
J. Math. Soc. Japan
Vol. 27, No. 2, 1975

On mean ergodic theorems for positive operators
in Lebesgue space

By Ryotaro SATO

(Received March 5, 1973)
(Revised Oct. 22, 1974)

\S 1. Introduction.

Let (X, $\mathcal{M},$ $m$ ) be a $\sigma- finite$ measure space and $L_{p}(X)=L_{p}(X, \mathcal{M}, m),$ $1\leqq P$

$\leqq\infty$ , the usual (complex) Banach spaces. Let $T$ be a bounded linear operator
on $L_{1}(X)$ and $\tau$ its linear modulus [2]. In [9] (see also Akcoglu and Sucheston
[1]) the author proved that if the adjoint of $\tau$ has a strictly positive sub-
invariant function in $L_{\infty}(X)$ then the following two conditions are quivalent:

(i) $T^{n}$ converges weakly; (ii) $\frac{1}{n}\sum_{i=1}^{n}T^{k_{i}}$ converges strongly for any strictly

increasing sequence $k_{1},$ $k_{2},$ $\cdots$ of nonnegative integers. In the present paper
we shall prove that if $T$ is positive and satisfies $Tf=f$ whenever $0\leqq f\in L_{1}(X)$

and $Tf\geqq f$, then the equivalence of (i) and (ii) still holds. Applying this result,

we obtain that if, in addition, $\sup_{n}\Vert T^{n}\Vert_{1}<\infty$ and if $T^{n}f$ converges weakly for

any $f\in L_{1}(X)$ with $\int fdm=0$ , then $\frac{1}{n}\sum_{i=1}^{n}T^{k_{i}}f$ converges strongly for any $ f\in$

$L_{1}(X)$ with $\int fdm=0$ and for any strictly increasing sequence $k_{1},$ $k_{2},$ $\cdots$ of

nonnegative integers.

\S 2. Mean ergodic theorems.

In this section we shall assume that $T$ is a Positive linear operator on
$L_{1}(X)$ . $\tau*$ denotes the adjoint of $T$. Thus $\tau*$ acts on $L_{\infty}(X)$ , and $\int(Tf)udm$

$=\int f(T^{*}u)dm$ for all $f\in L_{1}(X)$ and all $u\in L_{\infty}(X)$ . If $A\in \mathcal{M}$ then $1_{A}$ is the

indicator function of $A$ and $L_{p}(A)$ denotes the Banach space of all $L_{p}(X)-$

functions that vanish $a$ . $e$ . on $X-A$ . A set $A\in \mathcal{M}$ is called closed under $T$ if
$f\in L_{1}(A)$ implies $Tf\in L_{1}(A)$ .

The following proposition is stated with more generality than what is
needed for applications in this paper. In particular, it extends a result of Lin
[7, Theorem 1.1] (see also Krengel and Sucheston [5] and Lin [6]).
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PROPOSITION. Let $T$ be a positive linear operator on $L_{1}(X)$ . Assume that
$\sup_{n}\Vert T^{n}\Vert_{1}<\infty$ and that $T$ has no nonzero nonnegative invariant function in
$L_{1}(X)$ . Let $f\in L_{1}(X)$ and suppOse that there exists a subset $J$ of the nonnegative

integers such that $weak-\lim_{\not\in nJ}T^{n}f$ exists and $\lim\inf\frac{1}{n}|\{j\in J:j<n\}|=0$ , where

$|\{j\in J:j<n\}|$ denotes the cardinality of the set $\{j\in]:j<n\}$ . Then we have
$\lim_{n}\Vert T^{n}f\Vert_{1}=0$ .

PROOF. Since the $L_{1}$ of a $\sigma- finite$ measure space is isometric to the $L_{1}$ of
a finite measure space, we may and will assume without loss of generality
that (X, $\mathcal{M},$ $m$ ) is a finite measure space. The Vitali-Hahn-Saks theorem (cf.
[3, Theorem III.7.2]) implies that given an $\epsilon>0$ there exists a $\delta>0$ such that

if $A\in \mathcal{M}$ and $ m(A)<\delta$ then $\int_{A}|T^{n}f|dm<\epsilon$ for all $n\not\in J$. Let $k_{1},$ $k_{2},$ $\cdots$ be a
strictly increasing sequence of positive integers such that

$\lim_{n}\frac{1}{k_{n}}|\{j\in J:j<k_{n}\}|=0$ ,

and let $L$ be any Banach limit (cf. [11]). Define, for $A\in \mathcal{M}$ ,

$\mu(A)=L(\frac{1}{k_{n}}\sum_{t=0}^{k_{n}-1}\int_{A}|T^{i}f|dm)$ .

It is easily checked that $\mu$ is a finite measure on (X, $\mathcal{M}$) and absolutely con-
tinuous with respect to $m$ (cf. [1, p. 239]). Let $g=d\mu/dm$ . Then $0\leqq g\in L_{1}(X)$

and, for any $A\in \mathcal{M}$ ,

$\int_{A}Tgdm=\int g(T^{*}1_{A})dm=L(\frac{1}{k_{n}}\sum_{i=0}^{k_{n}-1}\int|T^{i}f|(T^{*}1_{A})dm)$

$\geqq L(\frac{1}{k_{n}}\sum_{i=1}^{k_{n}}\int(|T^{i}f|)1_{A}dm)$

$=L(\frac{1}{k_{n}}\sum_{i=0}^{k_{n}-1}\int_{A}|T^{i}f|dm)=\int_{A}gdm$ .

Thus $Tg\geqq g$ . Let $h=\lim_{n}T^{n}g$. Since $\sup_{n}\Vert T^{n}\Vert_{1}<\infty$ , we have $\lim_{n}\Vert h-T^{n}g\Vert_{1}$

$=0$ . Hence $Th=h$ , and $h=g=0$ by the nonexistence of nonzero nonnegative
invariant functions. This shows that $\lim_{n}$

$inf\Vert T^{n}f\Vert_{1}=0$ , and hence $\lim_{n}\Vert T^{n}f\Vert_{1}$

$=0$ , since $\sup_{n}\Vert T^{n}\Vert_{1}<\infty$ . The proof is complete.

In what follows we shall assume that $T$ satisfies the following condition:

$(^{*})$ $Tf=f$ whenever $0\leqq f\in L_{1}(X)$ and $Tf\geqq f$ .

It may be easily seen that if $\tau*$ has a strictly positive subinvariant function
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in $L_{\infty}(X)$ , then $T$ satisfies the condition $(^{*})$ . To see that there exists a $T$

which satisfies the condition $(^{*})$ but whose adjoint has no strictly positive
subinvariant function in $L_{\infty}(X)$ , let (X, $\mathcal{M},$ $m$ ) be the space of nonnegative
integers with counting measure and define, as in Fong [4, p. 82], an operator
$T$ on $L_{1}(X)$ by

$Tf(j)=\left\{\begin{array}{ll}\sum_{t=1}f(i) & if j=0,\\f(j+1) & if j\geqq 1.\end{array}\right.$

It follows immediately that $\lim_{n}\Vert T^{n}f\Vert_{1}=0$ for any $f\in L_{1}(X)$ . Therefore if $ 0\leqq$

$f\in L_{1}(X)$ and $Tf\geqq f$, then $f=0$ . Let $0\leqq u\in L_{\infty}(X)$ satisfy $T^{*}u\leqq u$ . Then,
since

$T^{*}u(j)=\left\{\begin{array}{ll}0 & if j=0,\\u(0) & if i=1,\\u(0)+u(j-1) & if i\geqq 2,\end{array}\right.$

we have $u(0)+u(j-1)\leqq u(j)$ for all $j\geqq 2$ . Hence $u(O)=0$ , since $\sup_{j}u(J)<\infty$ .

THEOREM 1. Let $T$ be a positive linear operator on $L_{1}(X)$ which satisfies
the condition $(^{*})$ . Then the following two conditions are equivalent:

(i) If $f\in L_{1}(X)$ then $T^{n}f$ converges weakly;

(ii) If $f\in L_{1}(X)$ then $\frac{1}{n}\sum_{i=1}^{n}T^{k_{i}}f$ converges strongly for any strictly in-

creasing sequence $k_{1},$ $k_{2},$ $\cdots$ of nonnegative integers.
PROOF. If (i) holds, then the uniform boundedness principle (cf. [3, Corol-

lary II.3.21]) implies that $\sup_{n}\Vert T^{n}\Vert_{1}<\infty$ . Hence it follows from Sucheston [10,

Theorems 1 and 2] (see also [8]) that the space $X$ decomposes into two dis-
joint measurable sets, the remaining part $Y$ and the disappearing part $Z$, such
that

(a) $f\in L_{1}(Z)$ implies $Tf\in L_{1}(Z)$ and $\lim_{n}\Vert T^{n}f\Vert_{1}=0$ ;

(b) there exists a nonnegative function $s$ in $L_{\infty}(Y)$ with $s>0a$ . $e$ . on $Y$

and $T^{*}s=s$ .
Since $Z$ is closed under $T$, if we define an operator $U$ on $L_{1}(Y)$ by

$Uf=(Tf)1_{Y}$ for $f\in L_{1}(Y)$ ,

then $U^{n}f=(T^{n}f)1_{Y}$ for all $n\geqq 0$ and all $f\in L_{1}(Y)$ . It follows from the condi-
tion $(^{*})$ that if $0\leqq f\in L_{1}(Y)$ and $Uf=f$, then $Tf=f$. Moreover it follows from
the dePnition of $U$ that $\sup_{n}\Vert U^{n}\Vert_{1}\leqq\sup_{n}\Vert T^{n}\Vert_{1}<\infty$ and that $U^{*}s=T^{*}s=s$ .
Hence we can apply Propositions 1 and 2 in Fong [4] (see also [8]) to $U$ to
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infer that the remaining part $Y$ decomposes into two disjoint measurable sets
$P$ and $N$ such that

(c) there exists an $h\in L_{1}(P)$ with $h>0a$ . $e$ . on $P$ and $Th=h$ ;
(d) $N$ is a union of countably many sets $A_{j}\in \mathcal{M}$ with

$\lim_{n}\frac{1}{n}\sum_{k=0}^{n-1}\int_{A_{j}}T^{k}fdm=0$

for any $0\leqq f\in L_{1}(Y)$ .
Let us write $E=Z\cup N$ and define an operator $V$ on $L_{1}(E)$ by

$Vf=(Tf)1_{E}$ for $f\in L_{1}(E)$ .

Here we note that $P=X-E$ is closed under $T$ . In fact, we have $T^{*}1_{E}=0$

$a$ . $e$ . on $P$, since

$\int h(T^{*}1_{E})dm=\int_{E}$ Th $dm=\int_{E}hdm=0$ .

Therefore if $0\leqq f\in L_{1}(P)$ , then $\int_{E}Tfdm=\int f(T^{*}1_{E})dm=0$ , and hence $ Tf\in$

$L_{1}(P)$ . It follows that $V^{n}f=(T^{n}f)1_{E}$ for all $n\geqq 0$ and all $f\in L_{1}(E)$ . Hence $V$

has no nonzero nonnegative invariant function in $L_{1}(E)$ by (d) and (a), and
$V^{n}f$ converges weakly for any $f\in L_{1}(E)$ . Thus Proposition implies that

$\lim_{n}\int_{E}|T^{n}f|dm=\lim_{n}\int|V^{n}f|dm=0$

for any $f\in L_{1}(E)$ .
Next let $k_{1},$ $k_{2},$ $\cdots$ be any strictly increasing sequence of nonnegative

integers. Since $U^{*}s=s$ and $U^{n}f$ converges weakly for any $f\in L_{1}(Y)$ , it follows
from Sato [9, Theorem 1] that

$\frac{1}{n}\sum_{i=1}^{n}(T^{k_{i}}f)1_{Y}=\frac{1}{n}\sum_{t=1}^{n}U^{k}{}^{t}f$

converges strongly for any $f\in L_{1}(Y)$ .
Let $f\in L_{1}(X)$ and write $f=g+g^{\prime}$ , where $g=f(1_{Z}+1_{P})$ and $g^{\prime}=f(1_{N})$ . Since

$Z$ and $P$ are closed under $T$ , the above arguments show that

$\frac{1}{n}\sum_{i=1}^{n}T^{k_{i}}g$

converges strongly. Thus, to prove (ii), it suffices to show the strong con-
vergence of $\frac{1}{n}\sum_{i=1}^{n}T^{k_{i}}g^{\prime}$ . But this follows easily, since $\lim_{n}\int_{E}|T^{n}g^{\prime}|dm=0$ and
$\perp\sum^{n}(T^{k_{i}}g^{\prime})1_{Y}$ converges strongly.
$ni=1$

Conversely if (ii) holds, then it follows that $sup\Vert T^{n}f\Vert_{1}<\infty$ for any $f\in L_{1}(X)$

(cf. [1, p. 237]). Let $0\leqq f\in L_{1}(X)$ and $A\in \mathcal{M}$ . Write
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$a=\lim_{n}\inf\int_{A}T^{n}fdm$ and $b=\lim\sup_{n}\int_{A}T^{n}fdm$ .

If $a<b$ , then we can choose a strictly increasing sequence $k_{1},$ $k_{2},$ $\cdots$ of non-
negative integers such that

$ a=\lim_{n}\inf\frac{1}{n}\sum_{i=1}^{n}\int_{A}T^{k_{i}}fdm<\lim_{n}\sup$ $\frac{1}{n}\sum_{i=1}^{n}\int_{A}T^{k}{}^{t}fdm=b$

(cf. [1, p. 236]). But this contradicts (ii). Hence it must follow that $a=b$ ,

which shows that $T^{n}f$ converges weakly for any $0\leqq f\in L_{1}(X)$ , and hence for
any $f\in L_{1}(X)$ . This completes the proof.

THEOREM 2. Let $T$ be a positjve linear operatOr on $L_{1}(X)$ which satisfies
the condition $(^{*})$ . SuPpose that $\sup_{n}\Vert T^{n}\Vert_{1}<\infty$ . Then the following two con-
ditions are equivalent;

(i) If $f\in L_{1}(X)$ and $\int fdm=0$ , then $T^{n}f$ converges weakly;

(ii) If $f\in L_{1}(X)$ and $\int fdm=0$ , then $\frac{1}{n}\sum_{i=1}^{n}T^{k_{i}}f$ converges strongly for any

strictly increasing sequence $k_{1},$ $k_{2},$ $\cdots$ of nonnegative integers.

PROOF. Suppose (i) holds. If $T$ has no nonzero nonnegative invariant
function in $L_{1}(X)$ , then (ii) follows from Proposition. If there exists a non-
negative function $h\in L_{1}(X)$ with $Th=h$ and $\Vert h\Vert_{1}>0$ , it follows from Akcoglu
and Sucheston [1, p. 243] that for any $f\in L_{1}(X),$ $T^{n}f$ converges weakly. Hence,
in this case, (ii) follows from Theorem 1.

The proof of $(ii)\Rightarrow(i)$ is similar to that of $(ii)\Rightarrow(i)$ in Theorem 1.
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