Representation of pseudo-holomorphic functions of several complex variables

By Akira KOOHARA

(Received Jan. 30, 1975) (Revised Aug. 7, 1975)

\S 0. Introduction.

Hitotumatu $\lceil 6 \rceil$ was the first to introduce K-quasi-conformal functions of several complex variables for a positive number $K>1$ and derived, in a functiontheoretic approach, some properties similar to holomorphic functions (the maximum modulus principle and that the set of zeros of a K -quasi-conformal function in a neighborhood of its ordinary point is an $(n-1)$ -dimensional complex manifold if not empty etc.) Moreover he obtained several properties of non singular mappings determined by them.

A function $g(t,\bar{t})$ of class C^{1} on an open set Δ in the complex plane C is K-quasi-conformal on Δ if and only if it satisfies the Beltrami equation $\partial_{\overline{t}}g=$ $\mu\partial_{t}g$ with $|\mu|\leq (K-1)/(K+1)$ at each point of Δ . We use the notation $\bar{z}=$ $(\bar{z}_{1}, \cdots , \bar{z}_{n}){\in} \mathbf{\mathbf{\mathbb{C}}}^{n}.$ A function $f(z,\bar{z})$ of class C^{1} on a domain D in $\mathbf{\mathbf{\mathbb{C}}}^{n}$ is said to be K-quasi-holomorphic on D if, for any $(c, z_{0})\in(C^{n}-\{0\})\times C^{n}$, the function $f(ct+z_{0},\overline{c}\overline{t}+\overline{z}_{0})$ is K-quasi-conformal on the open set $\{t\in C;\;ct+z_{0}\in D\}$ in the complex plane C of the complex variable t .

He proved also that a K-quasi-holomorphic function f on D satisfies the system of differential equation $\partial\overline{f}=\kappa(z,\bar{z})\partial f$ everywhere on D, where $|\kappa|\leq$ $(K-1)/(K+1)$ and that, conversely, given any κ continuous on D such that $|\kappa| \leq k_{0}$ <1, solutions of class C^{1} on D of the above equations are $(1+k_{0})/(1-k_{0})$ quasi-holomorphic functions where ∂ denotes the operator $\partial=dz_{1}\partial_{z_{1}}+\cdots+dz_{n}\partial_{z_{n}}$ and the bar is the complex conjugate. The κ is called the *characteristic* (function) of f .

In [\[7\]](#page-20-1) we dealt with those generalized analytic functions of several complex variables which satisfy the system of differential equations

$$
(0.1) \quad \bar{\partial} f = (a_1 f + b_1 \bar{f}) d\bar{z}_1 + \dots + (a_n f + b_n \bar{f}) d\bar{z}_n, \quad \text{where } \bar{\partial} = d\bar{z}_1 \partial_{\bar{z}_1} + \dots + d\bar{z}_n \partial_{\bar{z}_n}.
$$

Under suitable assumptions on the coefficients of the equation (0.1), we showed by using a special nonsingular K-quasi-holomorphic mapping, and by a homeomorphism satisfying a Beltrami equation, that (0.1) can be transformed into the equation

 $\label{eq:3.1} \begin{array}{l} \mathbf{a}^{(1)} = \mathbf{a}$

 $(0.2) \hspace{3.1em} \partial_{\overline{t}} w = aw+b\overline{w}$.

In this paper the method of obtaining a representation of the quasi-holomorphic functions (hereafter "pseudo" is used for "quasi") will be developed from the point of view of differential equations and, through such a representation, some of the properties similar to holomorphic functions will be obtained.

If the characteristic function κ satisfies the condition in [Theorem](#page-13-0) 19, then each pseudo-holomorphic function associated with such κ is written by a pseudoanalytic function of the second kind and a holomorphic function ϕ of several complex variable (ϕ depends only on κ), or in other words, by a generalized analytic function (pseudo-analytic one of the first kind which is a solution of the equation of the type [\(0.2\)\)](#page-1-0) and a ϕ (§ 3.1). When the coefficients a, b of [\(0.2\)](#page-1-0) are analytic in ${\rm Re}(t)$ and ${\rm Im}(t)$, the new representation of solutions of [\(0.2\)](#page-1-0) was obtained by Vekua [\[10\].](#page-20-2) Hence in case that κ is analytic in ${\rm Re}(z_{j})$ and Im(z_{j}), we can have a precise representation of our functions. A recent paper related to our topic is Bauer and Ruscheweyh [\[2\],](#page-20-3) where the explicit representation is investigated in detail in a very special case.

On the contrary if κ is anti-holomorphic, in other words, if it satisfies the Frobenius-Nirenberg condition [\[8\],](#page-20-4) our functions are expressible as a simple form $(\S 4)$.

We note that the arguments in this paper can be extended over complex manifolds.

The author expresses his sincere thanks to the referees for their useful advices.

$\S 1.$ Properties of $S(\kappa;D)$.

1.1. Throughout this paper, all the functions under consideration are defined on a subset of C^{n} and of class C^{∞} on the set considered.

If a function f is defined on a set M, $f|N$ means the restriction of f to a subset N of M .

 $U_{z}^{n}(a;r)$ or $U^{n}(a;r)$ denotes the polydisc with center a and polyradius $r=(r_{1}, \cdots , r_{n}): \{z\in C^{n} ; |z_{j}-a_{j}|. In the case $n=1$ we shall$ denote it by $U_{z}(a;r)$ or $U(a;r)$. When no confusion is likely, we shall use U^{n} for $U^{n}(a;r)$.

If W is an open set, the set $\{z\in \mathbb{C}^{n} ; |z_{j}-a_{j}|$ is denoted by $U_{z}^{k-1}\times W\times U_{z}^{n-k}.$

 $f(z)$ and $f(\overline{z})$ mean that they are holomorphic and anti-holomorphic in z. respectively.

A function f defined on an open set G is said to be nondegenerate or degenerate on G according as $df\wedge d\bar{f}\!\neq\! {\bf 0}$ or $=$ 0 on G , where $d\!=\!\partial\!+\!\bar{\partial}.$

Let us consider a function $\kappa(z,\bar{z})$ defined on an open set D_{0} such that on D_{0}

 $\partial_{z_n}\kappa\neq 0$,

and introduce the differential operators

$$
X_j = (\partial_{z_j} \kappa) \partial_{z_n} - (\partial_{z_n} \kappa) \partial_{z_j},
$$

$$
\bar{X_j} = (\overline{\partial_{z_j} \kappa}) \partial_{\bar{z}_n} - (\overline{\partial_{z_n} \kappa}) \partial_{\bar{z}_j},
$$

where j runs from 1 to $n-1$. We require the κ to satisfy the condition

$$
(H_1) \qquad \qquad (\partial_{z_j} \kappa) \bar{X}_k \partial_{z_n} \kappa - (\partial_{z_n} \kappa) \bar{X}_k \partial_{z_j} \kappa = 0
$$

on $D_{\mathfrak{o}},$ where j and k run from 1 to $n{-}1.$

1.2. We shall consider the system of differential equations

(1.2.1)
$$
\begin{cases} \frac{\partial \kappa \wedge \partial w = 0}{\partial \kappa \wedge \partial \overline{w} = 0.} \end{cases}
$$

 \bar{z}

Let D be a subdomain of D_{0} . Introducing the notation

$$
S(\kappa\,;\,D)=\{w\,;\,\partial\kappa\wedge\partial w=0,\,\partial\kappa\wedge\partial\overline{w}=0\,\,\text{on}\,\,D\}\,\,,
$$

we describe the fundamental properties of $S(\kappa;D)$.

PROPOSITION 1. (i) $S = S(\kappa; D)$ is a vector space over \boldsymbol{C} , the field of complex numbers.

Let w with or without sub-script belong to S in the following.

(ii) \overline{w} , $w_{1}w_{2}$ and w_{1}/w_{2} ($w_{2}\neq 0$) also belong to S.

(iii) For a function F of a variable defined on $w(D)$, the composite function $F\circ w$ is also in S.

(iv) Let w_{0} be nondegenerate on D. For any point a of D there exist a small neighborhood V of a, $V\subset D$ and a function F defined on $w_{0}(V)$ such that $w = F \circ (w_{0}|V)$.

 (v) For w nondegenerate on D , the inverse image of a point under the map w is an $(n-1)$ -dimensional complex manifold if not empty.

(vi) If w_{0} is nondegenerate on D, then either $\partial_{z_{n}}w_{0}\neq 0$ or $\partial_{z_{n}}\overline{w}_{0}\neq 0$ on D . If $\partial_{z_{n}}w_{0}\neq 0$ and $\partial_{z_{j}}w_{0}=0$ at a point z^{0} of D for $j\neq n,$ then for any w we have $\partial_{z_{j}}w{=}0$ at $z^{0}.$ \overline{w}_{0} also has the same result.

(vii) For w such that it is degenerate on D and $\partial w \neq \mathbf{0}$, let a function μ be defined by the relation $\partial\overline{w}=\mu(z, \bar{z})\partial w$. Then μ also is in S.

(iv) and (v) were proved in $[6, 7]$. The others are obvious. The above Proposition will be frequently used in the sequel.

PROPOSITION 2. Let μ be such that $\partial\mu\neq 0$ and $\partial\kappa\wedge\partial\mu=0$ on D. Then

260 A. KOOHARA

$$
S(\mu\,;\,D)=S(\kappa\,;\,D)\,.
$$

Observe that, since we may assume that $\partial_{z_{n}}\mu\!\neq\! 0$ on $D,$ the above μ also satisfies the assumption (H_{1}) on $D.$ The proof is obvious.

Let a be any point of D and σ a nondegenerate element of $S(\kappa;D)$ such that $\partial_{z_{n}}\sigma\neq 0$ and $\sigma(a,\overline{a})=0$. Putting $t^{\prime}=(t_{1}, \cdots , t_{n-1})$ and $z^{\prime}=(z_{1}, \cdots , z_{n-1})$, let us consider the change of variables T on $U^{n}(a;r)$

$$
\begin{cases} t'=z', \\ t_n=\sigma(z,\bar{z}) \end{cases}
$$

such that $U^{n}(a;r)$ is homeomorphic to the neighborhood of the origin $T(U^{n})$. From [\(1.2.1\)](#page-2-0) it is seen that there is a function ρ defined on D such that $\partial\kappa=$ $\rho\partial\sigma$. In this way we have

$$
(1.2.2) \t\t X_j = \rho \left\{ (\partial_{z_j} \sigma) \partial_{z_n} - (\partial_{z_n} \sigma) \partial_{z_j} \right\} , \t j = 1, \cdots, n-1.
$$

The operators X_{j} are transformed into

$$
(1.2.3) \t\t\t Y_j = \widetilde{(\rho \partial_{z_n} \sigma)} \partial_{t_j},
$$

where the hat denotes the function transformed by $T.$

Let f be a function on D such that

$$
\partial f \wedge \partial \sigma = 0.
$$

If we take the change of variables T , then [\(1.2.4\)](#page-3-0) becomes, by [\(1.2.3\),](#page-3-1)

$$
\partial_{t_j}\hat{f}=0\,,\qquad j=1,\,\cdots,\,n-1\,.
$$

Thus we see that \hat{f} is anti-holomorphic in t^{\prime} such that $t\in T(U^{n})=\hat{U}_{1}\times\cdots\times\hat{U}_{n- 1}$ $\times\sigma(U^{n}),$ where $\hat{U}_{j} {=} U_{t_{j}}$ (0;r), $j{=}1,$ \cdots , n-1. Therefore, f can be written in the form

(1.2.5)
$$
f = F(\bar{z}', \sigma(z, \bar{z}), \overline{\sigma(z, \bar{z})}) \quad \text{on} \quad U^n.
$$

Conversely, considering f defined on D and given by [\(1.2.5\)](#page-3-2) near any point of D , we can see easily that it satisfies [\(1.2.4\)](#page-3-0) on D .

Thus we reached the following

PROPOSITION 3. Let σ be a nondegenerate element of $S(\kappa;D)$ and f a function on D satisfying (1.2.4). For any point of D there are a polydisc $U^{n}(a; r)$ and a function $F(\bar{t}^{\prime}, t_{n}, \bar{t}_{n})$ anti-holomorphic in t^{\prime} for t of $T(U^{n}(a; r))$ such that f is written in the form (1.2.5) on $U^{n}(a;r)$. Conversely, if f has the form $(1.2.5)$ near each point of D, then f satisfies $(1.2.4)$ on D.

COROLLARY 4 (see Proposition 1, (iv)). Let σ be a nondegenerate element

of $S(\kappa; D)$. Then w is in $S(\kappa; D)$ if and only if, near each point of D , w is of the form

$$
(1.2.6) \t\t w = W \circ \sigma.
$$

PROOF. Let w be in $S(\kappa; D)$ and a any point of D . By [Proposition](#page-3-3) 3, we have $w = F(\bar{z}^{\prime}, \sigma, \bar{\sigma})$. From this, if we set $\mu = (\partial_{z_{j}}\bar{\sigma})/(\partial_{z_{j}}\sigma)$, we have

$$
\partial \bar w \!=\! \partial^\prime \bar F \!+\! (\partial_{t_n} \bar F \!+\! \mu \partial_{\bar t_n} \bar F) \partial \sigma \,,
$$

where $\partial'\bar{F}=\partial_{t_{1}}\bar{F}dz_{1}+\cdots+\partial_{t_{n-1}}\bar{F}dz_{n- 1}$. Since $\partial\bar{w}\wedge\partial\sigma=0$ on $U^{n}(a;r)$, we obtain that $\partial^{\prime}\bar{F}\wedge\partial\sigma{=}0$ and hence $\partial^{\prime}\bar{F}{=}0$, because $\partial_{z_{n}}\sigma{\neq}0$ on U^{n} . In this way [\(1.2.6\)](#page-4-0) is obtained. The rest is clear.

If $a \in D$, [Proposition](#page-3-3) 3 shows that we can associate κ with a function K and $U^{n}(a\,;r)$ such that $\kappa=K(\bar{z}^{\prime}, \sigma,\bar{\sigma})$ on U^{n} . In the arguments to follow, we shall say that κ is expressed in terms of K and σ on $U^{\textit{n}}$, or briefly, has a local expression (K, σ, U^{n}, n) . Whenever we handle a nondegenerate element σ of $S(\kappa;D)$, considering the complex conjugate $\bar{\sigma}$ if necessary, we may assume that σ always has the property $|\partial_{z_n}\sigma|^2-|\partial_{\overline{z}_{n}}\sigma|^2>0.$

In general, a local expression (K, σ, U^{n}, k) of κ means that on U^{n}

$$
\kappa(z,\bar{z})=K(\bar{z}_1,\cdots,\bar{z}_{k-1},\,\sigma(z,\bar{z}),\,\overline{\sigma(z,\bar{z})},\,\overline{z}_{k+1},\,\cdots,\,\overline{z}_n),
$$

where σ satisfies that on U^{n} , $|\partial_{z_{k}}\sigma|^{2}-|\partial_{\overline{z}_{k}}\sigma|^{2}>0$ and where $K(\bar{t}_{1}, \cdots, \bar{t}_{k-1}, t_{k}, \bar{t}_{k},$ $\{\tilde{t}_{k+1}, \cdots, \tilde{t}_{n} \}$ defined on $T_{k}(U^{n})$ is anti-holomorphic in each $t_{j}\!\in\!\hat{U}_{j}$, $j\!\neq\! k$, and T_{k} is the change of variables:

(1.2.7)
$$
\begin{cases} t_j = z_j, & j \neq k, \\ t_k = \sigma(z, \bar{z}) \end{cases}
$$

such that ${T}_{k}(U^{n})$ is homeomorphic to U^{n} .

For convenient reference we shall exhibit the

COROLLARY 5. Let a be in D and $U^{n}(a;r)$ a polydisc such that the mapping (1.2.7) with ϕ , holomorphic on U^{n} , for σ is biholomorphic. The following statements are equivalent:

(1) $\phi(z)$ is in $S(\kappa;U^{n}).$

(2) $\kappa(z, \bar{z})$ has a local expression (K, ϕ, U^{n}, k) for some number $k, 1 \leq k \leq n$. The following lemma is a basic one in this paper.

LEMMA 6 [7]. Assume that a function κ , defined on D_{o} , satisfies (H_{o}) and (H_{1}) . Then for any point a of D_{0} and for any point $b\!\in\! \bm{C}$ there are a neighborhood $U^{n}(a\,;\,r)$ and a nondegenerate function $\sigma,\,$ satisfying (1.2.1) on U^{n} and $\sigma(a,\,a)=b$.

§ 2. Pseudo-holomorphic functions.

2.1. In the following we shall consider the system of differential equations

$$
\partial \overline{w} = \kappa(z, \overline{z}) \partial w ,
$$

whose coefficient κ is defined on C^{n} , has a compact support and the sup-norm $\|\kappa\|\leq 1$.

From now on D denotes a domain. Let a function w satisfy the equations $(2.1.1)$ on D. We say that w is a pseudo-holomorphic function of the second kind of several complex variables, or briefly, pseudo-holomorphic on D and, following Hitotumatu, call the κ the characteristic (function) of w . In case of $n=1$, w is a so-called pseudo-analytic function of the second kind which was introduced by Bers [3, 4, 5, 9].

PROPOSITION 7 (Identity theorem). Any pseudo-holomorphic function on D $vanishing$ on a subdomain of D is identically zero on $D.$

PROPOSITION 8 (Maximum modulus principle) $[6]$. No nonconstant pseudoholomorphic function on D has any absolute maxi<mark>mum point in D .</mark>

Both propositions are proved by induction on the dimension n and by using the representation theorem for a complex variable $[4, 5, 9]$. Since the technique used in the proof is standard, we shall describe only the proof of the latter.

We may assume that the origin is in D and our function w has an absolute maximum $|c|\neq 0$ at the origin. Taking a polydisc $U^{\,\bm *}\!(0\,;\,\varepsilon)$ in $D,$ we can prove that $w \equiv c$ on $U^{k}(0;\epsilon)$. To do this, putting $\epsilon' = (\epsilon_{1}, \cdots, \epsilon_{k-1}), z' = (z_{1}, \cdots, z_{k-1}),$ and $\hat{w}(z',\bar{z}') = w(z', 0, \bar{z}', 0)$, consider $\hat{w}(\bar{\neq}0)$ on $U^{k- 1}(0;\epsilon')$. Then $\hat{w}(z',\bar{z}') \equiv c$ on $U^{k-1}(0;\varepsilon^{\prime})$. Let $\xi = (\xi_{1}, \cdots, \xi_{k})$ be any point of $U^{k}(0;\varepsilon)$ and fix it. Setting $\tilde{w}(z_{k},\bar{z}_{k}){=}w(\xi',z_{k},\bar{\xi}',\bar{z}_{k}){\not\equiv}0$, consider it on $U_{z_{k}}(0\,;\varepsilon_{k}),$ then $\tilde{w}(0){=}c,$ which leads to $w(\xi,\bar{\xi}){=}c.$ Hence we see from [Proposition](#page-5-1) 7 that a contradiction is derived.

We see from [Proposition](#page-5-1) 7 that if the set of nonordinary points of w , $N=\{z\in D\;;\;\partial w=0\}$ has an inner point, then w is constant, so that N is nowhere dense in D unless w is constant (see [Theorem](#page-7-0) 10 and [Proposition](#page-18-0) 25).

2.2. In this section we shall discuss the properties of pseudo-holomorphic functions with the characteristic κ such that $\partial\kappa\neq 0$. Let D_{0} denote the set $\{z\in \mathbb{C}^{n} ; \partial\kappa\neq 0\}$ and $w(z,\bar{z})$ a nonconstant pseudo-holomorphic function on D contained in D_{0} . Then we can see at once that w needs to satisfy the system of equations $(1.2.1)$ on D .

For a point a of D we may assume that $\partial_{z_{n}}\kappa\neq 0$ on a polydisc $U^{n}(a;r)$ in D. Then it is found that κ needs to satisfy the hypothesis (H_{1}) on U^{n} [7]. In view of the purpose of this paper we may assume without loss of generality that the κ satisfies the condition (H_{0}) on $D_{0}.\:$ Since at a point where $\partial\kappa{=}0,$ of

course, we have (H_1) , from now on we may consider κ subject to (H_1) on the whole space C^{n} .

Let z^{0} be any point of D. By [Lemma](#page-4-1) 6 we have a polydisc $U^{n}(z^{o} ; r)$ and a function $\sigma(z,\bar{z})$ nondegenerate on U^{n} such that σ satisfies [\(1.2.1\)](#page-2-0) on U^{n} and $\sigma(z^{0},\bar{z}^{0}){=}0.$ Since w satisfies also [\(1.2.1\),](#page-2-0) it is seen by virtue of [Proposition](#page-2-1) 1, (iv) that, restricting U^{n} further if necessary, $w|U^{n}$ is written in the form $F\circ\sigma$, where F is defined on a neighborhood $\sigma(U^{n})$ of the origin in C .

It follows from [Proposition](#page-2-1) 1, (vi) that there exists, perhaps after restricting U^{n} to a smaller polydisc, a function μ defined on U^{n} such that

$$
\partial \bar{\sigma} = \mu(z, \bar{z}) \partial \sigma , \qquad \|\mu\| < 1 \, .
$$

By virtue of Proposition 3, κ has a local expression (K, σ, U^{n}, n) . From [\(2.2.1\)](#page-6-0) we have $\partial\mu\wedge\partial\sigma{=}0$. Again, using [Proposition](#page-3-3) 3, we see that μ has a local expression (L, σ, U^{n}, n) .

We write, for simplicity, w and κ for $w|U^{n}$ and $\kappa|U^{n}$ respectively. Insert $w = F \circ \sigma$ into [\(2.1.1\),](#page-5-0) then we obtain

(2.2.2)
$$
\kappa(z,\bar{z}) = \frac{\partial_t \bar{F} + \partial_t \bar{F} \mu(z,\bar{z})}{\partial_t F + \partial_{\bar{t}} F \mu(z,\bar{z})}\Big|_{t = \sigma(z,\bar{z})}.
$$

On eliminating $\partial_{t}\bar{F}$ from [\(2.2.2\),](#page-6-1) we have

$$
\partial_t F|_{t=\sigma(z,\bar{z})} = \{ \alpha(z,\bar{z}) \partial_t F + \beta(z,\bar{z}) \overline{\partial_t F} \} |_{t=\sigma(z,\bar{z})},
$$

where

$$
\alpha(z, \bar{z}) = -\frac{1 - |\kappa(z, \bar{z})|^2}{1 - |\kappa(z, \bar{z})\mu(z, \bar{z})|^2} \overline{\mu(z, \bar{z})},
$$

$$
\beta(z, \bar{z}) = \frac{1 - |\mu(z, \bar{z})|^2}{1 - |\kappa(z, \bar{z})\mu(z, \bar{z})|^2} \overline{\kappa(z, \bar{z})}.
$$

Making use of $\|\kappa\|\!<\!1$ and $\|\mu\|\!<\!1,$ we see

$$
\|\alpha\|+\|\beta\|<1.
$$

In this way we have reached the following statement which is convenient for later reference.

LEMMA 9. Let $w(z, \bar{z})$ be a pseudo-holomorphic function on D with κ satisfying (H_{0}) on D_{0} . For any z^{0} of D there exist a polydisc $U^{n}(z^{0}; r)$ in D , functions σ nondegenerate on U^{n} and F of one complex variable defined on $\sigma(U^{n})$ such that $w = F \circ \sigma$ on U^{n} , where σ and F satisfy the following conditions:

(i) σ is in $S(\kappa;U^{n}),$

(ii) Define μ by the relation $\partial\bar{\sigma}=\mu\partial\sigma$. $\kappa\,|\,U^{\,n}\,$ and μ have the local expressions (K, σ, U^{n}, n) and (L, σ, U^{n}, n) respectively, and

(iii) F satisfies the differential equation

264 A. KOOHARA

$$
(2.2.3) \qquad \partial_{\overline{t}} F(t, \overline{t})|_{t=\sigma} = \alpha(z', \overline{z}', t, \overline{t}) \partial_t F(t, \overline{t})|_{t=\sigma} + \beta(z', \overline{z}', t, \overline{t}) \overline{\partial_t F(t, \overline{t})}|_{t=\sigma},
$$

where

$$
\alpha(z', \bar{z}', t, \bar{t}) = -\frac{1 - |K(\bar{z}', t, \bar{t})|^2}{1 - |K(\bar{z}', t, \bar{t})L(\bar{z}', t, \bar{t})|^2} \overline{L(\bar{z}', t, \bar{t})},
$$

$$
\beta(z', \bar{z}', t, \bar{t}) = \frac{1 - |L(\bar{z}', t, \bar{t})|^2}{1 - |K(\bar{z}', t, \bar{t})L(\bar{z}', t, \bar{t})|^2} \overline{K(\bar{z}', t, \bar{t})},
$$

and $\|\alpha\|+\|\beta\|\leq 1$ ($\|\ast\|$ denotes the supremum of $\|\ast\|$ on U^{n}).

REMARK 1. We can always choose σ whose characteristic μ (defined by [\(2.2.1\)\)](#page-6-0) satisfies $\partial\mu(z^{0},\bar{z}^{0})\!\neq\! 0.$ In fact, if $\partial\mu(z^{0},\bar{z}^{0})\!\!=\! 0,$ we consider on $U^{n}(z^{0}\,;\,r)$

$$
\hat{\sigma} = \begin{cases} G \circ \sigma & \text{when } \mu(z^0, \bar{z}^0) \neq 0, \\ G \circ G \circ \sigma & \text{when } \mu(z^0, \bar{z}^0) = 0, \end{cases}
$$

where $G(t,\bar{t})=2t+|t|^{2}+\bar{t}$.

By a simple computation we obtain that if $\mu(z^0,\bar{z}^0)\neq 0$,

$$
\partial \hat{\mu}(z^{\mathfrak{0}},\bar{z}^{\mathfrak{0}})\!=\!\frac{2\mu(z^{\mathfrak{0}},\bar{z}^{\mathfrak{0}})\!\left\{\!1\!-\!\hat{\mu}(z^{\mathfrak{0}},\bar{z}^{\mathfrak{0}})\!\right\}}{2\!+\!\mu(z^{\mathfrak{0}},\bar{z}^{\mathfrak{0}})}\,\partial \sigma(z^{\mathfrak{0}},\bar{z}^{\mathfrak{0}})\!\neq\!{\bf 0}\,,
$$

where $\hat{\mu}(z,\bar{z}){=}\left\{1{+}2\mu(z,\bar{z})\right\}/\left\{2{+}\mu(z,\bar{z})\right\}$, and that if $\mu(z^{0},\bar{z}^{0}){=}0,$

$$
\partial \hat{\mu}(z^{\,0},\,\bar{z}^{\,0})\,{=}\,(4/5)\,\{1\,{-}\,\hat{\mu}(z^{\,0},\,\bar{z}^{\,0})\}\,\partial \sigma(z^{\,0},\,\bar{z}^{\,0})\neq\mathbf{0}\;,
$$

where $\hat{\mu}(z^0,\bar{z}^0)=4/5.$ Thus the desired result is obtained.

In this way, by virtue of [Proposition](#page-2-2) 2, it follows that

$$
S(\kappa | U^n, U^n) = S(\sigma, U^n) = S(\mu, U^n).
$$

Let κ be the coefficient of the system [\(1.2.1\)](#page-2-0) and bounded on $D.$ We may assume that $\Vert\kappa\Vert\!<\!1$ on $D.$ There does not always exist a pseudo-holomorphic function whose characteristic one is κ (Example 4, § 2.4). The above relation shows that, exchanging κ for μ if necessary, one can consider κ of the system [\(1.2.1\)](#page-2-0) (in local) the characteristic of certain pseudo-holomorphic function. The remark ends.

As easily seen from the proof of the above lemma, whenever we think of a pseudo-holomorphic function with κ such that $\partial\kappa\neq 0$ on D , we can associate with each point of D a triple (F, σ, U^{n}) , where U^{n} has the center at that point. It should be noted that U^{n} is so small that any element of $S(\kappa; U^{n})$ is expressed by the composite function $G\circ\sigma,$ where G is a function defined on σ (U^{-^).

We say that a pseudo-holomorphic function w has a triple (F, σ, U^{n}) at each point of D .

THEOREM 10. Let w be nonconstant pseudo-holomorphic on D . The set N

of nonordinary points of w is an $(n-1)$ -dimensional complex manifold unless N is empty.

Proof. Let z^{0} be any point of N. [Lemma](#page-6-2) 9 shows that w has a triple (F, σ, U^{n}) at z^{0} . On account of $w = F \circ \sigma$, we find that

$$
\partial w = \partial_t F \partial \sigma + \partial_{\bar{t}} F \partial \bar{\sigma}
$$

=
$$
\{\partial_t F + \mu(z, \bar{z}) \partial_{\bar{t}} F\} \partial \sigma.
$$

Since $\partial\sigma\neq 0$ at z^{0} in N,

(2.2.4) \$(\partial_{t}F)\circ\sigma+\mu(z,\overline{z})(\partial_{\overline{t}}F)\circ\sigma=0\$ at \$z=z^{0}\$.

On the other side, from the differential equation [\(2.2.3\)](#page-7-1) it follows the inequality

$$
|\partial_t F|^2 - |\partial_{\bar{t}} F|^2 \ge 0 \quad \text{on} \quad \sigma(U^n).
$$

Hence from this and [\(2.2.4\)](#page-8-0) it is verified that at $t=0$ (note that $\sigma(z^{0},\bar{z}^{0})=0$)

$$
\partial_t F = 0.
$$

Let ξ be any point of $N\bigcap U^{\textit{n}}$. A similar argument shows $\partial_{t}F(\eta,\,\bar{\eta})=0$, where $\eta\!=\!\sigma(\xi,\bar{\xi}).$ It is obvious that $\sigma^{-1}(\eta)\!\cap\!U^{n}\!\!\subset\! N\!\cap\!U^{n}.$

Now we want to prove that the set $P=\{t\in\sigma(U^{n})\colon\partial_{t}F=0\}$ is isolated. If it had been shown, the connected component, which contains ξ , of $N\!\!\cap\!U^{n}$ would be mapped under σ to the zero point of $\partial_{t}F$. Therefore, on using Proposition 1, (v), we obtain that, by restricting to a smaller polydisc, $N\cap U^{n}$ is a connected $(n-1)$ -dimensional complex manifold.

Using the change of variables in the proof of [Proposition](#page-3-3) 3, the equation [\(2.2.3\)](#page-7-1) leads to the relation

$$
(2.2.5) \t\t \partial_{\bar{t}_n} F(t_n, \bar{t}_n) = \hat{\alpha}(t, \bar{t}) \partial_{t_n} F(t_n, \bar{t}_n) + \hat{\beta}(t, \bar{t}) \overline{\partial_{t_n} F(t_n, \bar{t}_n)}.
$$

Differentiate both sides of [\(2.2.5\)](#page-8-1) with respect to t_{n} , it is seen that, with the notation $p=\partial_{t_n}F$ and $s=t_{n}$, we have

$$
(2.2.6) \t\t\t \partial_{\bar{s}} p = \hat{\alpha} \partial_s p + \hat{\beta} \partial_s \bar{p} + (\partial_s \hat{\alpha}) p + (\partial_s \hat{\beta}) \bar{p}.
$$

On considering the complex conjugate of both sides of $(2.2.6)$ and eliminating $\partial_{s}\bar{p}$ from these relations, we obtain

(2.2.7)
$$
\begin{aligned} \partial_{\bar{s}} p &= A(t', \, \bar{t}', \, s, \, \bar{s}) \partial_s p + B(t', \, \bar{t}', \, s, \, \bar{s}) \overline{\partial_s p} \\ &+ C(t', \, \bar{t}', \, s, \, \bar{s}) p + D(t', \, \bar{t}', \, s, \, \bar{s}) \overline{p} \,, \end{aligned}
$$

where

$$
A\,{=}\,\hat\alpha(1\!-\!|\,\hat\beta\hspace{0.02cm}|^{\,2})^{\text{-}1}\,,
$$

266 A. KOOHARA

and

$$
B = \overline{\alpha}\hat{\beta}(1 - |\hat{\beta}|^{2})^{-1},
$$

\n
$$
C = (\partial_{s}\hat{\alpha} + \hat{\beta}\overline{\partial_{s}\hat{\beta}})(1 - |\hat{\beta}|^{2})^{-1},
$$

\n
$$
D = (\partial_{s}\hat{\beta} + \hat{\beta}\overline{\partial_{s}\alpha})(1 - |\hat{\beta}|^{2})^{-1}.
$$

Note that $\|\hat{\alpha}\|+\|\hat{\beta}\|<1$ leads to $\|A\|+\|B\|<1$ ($\|\cdot\|=\sup|\cdot\|$ on $T(U^{n})$). It is important to remark that for arbitrary t^{\prime} in $U_{t}^{n-1}(0; r^{\prime})$ the equation [\(2.2.7\)](#page-8-3) is fulfilled. Let t^{\prime} be any point of $U_{t^{\prime}}^{n-1}$ and fixed. Then the well known representation theorem shows that the set of zeros of \hat{p} is isolated and hence so is the set P . This is what we want.

EXAMPLE 1. Consider $w=3(z_{1}^{2}+z_{2})^{2}+2(\overline{z}_{1}^{2}+\overline{z}_{2})^{3}$ on $U=\{z\in \mathbb{C}^{2}$; $|z_{1}|^{2}+|z_{2}|<$ $k< 1, \, k: \text{a constant}\}.$ Then w satisfies on U : $\partial\overline{w} {=} (z_{1}^{2}+z_{2})\partial w.$ Putting $\kappa {=} z_{1}^{2}+z_{2},$ we see $\partial_{z_{2}}\kappa=1$ and N is the 1-dimensional complex manifold.

The above theorem does not always apply to the case where $\partial\kappa$ has a zero point. An example for this situation is as follows.

EXAMPLE 2. Let w be defined on a small neighborhood U of the origin of C^{2} by the equation

$$
(2.2.8) \t\t\t (1/2)(\overline{w}+z_1+z_2)^2-w=z_1^2\cos z_2, \t\t w(0)=0.
$$

Then we see that w satisfies, setting $\kappa=\nu+\bar{z}_{1}+\bar{z}_{2}$, $\partial\overline{\omega}=\kappa\partial w$ on U, where we consider such U that $\Vert\kappa\Vert\!<\!1.$ It is seen that, with the notation $N_{j}\!=\!\{z\!\in\!U\,;$ $\partial_{z_{j}}w=0\}$, $j=1,2,$

$$
N_1 = \{ z \in U \; ; \; 2z_1^2 \cos^2 z_2 - z_1^2 \cos z_2 - w = 0 \text{ and } (2.2.8) \} ,
$$

$$
N_2 = \{ z \in U \; ; \; z_1^4 \sin^2 z_2 - 2z_1^2 \cos z_2 - 2w = 0 \; \text{and} \; (2.2.8) \} \; ,
$$

and $N_{1}\cap N_{2}$ is the origin only. We see $\partial\kappa=0$ at the origin.

On the contrary, for w defined on U by the equation

 $(1/2)(\overline{w}+z_{1}+z_{2})^{2}-w=0$, $w(0)=0$,

we have that $N{=}\left\{z{\in} U\,;\,z_{1}{+}z_{2}{=}0\right\}$ and $\partial\kappa{=}0$ on $N.$

THEOREM 11 [6]. For w nonconstant pseudo-holomorphic on D , the inverse image of a point under the map w is an $(n-1)$ -dimensional complex manifold, if not empty.

PROOF. Let M_{a} be the inverse image of a under w and not empty. Let z^{0} be any point of M_{a} . Associate with z^{0} a triple (F, σ, U^{n}) . Since F satisfies the equation [\(2.2.3\)](#page-7-1) on $\sigma(U^{n})$, F is light. Let $t^{0}=\sigma(z^{0},\bar{z}^{0})$. If we restrict U^{n} to a smaller polydisc V , $(F|V)^{-1}(a)\wedge(\sigma|V)(U^{n})=\{t^{0}\}$. Thus we obtain

$$
M_a \cap V = \{ z \in V \, ; \, w(z, \bar{z}) = a \}
$$

$$
= \{ z \in V \, ; \, \sigma(z, \bar{z}) = t^{\,0} \} .
$$

By [Proposition](#page-2-1) 1, (v) we see that $M_{a}\cap V$ is an $(n-1)$ -dimensional complex manifold, which completes the proof.

REMARK 2. As was seen in the proofs of Theorems [10](#page-7-0) and [11,](#page-9-1) if $\partial\kappa\neq 0$ on D , one recognizes that a triple being associated with each point of D plays an essential role. By using a triple the maximum modulus principle [\(Proposition](#page-5-2) 8) is obtained as follows: Let z^{0} be the point of D at which a pseudo-holomorphic function w attains the absolute maximum. Let a triple (F, σ, U^{n}) be associated with z^{0} . Then, since σ is an open mapping and F has the maximum modulus principle, F vanishes on $U^{\textit{n}}$, and hence w does. By [Proposition](#page-5-1) 7 we have the result.

2.3. We proceed with the study of properties of pseudo-holomorphic functions with κ such that $\partial\kappa\neq 0$.

From [Lemma](#page-6-2) 9 the following result is obtained at once.

LEMMA 12. Let w and W be pseudo-holomorphic on D . Assume that they have the same characteristic κ such that $\partial_{z_{n}}\kappa\neq 0$ at a point z^{0} of D. If W is nondegenerate at z^{o} , then there are a neighborhood $U^{n}(z^{o}\,;\,r)$ and a function F defined on $W(U^{n})$ such that $w{=}F{\circ}W$ on $U^{n},$ where

$$
(2.3.1) \qquad \partial_{\bar{t}} F(t,\bar{t}) = \frac{\overline{K(\bar{s}',t,\bar{t})}}{1+|\overline{K(\bar{s}',t,\bar{t})}|^2} (-\partial_t F + \overline{\partial_t F}), \qquad s' = (s_1, \cdots, s_{n-1})
$$

and $K(\bar{s}^{\prime}, t,\bar{t})$ defined on $U_{s^{\prime}}^{n-1}(s^{0\prime} ; r)\times W(U^{n})$ is derived from Proposition 3 $(s^{0}=T(z^{0})$ and $s=(s^{\prime}, t)\in C^{n}$).

LEMMA 13. Let the assumption of Lemma 12 be satisfied. Furthermore let the coefficient $K(\bar{s}^{\prime}, t,\bar{t})$ of the equation (2.3.1) be subject to the following: for a number j_{0} , $1 \leq j_{0} \leq n-1$,

$$
\partial_{\bar{s}_{j}}K \neq 0
$$

on $U_{s'}^{n-1}(s^{0\prime} ; r)\times W(U^{n}),$ except possibly a nowhere dense set. Then

$$
w = aW + b \qquad on \quad U^n,
$$

where a and b are constants and a is real.

PROOF. Assume that $\partial_{t}F\neq\overline{\partial_{t}F}$ at a point t^{*} of $W(U^{n})$. Then there exists a neighborhood \$\tilde{U}(\subset W(U^{n}))\$ of \$t^{*}\$ on which \$\partial_{t}F\neq\overline{\partial_{t}F}\$. From (2.3.1) we see that, for every s_{j} , $\partial_{\overline{s_{j}}}K{=}0$ on $U_{s^{\prime}}^{n-1}(s^{\text{o}}; r)\times\tilde{U}$, which contradicts the assumption [\(2.3.2\).](#page-10-0) Hence it follows that on $W(U^{n})$

$$
(2.3.3) \t\t\t \partial_t F = \overline{\partial_t F}.
$$

Thus, from (2.3.1) we obtain that F is holomorphic and hence, from [\(2.3.3\),](#page-10-1) that $F=at+b$. The rest is clear.

EXAMPLE 3. Let w be defined on a sufficiently small $U^{2}(0;\varepsilon)$ by the equation

$$
(2.3.4) \qquad \qquad (\overline{w}+z_1+z_2)^2-2w=2z_2\,,\qquad w(0)=0\,.
$$

Then w satisfies on U^{2}

$$
\partial \overline{w} = (w + \overline{z}_1 + \overline{z}_2) \partial w.
$$

On setting $\kappa=w(z,\bar{z})+\bar{z}_{1}+\bar{z}_{2}$, we have $\partial_{z_{2}}\kappa=\partial_{z_{2}}w\neq 0$ on U^{2} . From [\(2.3.4\)](#page-11-0) it is obtained that

$$
z_1+z_2=-\bar{w}+1\!-\!(1\!-\!2z_1\!+\!2w\!-\!2\bar{w})^{1/2}\,,
$$

where ($1^{1/2}$ denotes the branch such that $(1)^{1/2}$ =1. We have

$$
\kappa(z,\bar{z}) = 1 - (1 - 2\bar{z}_1 + 2\bar{w} - 2w)^{1/2}.
$$

On changing the variables: $s = z_{1}$, $t = w(z,\bar{z})$, we have

$$
K(\bar{s}, t, \bar{t}) = 1 - (1 - \bar{s} + 2\bar{t} - 2t)^{1/2}.
$$

Clearly we see that $\partial_{\overline{s}}K\neq 0$ on $U_{s}(0;\varepsilon)\times W(U^{2})$.

THEOREM 14. Let W be a nonconstant pseudo-holomorphic function on D with such κ as does not belong to $S(\kappa\,;\,D).$ If w is any pseudo-holomorphic function on D with the κ and if, for a_{1} and a_{2} such that $W(a_{1},\bar{a}_{1})\neq W(a_{2},\bar{a}_{2}),$ $w(a_{j},\bar{a}_{j})=W(a_{j},\bar{a}_{j})$ (j=1,2), then $w=W$ on D .

PROOF. By virtue of [Theorem](#page-7-0) 10, the set N of nonordinary points of W , if not empty, is an $(n-1)$ -dimensional complex manifold. Then W is nondegenerate on $D-N$. It follows from the assumption on κ that for a point a of D there is a neighborhood $U^{n}(a;\varepsilon)$ in D such that

(2.3.6) \$\partial\kappa\$ A \$\partial\overline{\kappa}\neq 0\$ on \$U^{n}(a;\epsilon)\$.

For a point z^{0} in $U^{n}(a;\varepsilon)\cap(D-N)$, consider a neighborhood $U^{n}(z^{0} ; r)\subset$ $U^{n}(a;\varepsilon)\cap(D-N)$. Then, from [Lemma](#page-10-2) 12, restricting $U^{n}(z^{o} ; r)$ if necessary, we have (2.3.1) on $U_{s'}^{n-1}(s^{0\prime} ; r)\times W(U^{n}(z^{0} ; r)).$ On the other side, by [Corollary](#page-3-4) 4 we find that [\(2.3.6\)](#page-11-1) is equivalent to [\(2.3.2\).](#page-10-0) By [Lemma](#page-10-3) 13, $w=aW+b$ on $U^{n}(z^{\mathfrak{o}}; r)$, so that on D by Proposition 7. It is easy to see that $w=W$ on $D,$ which completes the proof.

2.4. In this section we want to discuss the existence of solutions of the system of equations [\(2.1.1\).](#page-5-0) The assumptions (H_{0}) and (H_{1}) do not always assure the existence of a nonconstant solution of this system. The following example illustrates this situation.

EXAMPLE 4. Let $\kappa{=}\bar{z}_{1}{+}z_{2}$ on $D:|z_{j}|<(1/2),$ $j{=}1,2.$ Since $\partial\kappa{=}dz_{2},$ all solutions of [\(1.2.1\)](#page-2-0) do not have the variables z_{1} and \bar{z}_{1} . Therefore only the

constant is the solution of $(2.1.1)$. It should be noted that κ does not belong to $S(\kappa\,;\,D).$

In the section 2.2 we have seen that, whenever one considers a pseudoholomorphic function with κ such that $\partial\kappa\neq 0$ on D , with each point of D it is associated a triple (F, σ, U^{η}) and that the functions κ and μ are of the form

$$
\kappa | U^n = K(\bar{z}', \sigma(z, \bar{z}), \overline{\sigma(z, \bar{z})}),
$$

$$
\mu = L(\bar{z}', \sigma(z, \bar{z}), \overline{\sigma(z, \bar{z})})
$$

respectively, where μ is defined by the relation: $\partial\bar{\sigma}=\mu(z,\bar{z})\partial\sigma$, $(\partial\mu\neq0$ on U^{n}).

We now consider the following four cases: for brevity we shall use κ and S in place of $\kappa|U^{n}$ and $S(\kappa;U^{n})$, respectively.

> (I) $\kappa \notin S$ and $\mu \notin S$ (II) $\kappa \notin S$ and $\mu \in S$ (III) $\kappa \in S$ and $\mu \notin S$ (IV) $\kappa \in S$ and $\mu \in S$.

From Remark 1 it is seen that each case does not depend on a choice of σ .

Noting that $\mu\!\in\! S$ is equivalent to $\mu\!=\!L\!\circ\!\sigma$, we see from [\(2.2.2\)](#page-6-1) that $\kappa\!\in\! S$. The converse also is similar. Therefore, for nonconstant pseudo-holomorphic functions, cases (II) and (III) are excluded out of discussion. Thus we are now in a position to state the

LEMMA 15. Let w be a nonconstant solution of the equation (2.1.1) on D and let a triple (F, σ, U^{n}) be associated with a point of D. Then

(i) $\kappa \notin S$ is equivalent to $\mu \notin S$,

(ii) $\kappa \in S$ is equivalent to $\mu \in S$.

REMARK 3. Example 3 in the preceding section shows that case (I) actually occurs.

LEMMA 16. Let functions κ and σ be defined on a polydisc $U^{n}(a;r), \ a{\in}C^{n}.$ Assume they satisfy the following conditions on U^{π} :

(i) (H_{0}) is fulfilled.

(ii) σ is in $S(\kappa; U^{n})$ and has the property $|\partial_{z_{n}}\sigma|^{2}-|\partial_{\overline{z}_{n}}\sigma|^{2}\geq\varepsilon_{0}>0$, where ε_{0} is a constant.

(iii) Any element of S is of the composite form $F \circ \sigma$.

Define a function μ on U^{n} by the equation $\partial\bar{\sigma}=\mu\partial \sigma$. The following statements are equivalent:

(1) μ belongs to S.

(2) There is a nondegenerate function $\phi(z)$ holomorphic on U^{n} and belonging to S.

Proof. (1) \Rightarrow (2). Choose a function F defined on $\sigma(U^{n})$ such that $|\partial_{t}F|^{2}$ $-|\partial_{\overline{t}}F|^{2}>0$ (t= $\sigma(z,\bar{z})$). With the notation $f=F\circ\sigma$, we obtain

$$
\bar{\partial}f = (\partial_{\bar{t}} F + \bar{\mu}\partial_t F)_{t=\sigma} \bar{\partial}\bar{\sigma}.
$$

The assumptions show that there is a function L defined on $\sigma(U^{n})$ such that $\mu(z,\bar{z}){=} (L\circ\sigma)(z,\bar{z}).$

In this way, if we choose a nondegenerate solution F_s such that

$$
\partial_{\bar{t}} F(t, \bar{t}) + \overline{L(t, \bar{t})} \partial_t F(t, \bar{t}) = 0
$$

on $\sigma(U^{n})$, we have (2). Such a function, however, exists by the well-known theorem in one variable $[5, 9]$.

 $(2) \Rightarrow (1)$. From assumption (iii) we have

$$
\phi(z) = (\boldsymbol{\varPhi} \circ \boldsymbol{\sigma})(z).
$$

Hence we have, by $\partial\sigma\neq 0$,

$$
(2.4.2) \t\t\t\t\t\partial_{\bar{t}} \Phi + \bar{\mu} \partial_t \Phi = 0.
$$

On the other side, we have that on U^{n}

$$
(2.4.3) \t d\phi = (\partial_t \Phi + \mu \partial_{\bar{t}} \Phi) \partial \sigma \neq 0,
$$

because ϕ is nondegenerate on U^{n} . From [\(2.4.2\)](#page-13-1) and [\(2.4.3\)](#page-13-2) we obtain that ${\partial}_t \varPhi\!\neq\! 0$ on U^{n} , so that from [Proposition](#page-2-1) 1, (ii) the desired result.

From [\(2.4.3\),](#page-13-2) noting $\partial_{z_{n}}\sigma\neq 0$ on U^{n} , we obtain the

COROLLARY 17. Under the same assumption as in the preceding lemma, if μ is in $S(\kappa; U^{n})$, the set $N_{j} = \{z\in U^{n} ; \partial_{z_{j}}\sigma=0\}$, $j=1, \cdots, n-1$, is an analytic variety in U^{n} unless N_{j} is empty.

COROLLARY 18. Under the same assumption as in Corollary 17, the set $M_{j} {=} \{z {\in} U^{\,n} \, ; \, \partial_{z_{j}}\kappa {=} 0\} \, , \; j {=} 1, \, \cdots \, , \, n{-}1, \; is \; an \; analytic \; variety \; unless \; it \; is \; empty.$

Proof. Let M_j , for a number j, be not empty. When U^{n} in the corollary is such that κ has a local expression on it, the result is immediately obtained from the above corollary, Propositions 1, (vi) and 3 (it is also obtained only from Corollary 5).

In general, for each point a in U^{n} , consider a neighborhood V of a , contained in U^{n} , on which κ has a local expression, so we see that $M_{j}\!\cap V\!\!=\!$ $\{z\in V\,;\,\partial_{z_{j}}\sigma=0\}$ and hence M_{j} is a local variety. Since M_{j} is closed in U^{n} , we obtain the desired result.

THEOREM 19. Assume that w is a nonconstant pseudo-holomorphic function on D with such κ as belongs to $S(\kappa\,;\,D)$. Then, for any point \emph{a} of $D,$ there exist a polydisc $U^{n}(a;r)$, functions ϕ holomorphic on $U^{n}(a;r)$ and F quasiconformal on $\phi(U^{n})$ such that w is written by the form $F\circ\phi$. Moreover the set $N_{j}=\{z\in D\;;\;\partial_{z_{j}}w=0\}$ is an analytic variety in D if not empty.

PROOF. From Lemmas 15 and 16 it follows that at each point a of D w has a triple $(F, \, \phi, \, U^{\textit{n}}(a\,; r))$ whose component ϕ is holomorphic on $U^{\textit{n}}.$ This shows $w{=} F{\circ}\phi$ on $U^{\textit{n}}.$ We have next

$$
N_j \cap U^n = \{ z \in U^n \; ; \; \partial_t (F \circ \phi)(z, \bar{z}) \partial_{z,j} \phi = 0 \} .
$$

On noting the proof of [Theorem](#page-7-0) 10, we obtain the result.

THEOREM 20. Let the coefficient κ of the system of equations (2.1.1) belong to $S(\kappa; D)$. Suppose that

(2.4.4) there is a function ϕ in $S(\kappa\,;\,D),$ nondegenerate and holomorphic on $D,$

then the equation (2.1.1) has a nonconstant solution on a neighborhood of each point of D .

PROOF. Owing to Proposition 1, (iv), the assumption on κ and (2.4.4), for any point a of D we have a polydisc $U^{n}(a;r)\subset D$ and a function K defined on $\phi(U^{n})$ such that κ is written by the form

(2.4.5) \$\kappa=(K\circ\phi)(z,\overline{z})\$.

We want to seek a solution w in the form $F\circ\phi.$ Using (2.2.3) and (2.4.5), we have the equation in a single variable t

$$
(2.4.6) \t\t \t\t \partial_{\bar{t}} F = \overline{K(t,\bar{t})} \partial_{t} \overline{F}, \t\t \t ||K|| < 1.
$$

It is well known that the equation (2.4.6) has a nonconstant solution on $\phi(U^{n})$ [5, 9].

A relation between Lemma 16, Theorems 19 and 20 is formulated as follows. THEOREM 21. Let κ , σ and μ be the same as in Lemma 16. Let there be the following three conditions:

(1) There exists a nonconstant pseudo-holomorphic function on U^{n} with κ_{κ} .

(2)
$$
\kappa^* \in S(\kappa^*; U^n)
$$
, $\kappa^* = \kappa | U^n$.

$$
(3) \quad \mu \in S(\kappa^*; U^n).
$$

 \bar{z}

If any two of the above conditions are satisfied, then the third is derived.

REMARK 4. (i) There does not always exist a function K defined on $\phi(D)$ such that κ can be written by the form $K\circ\phi$ on D (see Proposition 1, (iv)). However if κ is, for example, holomorphic on D , by taking κ as ϕ one can have a global solution $(\S 3.2)$. In general we shall not be able to expect a global solution.

(ii) As seen in [Proposition](#page-2-1) 1, (vii), if w is degenerate and satisfies $\partial w\neq 0$ on D, its characteristic function (in a wide sense) is also in $S(\kappa;D)$.

Assume that $S(\kappa; D)$ has a nondegenerate holomorphic element ϕ . If w is in $S(\kappa; D)$ and satisfies $\partial w \neq 0$ on D , then we see from [Corollary](#page-3-4) 4 that any point a of D has a polydisc $U^{n}(a;r)$ and a function F defined on $\phi(U^{n})$ such that $w{=}F{\circ}\phi$ on $U^{\textit{n}}.$ Using again [Corollary](#page-3-4) 4, μ defined by $\partial\bar w{=}\mu\partial w$ is also in $S(\kappa; D)$, because the point a is arbitrary in D .

From the above, if w is a pseudo-holomorphic function in [Theorem](#page-13-0) 19,

the characteristic function of κ (in a wide sense) is also in $S(\kappa;D)$, which completes the remark.

$\S 3.$ Connection with generalized analytic functions.

3.1. In the preceding section we have discussed the existence of local solutions of the equations $(2.1.1)$. In this section we shall show such an existence in the second way which is found in $[4, 5]$.

Let w be a pseudo-holomorphic function on D with κ . Then the function g , defined by

$$
(3.1.1) \t\t\t g+\bar{\kappa}\bar{g}=w,
$$

satisfies the following differential equation

(3.1.2)
$$
\bar{\partial}g = \frac{\bar{\kappa}g}{1-|\kappa|^2} \bar{\partial}\kappa - \frac{\bar{g}}{1-|\kappa|^2} \bar{\partial}\bar{\kappa}.
$$

That is, g is a generalized analytic function in several complex variables mentioned in the introduction [\[7\].](#page-20-1)

By virtue of [Proposition](#page-2-1) 1, (ii), it follows at once from [\(3.1.1\)](#page-15-0) that, under the assumption that κ is in $S(\kappa;D), g\in S(\kappa;D)$ is equivalent to $w\in S(\kappa;D)$. The following is easily seen. If the function κ has the condition $\|\kappa\|\leq 1$ on D , then the function g satisfying $(3.1.2)$ on D, through $(3.1.1)$, leads to the function w pseudo-holomorphic on D and having κ as the characteristic.

We have the local existence theorem for the equation [\(3.1.2\).](#page-15-1)

THEOREM 22. Assume that κ satisfies the same assumptions as in Theorem 20. Then there exists ^a nonconstant local solution of the generalized Cauchy-Riemann equation (3.1.2).

PROOF. Using the same notations and techniques as in the proof of Theorem 20, we have the equation

$$
(3.1.3) \t\t \partial_{\bar{t}} G = \frac{\bar{K}\partial_{\bar{t}} K}{1 - |K(t, \bar{t})|^2} G - \frac{\overline{\partial_{t} K}}{1 - |K(t, \bar{t})|^2} \overline{G} ,
$$

which has a nonconstant solution on $\phi(U^{n})$ [5, 9, 10], and $g=G\circ\phi$ is the desired function.

We can conclude that, in case κ satisfies the assumption in the above theorem, the existence of pseudo-holomorphic function with the κ is equivalent to that of generalized analytic function satisfying the equation [\(3.1.2\),](#page-15-1) and each case may be reduced to the case of a complex variable.

Bauer and Ruscheweyh [\[2\]](#page-20-3) have been obtained the explicit representation of a family of pseudo-analytic functions (of the first kind) on a simply connected domain (in \mathcal{C}) in terms of the differential operator. However we have a question: Is there a nonconstant function K defined on $\phi(U^{n})$ such that the equation [\(3.1.3\)](#page-15-2) is reduced to that of Bauer and Ruscheweyh's type? In case K is holomorphic (§ 3.2), we can see easily that the answer is no.

3.2. In this section we shall consider the special case where κ is holomorphic in a simply connected domain $D\subset$ Int(supp κ), the set of inner points of the support of κ . If w is pseudo-holomorphic on D , we see from the equation [\(2.1.1\)](#page-5-0)

.

$$
\bar{\partial}\partial\bar{w} = \kappa\bar{\partial}\partial w
$$

From this, by using $\partial\bar\partial+\bar\partial\partial=0$ and $\Vert\kappa\Vert\!<\!1,$

(3.2.2) \$\partial\partial w=0\$,

from which it follows that ∂w is a holomorphic form on D and that, noting $(3.2.1)$, so is $\partial\overline{\omega}$.

On the other side, since w is in $S(\kappa; D)$, there exist the functions α and β holomorphic on D such that on D

(3.2.3)
$$
\begin{cases} \frac{\partial w}{\partial w} = \alpha(z) d\kappa, \\ \frac{\partial w}{\partial w} = \beta(z) d\kappa. \end{cases}
$$

There must be the following compatibility conditions: on D

(3.2.4)
$$
\begin{cases} d\kappa \wedge d\alpha = 0, \\ d\kappa \wedge d\beta = 0. \end{cases}
$$

And from $(2.1.1)$ and $(3.2.3)$ it follows that on D

$$
\beta = \kappa \alpha \, .
$$

Conversely it is obvious that [\(3.2.3\)](#page-16-1) with [\(3.2.5\)](#page-16-2) leads to [\(2.1.1\).](#page-5-0)

We consider the first equation of [\(3.2.3\)](#page-16-1) with the first condition of [\(3.2.4\).](#page-16-3) The solution on D of this equation is uniquely determined up to an additive anti-holomorphic function on D. However, since αdx is a d-closed holomorphic form and D is simply connected, this equation has a solution ϕ holomorphic on D . Therefore the general solution of the first equation of [\(3.2.3\)](#page-16-1) is of the form

$$
(3.2.6) \t\t w = \phi(z) + \overline{\phi(z)},
$$

where ϕ is holomorphic on D. Take ϕ such that $d\phi{=}\beta d\kappa$ on D. The second condition of [\(3.2.4\)](#page-16-3) guarantees the existence of such a function. From [\(3.2.5\)](#page-16-2) we obtain that $d\phi\!=\!\kappa d\phi$ on $D.$

Thus we are now in a position to state the following

PROPOSITION 23. Let \vec{D} be a simply connected domain and κ holomorphic on D such that $\Vert\kappa\Vert<1$ and $d\kappa\neq 0$. Then w is a pseudo-holomorphic function with the κ if and only if w is of the form (3.2.6), where ϕ and ϕ have the relations:

$$
(3.2.7) \t\t d\kappa \wedge d\phi = 0,
$$

$$
d\phi = \kappa d\phi.
$$

Note that the above proposition holds without the assumption $d\kappa\neq 0$.

By using [Corollary](#page-3-4) 4, it is easily seen from [\(3.2.7\)](#page-17-0) and [\(3.2.8\)](#page-17-1) that ϕ and ϕ locally are of the form, respectively: $\pmb{\varPhi}\circ\kappa$ and $\kappa(\pmb{\varPhi}\circ\kappa)-\pmb{\varPhi}\circ\kappa,$ where $\pmb{\varPhi}(t)$ is a primitive function of $\varPhi(t)$. Putting $F(t,\,\bar{t}){=}\varPhi(t){+}t\varPhi(t){-}\varPhi(t),$ we have a local representation of $w: w=F\circ\kappa$ [\(Theorem](#page-13-0) 19).

We shall note that the above Proposition is immediately obtained by [Theorem](#page-14-0) 20 and does not depend on whether D is simply connected or not. As readily seen from Remark 4, (i), if there is a global function K , then we have a global solution. Since κ is nondegenerate and holomorphic on $D,$ we can take κ as ϕ in [Theorem](#page-14-0) 20, so that the equation [\(2.4.6\)](#page-14-1) become $\partial_{\bar{t}}F{=}\,t\partial_{t}F$, $|t|\leq\!\|\kappa\|.$ It is convenient to treat more general equation than this

$$
\partial_{\bar{t}} F = \overline{K(t)} \partial_{\bar{t}} \overline{F}, \qquad \|K\| < 1,
$$

where K is holomorphic on the unit disc $\mathcal{A}\mathsf{\subset} \mathcal{C}$. This equation, considering on $\varDelta,$ has the general solution

(3.2.10)
$$
F = \int_0^t H(\zeta) d\zeta + \overline{\int_0^t K(\zeta) H(\zeta) d\zeta}, \qquad t \in \Delta,
$$

where H is any holomorphic function on Δ . From this we obtain [\(3.2.6\),](#page-16-4) in which $\phi(z)=(F_{1}\circ\kappa)(z)$ and $\phi(z)=(F_{2}\circ\kappa)(z)$, where F_{1} and F_{2} are the first and the complex conjugate of the second terms of [\(3.2.10\),](#page-17-2) respectively.

On the contrary, if we consider the equation [\(3.2.9\)](#page-17-3) on $\kappa(D)$, then, in general, we have the local general solution only.

$\S 4.$ Case where $\partial\kappa=0$.

4.1. If $\partial\kappa=0$ on $D\subset$ Int(supp κ), the situation is more simpler than in the case where $\partial\kappa\neq 0$. The equation [\(3.1.2\)](#page-15-1) is of the following form

(4.1.1)
$$
\bar{\partial}g = \frac{\bar{\kappa}g}{1-|\kappa|^2} \bar{\partial}\kappa.
$$

Because $\bar{\kappa}(1-|\kappa|^2)^{-1}\bar{\partial}\kappa$ is $\bar{\partial}$ -closed, there exists locally a nonzero solution. In

fact, the general solution of [\(4.1.1\)](#page-17-4) is given by the formula

(4.1.2)
$$
g = \frac{h(z)}{1 - |k|^2} \; ,
$$

where h is any holomorphic function on D . Substituting [\(3.1.1\)](#page-15-0) for [\(4.1.2\),](#page-18-1) we can obtain the desired function w in the explicit form

$$
(4.1.3) \t\t\t w = \frac{h(z) + \overline{\kappa(\bar{z})h(z)}}{1 - |\kappa|^2}.
$$

We define $A_{\kappa}(D)$ to be the set of pseudo-holomorphic functions on D with κ given by the formula [\(4.1.3\).](#page-18-2) In particular, $A_{0}(D)$ is the family of all the functions holomorphic on $D.$ The family $A_{\kappa}(D)$ is a vector space over $\boldsymbol{R},$ the real number field. It is seen from $(4.1.3)$ that there is an \mathbf{R} -isomorphism from $A_{\kappa}(D)$ onto $A_{0}(D)$.

Because the explicit form [\(4.1.3\)](#page-18-2) is very simple, we can obtain easily some properties of $A_{\kappa}(D)$ which are weaker than in the case of $\partial\kappa\neq 0$.

Noting the relation

$$
h-c+\bar{\kappa}\bar{c}=(w-c)-\bar{\kappa}(\bar{w}-\bar{c})
$$

and that $\hbar - c + \bar{\kappa}\bar{c}$ is holomorphic, where c is a constant, we have the following proposition.

PROPOSITION 24. The inverse image of a point under w in $A_{\kappa}(D)$ is a complex analytic variety in D.

The following proposition is also weaker than [Theorem](#page-7-0) 10.

PROPOSITION 25. Let w be in $A_{\kappa}(D)$. The set N of nonordinary points of w is a complex analytic variety in D .

Proof. Note that $N{=}\{z{\in}D\,;\ dh{+}\overline{w}d\bar{k}{=}\overline{0}\}$. Consider a sufficiently small neighborhood $U^{n}(a;r)$ in D such that $N\bigcap U^{n}(a;r)$ is a real analytic irreducible variety, where a is on N . Owing to the definition of N , we see that, for any point of N, w is the constant $c=w(a,\bar{a})$ and hence that

$$
N \cap U^n = \{ z \in U^n ; w(z, \bar{z}) = c \} \cap \{ z \in U^n ; dh(z) + \overline{w(z, \bar{z})} d\overline{\kappa(\bar{z})} = 0 \}
$$

$$
= \{ z \in U^n ; w(z, \bar{z}) = c \} \cap \{ z \in U^n ; dh(z) + \overline{c} d\overline{\kappa(\bar{z})} = 0 \} .
$$

From [Proposition](#page-18-3) 24 it follows that $N\bigcap U^{n}$ is complex analytic. Because of N being closed in D , we have the desired result.

It follows at once from [\(4.1.3\)](#page-18-2) that a subfamily of $A_{\kappa}(D)$, uniformly bounded on any compact set in D , is a normal family (Montel type theorem), and that $A_{\kappa}(D)$ has the "Riemann extension theorem", that is, "Let V be a complex analytic variety such that $D-V$ is dense. Let w be in $A_{\kappa}(D-V)$ and locally bounded in D. Then there is a unique function \tilde{w} in $A_{\kappa}(D)$ such that $\tilde{w}|D-V|$ $=w$ for $z\in D-V$ ".

276 A. KOOHARA

4.2. Hitotumatu had dealt with a pseudo-holomorphic mapping of which characteristic functions are all distinct. In this case, however, it is necessary to take very careful note of "characteristic functions". Let κ_{j} be in $S(\sigma;U^{n})$ and $\partial\kappa_{j}\neq 0$ for all j, where σ and U^{n} are the same as in [Lemma](#page-12-0) 16. Let each w_{j} be a pseudo-holomorphic function on U^{n} with κ_{j} . The pseudo-holomorphic mapping $W=W(z,\bar{z})$, defined by them, from U^{n} into C^{n} is always singular by virtue of Proposition 2 and [Corollary](#page-3-4) 4. On the contrary, in case that $\partial\kappa=0$ on D , we have the following

THEOREM 26. There exist *n* functions w_{j} in $A_{k}(D)$ such that on D

$$
\partial w_1 \wedge \partial w_2 \wedge \cdots \wedge \partial w_n \neq 0.
$$

We note that the Jacobian *J* of the mapping $W=(w_{1}, \cdots , w_{n})$ whose components are in $A_{\chi}(D)$ is given by

$$
J=(1-|\kappa|^2)^n\left|\frac{\partial(w_1,\dots,w_n)}{\partial(z_1,\dots,z_n)}\right|^2\qquad(\textbf{[6]}).
$$

Proof. Let $h_j(z)$ be $exp(cz_j), j=1, \cdots, n$, where c is a nonzero constant which is determined later. Assume that each w_{j} is given in terms of [\(4.1.3\)](#page-18-2) with h_{j} in place of h.

By an elementary but lengthy computation we obtain

$$
(4.2.1) \t \frac{\partial w_1 \wedge \partial w_2 \wedge \cdots \wedge \partial w_n}{\left(1 - |\kappa|^2\right)^n} \left[1 + \frac{1}{c(1 - |\kappa|^2)} \sum_{k=1}^n \left\{ \kappa + \exp\left(\overline{cz}_k - cz_k\right) \partial_{z_k} \overline{\kappa} \right\} \right]
$$

$$
dz_1 \wedge \cdots \wedge dz_n.
$$

From this we have

 $(4.2.2)$ the term in $\lbrack \rbrack$ of the right side of $(4.2.1)|$

$$
\geq 1 - \frac{1}{|c|(1-|\kappa|^2)} \sum_{k=1}^n (1+|\kappa|) |\partial_{z_k} \bar{\kappa}|
$$

$$
\geq 1 - \frac{nK}{|c|(1-|\kappa|)},
$$

where $K = \sup_{c}(\partial_{z_{1}}\overline{k}|, \cdots , |\partial_{z_{n}}\overline{k}|) < \infty$. In this way we can take c such that the first term of (4.2.2) is bounded away from zero, which shows the desired result.

The following is a very special case of Frobenius-Nirenberg Theorem A^{\prime} [\[8\]](#page-20-4) except that the latter is a local one. This special case can be easily proved directly. In fact, it is obtained from [Proposition](#page-2-1) 1, (iv) and the above theorem.

THEOREM 27. The differential equations $(2.1.1)$ have n solutions on D such

that the Jacobian of the transformation defined by them is not zero there if and only if the coefficient κ is anti-holomorphic on D .

References

- [1] K. W. Bauer und G. Jank, Differentialoperatoren bei einer inhomogenen elliptschen Differentialgleichungen, Rend. Ist. Mat. Univ. Trieste, ³ (1971), 1-29.
- [2] K. W. Bauer und S. Ruscheweyh, Ein Darstellungssatz für eine Klasse pseudoanalytischer Funktionen, Berichte der Gesellschaft für Mathematik und Datenverarbeitung mbH Bonn, 75 (1973), 3-15.
- [3] L. Bers, Theory of Pseudo-analytic Functions, New York Univ., 1953.
- [4] L. Bers, An outline of the theory of pseudoanalytic functions, Bull. Amer. Math. Soc., 62 (1956).
- [5] L. Bers and L. Nirenberg, On ^a representation theorem for linear elliptic system with discontinuous coefficients and applications, Convegno Internazionale sulle Equazioni lineari alle derivate parziali, Rome, 1955, 111-140.
- [6] S. Hitotumatu, On quasi-conformal functions of several complex variables, J. Math. and Mech., 8 (1959), 77-94.
- [7] A. Koohara, Similarity principle of the generalized Cauchy-Riemann equations for several complex variables, J. Math. Soc. Japan, ²³ (1971), 213-249.
- [8] L. Nirenberg, ^A complex Frobenius theorem, Seminars on analytic functions I, Princeton, 1957, 172-189.
- [9] I. N. Vekua, Generalized analytic functions, Pergamon, London, 1962.
- [10] I.N. Vekua, New methods for solving elliptic equations, North-Holland, Amsterdam, 1967.

Akira KOOHARA

Department of General Education Himeji Institute of Technology Shosha, Himeji Japan