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Introduction.

In this paper we shall prove that some Galois modules of a local field are
cohomologically trivial, and as an application of this result we shall give another
proof of $\check{S}afarevi\check{c}$-Marshall’s theorem(1) (see below). This is a generalization
of [7], \S 8.

Now we formulate our result as follows.
Let $k$ be a complete field of characteristic $0$ under a discrete valuation

with perfect residue field $\overline{k}$ of characteristic $P\neq 0$ and with absolute ramifica-
tion order $e_{k},$

$i$ . $e.,$ $e_{k}=ord_{k}(p)$ , where $ord_{k}$ is the normalized additive valuation
of $k$ . Let $\mathcal{F}_{k}(p)$ be the set of all finite Galois extensions of $k$ of $P$-power
degree contained in the fixed algebraic closure of $k$ and let $k_{p}$ be the maximal
$p$-extension of $k,$ $i$ . $e.$ , the composite field of all fields belonging to $\mathcal{F}_{k}(p)$ . Fix
a generator $\sigma$ of the Galois group $G(k_{p}(\zeta)/k_{p})$ , where $\zeta$ is a primitive p-th root
\langle ) $f$ unity, and let $\eta$ be the unique element of $Z_{p}^{\times}$ such that $\zeta^{\sigma}=\zeta^{\eta}$ and $\eta^{N}=1$ ,
where $N=[k(\zeta):k]$ . The group ring $Z_{p}[G(k_{p}(\zeta)/k_{p})]$ operates on $U_{K(\zeta)}^{(1)}$ for
any $K\in \mathcal{F}_{k}(p)$ , hence on $U_{k_{p}(\zeta)}^{(1)}=\lim_{\rightarrow}U_{K(\zeta)}^{(1)}$ (the inductive limit is taken over all
$K\in \mathcal{F}_{k}(p))$ in the natural way (for the definition of $U_{k(\zeta)}^{(1)}$ , see Notations).

DEFINITION. For each $K\in \mathcal{F}_{k}(p)$ , put

$A(K)=\{x\in U_{K(\zeta)}^{(1)}|x^{\sigma-\eta}=1\}$

and
$A(k_{p})=\{x\in U_{kp^{(}O}^{O)}|x^{\sigma-\eta}=1\}$ .

Identifying $G(K/k)$ and $G(K(\zeta)/k(\zeta)),$ $A(K)$ becomes $G(K/k)$ -module and
$A(k_{p})$ becomes $G(k_{p}/k)$ -module.

Under the above notations and assumptions we have the following:

$*)$ Partly suPported by Fujukai Foundation.
(1) We obtained this independently of Marshall [5]. When I finished to write

the manuscript, I knew in Reviews in Number theory Vol. 5 (edited by W. J. Leveque,
A. M. S., 1974) that Marshall [5] had already obtained this result, and I rewrited this
paper in this form.
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MAIN THEOREM. Let notations and assumpiions be as above. Then the
following two statements (I), (II) are valid:

(I) If $\zeta\not\in k$ , then $H^{1}(G(K/k), A(K))=0$ for any $K\in \mathcal{F}_{k}(p)$ .
(II) Moreover suppose that one of the following conditions (i), (ii) and (iii)

is satisfied:
(i) $e_{k}\not\equiv 0(mod p-1)$ .

(ii) $k_{1}/k$ is unramified of degree $>1$ and $\{x\in\overline{k}_{1}|x^{\sigma}=\eta x\}\subset \mathfrak{p}5_{1}$ , where $k_{1}=k(\zeta)$

and $p(x)=x^{p}-x$ .
(iii) $ k\not\ni\zeta$ and any algebraic extension of $\overline{k}$ of degree $p$ is cyclic. Then

$H^{2}(G(K/k), A(K))=0$ for any $K\in \mathcal{F}_{k}(p)$ .
COROLLARY. Under the condition (i), (ii) or (iii), $G(K/k)$ -module $A(K)$ is

cohomologically trivial for any $K\in \mathcal{F}_{k}(p),$ $i$ . $e.,$ $H^{i}(H, A(K))=0$ for all $i\in Z$ and
all subgroups $H$ of $G(K/k)$ .

Note that the above condition (i) is equivalent to $e(k(\zeta)/k)>1$ , where
$e(k(\zeta)/k)$ is the ramification index of $k(\zeta)/k$ (apply Serre [13], Corollary 2 to
Proposition 6 to the completion of the maximal unramified extension of $k$ ; see
also Lemma 4) and that the condition (iii) implies the condition (ii) if $e_{k}\equiv 0$

$(mod p-1)$ (it is easily veriPed by Lemma 2).
By using the above main theorem, we shall obtain another proof of the

following:
$\check{S}afarevi\check{c}- Marshall’ s$ theorem ([10], [5]). Under the condition (i), (ii) or

(iii) in the main theorem, the Galois group $G_{k}(p)$ of $k_{p}/k$ is a free pro-p-group
of rank $[k:Q_{p}]+\dim_{F_{p}}\overline{k}/\mathfrak{p}\overline{k}$.

Conversely the statement (II) of the main theorem follows from the state-
ment (I) of the main theorem and $\check{S}$ afarevi\v{c}-Marshall’s theorem (see Remark
in \S 4).
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\v{S}afarevi\v{c}-Marshall’s theorem).

Notations

(1) (For a complete field $k$ of characteristic $0$ under a discrete valuation)
$ord_{k}$ : the normalized additive valuation of $k$ . $O_{k}$ : the ring of all integers of
$k$ . $U_{k}$ : the group of all units of $O_{k}$ . $U_{k}^{(i)}=\{u\in U_{k}|ord_{k}(u-1)\geqq i\}$ for $i\geqq 1$ .

$\overline{k}$ : the residue field of $k$ . $e_{k}$ : the absolute ramification order of $k,$ $i$ . $e.$ , $e_{k}=$
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$ord_{k}(p)$ , where $p\neq 0$ is the characteristic of $\overline{k}$ . $\overline{a}$ (for $a\in O_{k}$): the image of $a$

by the canonical homomorphism of $O_{k}$ to $\overline{k}$ .
(2) $Z$ : the ring of all rational integers. $Z_{p}$ : the ring of all $P$ -adic integers.

$Q_{p}$ : the field of $P$ -adic numbers. $F_{p}$ : the finite field of $P$ elements. (For a
commutative ring $R$) $R^{\times}:$ the multiplicative group of all units of R. $G(K/k)$ :
the Galois group of a Galois extension $K$ of $k$ . (For two Pelds $k$ and $K$ such
that $k\subset K$) $[K;k]$ : the dimension of $K$ over $k$ , regarding $K$ as a vector space
over $k$ . (For a subset $S$ of a group $G$) $\langle S\rangle$ : the subgroup of $G$ generated by
S. (For a finite set $S$ ) $\#(S)$ : the number of elements of $S$ .

\S 1. Kummer and Artin-Schreier extensions.

In this section we shall state two lemmas verified easily by the theory of
Kummer and Artin-Schreier extensions.

LEMMA 1. Let $p$ be a Prime number and let $k$ be a field of characteristic
different from $p$ . Let $\zeta$ be a Primitive p-th root of unity and put $k^{\prime}=k(\zeta)$ . Let
$\sigma$ be a generator of G $(k^{\prime}/k)$ . Put $K^{\prime}=k^{\prime}(p\sqrt{x})$ with an $x\in k^{\prime},$ $\not\in(k^{\prime})^{p}$ . Then the
following statements (1) and (2) are valid:

(1) $K^{\prime}/k$ is a Galois extension if and only if $x^{\sigma- m}\in(k^{\prime})^{p}$ with some $m\in Z$

such that $m\not\equiv O(mod p)$ .
(2) $K^{\prime}/k$ is abelian if and only if $x^{\sigma-l}\in(k^{\prime})^{p}$ , where $l\in Z$ is such that

$\zeta^{\sigma}=\zeta^{l}$ .
LEMMA 2. Let $k$ be a field of characteristic $P\neq 0$ and let $k^{\prime}$ be a cyclic

extension of $k$ . Let $\sigma$ be a generator of $G(k^{\prime}/k)$ . Put $\mathfrak{p}(x)=x^{p}-x$. For $x\in k^{\prime}$

such that $x\not\in \mathfrak{p}(k$
‘

$)$ , put $K^{\prime}=k^{\prime}(y)$ where $y^{p}-y=x$ . Then the following statements
(1) and (2) are valid:

(1) $K^{\prime}/k$ is a Galois extension if and only if $(\sigma-m)x\in \mathfrak{p}(k^{\prime})$ with some
$m\in F_{p}^{\times}$ .

(2) $K^{\prime}/k$ is abelian if and only if $(\sigma-1)x\in \mathfrak{p}(k^{\prime})$ .

\S 2. Proof of the main theorem.

In this section we shall give an elementary proof of the main theorem
stated in the introduction.

For the proof of the main theorem we need some lemmas, and for the
proof of these lemmas we use Serre [11], Chap. V, \S 3.

LEMMA 3. Notations and assumptions being as in the introduction, there
exists $\Omega\in Z_{p}[G(k_{p}(\zeta)/k_{p})]$ satisfying the following Properties:

(1) $(U_{K(o}^{(1)})^{9}=A(K)$ for any $K\in \mathcal{F}_{k}(p)$ .
(2) $x^{\rho}=x$ for any $x\in A(k_{p})$ .
(3) $x^{\Omega}=1$ for any $x\in U_{K}^{(1)}$ if $\zeta\not\in k$ .
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PROOF. Put $\Omega=N^{-1}\eta(\sigma^{N-1}+\sigma^{N-2}\eta+\cdots+\sigma\eta^{N-2}+\eta^{N-1})$ . Since $N\in Z_{p^{x}}$ , we
have $\Omega\in Z_{p}[G(k_{p}(\zeta)/k_{p})]$ . Since $\Omega(\sigma-\eta)=0$ , we have $(U_{K(\zeta)}^{(1)})^{\Omega}\subset A(K)$ . Since
$x^{\sigma}=x^{\eta}$ if $x\in A(K)$ , we have $x^{\rho}=x^{N^{-1}\eta\cdot\eta^{N- 1_{N}}}=x$ . If $x\in U_{K}^{(1)}$ and $N\neq 1$ , then
$x^{\Omega}=x^{N^{-1}\eta(1+\eta+\cdots+\eta^{N- 1}})=1$ , since $1+\eta+\cdots+\eta^{N-1}=0$ . $(q. e. d.)$

LEMMA 4 ([7], Lemma 8). Notations and assumptions being as in the begin-
ning of the introduction, the ramification index of $k(\zeta)/k$ is $(P-1)/(e_{k}, P-1)$ .

LEMMA 5. Let $k$ be as in Lemma 4 and assume $\zeta\not\in k$ . Let $\Omega$ be as in
Lemma 3. Let $K/k$ be a fully ramified cyclic extension of $P$ -power degree. Put

$T_{K}=\{x^{\tau- 1}|x\in K(\zeta)^{\times}\}$ and $V_{K}=\{x^{-- 1}|x\in U_{K(\zeta)}^{(1)}\}$ ,

where $\tau$ is a generator of $G(K(\zeta)/k(\zeta))$ . Then $T_{K}^{\rho}\subset V_{K}^{\rho}$ .
PROOF. By Serre [11], Chap. V, \S 7, Lemma 8, $T_{K}/V_{K}$ is a cyclic group

of order $[K:k]$ generated by ( $\Pi\tau-1$ mod $V_{K}$), where $\Pi$ is a prime element of
$K(\zeta)$ . Since $[K(\zeta):K]\not\equiv 0(mod p),$ $T_{K}/V_{K}$ is also generated by ( $\pi_{K}^{\tau-1}$ mod $V_{K}$),

where $\pi_{K}$ is a prime element of $K$. This implies $T_{K}=\langle\pi_{K}^{r-1}\rangle V_{K}$ . Since $\zeta\not\in k$ ,
by (3) of Lemma 3 $\langle\pi_{K}^{\tau-1}\rangle^{9}=1$ . Hence $T\not\in\subset VB$ $(q. e. d.)$

LEMMA 6. Let $k$ be as in Lemma 4 and assume $\zeta\not\in k$ . Let $K/k$ be a cyclic
extension of degree $p$ . Then $H^{1}(G(K/k), A(K))=0$ .

PROOF. By Serre [11], Chap. VIII, \S 4, it is sufficient to prove that if
$z\in A(K)$ satisPes $N_{K(\zeta)/k(\zeta)}(z)=1$ , then $z\in A(K)^{\tau- 1}$ , where $\tau$ is a generator of
$G(K/k)$ . It suffices to prove it in the next two cases (1) and (2):

(1) The case where $K/k$ is unramified. By Hilbert’s theorem 90, there
exists $y\in K(\zeta)^{\times}$ such that $y^{\tau- 1}=z$ . Since $K/k$ is unramified, we can write
$y=y_{0}y_{1}$ with a $y_{0}\in k(\zeta)^{\times}$ and a $y_{1}\in U_{K(\zeta)}$ . Then $z=y_{1}^{\tau-1}$ . Hence $1=(\overline{y}_{1})^{\tau- 1}$ . This
implies that $y_{1}=y_{2}y_{3}$ with a $y_{2}\in U_{k(\zeta)}$ and a $y_{3}\in U_{K(\zeta)}^{(1)}$ . Then $z=y_{3}^{\tau-1}$ . By mak-
ing $\Omega$ operate on $z=y_{3}^{\tau-1}$ and using Lemma 3, $z\in A(K)^{\tau- 1}$ .

(2) The case where $K/k$ is fully ramified. By Hilbert’s theorem 90, $z\in T_{K}$ ,
where $T_{K}$ is as in Lemma 5. By making $\Omega$ operate on $z\in T_{K}$ and by using
Lemmas 3 and 5, we have $z\in V_{R}^{\Omega}$ . By Lemma 3, $V_{K}^{9}=A(K)^{\tau- 1}$ , hence $z\in A(K)^{\tau- 1}$ .

$(q. e. d.)$

LEMMA 7. Assume that one of the conditions (i), (ii) and (iii) in the main
theorem stated in the introduction is satisfied. Let $K/k$ be as in Lemma 6.
Then $H^{2}(G(K/k), A(K))=0$ .

PROOF. By Serre [11], Chap. VIII, \S 4, it is enough to show that
$N_{K(\zeta)/k(\zeta)}(A(K))\supset A(k)$ . If $K/k$ is unramified, then $N_{K(\zeta)/k(\zeta)}(U_{K(\tilde{\zeta})}^{(1)})=U_{k(\zeta)}^{(1)}$ , hence
by making $\Omega$ operate on both members, $N_{K(\zeta)/k(\zeta)}(A(K))=A(k)$ . Now suppose
that $K/k$ is fully ramified and that $K(\zeta)/k(\zeta)$ has the unique ramification
number $t$. By Serre [11], Chap. V, \S 3, Corollary 6 to Proposition 5, $ U_{k(\zeta)}^{(1)}\subset$

$N_{K(\zeta)/k(\zeta)}(U_{K(\zeta)}^{(1)})\cdot U_{k(\zeta)}^{(t)}$ . By making $\Omega$ operate on both members and by using
Lemmas 3 and 8, $A(k)\subset N_{K(\zeta)/k(\zeta)}(A(K))$ . $(q. e. d.)$
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LEMMA 8. Let notations and assumptions be as in Lemma 7. Moreover
suppOse that $K/k$ is fully ramified and let $t$ be the unique ramification number
of $K(\zeta)/k(\zeta)$ . Then $(Ut^{t}b)^{9}\subset N_{K(\zeta)/k(\zeta)}(A(K))$ , where $\Omega$ is as in Lemma 3.

PROOF. (1) The case where the condition (i) is satisfied. Let $M$ be the
maximum unramified extension of $k$ in $k(\zeta)$ and put $s=[k(\zeta):M]$ , then by
Lemma 4, $s>1$ . Let $t^{\prime}$ be the unique ramification number of $K/k$ . By the
transitivity of the Hasse function, $s\psi_{K/k}(n)=\psi_{K(\zeta)/k(\zeta)}(sn)$ for $n\in N$, where $\psi_{K/k}$

is the Hasse function of $K/k$ . This implies $t=st^{\prime}$ . Take $m\in Z$ such that $\sigma^{m}$

generates $G(k(\zeta)/M)$ . Put $\Sigma=(\eta^{m}-1)^{-1}(\sigma^{m}-1)$ , then $\Sigma\in Z_{p}[G(k_{p}(\zeta)/k_{p})]$ , since
$s>1$ . It is clear that $x^{\Sigma}=x$ for all $x\in A(K)$ and that $(U_{M}^{(1)})^{\Sigma}=1$ . Since $U_{k(\zeta)}^{(1)}=$

$U_{M}^{(t^{\prime})}U_{k(\zeta)}^{(t+1)}$ , we have $(U_{k(\zeta)}^{(t)})^{\Omega}=(U_{M}^{(t^{})}U_{k(\zeta)}^{(t+1)})^{9}$ , hence by making $\Sigma$ operate on both
members, $(U_{k(\zeta)}^{(t)})^{\Omega}=(U_{k(\zeta)}^{(t+1)})^{\rho}$ . By Serre [11], Chap. V, \S 3, Corollary 3 to Pro-
position 5, $U_{k(\zeta)}^{(t+1)}\subset N_{K(\zeta)/k(\zeta)}(U_{K(\zeta 1}^{(1)})$ , hence by Lemma 3, $(U_{k(\zeta)}^{(t)})^{\Omega}=(U_{k(\zeta)}^{(t+I)})^{\rho}\subset$

$N_{K(\zeta)/k(\zeta)}(A(K))$ .
(2) The case where the condition (ii) is satisfied. By Serre [11], Chap.

V, \S 3, Corollary 5 to Proposition 5, there exists $x\in K^{\times}$ and $y\in k^{\times}$ such that
$ord_{K}(x)=ord_{k}(y)=t$ and $N_{K(\zeta)/k(\zeta)}(1+\mu x)\equiv 1+(\mu^{p}-\mu)y(mod \pi_{k}^{t+1})$ for any $\mu\in O_{k(\zeta)}$ ,

where $\pi_{k}$ is a prime element of $k$ . Let $u\in(U_{k(\zeta)}^{(t)})^{\rho}$ and write $u\equiv 1+\lambda y(mod \pi_{k}^{t+1})$

with a $\lambda\in O_{k(\zeta)}$ . Then $\overline{\lambda}^{\sigma}=\overline{\eta}\overline{\lambda}$ , hence by using the condition (ii), $(U_{k(\zeta)}^{(t)})^{9}\subset$

$N_{K(\zeta)/k(\zeta)}(U_{K(\zeta)}^{(t)})$ . Making $\Omega$ operate on both members, by Lemma 3 we obtain
the assertion. $(q. e. d.)$

LEMMA 9. Let $k$ be a field of characteristic $p\neq 0$ and let $k^{\prime}$ be a cyclic
extension of $k$ of degree N. SuppOse $N|(P-1)$ . Let $\sigma$ be a generator of $G(k_{p}^{\prime}/k_{p})$

and let $\eta\in F_{p}^{\times}$ be a primitive N-th root of unity, where $k_{p}$ is the maximal p-
extension of $k$ and $k_{p}^{\prime}=k_{p}k^{\prime}$ . For any extension $K$ of $k$ contained in $k_{p},$ Put

$E(K)=\{\lambda\in K^{\prime}|(\sigma-\eta)\lambda=0\}$ ,

where $K^{\prime}=Kk^{\prime}$ . SuPpose $E(k)\subset \mathfrak{p}(k^{\prime})$ , where $\mathfrak{p}(x)=x^{p}-x$ with $x\in K^{\prime}$ . Then
$E(K)\subset \mathfrak{p}(K^{\prime})$ .

PROOF. First we shall show $E(k)\subset \mathfrak{p}(E(k))$ . Put $\overline{\Omega}=\eta\overline{N}^{-1}(\sigma^{N-1}+\sigma^{N-2}\eta+\cdots$

$+\sigma\eta^{N-2}+\eta^{N-1})$ , where N$=Nmod P\in F_{p}$ . $Since\overline{N}\in F_{p}^{\times},$ we have $\overline{\Omega}\in F_{p}[G(k_{p}^{\prime}/k_{p})]$ .
Since $\overline{\Omega}(E(k))=E(k)$ and $\overline{\Omega}(k^{\prime})\subset E(k)$ and since $\mathfrak{p}$ and $\overline{\Omega}$ are commutative, by
making $\overline{\Omega}$ operate on $E(k)\subset \mathfrak{p}(k$

‘
$)$ , we have $E(k)\subset \mathfrak{p}(E(k))$ . It is sufficient to

prove the assertion when $K$ is of finite degree $p^{n}$ over $k$ by induction on $n$ .
First suPpose that $n=1$ . Since $K\subset k_{p}$ and since any maximal proper subgroup
of a $p$ -group is normal, $K/k$ is cyclic, hence $K=k(y)$ with a $y\in K$ such that
$y^{p}-y=x\in k$ . Note that $E(K)$ is a vector space of dimension 1 over $K$ and
that $(E(K))^{p}\subset E(K)$ , since $N|(p-1)$ . Since $E(K)=E(k)+yE(k)+\cdots+y^{p- 1}E(k)$ ,

it is enough to prove that $y^{i}E(k)\subset \mathfrak{p}(K^{\prime})$ for $i=0,1,$ $\cdots$ , $P-1$ . Suppose that
$y^{j}E(k)\subset \mathfrak{p}(K^{\prime})$ for $j=0,1,$ $\cdots$ , $i-1$ , and we shall show that $y^{i}E(k)\subset \mathfrak{p}(K^{\prime})$ . Let
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$\lambda\in E(k)$ , then $\lambda=\mu^{p}-\mu$ with a $\mu\in E(k)$ . Since $(y^{i}\mu)^{p}-(y^{i}\mu)=(x+y)^{i}\mu^{p}-y^{i}\mu=$

$y^{i}(\mu^{p}-\mu)+\sum_{j=0}^{i-1}y^{j}x^{i-j}\left(\begin{array}{l}i\\j\end{array}\right)\mu^{p}$ and since $\sum_{j=0}^{i-1}y^{j}x^{i- j}\left(\begin{array}{l}i\\j\end{array}\right)\mu^{p}\in \mathfrak{p}(K^{\prime})$ by assumption, we
have $y^{t}\lambda\in \mathfrak{p}(K^{\prime})$ , hence $y^{i}E(k)\subset \mathfrak{p}(K^{\prime})$ . Therefore by induction on $i,$ $y^{i}E(k)\subset \mathfrak{p}(K^{\prime})$

for $ 0\leqq$ all $i\leqq P-1$ , hence $E(K)\subset \mathfrak{p}(K^{\prime})$ . Now suppose $n\geqq 2$ . By an elementary
property of $p$ -groups and Galois theory, there exists a sub-extension $M/k$ of
degree $p^{n- 1}$ such that $K/M$ is cyclic. By the induction hypothesis on $n,$ $E(M)$

$\subset \mathfrak{p}(M^{\prime})$ , where $M^{\prime}=Mk^{\prime}$ . Hence by the case $n=1,$ $E(K)\subset \mathfrak{p}(K^{\prime})$ . $(q. e. d.)$

COROLLARY. Let $k$ satisfy the condition (ii) in the main theorem stated in
the introduction. Then for any finite sub-extension $K/k$ of $k_{p}/k,$ $K$ satisfies the
condition (ii) for $K$ in the main theorem.

Now we prove the main theorem stated in the introduction. For its proof,
we use Lemmas 6 and 7, Corollary to Lemma 9 and a theorem of cohomology
theory (cf. Serre [11], Chap. VII, \S 6, Corollary to Proposition 5).

PROOF OF THE MAIN THEOREM. Put $G=G(K/k)$ and $\#(G)=p^{n}$ . We shall
prove the main theorem by induction on $n$ . As is well known, there exists a
normal subgroup $H$ of $G$ of order $p$ , and let $M$ be the fixed subfield of $K$ by
$H$. Then by Corollary to Lemma 9, $M$ satisfies the condition (ii) for $M$ if $k$

satisfies the condition (ii), and it is trivial that $M$ satisfies the condition (i)
for $M$ if $k$ satisfies the condition (i) for $k$ . Hence by Lemmas 6 and 7,
$H^{i}(H, A(K))=0$ for $i=1,2$ . Therefore by a theorem of cohomology theory (cf.
Serre [11], Chap. VII, \S 6, Corollary to Proposition 5), $ H^{t}(G(M/k), A(M))\cong$

$H^{i}(G(K/k), A(K))$ for $i=1$ , 2, hence by using the induction hypothesis,
$H^{i}(G(K/k), A(K))=0$ for $i=1,2$ . By induction on $n$ , we have the assertion.

$(q. e. d.)$

PROOF OF COROLLARY TO THE MAIN THEOREM. It follows from the main
theorem and Tate-Nakayama’s theorem (cf. Serre [11], Chap. IX, \S 5, Theorem 8).

\S 3. Maximal elementary $p$-extensions.

Marshall [5] has obtained the rank of the Galois group of the maximal
elementary $p$ -extension of $k,$ $i$ . $e.$ , of the composite field of all cyclic extensions
of $k$ of degree $p$ , using Serre [13].

In this section we shall give an elementary proof of this result, using
Kummer theory.

THEOREM ([6], Theorem 2). Let $k,$ $p$ and $e_{k}$ be as in the beginning of the
introduction. Assume that $k$ does not contain a Primitive p-th root $\zeta$ of unity.
Put $k^{\prime}=k(\zeta)$ and let $N$ be the ramification index of $k^{\prime}/k$ . Put $e_{0}=ord_{k^{\prime}}(\zeta-1)$

and

$V(e_{k})=\{t\in Z|0\leqq t<\frac{e_{k}p}{p-1}$ , $t\not\equiv O(mod P)$ if $t\neq 0\}$ .
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For any $t\in V(e_{k})$ , put $A_{t}=(\zeta-1)^{p}\pi^{-t}$ , where $\pi$ is a Prime element of $k$ . Then
the following statements (1) and (2) are valid:

(1) Let $k_{1}/k$ be a cyclic extension of degree $p$ . Then there exist $\lambda\in U_{k}$ and
a unique $t\in V(e_{k})$ such that $k_{1}(\zeta)=k^{\prime}(p\sqrt{(1+\lambda A_{t})\delta})$ with some $\delta\in U_{k}^{(e_{0}p-Nt+1)}$ . If
$t\neq 0$ , then $F_{p}^{\times}\overline{\lambda}$ is uniquely determined. If $t=0$ ( $i$ . $e.,$ $k_{1}/k$ is unramified), then
we can take $\delta=0$ and $\overline{\lambda}F_{p}$ is uniquely determined modulo $\mathfrak{p}(\overline{k})$ . $t$ is the unique
ramification number of $k_{1}/k$ .

(2) Let $\lambda\in U_{k}$ and let $t\in V(e_{k})$ . Then there exists a cyclic extension $k_{1}/k$

of degree $P$ such that $k_{1}(\zeta)=k^{\prime}(p\sqrt{(1+\lambda A_{t})\delta})$ with some $\delta\in U_{k}^{(e_{0}p-Nt+1)}$ . The ex-
tension $k_{1}/k$ has the unique ramification number $t$ .

PROOF. It is easily verified by Lemma 1, Lemmas 2 and 9 of [7].

REMARK. (1) When $e_{k}=1$ ( $i$ . $e.,$ $p$ is a prime element of $k$), the above
Theorem follows from Ihara [3], Theorems 2 and 3 (see also [7], Proposition 8).

(2) In the case where $\zeta\in k$ and $\overline{k}$ is perfect, see Hecke [2]. For the case
where $\zeta\in k$ and $\overline{k}$ is imperfect, see Epp [1], Proposition (1.4) and [6], Pro-
position 5.

(3) For the case where $\zeta\not\in k$ and $\overline{k}$ is imperfect, see [6], Theorem 2.
COROLLARY (Marshall [5]). Let notations and assumptions be as in Theo-

rem. Let $k(P)$ be the composite field of all cyclic extensions of $k$ of degree $p$ .
Put $G=G(k(P)/k)$ and regard $G$ as a vector space over $F_{p}$ in the natural way.
Then $\dim_{Fp}G=[k:Q_{p}]+\dim_{F_{p}}\overline{k}/\mathfrak{p}(\overline{k})$ , where $\mathfrak{p}(x)=x^{p}-x$ .

PROOF. Let $S=\{\lambda_{i}\}_{i\in I}$ be the subset of $U_{k}$ such that $\{\overline{\lambda}_{i}\}_{i\in I}$ is a basis of
$\overline{k}$ over $F_{p}$ . Let $T=\{\mu_{j}\}_{j\in J}$ be the subset of $U_{k}$ such that $\{\overline{\mu}_{j}$ mod $\mathfrak{p}(\overline{k})\}_{j\in J}$ is
a basis of $\overline{k}/\mathfrak{p}(\overline{k})$ over $F_{p}$ . By (2) of Theorem, there exists a fully ramified
cyclic extension $k_{t,\lambda_{i}}$ of $k$ of degree $p$ such that $k_{t,\lambda_{i}}(\zeta)=k^{\prime}(p\sqrt{1+\lambda_{i}A_{t}+})$ for
each $\lambda_{i}\in S$ and each $t\in V(e_{k})$ such that $t\neq 0$ , and there exists an unramified
cyclic extension $k_{\mu i}$ of $k$ of degree $p$ such that $k_{\mu_{i}}(\zeta)=k^{\prime}(p\sqrt{1+\mu_{i}A_{0}})$ for each
$\mu_{j}\in T$ . Let $L$ be the composite field of all $k_{t,\lambda_{i}}$ and all $k_{\mu i}$ for $t(\neq 0)\in V(e_{k})$ ,
$\lambda_{i}\in S$ and $\mu_{j}\in T$ . Note that $ord_{k^{\prime}}(x^{p}-1)=mP$ or $ord_{k^{\prime}}(x^{p}-1)\geqq e_{0}p$ according as
$1\leqq m<e_{0}$ or $m\geqq e_{0}$ , where $x\in U\S^{1}$) and $m=ord_{k^{\prime}}(x-1)$ . Since $t\not\equiv O(mod P)$ , from
this fact and (1) of Theorem, it follows easily that any cyclic extension $k_{1}$ of
$k$ of degree $p$ such that $k_{1}(\zeta)=k^{\prime}(p\sqrt{y})$ with $y\in U_{k^{\prime}}^{(1)}$ and $ord_{k^{\prime}}(y-1)>e_{0}p-Nt$

has the ramification number $t^{\prime}<t$ . From this, using (1) of Theorem and induc-
tion on $t$ , we have $k(p)=L$ . By Theorem and the definition of $S$ and $T$ ,
$\dim_{Fp}G(L/k)=e_{k}[\overline{k}:F_{p}]+\dim_{Fp}\overline{k}/\mathfrak{p}(\overline{k})=[\overline{k};Q_{p}]+\dim_{p_{p}}\overline{k}/\mathfrak{p}(\overline{k})$ . $(q. e. d.)$
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\S 4. Application of the main theorem (Another proof of
\v{S}afarevi\v{c}-MarshalPs theorem).

In this section we shall give another proof of \v{S}afarevi\v{c}-Marshall’s theorem
quoted in the introduction. We use the similar method as in the case where
$k$ is of characteristic $P\neq 0$ (cf. Serre [12], Chap. II, \S 2, Proposition 3). For
this purpose, we need the following:

LEMMA 10. Let $A(k_{p})$ be as in the introduction and let $f$ be the endomor-
phism of $A(k_{p})$ defined by $f(x)=x^{p}$ . Then $f$ is surjective.

PROOF. Let $x\in A(k_{p})$ . Now suppose that $x\not\in(k_{p}(\zeta))^{p}$ , then by the defini-
tion of $A(k_{p})$ and Lemma 1, $k_{p}(\zeta)(p\sqrt{x})$ is a cyclic extension of $k_{p}$ of degree
$p\cdot[k(\zeta):k]$ . Hence by Galois theory, there exists a cyclic extension $K$ of $k_{p}$

of degree $p$ such that $K(\zeta)=k_{p}(\zeta)(p\sqrt{x})$ . But this contradicts the maximality
of $k_{p}$ , hence $x\in(k_{p}(\zeta))^{p}$ . Since $x\in U_{kp^{(\zeta)}}^{(\downarrow)}$ , we have $x\in(U_{kp^{(\zeta)}}^{(1)})^{p}$ , hence by mak-
ing $\Omega$ operate on both members and using Lemma 3, we have $x\in(A(k_{p}))^{p}$ .

$(q. e. d.)$

ANOTHER PROOF OF $\check{S}AFAREVI\check{C}$ -MARSHALL $S$ THEOREM. Let $W$ be the sub-
group of $k(\zeta)^{x}$ generated by $\zeta$ . By Lemma 10, the sequence

$1\rightarrow W\rightarrow^{\iota}A(k_{p})\rightarrow^{f}A(k_{p})\rightarrow 1$

is exact, where $\iota$ is the natural injection of $W$ into $A(k_{p})$ and $f$ is as in Lemma
10. Then we obtain the exact sequence

$H^{1}(G_{k}(p), A(k_{p}))\rightarrow H^{2}(G_{k}(p), W)\rightarrow H^{2}(G_{k}(p), A(k_{p}))$ .

By the main theorem stated in the introduction,

$H^{t}(G_{k}(p), A(k_{p}))=0$ for $i=1,2$ .

Therefore $H^{2}(G_{k}(p), W)=0$ . By Serre [12], Chap. I, \S 4, Proposition 21 and
Corollary 2 to Proposition 24, $G_{k}(p)$ is a free pro-P-group. By Corollary to
Theorem 1, $G_{k}(p)$ is of rank $[k:Q_{p}]+\dim_{F_{p}}\overline{k}/\mathfrak{p}(\overline{k})$ . $(q. e. d.)$

REMARK. Conversely the statement (II) of the main theorem follows from
the statement (I) of the main theorem and $\check{S}afarevi\check{c}- Marshall’ s$ theorem quoted
in the introduction. It is shown as follows. From the exact sequence stated in
the above proof, we obtain the exact sequence: $H^{2}(G_{k}(p), W)\rightarrow H^{2}(G_{k}(p), A(k_{p}))$

$\rightarrow H^{3}(G_{k}(p), W)$ . By $\check{S}afarevi\check{c}- Marshall’ s$ theorem, $G_{k}(p)$ is a free pro-p-group,
hence $H^{i}(G_{k}(p), W)=0$ for any $i\geqq 2$ . Hence $H^{2}(G_{k}(p), A(k_{p}))=0$ . Put $H=$

$G(k_{p}/K)$ . By the statement (I) of the main theorem, $H^{1}(H, A(k_{p}))=0$ . Hence
by the general theory of cohomology groups,
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$Inf:H^{2}(G(K/k), A(K))\rightarrow H^{2}(G_{k}(p), A(k_{p}))$

is injective. Therefore $H^{2}(G(K/k), A(K))=0$ .
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