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Introduction.

Let P,(C) be a complex projective space of complex dimension n (=2)
with the metric of constant holomorphic sectional curvature. We proved in
[3] that if M is a connected complete real hypersurface in P,(C) with two
constant principal curvatures then M is a geodesic hypersphere. The purpose
of this paper is to determine all real hypersurfaces in P,(C) (n=3) with three
constant principal curvatures.

To state our result we begin with examples of real hypersurfaces in P,(C)
with three constant principal curvatures. Let C™' be the space of (n-+1)-
tuples of complex numbers (z,, -, Z,4,), and = be the canonical projection of
C"*'—{0} onto P,(C). For an integer m 2<m=<n—1) and a positive number
s we denote by M’'(2n, m, s) a real hypersurface in C**' defined by

m n+1
‘Elzjlz":s,z ,Zjlzv (Zl, "'yzn+l)$0-
J=1 J=m+1

For a number ¢ (0<¢<1) we denote by M’(2n,t) a real hypersurface in C"**
defined by

n+1 2 n+1 e
]jglz'%l :t(]gl‘Z]') ’ (21, "';Zn+1)¢0-

It will be shown that M@2n—1, m, s)==a(M’'(2n, m, s)) (n=3) and M(2n—1,1)
=n(M'(2n, t)) (n=2) are connected compact real hypersurfaces in P,(C) with
three constant principal curvatures.

MAIN THEOREM. If M is a connected complete real hypersurface in P,(C)
(n=3) with three constant principal curvatures, then M is congruent to some
M@2n—1, m,s) or to some M(2n—1, t), i.e., there exists an isometry g of P,(C)
such that g(M)= MQ2n—1, m, s) or g(M)= MQ2n—1, ?).

In §1 we shall study general properties of a real hypersurface M in P,(C)
with constant principal curvatures. In § 3, on the assumption that M has three
constant principal curvatures, we shall give equations which the almost contact
structure of M must satisfy, which are summed up as
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§1. Preliminaries.

Hereafter let P,(C) (n=2) be a complex projective space with the metric
of constant holomorphic sectional curvature 4c and M be a real hypersurface
in P,(C) with the induced metric. First we shall establish the structure equa-
tions of M (for details, cf.[2]). We denote by F(M) the bundle of orthonormal
frames of M. An element of F(M) can be expressed as u=(p: e, -+, €p,-1),
where p is a point of M and ¢, -+, ¢;,-; is an ordered base of the tangent
space T,(M) of M at p. Hereafter let the indices i, j, £, [ run through from 1
to 2n—1 unless otherwise stated. We denote by @;, 0;; and ©;; the canonical
1-forms, the connection forms and curvature forms on F(M) respectively.
Then they satisfy

{1.1) dbd;=—20,;N\0;, 0;;+60,;,=0,
J
(12) dﬁwz——gﬁlk/\ﬁk,%—@”

Let J be the natural complex structure of P,(C). For each u=(p: e, -
2,,-1) € F(M) there exists a unique vector ¢ normal to M such that {e, -,
€5,-1, ¢} is an orthonormal frame of P,(C) at p compatible with the orientation
determined by f Let (Ji;, fr) be the almost contact structure of M, i.e,
Je)=3,T;e;+fie. Then (Jy, f) satisfies

’

(1-3) Z;]ikjkj:fifj_aij, ;fj.]jizoy
Eifi: , ]1]‘{‘]]1:0

Let ¢; be 1-forms on F(M) such that X;¢;0; is the second fundamental
form of M for e. Then the parallelism of J implies

(1.4) dJi;= Zk)(]ikﬁkj—]nﬂu)—“fi¢f+fj¢i ,
dfi= zj:(fjaji‘]jigsj) .
The equation of Gauss is given by

(L5) O =0 Np;+ct; N0 ;+c kzl(fiksz+fijsz)5k/\61 .

The equation of Codazzi is given by

(1.6) d¢i:—zj)¢j/\l9ji+6 %(fjfik+fifjk)0jA0k-
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§2. Formulas.

In this section we assume that all principal curvatures xj, -*+, Xss-1 (nOt
necessarily distinct) of M for e are constant. We define a subbundle F’ of
F(M) by

Fr={ueF(M); ¢;=x,0, at u}

and restrict all differential forms under consideration to F’. Take the exterior
derivative of ¢, =x;0;. Then, using (1.1) and [1.6), we have

; {(xi_xj>6ij—czk:(fi]jk+fjjik>0k} /\‘91:0 .

From this and Cartan’s lemma, we have

2.1 (=201 = ¢ S(Aijutfidjat FiJin)0n

where A;jp=A;;s= Ay In particular,

(2.2) Aipp=—fiJp—FiJor it xi=2x;,

(2.3) fiJip=0 if x;=x;=2x,.

In fact, from (2.2) we have

(2.4) 0=Aijn—Au;=eJi;—iTJa—2fi i i xi=x;=2x,.

Put k=1 in [2.4) to get f;J:;;=0. Hence multiply by fi to get fiJ;x=0.
In order to obtain a further formula let us take the exterior derivative of

for x;#+ x;. Then, using (1.1), (1.2), (1.4), [1.5), and the identity
(xi—xj)}kjﬁik/\ﬁkj:;(xi——xk)ﬁik/\ﬁkﬂ— gﬁik/\(xk—xj)ﬁkj,
we have
(2.5) c%}dAijk/\ﬁk—cg(A“kﬁkl—kAiklﬁk,--l—Ajklﬁki)/\ﬁl
“Ctle(jli]jk+]lj]ik)ﬂl/\0k
+cZk](xifjfkﬁi-{—xjfifkﬁj)/\Bk—(xi——xj)(c—l—xixj)ﬁi/\ﬁj
—c(x—xy) g (Jird 5+ Ji3 )0 NO =0

We want to pick out all coefficients of §,Af; in [25). To do this we need to
know the coefficients of 6;A8; in the following sum:
S:dAiji/\ﬁi"i‘dAijj/\gj
—;(Aijkaki"i"Aikiﬁkj_i_Ajkioki)/\&i

_g:(Aijkakj+Aikjﬁkj+Ajkj0ki)Aaj .
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However, from (1.4) and (2.2), we have
dAij N0+ dAiji N0y = =22 (fr)ssO0ntFiislrs—Fi] 5102:) N O
—2z:_}(fk]jiﬁkrl“fj]jkﬁki—fjfikakj)/\01’
+2]ijzk}xk]ki0k/\0i+2]ﬁzk)xk]kjﬁk/\ﬂi

+2(x: /5 —x,/DOND; .

Consider all terms in S involving 6,; with x,=x; and 8,; with x,=x;. Then
it can be easily checked that the sum of such terms vanishes, and so by (2.2)
we can find all coefficients of ;A8; in S.

Then from we have

(2.6) zczx’%” (Agjat St tfides)

% Xp—X;

——ZCZII%Ij (AijetSadist i)

k xk_xj

—6c(x;—x;) J3;+3c(x: f3 —x; /D —(x—x,)(c+x:x;)=0

if Xi:,éxj'.

§3. Lemmas.

Hereafter we assume that dim M =2n—1=5 and that M has three constant
principal curvatures x, ¥, and z. Let m(x), m(y) and m(z) be the multiplicities
of x, ¥y and z respectively (so m(x)+m(y)+m(z)=2n—1). We shall make use
of the following convention on the range of indices:

1=aq, b, c=m(x), mx)+1=r, s, t=m(x)+m(y),
m(x)+m(»N+1=u, v, w<2n—1.
We define a subbundle F” of F’ by
Fr={ueF’; ¢,=x04, ¢,=20,, ¢p,=20, at u},

and restrict all differential forms under consideration to F”. For simplicity we
shall promise that “f,=0" means “ f,=0 for all a on a nonempty open set
of F7” and “f,+0” means “ f,+0 for some a on a nonempty open set of
F7” etc.

LEMMA 3.1. If fofsfu#0 then

fa;fr.lrb—fb;fr]razoy fr%fu]us‘fs%fufurzo
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and fu%fa]av_fv za)fa]au:()-

ProoOF. From (2.3) we have J,3=/s=/Juw=0. By the symmetry of x, y
and z it suffices to prove the first equation. From (1.3) we have

a,zrfa]ar(frfb) :a%ufa]ar(]ru]ub)
:(l;ufa(.[ar]ru)]ub - ;f% ;fu.]ub - %)fg. ;fr.]br .

Square above equation and sum over b to get
(az;: fafr]ar)zgfg: (;f%)z;(;fr.fbr)z ’

which implies

aé)b(fa;fr]rb_fb;frjra)zzO- Q.E.D.

LEMMA 3.2. fo=0 or f,=0 or f,=0.
PROOF. Suppose that f, #0, f/,+0 and f,#0. If we take the exterior
derivative of J,, =0, then, using (1.3), (1.4), and (2.2), we have

3.1) 2600 =2) Z(faSou=ToJou) Jue
—(z—x)(x*—yx+2¢)(fa0pc—f2020) =0,
(3.2) 2(y=2) 2 faor—FoJar)Jre
—(x=)(x*—2z2x+2¢)(fa0bc—30ac) =0
Similarly dJ,s=0 and dJ,,=0 give
(3.3) 2ez=2) S (fr Jsa—IsJra) Jae
—(x=)(¥*—2y+2¢)(f105— f:0) =0,
(3.4) 26(z—=x) 2 (fr Jou=TsJru) Ju
—(y—2)(¥*—xy+2c)(f;00— 130, =0,
(3.5) 2¢(x=3) Z(SuSor—"FoJur) Jru
—(y—2) (2" —xz+2¢)(fubow—fo0uw) =0,
(3.6) 2¢(x=)Z(fuSoa—foJua) Jaw
—(z—x)(2* =2+ 2c)(fudvw—fo0uw) =0.
Put ¢=5 in and and sum over b to get
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3.7 2c(y—z)(;f3.— 2 Jaw) —(z—x)(x®—yx+2c)(m(x)—1)=0,
(3.8) 2¢(y=2)Tfu— 2 Jor)—(x—y)(x*—2zx+2¢)(m(x)—1)=0

Since Eu,bfb]au]ub Er,ufrjau]u'r fa, E'rfg' etc. Slmllarly fI'OlTl (33)_(36) we
have

3.9) 2e(z—2)Zfum 2 Ja) = (x=2)(¥* =2y + 2¢)(m(y)—1)=0

(3.10) 2e(z—aNZfi— 2 Jr)—(y—2) (¥ —xy+2e)(m(y)—1)=0,
@11 2e(x—NZfem 2 Jh)—(y—z)(z*—xz+2¢)(m(z)—1)=0,
3.12) 2e(x=I)Df 7~ B Jaw)—(z—2)(&* —yz+2c)(m(z)—1)=0.

These equations (3.7)-(3.12) imply that m(x)=m(y)=m(z)=1 or m(x), m(y),
m(z) =2, but the former is not the case.

Now multiply (3.1) (resp. by J.r (resp. J..) and sum over ¢. Then by
we have

(3.13) (x*=yx+2c)(faJor—FoJar) =0,
(3.14) (x*—zx+2¢)(foJou—IfoJar) =0.
Similarly from and [35), we have

(3.15) Y —zy+2c)(frJou—SsJr) =0
(3.16) (2*—xz+2¢)( fuJoa—FoJud) =0

Since x*—yx+2c¢+0 or x*—zx+2c¢+#0, we may assume x*—yx+2c#0. Then
and imply x*—zx+2c=0 and so z*—xz+2c+#0. Hence and
3.16) imply z%—yz+2c=0 and so y*—zy+2c+0. Hence [3.4) and [3.15) imply
y:—xy+2¢=0, which contradicts the previous two equations. Q.E.D.

Owing to [Lemma 3.7, we may set f,=0.

LEMMA 3.3. f,=0 or f,=0.

Proor. If we take the exterior derivative of f,=0, then, using (1.3),
(1.4), and (2.2), we have

(3.17)

Cx ézquaru: ;fs va—l_y) jar fr Zfs]vay

22—

(3.18)

S ZfA (y B Bt ) Tt fu S odea

Cancel Ay from (3.17) and (3.18) to get



Real hypersurfaces in a complex projective space 513

(319 DAL EEEE 5 30 s gyt ax-2y2—c} =0

since 2, fi+32.f2=1. Here we assert X.,f,/..=0. In fact, if 3}, f; Jra#0,
then it follows from and the relation X, 24+, /=1 that 3,f2 is con-
stant. Taking account of the coefficient of 6, in X,f,df,=0, we have
Yx+zx—2yz—c= —3(x—y)(x—z), which contradicts [3.19). Thus our assertion
was proved. Hence

0:(1,;74 frfu(j‘ra]au):rz:f%uz.fa Q.E.D.

Owing to Lemma 3.3, we may set f,=f,=0. Now, from df,=df,=0, we
find

(3.20) (xt—zx—¢) Jup=0,

(3.21) ¢ 2 fullara= —(c+2y—29) Jur
(3.22) (z°—xz+2¢) Jou=0,

(3.23) (y*—2zy—c) Jrs=0,

(3.24) c quuAaru =—(c+zx—yx)Jpa,
(3.25) (22—yz+2¢) J:a=0.

From (3.21) and 3.24), we have

(3.26) (zx+2zy—2xy+2¢) J..=0.

There are two possibilities as follows.

LEMMA 34. () Jor=Jeu=/ru=0, Jus#0, [s#0: fo=/f,=0, fu#0: both
m(x) and m(y) are even, m(z)=1: x*—zx—c=0, y*—zy—c=0, or () Jor=1
=Jeu=Jru=0, Jor #0: fo=1r=0, fu#0: m(x)=m(y)=2, m(z)=1: 4ctzx+zy
=0, ¢ct+xy=0, in particular, (x*—zx—c)(¥*—zy—c)=*0.

PrOOF. First let x?>—zx—c¢=0. Then and imply Jor = Jau=0.
Taking account of the coefficient of 6, in dJ,,=0 we have 3, uoAsru=0.
This shows Ag,,=0 since D¢ ocSoc =04, Put i=a and j=7 (resp. t=r and
j=1u) in to get ¢c+xy=0 (resp. J,»=0). Hence y*—zy—c=0. Moreover
put i=a and j=u in[2.6) Then, using x*—zx—c=0, we have m(z)=1. Since
the rank of J is equal to 2n—2, both matrices (J,,) and (J,;) have maximal
rank and so both m(x) and m(y) are even.

Next let x*—zx—c=#0. Then implies J,,=0. We assert zx+zy
—2xy+2¢=0. In fact, if not so, then implies J,,=0 and so J,,#0.
Hence implies z®*—xz+2c=0. Since was led on the assumption
that J,,=0, it remains valid for our situation and implies (fyJor—foJur) Jru=0.
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Multiply this equation by f, and sum over v to get J,,=0. Then [3.23) implies
y2—zy—c=0 since J,;#0. On the other hand, taking account of the coefficient
of 6, in dJ,,=0, we have A, ,=0. Puti=aandj=r in to get c+xy=0,
which contradicts the previous two equations. Thus our assertion was proved.
Now since (z?—xz+2¢)(z®—yz+2¢)+0, and imply Jou=Jru=0.
Taking account of the coefficient of ¢, in dJ,; =0, we have

(327) Z]rsAasu:O .
Moreover dJ,,=0 gives
(328) Czs)jas(Absu_I-fu[?b)"}_x(y_z)fuaab:0 .

Multiply by J.. and sum over a. Then, using (3.27), we have
(3.29) cAgru=(ctx2—2Y)fuJar -

Put i=a and j=v7 in [2.6). Then, using zx+zy—2xy-+2c=0 and [3.29), we have
c+xy=0. Put i=a and j=u in and sum over u. Then, using y=—c/x
and z=—4cx/(x®*—c), we have m(z)=1. Put i=r and j=u in [2.6). Then,
using 2o S2a+ /%=1, we have J,,=0. Since the rank of J is equal to 2n—2,
we see m(x)=m(y). The last equation is trivial. Q.E.D.

REMARK. We used the assumption dim M =5 only to obtain
If M is a 3-dimensional real hypersurface in P,(C) with three constant principal
curvatures then we have J,=c¢f;, Jiu=¢f, and J,s=c¢f; for e=-+1. The author
could not clarify whether on such a hypersurface f,f,f; #0 or not.

§4. A proof of Main Theorem.

Let S™1/r?) denote the hypersphere in a Euclidean (m+1)-space R™ of
radius 7 centered at the origin. We naturally identify C"*' with R*"** with a
complex structure I. In the following we shall consider a hypersurface M’'=
7 (M)NS**(c) in S*™*(c). Let {e;, -, €sn-1, ¢} be an orthonormal frame of
P,(C) at p= M compatible with the orientation determined by f such that
(p:ey, , ey, ) F(M) as in §1 and let 8,, -+, 6,,-, be the coframe dual to

ey, , ey Let {é,, -, &, 4, €}, ¢’} be an orthonormal frame of S**!(¢) at
p’e M’ such that znye,=e;, m4e;, =0 and 7n«e’=e and let 6], ---, 05, be the
coframe dual to ¢, ---, ¢5,. Then the following Lemma is well-known (cf., e. g.,
p. 45).

LEMMA 4.1. If the second fundamental form of M for e is given by
>,;H:;0.0; then that of M’ for ¢’ is given by 3, ;H,;0n00;—2+/c 3 f,0 700},

REMARK. holds without the assumption that all principal cur-
vatures of M are constant.
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It follows from [Lemma 3.4 and Lemma 4.1 that for case (I) M’ has two
constant principal curvatures x and y for ¢ with multiplicities m(x)+1 and
m(y)+1 respectively, and for case (II) M’ has four constant principal cur-
vatures x, ¥, z, and z, for ¢/ with multiplicities m(x), m(v), 1 and 1 respectively,
where zi—zz;,—c=0 (1=1, 2).

By we can choose an orthonormal frame {e], ---, €1, €jn, €'} Of
S?"*+1(¢) under consideration so that ej,_,= I(¢"), e}, = I(p’) and (Dp:e,, -+, €sp_1)
e F”.

Case (I). By a theorem of E. Cartan [1, p. 180] there are two R-linear
subspaces R,= R™®*? and R,=R™¥** of R**** such that

R™**=R,DSR, (orthogonal direct sum)
and
M/ — Sm(w)+1(x2+c>><Sm(‘_l/)+1(y2+c) .

Thus the eigenspace for the principal curvature x (resp. ¥) in 7,.(M’) coincides
with Tpy(S™®* (x°+c)) (resp. Tpy (S™P*Y(¥*+c¢))), where p'=p'(x)+p'(¥),
pP(x)eR,, p(y)eR,. We want to show that I makes R, (so also R,) invari-
ant. By we see that / makes the subspace of R, spanned by e,
invariant. Hence it suffices to show that I(p’(x)) is in a direction of principal
curvature x. The vector ¢’ normal to M’ can be written as

e’ =cot §p’'(x)—tan 6p'(y)

for a number @ such that sin 20 =x?+c. Then we have x=—+/ccotd and
y=—+/ctanf. It follows from that a vector cos 6I(e/)+sin 0I(p")
is in a direction of principal curvature x, which is equal to sin™'@I(p’(x)).
Now since both R, and R, are C-linear subspaces of C"*', there is a unitary
transformation g’ of C™*! such that g/(M")= M'(2n, m(x)/2+1, tan®@). Then g’
induces an isometry g of P,(C) such that g(M)= M'(2n—1, m(x)/2+1, tan®d).
This completes the half of Main Theorem.

Case (II). We know already the following

(1) A space M'(2n, t)NS**!(c) is a connected compact hypersurface in
S+l having 4 constant principal curvatures with multiplicities n—1, n—1, 1
and 1, and it admits a transitive group of isometries isomorphic to SO(2)X
SO(n+1) ([(4D.

(2) A space M(2n—1,t) is a connected compact real hypersurface in P,(C)
having 3 constant principal curvatures with multiplicities n—1, n—1 and 1 ([[3])).

(3) There exist an element A’ of O(2rn-+2) and a number ?, such that
W (M= M(2n, t,) ([4D).

It follows from (1) and (3) that the almost contact structure of M(2n—1, ¢,)
satisfies (II) of and M(2n—1, ¢,) has 3 constant principal curvatures
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x, ¥ and z with multiplicities n—1, n—1 and 1 respectively. Since A} preserves
directions of principal curvatures z; and z,, we find AL(I(p"))= +I(h'(p")) and

Y(I(e))= = I(h(e")) for each p’ = M’. This means that 4’ induces an isometry
h” of M onto M(2n—1,t,), and that the dual mapping of A} sends the second
fundamental form of M(2n—1, ¢,) for w«hie’ to that of M for e. Hence by Theo-
rem 3.2 in[2] there exists an isometry 4 of P,(C) such that A(M)= M(2n—1, t,).
This completes the proof of Main Theorem.
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