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Let $\mathfrak{g}$ be a real semisimple Lie algebra, $\mathfrak{h}$ a Cartan subalgebra of $\mathfrak{g},$ $\mathfrak{g}_{c}$ and
$\mathfrak{h}_{c}$ the complexifications of $\mathfrak{g}$ and $\mathfrak{h}$ respectively, and $\sigma$ the conjugation of $\mathfrak{g}_{c}$

with respect to $\mathfrak{g}$ . Denote by $W(\mathfrak{h}_{c})$ the Weyl group of $\mathfrak{g}_{c}$ acting on $\mathfrak{h}_{c}$ , and
let $W_{\sigma}(\mathfrak{h})$ be the subgroup of $W(\mathfrak{h}_{c})$ consisting of elements leaving $\mathfrak{h}$ stable or

$W_{\sigma}(\mathfrak{h})=$ { $w\in W(\mathfrak{h}_{c});w\circ\sigma=\sigma\circ w$ on $\mathfrak{h}_{c}$ }.

The purpose of this paper is to study the structure of the group $W_{\sigma}(\mathfrak{h})$ , as
was done in [7, Appendix] for such $\mathfrak{h}$ which has the maximal vector part.

\S 1. Statement of Theorem.

For any linear form $\lambda$ on $\mathfrak{h}_{c}$ , we define $\sigma\lambda$ as $(\sigma\lambda)(X)=\lambda\overline{(\sigma X)}(X\in \mathfrak{h}_{c})$ , where
$\overline{a}$ denotes the conjugate number of $a\in C$. If $\alpha$ is a root of $(\mathfrak{g}_{c}, \mathfrak{h}_{c})$ , then so is
$\sigma\alpha$ . Let $\mathfrak{r}$ be the root system of $(\mathfrak{g}_{c}, \mathfrak{h}_{c})$ , then it is a $\sigma$-system of roots in the
sense of [1] with the involutive automorphism $\sigma$ . A root $\alpha$ is called real or
imaginary if $\sigma\alpha=\alpha$ or $\sigma\alpha=-\alpha$ respectively. We see that $\alpha$ is real or im-
aginary if and only if it takes only real or purely imaginary values on $\mathfrak{h}$

respectively. Denote by $\mathfrak{r}_{R}$ and $\mathfrak{r}_{I}$ the sets of all real or imaginary roots in $\mathfrak{r}$

respectively. Let $W_{R}(\mathfrak{h})$ and $W_{I}(\mathfrak{h})$ be the groups generated by $\{s_{\alpha} ; \alpha\in \mathfrak{r}_{R}\}$

and $\{s_{\alpha} ; \alpha\in \mathfrak{r}_{I}\}$ respectively, where $s_{\alpha}$ denotes the reflexion corresponding to
a root $\alpha$ . Then they are normal subgroups of $W_{\sigma}(\mathfrak{h})$ , because $W_{\sigma}(\mathfrak{h})$ leaves $\mathfrak{r}_{R}$

and $\mathfrak{r}_{I}$ stable.
Let $G$ be a connected Lie group with Lie algebra $\mathfrak{g}$ . For a subset $F$ of $\mathfrak{g}$ ,

let $N_{G}(F)$ and $Z_{G}(F)$ be the normalizer and the centralizer of $F$ in $G$ respec-
tively, and put $W_{G}(F)=N_{G}(F)/Z_{G}(F)$ . Then $W_{G}(\mathfrak{h})$ is considered canonically
as a subgroup of $W(\mathfrak{h}_{c})$ , and also of $W_{\sigma}(\mathfrak{h})$ since Ad $(g)\circ\sigma=\sigma$ oAd $(g)$ on $\mathfrak{g}_{c}$ for
any $g\in G$ . We know that $W_{R}(\mathfrak{h})$ is a subgroup of $W_{G}(\mathfrak{h})$ (see for instance [2,
p. 256]). An imaginary root $\alpha$ is called compact if $(\mathfrak{g}_{\alpha}+\mathfrak{g}_{-\alpha}+[\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}])\cap \mathfrak{g}$ is
isomorphic to $\mathfrak{s}\mathfrak{u}(2)$ , where $\mathfrak{g}_{\pm\alpha}$ are the spaces of root vectors corresponding to
$\pm\alpha$ . If $\alpha\in \mathfrak{r}_{I}$ is compact, then $s_{\alpha}\in W_{G}(\mathfrak{h})$ [$2$ , p. 256]. We define the vector
part $\mathfrak{h}^{-}$ and the toroidal part $\mathfrak{h}^{+}$ of $\mathfrak{h}$ as follows:
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$\mathfrak{h}^{-}=$ { $X\in \mathfrak{h}$ ; all eigenvalues of ad $X$ are real} ,

$\mathfrak{h}^{+}=$ { $X\in \mathfrak{h}$ ; all eigenvalues of ad $X$ are purely imaginary}.

Every element in $W_{\sigma}(\mathfrak{h})$ leaves $\mathfrak{h}^{-}$ and $\mathfrak{h}^{+}$ stable.
THEOREM. (a) An element $w$ in $W_{\sigma}(\mathfrak{h})$ induces on $\mathfrak{h}^{-}$ or on $\mathfrak{h}^{+}$ the identity

transformation if and only if $w$ belongs to $W_{I}(\mathfrak{h})$ or $W_{R}(\mathfrak{h})$ respectively.
(b) The group $W_{\sigma}(b)$ is aprOduct of $W_{G}(\mathfrak{h})$ and $W_{I}(\mathfrak{h}):W_{\sigma}(\mathfrak{h})=W_{G}(\mathfrak{h})W_{I}(\mathfrak{h})$ .
(c) The image of $W_{G}(\mathfrak{h})$ under the homomorphism $w\rightarrow w|\mathfrak{h}^{-}$ is equal to

$W_{G}(\mathfrak{h}^{-})$ . That of $W_{G}(\mathfrak{h})$ under the homomorphism $w\rightarrow w|\mathfrak{h}^{+}$ is equal to $W_{G}(\mathfrak{h}^{+})$ .
As a consequence of this theorem, we see that the homomorphism $w\rightarrow w|\mathfrak{h}^{-}$

of $W_{\sigma}(\mathfrak{h})$ has the kernel $W_{I}(\mathfrak{h})$ and the image $W_{G}(\mathfrak{h}^{-})$ , and that the homomor-
phism $w\rightarrow w|\mathfrak{h}^{+}$ of $W_{\sigma}(\mathfrak{h})$ has the kernel $W_{R}(\mathfrak{h})$ and the image $W_{G}(\mathfrak{h}^{+})W_{I}(\mathfrak{h})$ ,

where $W_{I}(\mathfrak{h})$ is identified canonically with its image.
These results were applied in [6] to the theory of invariant eigendistri-

butions on real semisimple Lie groups. We note that some parts of this
theorem were known as is explained in \S 2. In particular, in the case where
the $\sigma$-system of roots $\mathfrak{r}$ is normal or $\sigma\alpha-\alpha\not\in \mathfrak{r}$ for any $\alpha\in \mathfrak{r}$ , the theorem is
essentially known in $[1, 7]$ , and moreover we know that the set $\mathfrak{r}^{-}$ of linear
forms on $\mathfrak{h}^{-}$ obtained by restricting the elements of $\{\alpha\in \mathfrak{r};\sigma\alpha\neq-\alpha\}$ to $\mathfrak{h}^{-}$ , is
canonically a root system in the dual space of $\mathfrak{h}^{-}$ , and $W_{G}(\mathfrak{h}^{-})$ is equal to the
Weyl group $W^{-}$ of $\mathfrak{r}^{-}$ . When the dimension of $\mathfrak{h}^{-}$ is maximal, $\mathfrak{r}$ is normal and
all imaginary roots are compact and hence $W_{I}(\mathfrak{h})\subset W_{G}(\mathfrak{h})$ , so $W_{\sigma}(\mathfrak{h})=W_{G}(\mathfrak{h})$ in
(b). When $\mathfrak{h}=\mathfrak{h}^{+}$ or $r=r_{I},$ $W_{G}(\mathfrak{h})$ is generated by { $s_{\alpha}$ ; $\alpha\in \mathfrak{r}_{I}$ compact} (see [3,

Corollary 2 of Lemma 6, p. 461]).

Let $\Delta$ be a fundamental system of $\mathfrak{r}$ . It is called a $\sigma$-fundamental system
if the linear order $>$ in $\mathfrak{r}$ corresponding to it has the property: $\alpha>0,$ $\sigma\alpha\neq$

$-\alpha\subset\Rightarrow\sigma\alpha>0$ . Then the following assertion is known to hold when the a-system
of roots $\mathfrak{r}$ is normal $[1, 7]$ , but we do not know until now whether this is
true or false in general.

(d) Let $\Delta$ and $\Delta^{*}$ be two $\sigma$ -fundamental systems of $\mathfrak{r}$ . Then there exists
an element $w$ in $W_{\sigma}(\mathfrak{h})$ such that $w\Delta=\Delta^{*}$ .

\S 2. Proofs of the assertions (a) and (c).

We prove here the assertions (a) and (c). The proof of (b) will be given
in the next section.

PROOF OF (a). The proof is essentially due to I. Satake [7, p. 107]. Let
$\{H_{1}, H_{2}, \cdots , H_{l}\}$ be a basis of $\mathfrak{h}^{-}+\sqrt{-1}\mathfrak{h}^{+}$ such that $\{H_{1}, H_{2}, \cdots , H_{p}\}$ forms a
basis of $\mathfrak{h}^{-}$ . Introduce in $\mathfrak{r}$ the lexicographic order with respect to this basis.
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and let $\{\alpha_{1}, \alpha_{2}, \cdots , \alpha_{l}\}$ be the fundamental system corresponding to this order.
We may assume that $\alpha_{i}$ for $1\leqq i\leqq p$ are not imaginary but so are the rests.
’I hen $\Delta_{I}=\{\alpha_{i} ; P<i\leqq l\}$ is a fundamental system of $\mathfrak{r}_{I}$ . Take an element $w\in W_{\sigma}(\mathfrak{h})$

such that $w|\mathfrak{h}^{-}=1$ . Then $w\Delta_{I}$ is also a fundamental system of $\mathfrak{r}_{I}$ , and there-
fore there exists a $w_{0}\in W_{I}(\mathfrak{h})$ such that $w\Delta_{I}=w_{0}\Delta_{I}$ . Put $w^{\prime}=w_{0}^{-1}w$ , then $w^{\prime}\Delta_{I}$

$=\Delta_{I}$ , and moreover $w^{\prime}\alpha_{i}>0$ for $1\leqq i\leqq p$ because $w^{\prime}|\mathfrak{h}^{-}=1$ . Thus we get $w^{\prime}\alpha_{i}>0$

for any $i$ and so $w^{\prime}=1$ and $w=w_{0}\in W_{I}(\mathfrak{h})$ . Thus the assertion (a) for $\mathfrak{h}^{-}$ is
proved. That for $\mathfrak{h}^{+}$ can be proved similarly taking a basis $\{H_{1}, H_{2}, \cdots , H_{l}\}$ of
$\mathfrak{h}^{-}+\sqrt{-1}\mathfrak{h}^{+}$ such that $\{H_{1}, \cdots , H_{l- p}\}$ forms a basis for $\sqrt{-1}\mathfrak{h}^{+}$ .

PROOF OF (c). The assertion (c) for $\mathfrak{h}^{-}$ is known, and for instance follows
from [4, Proposition2.2, p. 245] and [8, Proposition 5 and Theorem 3].

The assertion for $\mathfrak{h}^{+}$ is proved as follows. Let $g$ be an element in $G$ such
that Ad $(g)\mathfrak{h}^{+}=\mathfrak{h}^{+}$ . Let $\mathfrak{g}_{1}$ be the centralizer of $\mathfrak{h}^{+}$ in $\mathfrak{g}$ , then it is reductive
and is left stable under Ad $(g)$ . The algebra $\mathfrak{g}_{1}$ and its center $\mathfrak{c}_{1}$ are given as
follows :

$\mathfrak{g}_{1}=(\mathfrak{h}_{c}+\sum_{a\in \mathfrak{r}_{R}}\mathfrak{g}_{\alpha})\cap \mathfrak{g}=\mathfrak{h}+\sum_{\alpha\in\tau_{R}}\{X+\sigma X;X\in \mathfrak{g}_{\alpha}\}$
,

$\mathfrak{c}_{1}=$ { $X\in \mathfrak{h};\alpha(X)=0$ for all $\alpha\in \mathfrak{r}_{R}$}.

Both $\mathfrak{h}$ and $\mathfrak{h}_{g}=Ad(g)\mathfrak{h}$ are Cartan subalgebras of $\mathfrak{g}_{1}$ and so

$\mathfrak{h}=c_{1}+\mathfrak{h}\cap \mathfrak{g}_{1}^{\prime}$ , $\mathfrak{h}_{g}=c_{1}+\mathfrak{h}_{g}\cap \mathfrak{g}_{1}^{\prime}$ ,

where $\mathfrak{g}_{1}^{\prime}=[\mathfrak{g}_{1}, \mathfrak{g}_{1}]$ . Since $\mathfrak{c}_{1}\supset \mathfrak{h}^{+}$ , the Cartan subalgebras $\mathfrak{h}\cap \mathfrak{g}_{1}^{\prime}$ and $\mathfrak{h}_{g}\cap \mathfrak{g}_{1}^{\prime}$ of $\mathfrak{g}_{1}^{\prime}$

both have the trivial toroidal parts. Therefore, by [7, Proposition 2, p. 81],

they are conjugate under the analytic subgroup $G_{1}^{\prime}$ of $G$ corresponding to $\mathfrak{g}_{1}^{\prime}$ ,

that is, Ad $(g_{1})(\mathfrak{h}_{g}\cap \mathfrak{g}_{1}^{\prime})=\mathfrak{h}\cap \mathfrak{g}_{1}^{\prime}$ for some $g_{1}\in G_{1}^{\prime}$ . Hence, putting $g_{0}=g_{1}g$, we get

Ad $(g_{0})\mathfrak{h}=\mathfrak{h}$ and Ad $(g_{0})|\mathfrak{h}^{+}=Ad(g)|\mathfrak{h}^{+}$ , because Ad $(g_{1})|\mathfrak{c}_{1}=1$ . This proves our
assertion.

\S 3. Proof of the assertion (b).

Put $W^{\prime}(\mathfrak{h})=W_{G}(\mathfrak{h})W_{I}(\mathfrak{h})$ . Then we wish to prove $W_{\sigma}(\mathfrak{h})=W^{\prime}(\mathfrak{h})$ . To this
end, we employ two lemmas, one of which is the following.

LEMMA 1. Assume that there exists for any $w\in W_{\sigma}(\mathfrak{h})$ a $w^{\prime}\in W^{\prime}(\mathfrak{h})$ such
that $w^{\prime}w|\mathfrak{h}^{-}=1$ . Then $W_{\sigma}(\mathfrak{h})=W^{\prime}(\mathfrak{h})$ .

PROOF. This follows immediately from the assertion (a). Q. E. D.
Let us rewrite this lemma in more convenient form. Let $\mathfrak{h}_{0}$ be a Cartan

subalgebra of $\mathfrak{g}$ such that the dimension of its vector part $\mathfrak{a}=\mathfrak{h}_{0}^{-}$ is maximal.
Let $W^{-}$ be the Weyl group of the root system $\mathfrak{r}^{-}$ of $(\mathfrak{g}, \mathfrak{a})$ , the restricted root
system. Then $W_{G}(\mathfrak{a})=W^{-}$ as is noted in \S 1. Moreover we may assume $\mathfrak{h}^{-}\subset \mathfrak{a}$

up to conjugacy of $\mathfrak{h}$ under Ad $(G)$ [ $8$ , Theorem 2, p. 383].
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LEMMA 1. Assume that there exists for any $w\in W_{\sigma}(\mathfrak{h})$ a $w^{\prime\prime}\in W^{-}$ such
that $w|\mathfrak{h}^{-}=w^{\prime}|\mathfrak{h}^{-}$ . Then $W_{\sigma}(\mathfrak{h})=W^{\prime}(\mathfrak{h})$ .

PROOF. It follows from Theorem (c) and Lemma 2 below that

$\{w^{\prime}|\mathfrak{h}^{-} ; w^{\prime}\in W_{G}(\mathfrak{h})\}=\{w^{\prime\prime}|\mathfrak{h}^{-} ; w^{\prime\prime}\in W^{-}, w^{\prime\prime}\mathfrak{h}^{-}=\mathfrak{h}^{-}\}$ .
This proves our assertion by Lemma 1. Q. E. D.

LEMMA 2 (see [4, Proposition 2.2, p. 245]). Let $\mathfrak{a}^{\prime}$ be a subset of $\mathfrak{a}$ . As-
sume that Ad $(g)\mathfrak{a}^{\prime}\subset \mathfrak{a}$ for some $g\in G$ , then there exists $w^{\nu}\in W^{-}$ such that $w^{\prime}X$

$=Ad(g)X(X\in \mathfrak{a}^{\prime})$ .
PROOF. Let $\theta$ be a Cartan involution of $\mathfrak{g}$ such that $\theta \mathfrak{h}_{0}=\mathfrak{h}_{0}$ , and $\mathfrak{g}=f+\mathfrak{p}$ is

the corresponding decomposition of $\mathfrak{g}$ . Then $\mathfrak{a}\subset \mathfrak{p}$. We see from [3, p. 480]

that there exists a $k\in K$, the analytic subgroup corresponding to $f$ , such that
Ad $(g)X=Ad(k)X(X\in \mathfrak{a}^{\prime})$ . Then the assertion follows from [4, Proposition
2.2, p. 245]. Q. E. D.

To give our second tool, Lemma 3, we need some preparation. Let $\alpha$ be
a root of a Cartan subalgebra $\mathfrak{h}^{\prime}$ . We denote by $H_{a}$ the element in $\mathfrak{h}_{c}^{\prime}$ corre-
sponding to $\alpha$ under the Killing form of $\mathfrak{g}_{c}$ . If $\alpha$ is real, we can choose root
vectors $X_{\alpha}$ , $X_{-\alpha}$ from $\mathfrak{g}$ in such a way that $H_{\alpha}=[X_{a}, X_{-\alpha}]$ . Put $X_{\pm\alpha}^{\prime}=$

$\sqrt{2}|\alpha|^{-1}X_{\pm\alpha}$ and

$\nu_{\alpha}=\exp\{-\sqrt{-1}\frac{\pi}{2}$ ad $(X_{a}^{\prime}+X_{-\alpha}^{\prime})\}$ ,

where $|\alpha|$ denotes the length of the root $\alpha$ . Then $\mathfrak{h}^{\prime\prime}=\nu_{\alpha}(\mathfrak{h}_{c}^{\prime})\cap \mathfrak{g}$ is a Cartan
subalgebra of $\mathfrak{g}$ not conjugate to $\mathfrak{h}^{\prime}$ under $G$ , and $\beta=\nu_{a}\alpha$ is an imaginary, not
compact root of $\mathfrak{h}^{\prime\prime}$ . Let $\sigma_{\alpha}$ be the hyperplane of $\mathfrak{h}^{\prime}$ defined by $\alpha=0$ , then $\mathfrak{h}^{\prime}$

and $\mathfrak{h}^{\prime\prime}$ are expressed as
$\mathfrak{h}^{\prime}=\sigma_{\alpha}+RH_{\alpha}$ , $\mathfrak{h}^{\prime\prime}=\sigma_{\alpha}+R\sqrt{-1}H_{\beta}$ ,

where $2|\beta|^{-2}H_{\beta}=\sqrt{-i|}(X_{a}^{\prime}-X_{-\alpha}^{\prime})$ . Denote this relation between $\mathfrak{h}^{\prime}$ and $\mathfrak{h}^{\prime\prime}$

simply by $\mathfrak{h}^{\prime}\rightarrow \mathfrak{h}^{\prime\prime}$ . Then, as is remarked in [5, \S 3], we see from the classifica-
tion of conjugate classes of Cartan subalgebras in [8] that any Cartan sub-
algebra $\mathfrak{h}$ can be obtained up to conjugacy under $G$ by a successive operation
of $\rightarrow$ on $\mathfrak{h}_{0}$ . Thus we may assume that there exists a set of real roots
$\{\alpha_{1}, \alpha_{2}, \cdots , \alpha_{q}\}$ of $\mathfrak{h}$ such that $\alpha_{i}\perp\alpha_{j}$ for $i\neq j$ and

$\mathfrak{h}=\sigma+R\sqrt{-1}H_{v\alpha_{1}}+R\sqrt{-1}H_{\nu\alpha_{2}}+\cdots+R\sqrt{-1}H_{v\alpha_{q}}$ ,

$\mathfrak{h}_{0}=\sigma+RH_{\alpha_{1}}+RH_{a_{2}}+\cdots+RH_{\alpha_{q}}$ ,

where $\nu=\nu_{\alpha_{1}}\nu_{\alpha_{2}}\cdots\nu_{\alpha_{q}}$ and $\sigma=\sigma_{\alpha_{1}}\cap\sigma_{a_{2}}\cap\cdots\cap\sigma_{a_{q}}$ .
LEMMA 3. Let the notations be as above. Assume that for any $w\in W_{\sigma}(\mathfrak{h})$ ,

there exists a $w^{\prime}\in W^{\prime}(\mathfrak{h})$ such that $w^{\prime}w$ leaves $R\sqrt{-1}H_{va_{1}}+R\sqrt{-1}H_{\nu\alpha_{2}}+\cdots+$
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$R\sqrt{-1}H_{\nu\alpha_{q}}$ stable. Then $W_{\sigma}(\mathfrak{h})=W^{\prime}(\mathfrak{h})$ .
PROOF. We prove that there exists $w_{1}^{\prime}\in W^{\prime}(\mathfrak{h})$ such that $w_{1}^{\prime}w|\mathfrak{h}^{-}=1$ . Then

the lemma follows directly from Lemma 1. Put $w_{0}=w^{\prime}w$ and $vX=\nu^{-1}w_{0}\nu X$

$(X\in(\mathfrak{h}_{0})_{c}=\nu^{-1}\mathfrak{h}_{c})$ . Then $v\in W_{\sigma}(\mathfrak{h}_{0})$ because $\nu X=X(X\in\sigma)$ and $\nu H_{\alpha_{j}}=H_{\nu\alpha_{j}}$

$(1\leqq j\leqq q)$ . Moreover $w_{0}|\mathfrak{h}^{-}=v|\mathfrak{h}^{-}$ because $\mathfrak{h}^{-}\subset\sigma$ .
On the other hand, the assertion (b) for $\mathfrak{h}_{0}$ is valid, namely $W_{\sigma}(\mathfrak{h}_{0})=W^{\prime}(\mathfrak{h}_{0})$

$=W_{G}(\mathfrak{h}_{0})W_{I}(\mathfrak{h}_{0})$ . Hence

$\{u|\mathfrak{a};u\in W_{\sigma}(\mathfrak{h}_{0})\}=\{u|\mathfrak{a};u\in W_{G}(\mathfrak{h}_{0})\}=W_{G}(\mathfrak{a})$ ,

where $\mathfrak{a}=\mathfrak{h}_{0}^{-}$ as before. Therefore we see as in the proof of Lemma 1’ that
there exists $w_{1}\in W_{G}(\mathfrak{h})$ such that $v|\mathfrak{h}^{-}=w_{1}|\mathfrak{h}^{-}$ . Put $w_{1}^{\prime}=w_{1}^{-1}w^{\prime}\in W^{\prime}(\mathfrak{h})$ , then
$w_{1}^{\prime}w|\mathfrak{h}^{-}=1$ . Q. E. D.

Let $\mathfrak{h}_{I}$ and $\mathfrak{h}_{R}$ be the subspaces of $\mathfrak{h}^{+}$ and $\mathfrak{h}^{-}$ spanned by $\sqrt{-1}H_{\gamma}(\gamma\in \mathfrak{r}_{I})$

and $H_{\gamma}(\gamma\in \mathfrak{r}_{R})$ respectively. Then $W_{\sigma}(\mathfrak{h})$ leaves $\mathfrak{h}_{I}$ and $\mathfrak{h}_{R}$ invariant. Note that

$\mathfrak{h}_{I}\supset R\sqrt{-1}H_{\nu\alpha_{1}}+R\sqrt{-1}H_{\nu\alpha_{2}}+\cdots+R\sqrt{-1}H_{\nu\alpha_{q}}$ .
COROLLARY. If the equality holds in the above inclusion relation, then

$W_{\sigma}(\mathfrak{h})=W^{\prime}(\mathfrak{h})$ . In particular, if $\mathfrak{g}$ is a normal real forym of $\mathfrak{g}_{c}$ or $\mathfrak{g}$ has a Cartan
subalgebra with trivial toroidal part, then $W_{\sigma}(\mathfrak{h})=W^{\prime}(\mathfrak{h})$ for any Cartan subalge-
bra $\mathfrak{h}$ of $\mathfrak{g}$ .

PROOF. In general, every element $w$ in $W_{\sigma}(\mathfrak{h})$ leaves $\mathfrak{h}_{I}$ stable. Hence the
first assertion by Lemma 3. If $\mathfrak{g}$ is normal, $\mathfrak{h}^{+}=\mathfrak{h}_{I}=R\sqrt{-1}H_{\nu\alpha_{1}}+\cdots+R\sqrt{-1}H_{\nu\alpha_{q}}$

for any $\mathfrak{h}$ . This proves the second assertion. Q. E. D.
We prove the assertion (b) for all simple Lie algebras $\mathfrak{g}$ according to their

types. This has been already done for the cases where $\mathfrak{g}$ is normal or has
only one conjugate class of Cartan subalgebras. Hence, in the notation in [8],

the types of $g$ left to study are the following:
classical type: $A_{n}III_{m}(1\leqq m\leqq[(n+1)/2]),$ $B_{n}I_{m}(1\leqq m\leqq n-1),$ $C_{n}II_{m}(1\leqq m$

$\leqq[n/2]),$ $D_{n}I_{m}(1\leqq m\leqq n-1),$ $D_{n}III$, where $n=rank\mathfrak{g}$ and $m$ denotes the integer
such that $\mathfrak{g}=\mathfrak{g}_{m}$ ;

exceptional $tyPe$ : $EII$, EIII (real forms of $E_{6}$ ) $;EVI$, EVII (of $E_{7}$); EIX
(of $E_{8}$) $;FII$ (of $F_{4}$).

(1) The cases of $A_{n}III_{m},$ $C_{n}II_{m}$ and $D_{n}III$. In these cases, $\mathfrak{h}^{-}=\mathfrak{h}_{R}$ for any
$\mathfrak{h}$ and $\mathfrak{r}_{R}$ is always a multiple of type $A_{1}$ , possibly $\emptyset$ . Moreover the restricted
root system $\mathfrak{r}^{-}$ of $\mathfrak{h}_{0}$ is of type $BC_{m}$ or $C_{m}$ . Here a root system is called of
type $BC_{m}$ if it is isomorphic to $\{\pm e_{i}\pm e_{j}(1\leqq i<j\leqq m), \pm e_{i}, \pm 2e_{i}(1\leqq i\leqq m)\}$ ,
where $\{e_{i}\}$ is an orthonormal system in a Euclidean space. Since $\mathfrak{h}^{-}=\mathfrak{h}_{R}$ , the
restriction of $w\in W_{\sigma}(\mathfrak{h})$ on $\mathfrak{h}^{-}$ is completely determined by the automorphism of
$\mathfrak{r}_{R}$ induced by $w$ . Therefore the assertion (b) follows from Lemma 1’ if we
admit the following lemma.
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LEMMA 4. In the above cases, any automorphism of $\mathfrak{r}_{R}$ induced by an ele-
ment $w\in W_{\sigma}(\mathfrak{h})$ , can be realized by some element $u\in W^{-}$ , the Weyl group of $\mathfrak{r}^{-}$ .

This lemma can be proved by aPplying the explicit forms of $\mathfrak{h}$ given in
[8].

(2) The case of $B_{n}I_{m}$ . In this case, $\mathfrak{h}^{-}=\mathfrak{h}_{R}$ for any $\mathfrak{h}$ and $\mathfrak{r}^{-}=B_{m}$ . More-
over $\mathfrak{r}_{R}’ s$ for various $\mathfrak{h}’ s$ are listed in [6, Table 9.1].

We see as in (1) that the same conclusion as in Lemma 4 holds also in
this case.

(3) The case of $D_{n}I_{m}$ . In this case, $\mathfrak{h}^{-}=\mathfrak{h}_{R}$ except when $\mathfrak{h}$ is conjugate
to the Cartan subalgebra corresponding to $F(l, k)$ [ $8$ , p. 403] with $2l+2k=m-1$

(in this case, the codimension of $\mathfrak{h}_{R}$ in $\mathfrak{h}^{-}$ is equal to 1). Moreover $\mathfrak{r}^{-}=B_{m}$ for
$m<n$ , and $\mathfrak{r}_{R}’ s$ are listed in [6, Table 9.1].

Only the cases where $\mathfrak{h}^{-}\neq \mathfrak{h}_{R}$ , are different from $(2^{o})$ . But we can check
without difficulty that the assumption in Lemma 1’ is also satisfied in these
cases.

(4) The cases of exceptional type. In these cases, $\mathfrak{h}^{-}=\mathfrak{h}_{R}$ for any $\mathfrak{h}$ ,
$\mathfrak{r}_{R}=A_{1},$ $A_{1}\oplus A_{1}$ or $A_{1}\oplus A_{1}\oplus A_{1}$ for $\mathfrak{h}$ not compact and not conjugate to $\mathfrak{h}_{0}$ . If
$\mathfrak{r}_{R}=A_{1}$ , the assumption in Lemma 1’ is clearly satisfied. The case where $r_{R}=$

$A_{1}\oplus A_{1}$ or $A_{1}\oplus A_{1}\oplus A_{1}$ can occur only for $EII,$ $EVI$, EVII and $EIX$ . The types
of $\mathfrak{r}^{-}$ are $F_{4},$ $F_{4},$ $C_{3}$ and $F_{4}$ respectively [1, p. 33]. Note that $\mathfrak{r}_{R}$ consists
of long roots in $\mathfrak{r}^{-}$ and is a subsystem of $\mathfrak{r}^{-}$ in the sense that $\alpha,$

$\beta\in \mathfrak{r}_{R}$ and
$\alpha+\beta\in \mathfrak{r}^{-}$ , then $\alpha+\beta\in \mathfrak{r}_{R}$ . Then we see that any automorphism of the sub-
system $\mathfrak{r}_{R}$ of $\mathfrak{r}^{-}$ is induced by some element $u\in W^{-}$ in these cases. Thus the,

assumption of Lemma 1’ is satisfied and hence the assertion (b).

The assertion (b) is now completely proved.
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