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Introduction.

It is well known [1] that a vector bundle $E$ on $P^{1}$ is isomorphic to a
direct sum of line bundles $O_{P^{1}}(a_{1})\oplus\cdots\oplus O_{P^{1}}(a_{p})$ where $a_{1},$ $\cdots$ , $a_{p}(a_{1}\geqq\cdots\geqq a_{p})$

are uniquely determined, and we say that $E$ is of type $(a_{1}, \cdots , a_{p})$ .
Then according to Schwarzenberger, we have the following notion:
DEFINITION. A vector bundle $E$ on $P^{n}$ is called a uniform vector bundle

if the type of $i_{l}^{*}(E)$ is independent of the choice of a line $l$ in $P^{n}$ , where $i_{l}$ is
the natural immersion: $i_{l}$ ; $P^{1}\cong l\hookrightarrow P^{n}$ . Furthermore in relation to a uniform
vector bundle on $P^{n}$ , we have another notion.

DEFINITION. A vector bundle on $P^{n}$ is called homogeneous if it is invariant
with respect to any automorphism of $P^{n}$ .

Obviously, a homogeneous vector bundle is uniform. Conversely, is a uni-
form vector bundle on $P^{n}$ homogeneous? Van de Ven [9] proved that every
uniform vector bundle of rank 2 on $P^{n}(n\geqq 2)$ is isomorphic to one of $O_{P^{n}}(a)$

$\oplus O_{P^{n}}(b)$ and $T_{P^{2}}\otimes O_{P^{2}}(c)$ in the complex case, where $T_{P^{2}}$ is the tangent bundle
of $P^{2}$ . Consequently every uniform vector bundle is homogeneous in this case.

The aim of this paper is to generalize the above result to higher dimen-
sion. Our main theorem which will be proved in \S 2 is as follows:

MAIN THEOREM. Assume that $E$ is a uniform vector bundle on $P^{n}$ of iyPe

$(a_{11}, \cdots , a_{1r_{1}}, a_{21}, \cdots , a_{2r_{2}}, \cdots , a_{\alpha 1}, \cdots , a_{\alpha r_{\alpha}})$ with $n\geqq 2,$ $r=\sum_{i=1}^{\alpha}r_{i}\geqq 2,$ $a_{1}>a_{2}>\ldots>a_{\alpha}$ ,

and $a_{ij}=a_{i}$ $(j=1, \cdots , r_{i})$ . Then we have the following:

1) If $n>r$, then $E$ is isomorphic to $\bigoplus_{i=1}^{\alpha}\mathcal{O}_{P^{n}}(a_{i})^{\oplus r_{i}}$ .
2) If $n=r$, we have two cases as follows:
(i) If $r_{i}\geqq 2$ for $i=1,$ $\alpha$ and if $n$ is either 2 or odd, then $E$ is isomorPhic

to $\bigoplus_{i=1}^{\alpha}\mathcal{O}_{P^{n}}(a_{t})^{\oplus r_{i}}$ .
(ii) If either $r_{1}$ or $r_{\alpha}$ is 1, and if the characteristic of the ground field is

zero, then $E$ is isomorphic to one of $T_{P^{n}}\otimes o_{P^{n}}(a),$ $\Omega_{P^{n}}^{1}\otimes o_{P^{n}}(b)$ and $\bigoplus_{i=1}^{\alpha}O_{P^{n}}(a_{i})^{\oplus r_{i}}$

with some integers $a,$
$b$ where $T_{pn}$ and $\Omega_{P^{n}}^{1}$ are the tangent bundle and the

cotangent bundle of $P^{n}$ , respectively.
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Consequently, under the assumption of this theorem a uniform vector bundle
is homogeneous.

If the characteristic of the ground field is positive in (2) (ii), there are
many uniform vector bundles other tban those mentioned there (Remark 2.2).

According to S. Mari, there are uniform but non-homogeneous vector
bundles of rank $r$ on $P^{n}$ if $r>n$ .

Notation. Throughout this paper $k$ is an algebraically closed field of
characteristic $P(\geqq 0)$ . A variety $S$ is a reduced and irreducible algebraic k-
scheme. We use the terms ” vector bundle “ and ” locally free sheaf ” inter-
changeably. Furthermore, $O_{P^{n}}(1)$ is the line bundle corresponding to the divisor
class of hyperplanes in the n-dimensional projective space $P^{n}$ . If $E$ is a vector
bundle on $S$ , the $P(E)$ denotes Proj $(S(E))$ , where $S(E)$ is the $O_{S}$ -symmetric
algebra of E. $Gr(n, d)$ denotes the Grassmann variety parametrizing d-dimen-
sional linear subspaces of the n-dimensional projective space $P^{n}$ . $E(n, d)$ (resp.
$Q(n, d))$ denotes the universal subbundle (resp. universal quotient bundle) over
$Gr(n, d)$ . If 1 is a line in $P^{n}$ and $E$ is a vector bundle on $P^{n}$ then we use the
notation $E|_{l}$ instead of $i_{l}^{*}(E)$ where $i_{l}$ is the natural immersion $i_{l}$ : $P^{1}\cong lc_{\rightarrow}P^{n}$ .

The author wishes to thank Professor H. Tango of Kyoto University of
Education for his valuable suggestions and encouragement.

\S 1. Preliminaries and a theorem of Tango.

In order to prove our theorem, the following easy proposition plays an
important role.

PROPOSITION 1. For a Point $p$ of the n-dimensional Projective space $(n\geqq 2)$ ,
consider the monoidal transformation $\varphi:X\rightarrow P^{n}$ with center $p$ . Then $X$ is iso-
morphic to the $P^{1}$ -bundle $\pi$ ; Proj $(O_{P^{n-1}}\oplus O_{P^{n-1}}(1))\rightarrow P^{n-1}$ . Moreover the fibers
of the bundle are in one to one correspOndence via $\varphi$ with the lines going
through the Point $p$ .

PROOF. Let $m_{p}$ be the sheaf of ideals defining the point $p$ in $P^{n}$ . Then
we have the following exact sequence: $\mathcal{O}_{P^{n}}^{\oplus n}\rightarrow m_{p}\otimes \mathcal{O}_{P^{n}}(1)\rightarrow 0$ . By taking $\varphi^{*}$ ,
we get an exact sequence: $O_{X}^{\oplus n}\rightarrow\varphi^{*}(m_{p})\otimes\varphi^{*}O_{P^{n}}(1)\rightarrow 0$ . Now we know easily
that $\varphi^{*}(m_{p})$ is isomorphic to the line bundle $o_{X}(-\varphi^{-1}(p))$ where $O_{X}(-\varphi^{-1}(p))$

is the sheaf of ideals defining the exceptional divisor $\varphi^{-1}(p)$ of $\varphi$ . Let $L$ be
$\varphi^{*}(m_{p})\otimes\varphi^{*}(O_{P^{n}}(1))$ . The line bundle $L$ on $X$ induces a morphism $\pi;X\rightarrow P^{n-1}$ .
By the construction of $\varphi$ , any fiber of $\pi$ is $P^{1}$ . Moreover the exceptional
divisor $\varphi^{-1}(p)$ of $\varphi$ induces a section of $\pi$ . So $\pi$ is a $P^{1}$ -bundle [3]. Moreover
$X$ is isomorphic to $P(E)$ where $E$ is a vector bundle of rank 2 on $P^{n- 1}$ ([4],
Lemma 1.2). For $n=2,$ $E\cong O_{p1}(a)\oplus O_{P^{1}}(b)$ because $E$ is a vector bundle of
rank 2 on $P^{1}[1]$ . $E$ has a quotient line bundle corresponding to the section
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of $\pi$ mentioned above. So $E$ is isomorphic to a direct sum of line bundles,
because $H^{1}(P^{n- 1}, M)=0$ for any line bundle $M$ on $P^{n- 1}(n\geqq 3)$ . Therefore, we
see that $X$ is isomorphic to Proj $(o_{P^{n-1}}\oplus o_{P^{n- 1}}(a))$ for $n\geqq 2$ , where $a$ is a non-
negative integer. Let $\overline{L}$ be the linebundle corresponding to the exceptional
divisor $\varphi^{-1}(p)$ of $\varphi$ . It is easy to see that restriction of $\overline{L}$ to the $\varphi^{-1}(p)(\cong P^{n- 1})$

is isomorphic to $O_{P^{n- 1}}(-1)$ . Therefore we obtain $a=1$ . The latter half of this
proposition is obvious. $q$ . $e$ . $d$ .

The next proposition, which can be thought of as a universal version of
Proposition 1 with $P$ running over all points of $P^{n}$ , is useful for our proof of
(2) (ii) of the Main Theorem.

PROPOSITION 2. Let $\Delta$ be the diagonal of $P^{n}\times P^{n}(n\geqq 2)$ and let $\overline{\varphi}$ ; $\overline{X}\rightarrow$

$P^{n}\times P^{n}$ be the monoidal transformation with center $\Delta$ . Then there exists a
morphism $\pi;\overline{X}\rightarrow P(\Omega_{P^{n}}^{1})$ which induces an isomorphism $\overline{\varphi}^{-1}(\Delta)\simeq P(\Omega_{P^{n}}^{1})$ such
that fi is a $P^{1}$-bundle. If we denote by $q$ the canonical morphism $P(\Omega_{P^{n}}^{1})\rightarrow P^{n}$

and by $p_{1}$ the first projection $P^{n}\times P^{n}\rightarrow P^{n}$ , we have the following commutative
diagram:

$\overline{\varphi}$

$P^{n}\times P^{n}\leftarrow-\overline{X}$

$p_{1}\downarrow\underline{q}\downarrow\overline{\pi}P^{n}P(\Omega_{P^{n}}^{1})$

Moreover we see that
1) the canonical immersion $\overline{\varphi}^{-1}(\Delta)\subset\rightarrow\overline{X}$ induces a section of $\overline{\pi}$ ,
2) for every point $t$ of $P^{n},\overline{\varphi}^{-1}[p_{1}^{-1}(t)]=\overline{\pi}^{-1}(q^{-1}(t))$ where $\overline{\varphi}^{-1}[p_{1}^{-1}(t)]$ is the

proper transform of $p_{1}^{-1}(t)$ by $\overline{\varphi}$ , and $\overline{\varphi}^{-1}|_{\overline{\varphi}}-1[p_{1}^{-1}(t)]:\overline{\varphi}^{-1}[p_{1}^{-1}(t)]\rightarrow p_{1}^{-1}(t)$ is the
monoidal transformation with center $t\times t$ .

PROOF. Let $P_{2}$ : $P^{n}\times P^{n}\rightarrow P^{n}$ be the second projection. Put $f_{i}=p_{i}\overline{\varphi}$ for
$i=1,2$ and $L=f_{2}^{*}\mathcal{O}_{P^{n}}(1)\otimes \mathcal{O}_{\overline{X}}(-\overline{\varphi}^{-1}(\Delta))$ where $O_{\overline{X}}(-\overline{\varphi}^{-1}(\Delta))$ is the sheaf of ideals
defining $\overline{\varphi}^{-1}(\Delta)$ in $\overline{X}$. Since $f_{1}$ is flat, $L$ is $f_{1^{-}}flat$ . On the other hand, we
obtain that $f_{1}^{-1}(s)\cong s\times\varphi_{s}^{-1}(s)$ and $L|_{f_{1}}-1_{(s)}=o_{P^{n}}(1)\otimes\varphi_{s}^{-1}(m_{s})$ , where $\varphi_{s}$ : $\varphi_{s}^{-1}(P^{n})\rightarrow P^{n}$

is the monoidal transformation with center $s$ and $m_{s}$ is the sheaf of ideals dePn-
ing a point $s$ in $P^{n}$ . By virtue of these facts and Proposition 1, $\dim_{k(s)}H^{0}(f_{1}^{-1}(s)$ ,
$L|_{f_{1}^{-1}(s)})=n$ for every point $s$ of $P^{n}$ . Hence by the base change theorem of
Grothendieck [6], $f_{1*}L$ is a vector bundle of rank $n$ on $P^{n}$ . Furthermore it is
easy to see that there is a surjective homomorphism; $f_{1}^{*}f_{1*}L\rightarrow L\rightarrow 0$ . So we
have a canonical closed immersion $\varphi:\overline{X}(\cong P(L))\rightarrow P(f_{1}^{*}f_{1*}L)$ . On the other
hand there is a canonical projection $\psi:P(f_{1}^{*}f_{1*}L)\rightarrow P(f_{1*}L)$ because $P(f_{1}^{*}f_{1*}L)$

$\cong f_{1}^{*}P(f_{1*}L)$ by virtue of the functoriality of Proj. Put $\psi\varphi=\overline{\pi}$ . Let us show
that $\overline{\pi};\overline{X}(\cong P(L))\rightarrow P(f_{1*}L)$ is a $P^{1}$ -bundle. In the first place, by restricting
the surjective homomorphism; $f_{1}^{*}f_{1*}L\rightarrow L\rightarrow 0$ to every Pber of $f_{1}$ , we obtain
the following commutative diagram:
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$\overline{XJ}\leftarrow^{\varphi}P(f_{1,J}^{*}f_{1*}L)\rightarrow^{\psi}P(f_{1*}L)$

$X_{s}=$. $P^{n- 1}\times X_{s}\rightarrow P^{n-1}J$

( $s$ is a point of $P^{n}$ and $X_{s}=f_{1}^{-1}(s)$).
By virtue of the above diagram and Proposition 1, we know that every

fiber of $\overline{\pi}$ is $P^{1}$ . Also we obtain that $\overline{\varphi}^{-1}(\Delta)\cap X_{s}$ induces a section of $P^{1}-$

bundle: $\overline{\pi}|_{x_{s}}$ : $X_{s}\rightarrow P^{n-1}$ by Proposition 1. So noting that $O_{\overline{X}}(\overline{\varphi}^{-1}(\Delta))$ induces a
sheaf of hyperplane in $\overline{\pi}^{-1}(q)$ for every point $q$ of $P(f_{1*}L)$ , we know that $\overline{\pi}$ ;

$X\rightarrow P(f_{1*}L)$ is a $P^{1}$ -bundle ([3]) and the canonical immersion $\overline{\varphi}^{-1}(\Delta)\hookrightarrow X$ induces
a section of $\overline{\pi}$ . On the other hand, since $\overline{\varphi}^{-1}(\Delta)\cong P(I/I^{2})$ where $I$ is the sheaf
of ideals defining $\Delta$ in $P^{n}\times P^{n},\overline{\varphi}^{-1}(\Delta)\cong P(\Omega_{P^{n}}^{1})$ by virtue of the definition of
$\Omega_{P^{n}}^{1}$ . So $\overline{\pi};\overline{X}\rightarrow P(\Omega_{P^{n}}^{1})(\cong P(f_{1*}L))$ is a $P^{1}$ -bundle. (2) is obvious by virtue of
the above facts. $q$ . $e$ . $d$ .

If we lift a uniform vector bundle on $P^{n}$ to $X$ in Proposition 1, then it
contains a subbundle. In fact,

PROPOSITION 3. Let $E$ be a uniform vector bundle of rank $r$ on $P^{n}$ such

that $E|_{l}$ is isomorphic to $0_{P^{1}}^{\oplus r_{1}}\oplus(\bigoplus_{i=2}^{\alpha}O_{P^{1}}(a_{i})^{\oplus r_{i}})$ for all lines $l$ with $0>a_{2}>\ldots>a_{\alpha}$ .
Then $\pi^{*}\pi_{*}\varphi^{*}E$ is a subbundle of $\varphi^{*}E$ of rank $r_{1}$ , where $\varphi$ and $\pi$ are the same
as in Proposition1.

PROOF. Let $s$ be a point of $P^{n-1}$ . By Proposition 1, $\varphi^{*}E|_{\pi^{-1(S)}}$ is isomor-

phic to $0_{P^{1}}^{\oplus r_{1}}\oplus(\bigoplus_{i=2}^{\alpha}O_{P^{1}}(a_{i})^{\oplus r_{i}})$ . Thus for every point $s$ of $P^{n-1}$ , we have

$H^{0}(\pi^{-1}(s), O_{P^{1}}^{\oplus r_{1}}\oplus(\bigoplus_{i=2}^{\alpha}O_{P^{1}}(a_{i})^{\oplus r_{i}}))\cong k^{\oplus r_{1}}$ . Hence by the base change theorem of

Grothendieck [6], $\pi_{*}\varphi^{*}E$ is a vector bundle of rank $r_{1}$ on $P^{n-1}$ and for every
point $s$ of $P^{n- 1}$ , we have $\pi_{*}\varphi^{*}E\otimes k(s)\simeq H^{0}(\pi^{-1}(s), \varphi^{*}E|_{\pi-1(s)})$ . This means that
$\pi^{*}\pi_{*}\varphi^{*}E$ is a subbundle of rank $r_{1}$ of $\varphi^{*}E$ . $q$ . $e$ . $d$ .

In the sequel we denote the vector bundle $\varphi^{*}E/\pi^{*}\pi_{*}\varphi^{*}E$ on $X$ by $F$.
REMARK 1.1. The conclusion of Proposition 3 holds good under a weaker

assumption on $E$ that $E|_{l}$ is isomorphic to $0_{P^{1}}^{\oplus r_{1}}\oplus(\bigoplus_{i=2}^{\alpha}O_{p1}(a_{i})^{\oplus r_{i}})$ for all lines $l$

in $P^{n}$ going through a fixed point $p$ .
REMARK 1.2. Let $D_{p}$ be the exceptional variety $\varphi^{-1}(p)$ of $\varphi$ . Then the

exact sequence;
$0\rightarrow\pi^{*}\pi_{*}\varphi^{*}E\rightarrow\varphi^{*}E\rightarrow F\rightarrow 0$

obtained in Proposition 3 gives rise to an exact sequence;

$0\rightarrow\pi_{*}\varphi^{*}E\rightarrow O_{P^{n-1}}^{\oplus r}\rightarrow F|_{P^{n- 1}}\rightarrow 0$
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on $D_{p}(\cong P^{n- 1})(r=\sum_{i=1}^{\alpha}r_{i})$ . It follows that there is a morphism $ f:P^{n- 1}\rightarrow$

$Gr(r-1, r-r_{1}-1)$ such that

$0\rightarrow\pi_{*}\varphi^{*}E\rightarrow O_{P^{n-1}}^{\oplus r}\rightarrow F|_{P^{n-1}}\rightarrow 0$

is isomorphic to the pull back of

$0\rightarrow E(r-1, r-r_{1}-1)\rightarrow O_{Gr(r- 1,r- r_{1-1)^{\oplus r}}}\rightarrow Q(r-1, r-r_{1}-1)\rightarrow 0$

by $f$.
The following theorem due to Tango ([7], [8]) is used essentially in the

proof of (1) and (2) (i) of our Main Theorem.
THEOREM OF TANGO. Let $f$ be a morphism from $P^{N}$ to $Gr(m, d)$ with

$m-1>d>0$ . If 1) $N>m$ or if 2) $N=m$ and $md$ is even except the case $m=5$

and $d=2$ , then $f$ is a constant map.
The following proposition gives us a sufficient condition for a vector bundle

to be generated by its global sections. We shall make use of this in our proof
of (2) (ii) of our Main Theorem.

PROPOSITION 5. Let $S$ be a variety and $E$ a vector bundle of rank $r$ on $S$ .
Assume that $V$ is an m-dimensional linear subsPace of $H^{0}(S, E)$ with $m\geqq r+1$ .
If moreover $\{x\in S|s(x)=0\}\cap\{x\in S|s^{\prime}(x)=0\}=\emptyset$ for every pair of elements $s,$

$s^{\prime}$

in $V$ which are linearly independent over $k$ , then the vector bundle $E$ is gener-
ated by elements of $V$ .

PROOF. Let $s_{1},$
$\cdots$ , $s_{m}$ be a basis for $V$ . Assume that for some closed point

$x$ of $S,$ $E\otimes k(x)$ cannot be generated by the $m$ elements $s_{1}(x),$ $\cdots$ , $s_{m}(x)$ .
From this we derive a contradiction. In the first place, $\sum_{i=1}^{m}ks_{i}(x)$ is an 1-

dimensional linear subspace of $E\otimes k(x)$ with $l\leqq r-1$ . We may assume that
$s_{1}(x),$ $\cdots$ , $s_{l}(x)$ are linearly independent over $k$ in $E\otimes k(x)$ . Since $s_{1}(x),$ $\cdots$ ,
$s_{l}(x),$ $s_{l+1}(x)$ (resp. $s_{1}(x),$ $\cdots$ , $s_{l}(x),$ $s_{l+2}(x)$ ) are linearly dependent over $k$ , there

$l+1$

are 1+1 elements $\lambda_{1},$ $\cdots$ , $\lambda_{l},$ $\lambda_{l+1}$ in $k$ (resp. $\lambda_{1}^{\prime},$ $\cdots$ , $\lambda_{l}^{\prime},$ $\lambda_{l+2}^{\prime}$) such that $\sum_{i=1}\lambda_{i}s_{i}(x)$

$=0$ (resp. $\sum_{i=1}^{\iota+2}\lambda_{l}^{\prime}s_{i}(x)=0$)
$\neq\iota+1$

Since $s_{1}(x),$ $\cdots$ , $s_{l}(x)$ are linearly independent, we get

$\lambda_{l+1}\neq 0$ (resp. $\lambda_{l+2}^{\prime}\neq 0$). This and the assumption that $s_{1},$
$\cdots$ , $s_{m}$ form a basis

for $V$ imply that $\sum_{i=1}^{\iota+1}\lambda_{i}s_{i},\sum_{i=1}^{l+2}\lambda_{i}^{\prime}s_{i}\neq\iota+1$ are linearly independent over $k$ . On the other

hand $\{y\in S|\sum_{i=1}^{l+1}\lambda_{i}s_{i}(y)=0\}\cap\{y\in S|\sum_{i=1}^{\iota+2}\lambda_{l}^{\prime}s_{i}(y)=0\}$ is non-empty, because it con-
$\neq l+1$

tains $x$. But this is a contradiction to the assumption. Thus we complete our
proof.
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\S 2. Proof of the Main Theorem.

First note that, for every uniform vector bundle $\overline{E}$ , we can express $\overline{E}$ or
$\overline{E}^{V}$ as $E(a)$ with an integer $a$ and a uniform vector bundle $E$ which enjoys the
properties that $a_{1}=0$ and $r_{1}\leqq r_{\alpha}$ in the notation in our Main Theorem.

Therefore we may assume that $a_{1}=0$ and $r_{1}\leqq r_{\alpha}$ . With these notation and
assumptions, we have only to prove the following:

1) If $n>r$, then $E\cong\bigoplus_{i=1}^{\alpha}O_{P^{n}}(a_{i})^{\oplus r_{i}}$ .
a) If $n=r$, we have two cases as follows:
(i) If $r_{1}\geqq 2$ and if $n$ is either 2 or odd, then $E\cong\bigoplus_{i=1}^{\alpha}\mathcal{O}_{P^{n}}(a_{i})^{\oplus r_{i}}$ .
(ii) If $r_{1}=1$ and if the characteristic is zero, then $E\cong T_{pn}(-2)$ or

$\bigoplus_{i=1}^{\alpha}O_{P^{n}}(a_{i})^{\oplus r_{i}}$ .
First, let us prove (1) and (2) (i) of our Main Theorem. We employ the

notation of Proposition 1, and we shall prove these by induction on $\alpha$ . When
$\alpha=1(i. e. E|_{l}=\mathcal{O}_{P^{1^{1}}}^{\oplus r}),$ $\pi^{*}\pi_{*}\varphi^{*}E\cong\varphi^{*}E$ by Proposition 3. Restricting it to $D_{p}$

$(\cong P^{n- 1})$ , we know $\pi_{*}\varphi^{*}E\cong \mathcal{O}_{P^{n^{1}-1}}^{\oplus r}$ . So $\varphi^{*}E\cong \mathcal{O}_{X}^{\oplus r_{1}}$ . Hence we conclude $E=\varphi*\varphi^{*}E$

$=\varphi_{*}O_{X}^{\oplus r_{1}}=\mathcal{O}_{P^{\eta}}^{\oplus r1}$ by the projection formula and $\varphi_{*}O_{X}=O_{P^{n}}$ . If $\alpha\geqq 2$ , we have
the following exact sequence by Remark 1.2:

$0\rightarrow\pi_{*}\varphi^{*}E\rightarrow \mathcal{O}_{P^{n-1}}^{\oplus r}\rightarrow F|_{P^{n- 1}}\rightarrow 0$

which provides us with a morphism $f:P^{n-1}\rightarrow Gr(r-1, r-r_{1}-1)$ such that $\pi_{*}\varphi^{*}E$

$=f^{*}(E(r-1, r-r_{1}-1))$ . By virtue of the theorem of Tango, $f$ is a constant
map, whence $\pi_{*}\varphi^{*}F\cong \mathcal{O}_{P^{n^{1}-1}}^{\oplus r}$ . Thus we have the following exact sequence:
$0\rightarrow O_{X}^{\oplus r_{1}}\rightarrow\varphi^{*}E\rightarrow F\rightarrow 0$ . By the canonical isomorphism; $H^{0}(P^{n}, E)\cong H^{0}(X, \varphi^{*}E)$ ,
we can Pnd $r_{1}$ elements of $H^{0}(P^{n}, E),$ $s_{1},$

$\cdots$ , $s_{r_{1}}$ such that for every point $u$ in
$P^{n},$ $s_{1}(u),$ $\cdots$ , $s_{r_{1}}(u)$ are linearly independent over $k(u)$ . This implies that
$s_{1},$ $\cdots$ , $s_{r_{1}}$ generate a trivial subbundle $E^{\prime}(\cong O_{P^{n}}^{\oplus r1})$ of rank $r_{1}$ of $E$ . Now we
claim that the quotient bundle $F^{\prime}=E/E^{\prime}$ is a uniform vector bundle with the

property that for all lines $l\subset P^{n},$ $F^{\prime}|_{l}\cong\bigoplus_{i=2}^{\alpha}O_{P^{1}}(a_{i})^{\oplus r_{i}}$ . Indeed, we have the fol-

lowing exact sequence for all lines $l\subset P^{n}$ ;

$0\rightarrow O_{p^{1}}^{\oplus r_{1}}\rightarrow\bigoplus_{i=1}^{\alpha}O_{P^{1}}(a_{i})^{\oplus r_{i}}\rightarrow F^{\prime}|_{l}\rightarrow 0$ .

Since $H^{0}$( $P^{1}$ , Hom $(O_{P^{1}},$ $O_{p1}(b))$ ) $=0$ for $b<0$ and since $a_{i}<0$ for $i\geqq 2$ by our
assumption, we see that $F^{\prime}|_{l}\cong\bigoplus_{i=2}^{\alpha}O_{P^{1}}(a_{i})^{\oplus r_{i}}$ for all lines $l\subset P^{n}$ , that is, $F^{\prime}$ is a
uniform vector bundle. Hence by applying the induction assumption to $F^{\prime}(-a_{2})$ ,

we see that $F^{\prime}\cong\bigoplus_{i=2}^{\alpha}O_{P^{n}}(a_{i})^{\oplus r_{i}}$ . Since $H^{1}(P^{n}, L)=0$ for $n\geqq 2$ and for any line
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bundle $L$ , we conclude that $E\cong\bigoplus_{i=1}^{\alpha}O_{P^{n}}(a_{i})^{\oplus r_{i}}$ . Consequently, we get (1) and (2)

(i) of our Main Theorem.
REMARK 2.1. As was pointed out in Remark 1.1 these conclusions (1) and

(2) (i) hold good under the assumption that $E|_{l}$ is isomorphic to $\bigoplus_{i=1}^{\alpha}O_{p1}(a_{i})^{\oplus r_{i}}$

for every line $l$ in $P^{n}$ through a fixed point $p$ .
Next, we shall prove (2) (ii) of our Main Theorem. We maintain the nota-

tion of Proposition 2. Let $s$ be a point of $P(\Omega_{P^{n}}^{1})$ . Using (2) of Proposition 2

for $q(s)=t(\in P^{n})$ , we obtain that $\overline{\varphi}^{*}p_{1}^{*}E|_{\overline{\pi}-1(s)}\cong \mathcal{O}_{P^{1}}\bigoplus_{i=2}^{\alpha}O_{p1}(a_{i})^{\oplus\tau_{i}}$ . Since $H^{0}(\overline{\pi}^{-1}(s)$ ,

$\overline{\varphi}^{*}p_{1}^{*}E|_{\overline{\pi}-1(s)})\cong k$ , we get the following exact sequence in the same way as in
Proposition 3;

$0\rightarrow\overline{\pi}^{*}\overline{\pi}_{*}\overline{\varphi}^{*}(p_{1}^{*}E)\rightarrow\overline{\varphi}^{*}(p_{1}^{*}E)\rightarrow Q\rightarrow 0$

with a vector bundle $Q$ on $\overline{X}$ . This gives rise to a closed immersion $i:P(Q)$

$\subset_{\rightarrow}P(\overline{\varphi}^{*}p_{1}^{*}E)$ . On the other hand, $\overline{\varphi}$ induces an isomorphism: $\overline{X}-\overline{\varphi}^{-1}(\Delta)\cong$

$ P^{n}\times P^{n}-\Delta$ . Hence if $Y$ is the closure of $P(Q)|_{\overline{X}-\overline{\varphi}-1(\Delta)}$ in $P(p_{1}^{*}E)$ , then we get
a commutative diagram.

$P(Q)=P(\overline{\varphi}^{*}(p_{1}^{*}E))$

$\downarrow$ $|\overline{\varphi}$

$p_{1}$

$Y$ $=P(P_{1}^{*}E)\cong P^{n}\times P(E)\rightarrow P^{n}$

Now, we put $Y_{t}=Y|_{p_{2}^{-1}(t)}$ and $t=p$ in Proposition 3. Then we see that $Y_{t}$ is
the closure of $P(F)|_{X-\varphi^{-1(t)}}$ in $P(E)$ ( $[5]$ Lecture 7, corollary 2). Also $Y_{t}$ is
an effective divisor. Furthermore if $\{U_{\lambda}\}$ is a sufficiently small open covering

of $P^{n},$ $Y_{t}|_{U_{\lambda}}$ can be expressed as $\sum_{i=0}^{n-1}g_{i}^{\lambda}X_{i}^{\lambda}=0$ , where $X_{0}^{\lambda},$ $\cdots$ , $X_{n-1}^{\lambda}$ is a homo-

geneous coordinate system of $U_{\lambda}\times P^{n- 1}\cong P(E)|_{U_{\lambda}}$ and $g_{i}^{\lambda}\in\Gamma(U_{\lambda}, O_{P^{n}})$ for $0\leqq i$

$\leqq n-1$ . Therefore the fibre of $Y_{t}$ at $t\times t$ is either $P^{n-2}$ or $P^{n- 1}$ .
$P(F)=P(\varphi^{*}E)$

$\downarrow$ $\downarrow$

$Y_{t}$ $=$ $P(E)$

Now we have two cases.
1) Assume that there is a point $t\in P^{n}$ such that the fiber of $Y_{t}$ at $t\times t$

is $P^{n-2}$ . Then $Y_{t}$ is a $P^{n-2}$-bundle over $P^{n}$ in $P(E)$ . This implies that there
is an exact sequence;

$0\rightarrow L\rightarrow E\rightarrow F_{t}\rightarrow 0$

where $F_{t}$ is of rank $n-1$ and $P(F_{t})=Y_{t}$ . When $n=2,$ $L$ and $F_{t}$ are line bundles
on $P^{2}$ . Consequently $E$ is isomorphic to $L\oplus F_{t}$ because $H^{1}(P^{2}, M)=0$ for any
line bundle $M$ on $P^{2}$ . By virtue of the assumption that $E|_{l}\cong \mathcal{O}_{P^{1}}\oplus O_{P^{1}}(a_{2})$ for
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all lines $l$ , we have $E\cong O_{P^{2}}\oplus O_{P^{2}}(a_{2})$ .
When $n\geqq 3$ , it is easy to see that $\varphi^{-1}(P(F_{t}))\supset P(F)$ . On the other hand,

both $\varphi^{-1}(P(F_{t}))$ and $P(F)$ are $P^{n-2}$ -bundles in $P(\varphi^{*}E)$ . Hence $\varphi^{-1}(P(F_{t}))=P(F)$ .
By the functoriality of Proj, $\varphi^{-1}(P(F_{t}))=P(\varphi^{*}F_{t})$ , that is, $P(\varphi^{*}F_{t})=P(F)$ . This
means that $F\cong\varphi^{*}F_{t}\otimes L$ for some line bundle $L$ on $X$. Now every line bundle
on $X$ is isomorphic to $L_{0}^{\otimes b}\otimes\pi^{*}\mathcal{O}_{P^{n-1}}(a)$ where $L_{0}$ is a line bundle corresponding
to the divisor $\varphi^{-1}(t)(\cong P^{n-1})$ and $a,$ $b\in Z$.

Let us show that $a=b=0$ . Let $S(\cong P^{n-1})$ be a section of $\pi$ such that
$ S\cap\varphi^{-1}(t)=\emptyset$ (in fact, such an $S$ exists because $X\cong P(O_{Pn- 1}\oplus O_{P^{n- 1}}(1))$ . Since
$F|_{S}\cong\varphi^{*}F_{t}|_{S}$ by a property of $\varphi$ , we have $L|_{S}=O_{S}$ . Thus we have $a=0$ , be-
cause $L|_{S}=L_{0}^{\otimes b}|_{S}\otimes\pi^{*}\mathcal{O}_{Pn-1}(a)|_{S}=\mathcal{O}_{S}(a)$ . On the other hand, the exact sequence
on $X:0\rightarrow\pi^{*}\pi_{*}\varphi^{*}E\rightarrow\varphi^{*}E\rightarrow F\rightarrow 0$ gives rise to the exact sequence on the sec-
tion $\varphi^{-1}(i)(\cong P^{n- 1})0\rightarrow\pi_{*}\varphi^{*}E\rightarrow O_{P^{n-1}}^{\oplus r}\rightarrow F|_{P^{n- 1}}\rightarrow 0$ . Hence by virtue of the fact
that $F\cong\varphi^{*}F_{t}\otimes L_{0}^{\otimes b}$ , we have an exact sequence:

$0\rightarrow\pi_{*}\varphi^{*}E\rightarrow O_{P^{n-1}}^{\oplus r}\rightarrow \mathcal{O}_{P^{n-1}}^{\oplus r-1}\otimes \mathcal{O}_{P^{n- 1}}(-b)\rightarrow 0$ .
Consequently $b=0$ . Thus we have $\pi_{*}\varphi^{*}E\cong O_{P^{n-1}}$ . This provides us with an
exact sequence,

$0\rightarrow O_{X}\rightarrow\varphi^{*}E\rightarrow F\rightarrow 0$ .

Then we obtain the following exact sequence in the same way as in the proof
of (1) and (2) (i);

$0\rightarrow \mathcal{O}_{P^{n}}\rightarrow E\rightarrow F^{\prime}\rightarrow 0$ .
Similarly we see that $F^{\prime}$ is a uniform vector bundle of rank $n-1$ . So
$F^{\prime}\cong\bigoplus_{i=2}^{\alpha}O_{pn}(a_{i})^{\oplus r_{i}}$ . Since $H^{1}(P^{n}, L^{\prime})=0$ for $n\geqq 2$ and for any line bundle $L^{\prime}$ , we

know that $E$ is isomorphic to $0_{Pn}\bigoplus_{i=2}^{\alpha}O_{P^{n}}(a_{i})^{\oplus r_{i}}$ .
2) Assume that the fiber of $Y_{t}$ at $t\times t$ is $P^{n-1}$ for all $t\in P^{n}$ . As was

shown, $Y_{t}$ is linearly equivalent to $Y_{t^{\prime}}$ , for all $t,$ $t^{\prime}\in P^{n}$ , because $\{Y_{t}|t\in P^{n}\}$ is
parametrized by $P^{n}$ . $Y_{t}$ is a divisor of $P(E)$ for all $t\in P^{n}$ and $Y_{t}\otimes Speck(x)$

is isomorphic to $P_{k(x)}^{n-2}$ for the generic point $x$ of of the base space $P^{n}$ of $P(E)$

because of the definition of $Y_{t}$ . On the other hand, we know that a line
bundle of $P(E)$ is expressed as $O_{P(E)}(1)^{\otimes a}\otimes\sigma^{*}O_{P^{n}}(b)$ where $a$ and $b$ are integers
and $\sigma$ is the canonical projection: $P(E)\rightarrow P^{n}$ . Consequently $\{Y_{t}|t\in P^{n}\}$ induces
an $(n+1)$ -dimensional subspace $V$ of $H^{0}(P(E), O_{P(E)}(1)\otimes\sigma^{*}O_{P^{n}}(h))$ for some
integer $h$ . Also we have the following isomorphism: $H^{0}(P(E), O_{P(E)}(1)\otimes\sigma^{*}O_{P^{n}}(h))$

$\cong H^{0}(P^{n}, E(h))$ by virtue of Leray’s spectral sequence. Moreover the assump-
tion on the fiber of $Y_{t}$ at $t\times t$ implies that for every element $s$ in $V$ , supp $s$

is one point, and $\{x\in P^{n}|s(x)=0\}\cap\{x\in P^{n}|s^{\prime}(x)=0\}=\emptyset$ for all pairs $s,$
$s^{\prime}$ of $V$

which are independent over $k$ . By Proposition 5, we have an exact sequence
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$O_{P^{n}}^{\oplus(n+1)}\rightarrow E(h)\rightarrow 0$ , which implies that there is a morphism $f:P^{n}\rightarrow Gr(n, n-1)$

such that the exact sequence $\mathcal{O}_{P^{n}}^{\oplus(n+1)}\rightarrow E(h)\rightarrow 0$ is isomorphic to the pull back of
$O_{Gr(n.n-1)}^{\oplus(n+1)}\rightarrow Q(n, n-1)\rightarrow 0$ by $f$ (Remark 1.2). Since $Gr(n, n-1)=P^{n}$ , we see that
$Q(n, n-1)\cong T_{P^{n}}(-1)$ . Thus we have $E(h)=f^{*}T_{P^{n}}(-1)$ . We know that, for
every section $\overline{s}$ of $H^{0}(P^{n}, T_{P^{n}}(-1))$ , the scheme defined by $\overline{s}=0$ is isomorphic
to Spec $k(x)$ which is the subscheme of $P^{n}$ for some point $x\in P^{n}$ (Remark 2.3).

On the other hand, for every section $\overline{s}$ of $H^{0}(P^{n}, T_{pn}(-1)),$ $f^{*}\overline{s}\in V$ and
$suppf^{*}\overline{s}$ is one point. Since $f$ is a proper morphism and since every fiber of
$f$ consists of one point, $f$ is a finite birational morphism, if the characteristic
of $k$ is zero. By Zariski’s Mains Theorem, $f$ is an isomorphism, that is, $ E(h)\cong$

$T_{pn}(-1)$ . We know that $T_{P^{n}}(-1)|_{l}\cong O_{P^{1}}(1)\oplus \mathcal{O}_{P^{1}}^{\oplus(n-1)}$ for all lines $l$ in $P^{n}$ . Hence
$h=1$ and we get the required result that $E\cong T_{pn}(-2)$ .

REMARK 2.2. When the characteristic $p$ of the ground field is positive, let
$f:P_{1}^{n}\rightarrow P_{2}^{n}$ be the Frobenius map [2] with $P_{1}^{n}=P_{2}^{n}=P^{n}$ . For any line $l_{2}$ in $P_{2}^{n}$ ,
$f^{-1}(l_{2})_{red}$ is a line of $P_{1}^{n}$ where $f^{-1}(l_{2})_{red}$ is the reduced scheme of $f^{-1}(l_{2})$ . On
the other hand any line $l_{1}$ in $P_{1}^{n}$ is the reduced scheme of $f^{-1}(l_{2})$ for some line
$l_{2}$ in $P_{2}^{n}$ . Therefore, $f^{*}T_{P^{n}}(-1)$ is a uniform vector bundle where $f^{*}T_{pn}(-1)|_{l}$

for any line 1 in $P_{1}^{n}$ is $o_{P^{1}}(p)\oplus \mathcal{O}_{P^{1}}^{\oplus(n-1)}$ . It is easy to show that $f^{*}T_{P^{n}}(-1)$ is
an indecomposable vector bundle.

REMARK 2.3. We will see easily that in the following canonical exact
sequence;

$f$

$0\rightarrow \mathcal{O}_{P^{n}}(-1)\rightarrow\bigoplus_{i=0}^{n}O_{pn}e_{i}\rightarrow T_{P^{n}}(-1)\rightarrow 0$ ,

$f\otimes O_{P^{n}}(1)$ is given by $1\vdash\rightarrow X_{i}e_{i}$ where $X_{0},$ $\cdots$ , $X_{n}$ is a homogeneous coordinate
system of $P^{n}$ . From the above exact sequence, we have an isomorphism:

$\bigoplus_{i=0}^{n}ke_{i}\cong H^{0}(P^{n}, T_{P^{n}}(-1))$ . Hence, for a non-zero section $s=\sum_{i=0}^{n}a_{i}e_{i}$ of $T_{P^{n}}(-1)$ ,

the closed subscheme defined by $s=0$ is defined by the set of equations
$X_{i}a_{j}-X_{j}a_{i}$ $(i=0, \cdots , n;j=0, \cdots , n)$ . This implies the closed subscheme is
Spec $k(x)$ , where $x=(a_{0}$ ; $\ldots$ : $a_{n})$ .
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