjugated by U(D,,,,)
to some &, a=S. As mentioned above, thisis equivalent to finding a<S such
that
5) ;07“(01177—_5“0) = PT“(TW'_?W)

1—paa 1—p77
Letting y=(c-+dv)w with ¢, deZ, and a=awv, acZ,, (5) is equivalent to find-
ing a=Z, (mod p") such that a*(dpuw’)—a(l—c?*pu’+un'd*)+d=0 (p7) and it
is not hard to see that this equation is always solvable mod p". This completes
the proof of the lemma and [Proposition 12

We collect the results of this section in

THEOREM 14. Let p be a prime +2. Let K be a semi-simple algebra of
dimension 2 over Q, and o an order of K with discriminant A. Then the num-
ber of inequivalent mod U, optimal embeddings of o into OF, is given by

(mod p*"*'). Letting a=awv, S=bwv,

(mod p2T+l> .
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the table
A s<r s=r s>r
pZS ‘ O O
pZSu 2p3_‘2ps-—1 2pr_2pr—1 O
p23+1 0 pr 0
pzs-i»lu 0 p" 0

Here for s=0, read p~'=0.
Proor. The only thing not covered above is the case A=p*. But then
K is not a field > K has zero divisors > K can not be embedded in %,.

§5. The case p=2.

We recall that =5 and v:—lf—z\—/i when p=2. The analogue of [Theoreml
14 is

THEOREM 15. Let K be a semi-simple algebra of dimension 2 over Q, and
o an order of K with discriminant A. Then the number of inequivalent
mod U(02,,) optimal embeddings of v into 0P, 1is given by the table

A s<r s=r s>r

| 1 0 0 0
\ 92s+2 0 0 0
5 2 2 2
| ) 251 0 0
285%23 o 225+%7 0 27 0
2%%3q where a=1,3,5 or 7 0 27 0

PrOOF. The proof will be given in a series of propositions, the proofs of
which are similar to those in section 4. First note that the case A a square

can not occur and that by we need only consider the cases
where the entries of the table are non zero. In this section K and o will have

the same meaning as in

PROPOSITION 16. If A(0)=5, then o has exactly 2 inequivalent mod U(£,,.,)
optimal embeddings into O,,,,.

ProOOF. We can assume 0=2,+Z,v. Then ¢,(v)=[v,0] and ¢,(v)=[7, 0]
give inequivalent optimal embeddings. Suppose ¢ is an optimal embedding.

Then w(v):[Lz‘/F’, 27y =G (say) with b=U(Z,) and y=R. Hence b==1(4).
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Just as in the proof of [Proposition 10, 5=1(4) implies G is conjugate by
U(Q,,4,) to [v,0] and b=—1(4) implies G is conjugate by U(D,,.,) to [z, 0].

PrROPOSITION 17. If A(0)=2%*%5 with 0=<s<v, then o has exactly 2°T' inequi-
valent mod U(D,,.,) optimal embeddings into D,y ;.

PrOOF. We can assume 0=2,+2,2°+/5. Let ¢ be an optimal embedding.
Then ¢(2°+/5)=G (say) is conjugate to [2°+/5, 0] or [—2°4/5,0] by an ele-
ment of U(,). Suppose G is conjugate to [2°+/5,0]. Then as in Lemma 11,
G is conjugate by U(9,,,;) to some

2° /5 +27 5185 /5 =285 |_ 3
(6) [ 1__227‘—23-1‘85 ’ 1_227-23_1ﬁ1§ J_AB

(say)

where SR (mod 2°*') and S=U(R). Let j, be defined as in (6) by replacing
B by B, with B,€R (mod 2°*"), B,€U(R). We claim

) f is conjugate to 5, by U(D,,) > BB = .5, (mod 2°*).

The proof of (7) is exactly the same as the proof of (2) in [Proposition 11l
Now as 8 ranges over units in R (mod 2°*!), 83 ranges over all units in Z,
(mod 2°*'). This gives 2° optimal embeddings ¢ and the case where G is con-
jugate to [—2°+/5, 0] by U(9,) gives the other 2°.

PrROPOSITION 18. If A(0)=2*"**u’ with u'=1,3,5, or 7, then o has exactly
2" inequivalent optimal embeddings into Dypyq.

ProOOF. Define and fix an element weL such that N(w)=u’. We can
assume 0=2,+7,2"+/2u’. Let ¢ be an optimal embedding. Then ¢(2"+/2u’)
=G (say) is conjugate to [0, 2"w] by U(,) (since [0, w] commutes with [0, 2"w]).
Then as in [Proposition 12, G is conjugate by U(9,,.;) to some

(8) [ 2T+1(Tw_‘7w> 2T(w”27’2w) ]:? (say)

1=2r7 7 1=y
where y€R (mod 27). To complete the proof we need only
LEMMA 19. Let S={awv|asZ, (mod 27)}.
i) Let a, B=S and define &, B as in (8). Then & is conjugate to B by
U(‘D2r+l)@a:18'
ii) Let G be as in Proposition 18. Then G is conjugate by U(D,,.,) to some
&, acsS.

PrOOF. i) As in Lemma 13, & is conjugate to ,é by U(9,,,,) i8 equivalent
2 aw—aw) _ 27— fw)
1—-2ada - 1—283

this gives a=b(2")>a=p.
ii) We need only show each 7, y€R mod 2" is conjugate by U(f;.,) to
some &, asS. Letting a=awv and y=(c+dv)w with ¢, d Z,, this is equivalent

to

(mod 2°7*"). Letting a=awv and B=bwv,
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to finding a=Z, (mod 27) such that
a*(2du’)—a(l1—2(c*+cd—d®»u')+d=0 (mod 27)

and it is not hard to see that this equation is always solvable (mod 27).

ProrosITION 20. If A(0)=2%"*2u’ where u’'=3 or 7, then o has exactly 2"
inequivalent mod U(D,,,,) optimal embeddings into O, ;.

PrOOF. Define and fix an element weR by letting N(w)=1 if #'=7 and
N(w)=-—1 if u’=3. We can assume 0=2,+7Z,g where tr (g)=2""' and N(g)=
—2"+1(24+wir). Let ¢ be an optimal embedding. Then ¢(g)=G (say) is con-
jugate to [27*'v, 2"w] by an element of U(D,) (since [w, v][0, 1]1=[2v, w] com-
mutes with [27"'v, 2"w]). Thus G is conjugate by U(D,,.,) to some

2r+1(rw_7—,w>+27+1(v_zr;ﬁ> ZT(W—2rlﬁ)+27+1(rﬁ—rv) .

where y&R (mod 27). To complete the proof we need only

LEMMA 21. Let S={awvlacsZ, (mod 27)}.

i) Let a, B=S and define o‘c,ﬁ as in 9. Then & is conjugate to ,@ by
U(Qyr)oa=4.

il) Let G be as in Proposition 20. Then G is conjugate by U(,,.,) to some
&, aceS.

PrROOF. The proof is similar to and only slightly more complicated than
the proof of

§6. Orders of level ¢,q, and the Mass formula.

Let g,=pit --- p;/ where the p; are distinct primes and f, s, -+, s; are all
odd positive integers. Let ¢, be any positive integer such that (g;, ¢,)=1. Let
A be the (unique) quaternion algebra over @ such that the set of primes at
which % is ramified (i.e. such that AR, is a division algebra) is precisely
{p1, =+, by, o0}

DEFINITION 22. Let q,, ¢,, and U be as above. An order © of U is said
to have level q,q, if

a) 90,,=90QzZ,, is an order of level pi¢ in ARQ,, for p;lq,

.. . Z Z
b) £, is isomorphic (over Z,) to quZp ZZ) for p } q..

REMARK. If g, is square free and ¢,=1, these are just the maximal orders
of A. If q,q, is square free, they are the Eichler orders studied in [1], [4],
and [7]. If ¢, is square free they are the “split” orders studied in [5] and [8].
Let us fix ¢;, ¢, and U as above for the remainder of this section. Let O
be an order of level ¢,¢, on Y. Then just as in [4] and [8], © has an ideal
theory. Let Jy denote the idele group of A and Ji the ideles of volume 1 (if
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a=(a,)< Jy, we let vol(a)=II|N(«a,)|,, the product over all p including o).
y4

Also let WD)={a=(a,)eJila,cU,) for all p<co}. Then left O ideals can
be identified with the cosets WD)\ J4. We say two left O-ideals I and J are

equivalent if and only if I=Ja for some a=%*. Thus the set of left D-ideal
h

classes is identified with the double cosets W)\ J4 /A%, In fact if Ji=UJU(D)g,A*,

i=1

then Og;, 1=1, -, h represent all the left ©.ideal classes. Here if g=(g,)
€ Ji, Og denotes the unique lattice I on A with [,=IRZ,=90,g, for all p<oo.

Let © be an order of level g,¢, on A. Let M, ---, M, be representatives
of the (left) O-ideal classes. Let O,, i=1, ---, i be the right orders of the M,
i.e. O,={acsU|M;a&M,}. If M;=9Dg; then O,=gi'Og,. The O, are also
orders of level g,q,. We define a weighted class number called the Mass by

DEFINITION 23. The Mass M, ,, (for -ideals, © an order of level ¢,q,) is
given by

h

_ 1
Mg, q, = 21.;;‘ (U]

REMARK. The Mass M, ,, depends only on the level, not on the particular
order or on the left or right ideals (see Proposition 24). Also the 2 in the
definition comes from the fact that we really should consider U(£;) mod U(Z),
at least if we want our definition to extend to quaternion algebras over totally
real number fields.

We need an explicit formula for the Mass. If ¢, is square free this is
given by Lemma 19 of [8]. The formula in the present case is similar. For
completeness we sketch' a proof. For simplicity let G=J% and ['=%*. Then
G is a locally compact unimodular group and I’ is a discrete subgroup with
G/I' compact. Finally W(©) is an open compact subgroup (see [10]). If dx is
a Haar measure on G, we also denote (by abuse of notation) the invariant
quotient measure on G/I' by dx, i.e. if f is a continuous function with com-

pact support on G, then _fa f(x)dx= fam (TZ_,rf(x;f))dx.

PROPOSITION 24. Let © be an order of level q,q,. Denote by dx the Haar
measure on G normalized so that vol W(D))=1. Then M, ,=2 Vol (G/I).

h
Proor. G:H W(O)g;I" where Og;, i=1, ---, h represent all the (left) ©O-

ideal classes. Thus Vol (G/F)zgvol M) g I/ IN=X vol (ggWD)g, L'/ I =

Svol Wgi'Reg) I'/I") = T vol W(gi'Og)/M(g7*Og)NT) = EiTU(E}‘DTI_:

%Mqlqz by the definition of M,

192°

PROPOSITION 25. Mqlqzzﬁi%t I (1*%) I <1+_]1§_ .

play play
Proor. If © is a maximal order, i.e. if ¢, is square free and ¢,=1, then
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the Mass is well known to be

(10) —112—3 (p—1)  (see [T] p. 137 or [4] p. %5).
1

Now let © be an order of level ¢,¢,. Then O is contained in an order £’ of
level ¢l where q::plg p. Now [WO): H(D)]:I;[[U(D;): Uoyl. If pla,
1 .

{UD}): UD)I=LU®P) : UE,)1=p*" where v,(¢;)=2r+1 by Lemma 7. As
[U<Zp Zp>:U<Zp Zpﬂ:{ P+l if r=0
vz, z) %z, Z » i r>0
we see that for plgs [U(D)): U(op)]:pr(1+%) where r=u,(¢,). Thus

an (D) : D)1= qlqugl(l—%) 11 (1 +%)<ﬂff"m” :

plgy

Now by (10) and [Proposition 24, the volume of G/I" under the assumption

vol (D)) =1 is —214—1711‘5 (p—1). Hence the volumn in the present case
1

{vol W(D)=1) is [ND’): U(D)] times as large. This by and
24 completes the proof.

§7. The Brandt Matrices.

Let ¢, ¢q,, and A be as in section 6 and let © be an order of level ¢,9, on
9. Fixing a set of representatives of the (left) £O-ideal classes, we define
(generalized) Brandt matrices B(n)=B,(n; q,, ¢;) in eXactly the same manner
as Eichler (see [4], equations 15 and 15a on page 105). Then as in Theorem
2, Chapter 2 of [4], the B(n) (for fixed [, ¢, ¢;) with (1, ¢,¢,)=1 generate a
semi-simple commutative ring and satisfy the same identities as the Hecke
operators T(n), (n, ¢.q,)=1.

We are interested in the trace of the Brandt Matrix. This is given by
the following theorem where we follow the notation of Hijikata [5].

THEOREM 26. The trace of the Brandt Matrix B,_,(n; q,, q,) is given by

(12) Tr Bk—z(n , qls qZ) = Eak(s);b<sy f>p ‘Iq—.[q C(‘Sy f5 p)
$ 192
—/ k—1 1 1
+ovi) ()L (1= 5) 1L (1+57)
k-2
_ § _ [ n? if nis a square
where 3(+/n)= { 0 otherwise.

The meaning of s, a,(s), f, b(s, f), and c(s, f, p) are given as follows.
Let s run over all integars such that s°>—4n is not a positive non-square,
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hence by some positive integer ¢ and square free negative integer m we can
classify s’>—4n into cases by

0 §))
2 (h)
st—4n=
1 t%m m=1(4) (el) }
t*4m m=2, 3(4) (e23)

Let @ (X)=X%*—sX-+n and let x, y be the roots of @,(X)=0. Corresponding
to the type of s, put

L2 (sgn () (»)

ak@:l Min {|x], |y }* 2=y (sgn ()" (R)
1/2(x* =y =)™ R

(p)
all positive divisors of { (h)+4(e).

Put A=(s*—4n)/f% Let K denote the quotient ring Q[ X]/@(X) and & the
canonical image of X in K. K is a commutative semi-simple algebra of dimen-
sion 2 over @ and & generates the order Z+Z& on K. For each f there exists
a uniquely determined order A=A containing Z+Z& as a submodule of index
f (with disc (4)=A). Let h(A) (resp. w(A)) denote the class number of locally
principal A-ideals (resp. 1/2{U(A)|. Then

For each s (fixed), let f run over {

1 (p)

b(s, )= '%_SD( VA) (h)
h(A)

SR (e).

Let O be an order of level ¢,q, on A. Then c(s, f, p) is the number of inequi-
valent mod U(DXZ,) optimal embeddings of ARZ, into DR Z,.

REMARKS. As U is a division algebra, ¢(s, f, p)=0 in cases (p) and (k).
We included those cases to show the similarity of Tr (B(n)) and Tr (T(n)) (see
Theorem 1 of [9]) and to make the statement of Theorem 2 in simpler.
For plq,, c(s, f, p) is given by Theorems [4 and 5 of this paper. For p|g,,
(s, f, p) is given by Theorem 2.3 of and explicitly in the proof of Theorem
4 of [9). For p} q.q,, c(s, f, p)=1 (by Corollary 2.6 of [5]).

ProoF. Eichler gives a proof of this (see [4], Chapter 2, §8) in the case
4.4, is square free. Using the results of for plg¢, and the results of sec-
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tions 1-6 of this paper for p|q, one can easily generalize Eichler’s proof to
obtain (12).

(1]
£2]
(3]
(4]
[5]
[6]

[7]
[8]
[9]
[10]
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