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The present paper deals with the Poisson integral representation of eigen-
functions of the laplacian on a real hyperbolic space. Let G be a generalized
Lorentz group SO,(n,1) and G=KAN be an Iwasawa decomposition of G,
where K is a maximal compact subgroup of G. The associated riemannian
symmetric space X=G/K is called a real hyperbolic space. We denote by
4 the laplacian on X corresponding to the G-invariant riemannian metric
induced by the Killing form of the Lie algebra of G. Let M be the centralizer
of Ain K and put B=K/M. Then for every complex number s a real analytic
function Py(z, b) on XX B, called the Poisson kernel, is defined (§2). Let C(B)
denote the space of continuous functions on B. The Poisson transform
P(@p) of ¢ =C(B) is defined by

2(p)e) = Pz b)p(b)db,

where db denotes the normalized K-invariant measure on B. Although the
functions @{(¢$)(¢ = C(B)) are eigenfunctions of 4, they do not exhaust all of
the eigenfunctions of 4 on X. It is our problem to specify the space whose
image under the Poisson transform exhausts the eigenfunctions of 4. The
Corollary to in §5 answers this problem. Namely, it states that
any eigenfunction of the laplacian on X can be represented as the Poisson
transform @,(T) of a Sato’s hyperfunction T on B with some complex num-
ber s. In the case of the unit disc, S. Helgason proved in that any
eigenfunction of the laplacian (with respect to the Poincaré metric) can be
given also as the Poisson transform of a hyperfunction on the unit circle.

The contents of this paper are as follows. From §1 to §3 we assume
that G is a connected real semisimple Lie group of real rank one with finite
center. In §2 we define the Poisson transform of a continuous function on
B and show that any eigenfunction of the laplacian on X can be expanded
in an absolutely convergent series of the Poisson transforms of K-finite
functions on B. In §3 we prove a Fatou type theorem which will be used
in §4.

From §4 to the last we assume furthermore that X is a real hyperbolic
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space. In §4, by using the Fatou type theorem proved in § 3, we determine
the Poisson transform of a K-finite function explicitly. The final section is
devoted to proving the main result. First we define the Poisson transform
of a hyperfunction on B. Then by using the explicit form of the Poisson
transform of a K-finite function we prove that any eigenfunction can be
given as the Poisson transform of a hyperfunction.

The author expresses his hearty thanks to Professor K. Okamoto who
has suggested to attack this problem and encouraged him with kind advices.

§1. Notation and preliminaries.

Throughout this paper we assume that G is a connected real semisimple
Lie group of real rank one with finite center. Let g, be the Lie algebra of
G, g the complexification of g,, =%+, a Cartan decomposition of g, and
a, a maximal abelian subspace of p,. Let a, be a maximal abelian subalgebra
of g, containing a; and put a_=a,N¥. Then q,is a Cartan subalgebra of g,,
a,=a,+a_ (direct sum) and a,=a,"\P,. We complexify ¥, b, 0, a. and a- to
£, b, q, 0, and q, in g respectively. We denote by {,) the Killing form of g.
For 1<a* we denote by 2 the restriction of 1 to ay and let H; denote the
element in a determined by <{H; H)=A(H) for Hea. For A, psa* put
Q, py=<H,;, H,y. We introduce compatible orders in the spaces of real-valued
linear forms on a,+(—1)"%a. and a,. Let P denote the set of positive roots
of (g, a) under this ordering, P, the set of @ = P such that @#0 and 2, the
set of @ with a= P,. Since a, is one-dimensional, we can select g, =2,
such that 2y, is the only other possible element in ;. Put

P,={acsP,| a=u},
Py, ={ae P,| @a=2u},

and let p (resp. ¢) denote the number of roots in P, (resp. P,,). We put

_ 1 =

=g 2

n= 2 g%, Ny=1MNg,
acPy

where g* is the root subspace of g corresponding to a. Let K, A, N denote
the analytic subgroups of G with Lie algebras ¥, a,, 1, respectively. Then
K is a maximal compact subgroup and G=KAN is an Iwasawa decomposi-
tion of G. For x& G, we can define an element H(x) in a, by x< Kexp (H(x))N.
Put X=G/K and B=K/M where M is the centralizer of A in K. We denote
by dk (resp. db) the K-invariant normalized measure on K (resp. B).

We shall use the standard notation N, R, C for the set of natural num-
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bers, the field of real numbers and the field of complex numbers respectively ;
N°® is the set of non-negative integers. If E is a differentiable manifold,
C(E) (resp. C*(E)) denotes the space of all continuous (resp. infinitely differ-
entiable) functions on E.

§2. Poisson transform of a continuous function on B.

In this section, we define the Poisson transform of a continuous function
on B=K/M and study its image.
We identify C with af by
A=—(—1)"*sp, Asa¥, seC.
For each s=C, we define a real analytic function P,z b) on XX B, called
the Poisson kernel, by

P(xK, EM)=exp {—(1+s)p(H(x'k))} .

DEFINITION. For every continuous function ¢ on B, we define a function
P(p) on X, called the Poisson transform of ¢, by

2= Pz bpb)db, z=X,

where db is the normalized K-invariant measure on B.

Let R denote the set of equivalence classes of irreducible unitary repre-
sentations of K and R° denote the subset of those classes which are of class
one with respect to the subgroup M of K. For each y< R, we take and fix
a representative (7, W7)= 7y and choose an orthonormal base {wl, -, wim}
of W7 with respect to the unitary inner product (,) of W7 so that w! is an
M-fixed vector if y<= R°, where d(y) is the dimension of W7. We identify
the functions on B with those on K which are right M-invariant. Let 7 be
the left regular representation of K on C*(K), C*(B) and C*(X), and put

Vi={p=C=(K)| ¢ transforms according to y under =},
ti(k) = (e7(k)wj, wi),
(k) =d(r)"*7i(k) ,
P7(R)=¢h(k),
for ye R, 1 =1, j<d(y). From the Peter-Weyl theory,
{9 1 1=4, j=d(p)}
is an orthonormal base of V7 (y= R) and

{91 reR 1=i, j=d(p)}
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is a complete orthonormal base of L*K). Let W% be the subspace of M-
fixed vectors in W7. B. Kostant showed in [9, Theorem 6] that dim W% =1
when G is of real rank one. Therefore in our case, W¥% is spanned by w}

and
{pilre R, 1=i=d()}

is a complete orthonormal base of L*B).

Let 4 be the laplacian corresponding to the G-invariant riemannian metric
on X induced by the Killing form of g, We identify the functions on X
with those on G which are right K-invariant. For each s=C, put

H(X)={/eCH(X) | df=(s"—1)<p, p> [},
HI(X)={feId(X)]| S transforms according to y under =},

and define a holomorphic function ¢(s) on C by

=1 (e () TG (o)

where I’ denotes the gamma function. Then we have the following proposi-
tion due to S. Helgason:
PRrOPOSITION 2.1.
(1) @, maps C(B) into I (X) and V7 into I (X).
(2) @, 1s injective on C(B) if and only if e(s) 0.
(3) If T (X)=+ {0}, then y belongs to R°.
(4) If P, is injective, then P, maps V7 onto HT(X).
For the proof, see Theorem 1.1 and Theorem 1.4 in Chap. IV of [5]
For y € R’, we put f/L=2(¢7) and fT=/%. Then we have
PROPOSITION 2.2. Suppose that e(s)+#0 and let f be a function in H(X).
(1) There exist unique complex numbers al (y = R°, 1 <1=d(y)) such that

fa= 3,8 afi@.

The series converges absolutely for any z in X.
(2) Let ¢%(k) be a function on K defined by ¢3(k)=f(kz) (k= K). Then

A
=BGy 3 A6

The series converges absolutely and uniformly on K.
(3) Let || | denote the norm of L*K). Then

aq) a
Ig71P= 3 (1 190K 11,

PROOF. By the theory of Fourier expansion of C”-functions on compact



86 K. MINEMURA

Lie groups (cf. [19]), ¢% can be expanded in an absolutely and uniformly
convergent series on K:
ap

% 2725’; ) jzlej(Z)sbfj ) (2.1)
where bl; is given by
ORI CORIOLL (2.2)

and dk is the normalized Haar measure on K. Since 4 is G-invariant and f

is a function in %(X), bl; lies in H(X). Furthermore we have from [2.2)
that

am
(k)Y = El 1 (k)DL .

Therefore bJ; lies in K5 (X) for 1=<1, j<d(y). Putting k=e (the identity in
K) in [2.1), we have an absolutely convergent expansion of f:

f&)= 2 d)" S bic2), 23)

acr)
since ¢l;(e)=d(y)"?0;;. If iﬁr] b%(2) #0, from Proposition 2.1, we can conclude
=1

that 7 belongs to R® and that there exist unique complex numbers df (y € R°,
1=i=d(y)) such that

ap «up
d(y)** 2 bh= 2 ai fi;.- (2.4)
=1 i=1
Since z is arbitrary, replacing z by kz in [2.4), we have

I/Zdo')m b2y = d( )2 w . b1\,
A S Biks) = () 3 hlkb(2)

an

= 3 bi;(2)e1(k), (2.5)

t,7=1
and

fikz) = _Pi(kz, b)gT(b)db
= [ Pz, k)67 (0)db
:Lﬂ@ﬁ@ﬂ%ﬂb
=d() X[ Pz, DRI

=d<7>-1/2j_fszz,~<z>¢zj<k> (2.6)

for 1=<i<d(y). From [2.4), (2.5) and we have
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ac)

ay) 7
2 b(2)eli=d(y) " X al fLel; .
1,7=1 1,J=1
Since ¢!; are linearly independent, we can deduce that
L=d(p) "l Y

for 1=1, j<d(y). Putting i=/ in the above equality, we obtain from an
absolutely convergent expansion of f:

ard
fle)= 3, 3l fil2),

which proves (1) in the proposition.
Next, from (1) and we have

B =(kn)= 32 3\l fL(k)

¢
= 3 dp) 3 dl @),

which proves (2) and (3) immediately. This completes the proof.

We denote by B the universal enveloping algebra of g and regard the
elements of B as left G-invariant differential operators on G. Let £ be the
Casimir element of B. Then, as is well-known,

(Af)(xK)=(21)(x)

for feC=(X), xeG. It is easy to see that uf=0 for feC=(X) and u < Bt
Therefore we may transform £ module Bf. Let L be the differential of the
left regular representation of G on C”(X) and extend it to the representation
of B. For every root a, we select X,<g” so that (X,, X_o» =1, and choose
bases {H,} and {H,, ---, H,} of a, and a, respectively so that {H;, H;) =0,
(1=, j=<m). Then H, ---, H, together with X,, X_, (e € P) form a base of
g. For ae+P, let X,=Z,+Y, where Z,=% and Y,=p. Then from (2.14)
in [15], we have

(2f)(a)=[{H}+ a§>+(coth a(H))H,

- ’EP (Sil’lh a(H))_ZL(ZaZ-a_I_Z—aZa)}f](a) (27)

[24=F s

for any feC*(X) and a=exp H (Hea,—{0}).

Let H, be the element of a, such that p(H,)=1. Then <{H,, H,y=2p-+8q,
Hy, = (2p~+38¢)"H,, <p, p> = p(H,)’{H,, Hy»~* and we may put H,=(2p+8q¢)""*H,.
For te R, we put a,=exptH,. Then ¢ can be regarded as a coordinate
function on the one-dimensional Lie group A. We put

Dpy— 2 (ZaZ—a+Z-aZa)v

aEP#O
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Orry= S (ZoZ-atZ-uZ) .

aeszo

Then from we have immediately the following
PROPOSITION 2.3. Let f be a function in 9(X). Then f satisfies the dif-

ferential equation

g 1)+ (p coth t+-24 coth 20— f(a) = EoE (Lw,)F) (@)

— e (L) M)+ (1= (G+9) Fla) =0

§3. Fatou type theorem for symmetric spaces of rank one.

In this section we shall prove a Fatou type theorem for a symmetric
space of rank one which will be used in §4 for determination
of the Poisson transform of a K-finite function. Put f,=®,(1z), where 1p
denotes the constant function identically equal to 1 on B. We remark that
fs coincides with Harish-Chandra’s spherical function ¢; (A= —(—1)"*sp).

THEOREM 3.1. Let s be a complex number and assume that Re (s)>0. Then
f:(aK) (a= A) 1s not equal to zero when p(H(a)) is sufficiently large, and for
any continuous function ¢ on B

. 1 o
p(;(lag;qmm)— P(P)(kaK)=p(kM)

uniformly on B.

For the proof of the theorem, we need several lemmas. We use the
parameter ¢ on A introduced in §2.

LEMMA 3.2. Let s be a complex number and put o=p/2+q. Then

fs(a,K)={(cosh t)‘“”"F( 12_5 o, 12_5 o+ 1—2—q’ p—i—g—!—l ; (tanh i)2> ,

where F denotes the hypergeometric function.
PrOOF. We consider the differential equation in [Proposition 2.3l Since
fs is K-invariant, we have

L(@p)fs = L@3)fs =0,

and therefore we obtain a differential equation

2
LI+(p coth t-+2g coth 20+ 11— )%, =0.

We put z=(tanh #)®. Then the above differential equation becomes

20 -2 (D =38Pt (1= )a2r =0,

4z(1—2)°
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whose fundamental system of solutions is given by

(1__2)(1..S>E/ZF< 1"2‘3 7, 1'2—5 U+ 1.“2—q ’jﬁ*g'}“l ;2_),

los , gl phe=3 .

Z—(p+q—1)/2(1_Z><1—s)o/2F<__ 1+s g1, ; g ’ g

Observing that f; is a C™-function in {, we can find a constant ¢ such that

flaK)=c(eosh o= R(A 50, 155 5 100 PHIFL (anp gy

From the definition of f;, f,(eK)=1. Then it is easy to see that ¢=1, which

completes the proof.
LEmMMA 3.3. Suppose that E=Re (s)>0. Then there exists a 6 >0 such that

20(cosh )¢ V7 = | f(a,K)| = 6(cosh )¢~
Sfor sufficiently large t.
PROOF. As is well-known (cf. [11, p. 244]), for a hypergeometric func-

tion F(a, B, 71; 2),
- : IO (g—a=8)
A @ B 1 = —ar=g)
provided that Re(y)>0 and Re(y—a—p)>0. If we put a=(1—s)g/2, f=
(1—5)0/2-+(1—q)/2 and y = (p-+¢g+1)/2, then Re(y) > 0 and Re(y —a— ) =Re (s0)
=&0>0. Hence

lim F( 1— 153 o+ 154 , ].‘H—g—H : (tanh t)2>

7

{—oo

r (,pi:gjhlo I'(so)
1—¢

a+2).

Now we put
r <p+ ,qﬂ’,l,x\ I( sa)

S or(AE

5:-2

Then 0 is finite and positive, and

1—s | 1—q ptq+l .
’ 2 0'+ 2 ’ 2 H

for sufficiently large ¢{. Taking into account that
l.(COSh t)(s—l)al — (COSh t)(;'-—l)a ,

we obtain the required inequality from which finishes the proof.
From [Cemma 3.3, we have immediately the following
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COROLLARY 3.4. Suppose that £=Re(s)>0. Then there exists an n>0
such that

f{(atKl_
| /s(a, K)|

A

7
for sufficiently large t.
LEMMA 3.5. Assume that Re(s)>0. Then for any neighborhood U of eM
in B,
Pack,b) |_ o
f(a.K) '

PROOF. Put §=Re(s). From in [8], there exists a positive
continuous function F on B*=B—{eM} such that

lim sup
t—oo b=B—-U

exp {—2p(H(a™'k))} = F(RM) exp {—2p(H(a))}
for kM < B* and a= A with p(H(a))>0. Consequently
| P(a,K, EM)| = Ps(a,K, kM)
=exp {—(1+&)p(H(a; k))}

= ¢(kM) exp {—(1+&)at},
where we put

H(RM) = F(kM)<1+f>/2 )
From there exists a 6 >0 such that
| fs(a,K)| = d(cosh )<

for sufficiently large . Hence

i i(&if(ﬁb)“‘ < 67'¢(b)(cosh 1)1 797 exp {—(1+&)at}

=07'¢(b) exp {(|1—§[—(1+8))ot}

for such ¢, because
(cosh )99 < (cosh t)*-*19 <exp (|1—E|a|t]).

Since [1—&|—(1+&) <0 and ¢ is bounded on B—U, we can see that

. | Pya, K, QL\_
Hm sup |7 K) |0
which completes the proof.
ProOOF OF THEOREM 3.1. We put a=a, and notice that p(H(a))—co is

equivalent to f—oco. Then the first assertion of the theorem is a consequence
of Since
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2P)ka,K)= [ Pka K, b)g(b)db

= Pla.K, b)p(kb)db

and

flaK)=2,1a)a)= | Pla,K, b)db,

we have

| SO — (kD)

:17@127(7f JFlak, b)(§(kb)—g(RM))db

}(ajf}%b)_l | p(kb)— (kM) |db . (3.1)

On the other hand, since ¢ € C(B), for any ¢ >0 we can find a neighbourhood
U of eM in B such that

| p(kb)—p(EM)| <&
for any < K and any be U. Putting

m=2§;g§\¢(b)l,

we have
_P(a,K, b) B
fﬁ O gty — g kD) b
Moreover

_P(a,K, b) | Pe(a,K, b)
R | =] TR

fela, K) f _PeaK, D) ,

Ji

RV CLS RN AN
ff(azK) Pf(azK b)

= [fela, K)] j  fi(a, Ky db

__JiaK)
lfs(a K)] ) (3.3)

Hence from (3.1), (3.2) and [3.3)] we have
7@{7{)‘ 9?5(¢)(katK>~—¢(kM)l
Sl k) _PlaKb)

<l g dSNTE
=7 K TSR,

fi(a.K)
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This inequality together with and [Lemma 3.5 leads to our

theorem.

§4. K-finite eigenfunctions of 4 on a real hyperbolic space.

From now on, we assume moreover that G=3S0,(n, 1) (n=3), a generalized
Lorentz group. The associated symmetric space X=G/K is called a real
hyperbolic space. We notice that for G=S0,(n, 1), we have p=n—1, ¢=0,
P,=P,, Py, =0 and 6=p/2+q=(n—1)/2.

In this section we determine the Poisson transform of a K-finite function
on B, by using the Fatou type theorem. The maximal compact subgroup K
is isomorphic to SO(n) and M is isomorphic to SO(n—1). Therefore B=K/M
is (real-analytically) isomorphic to S* ! ((n—1)-dimensional sphere). Le wx be
the Casimir operator of K and let R® be the set of equivalence classes of
irreducible unitary representations of K of class one with respect to M.
Since the elements of V7 transform according to y under the representation
7 of K, n(wg) is a scalar operator on V7, where = denotes also the differential
of 7. We denote this scalar by A(y). In this case there exists a bijection A
of R® onto N° such that

ap=Ltsd (4.1)
where [=A(y) (for details, see [15, § 3]). By this bijection 4, we identify R°
with N° and write 7%, V!, A1), d(l), 4%, @ and f% instead of <7, V7, A(y), d(y),
AT, 7 and fL respectively.

Let m, be the Lie algebra of M and m be its complexification in g. Then

from in [15],

W= "% 0 mod m,B. (4.2)

By the way, since M centralizes A,
flexp tY)a)=f(aexp tY)
for ac A, Yem, and t R. Hence we have
(L@)f)(aK)=0 (4.3)

for feC~(X), ac A and u=mB.
LEMMA 4.1. Let s be a complex number and | be a non-negative integer.

Then for each function f in 4%,

(L) =G0 fak)  (ae 4).

Proor. It is clear that L(wg) is a scalar operator on %% and the scalar

is equal to A(!). From [4.1), (4.2) and
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(L) Y aK) == (Lwg) faK)
_ +n—2)
= om—1) SO,
which completes the proof.
ProprosITION 4.2. Let s and [ be asin Lemma 4.1. Then for each function

fin I, there exists a constant c= C such that
f(a,, K)=c(tanh t)*(cosh £)*¢-be
X F(I+-(1=5)s, —so+--, [+o+—; (tanh 1)),

where o=(n—1)/2.
ProOF. From [Proposition 2.3 and Lemma 4.1 it follows that f satisfies
the differential equation

G =1 coth t-4-— HERED. (i —sotr =0,

We introduce a parameter z=(tanh ({/2))®. Then the above differential equa-
tion turns into

-2+ Lotz tm) L 14— LT - oyerr=0.

A fundamental system of solutions of this differential equation is given by
2”2(1—z)“‘”"F(l—i—(l—s)o, ——Sa-i—%n l—!—a+—%~; Z) ,
z‘”z“’“/z(l—z)"‘”"F(—l——(1+s)a+l, —30-—{—%—, —l—o+—§*; 2).

Since f(ay,K) is a C=-function in f and 1—z=/(cosh )%, there exists a con-
stant c< C such that

f(a2tK) - C(tanh t)l<COSh t)z(&‘—-l)a'
X F(l+(1—s)a, ~so+—§*, l+o+—%—; (tanh t)2),

which completes the proof.

Now, using [Proposition 4.2, we shall determine the Poisson transform of
a K-finite function on B explicitly.

PROPOSITION 4.3. Let s and [ be as in Lemma 4.1, ¢ be a function in V¥,
and put f=2P(p). Then

I'(0+-5 )T+ 1+5)0)
I (1ot (W+5)0)

f(ath> - Sb(eM) (tanh t)l(COSh t)2s-Do
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X F(H—(l—s)a, —sa—l—%, l—l—o‘—i———%—; (tanh t)2> .

Proor. From [Proposition 4.2, it follows that there exists a constant ¢
such that

fla, K) = c(tanh t)*(cosh £)**~

X F(14+(~s)0, —so-+-5, [+o+-5-; (tanh D). (4.)

We notice that f! coincides with f;=®,(15) defined in § 3, since f{=P,(¢))
and'¢}=15. Observing that f,= 9} and f,(eK)=1, we have

fi(ay,, K)=1(cosh t)”“”"F((l——s)a, —sa—}—%—, 0—!—»%—; (tanh t)2>. (4.5)

Now we assume that Re (s)>0. Then from [Theorem 3.1,

o M K)o DPl)anK)
lim ) = i = = e, 46

On the other hand, from (4.4) and (4.5) we have

lim L0 f) _ r<l+0+-—%>r(280) . F<So+%>F((1+S)0)
1o J5(2 K) F(so—l——é-)lj(l-%—(l—l—s)a) F(o—{——%‘)F(Zso)

I (1+0+-5)I(1+5)0)
= bt ,
F(a—l——%—)[’(l—!—(l—!—s}a)

4.7)

since

tim F(I+(1—5)g, —so-+-, I+o+5-; (tanh 1)*)

I (1+o+-3 )1 @s0)
B F(sa+-%~>F(l—l—(l+s)a)

for Re (s)>0 (cf. [11, p. 244]). Therefore it follows from and that

I (o5 )T (+1+90)

c=g(eM)—
I'(i+o+-5)(1+5)0) °

Hence from (4.4) we obtain
F(a—l——%)l"(l—k(l—l—s)o)
I (1+o+5)T(1+5)0)

fayK)=¢(eM) (tanh £)*(cosh t)x¢-17
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X F<l+(1—s)a, ——so—l——L, H—a—l——%—; (tanh t)2> (4.8

for Re(s)>0. We fix ¢t and / in [48). Then both sides of are holomor-
phic in s. Therefore is valid for any seC from the uniqueness of
analytic continuation, which finishes the proof.

We recall that fi=fL.

COROLLARY 44. Let s and | be as in Lemma 4.1. Then

I (o+-5 )T (+1+30)
]’(l+a+%—)ﬂ(1+s)a)

filayK)=d(1)"* (tanh #)/(cosh £)2¢-be

% F(1+(1—5)o, —sot—, I+a+5; (tanh 07,

fila K)=0 (2=i=d()),
where

dl)y=-"—4 T+ (n=2) -

ProOF. For K=SO0(n), d(l) is given by ([17, p. 68])
() = 204+n—2  I'(l4+n—2)
- n=2 I'i+10)I'n—2) -

Since ¢YeM)=d(l)"?0;;, applying [Proposition 4.3 for ¢=¢! we have this
corollary.
REMARK. Put

F(a—\—m%)['(l%—(l—l—s)o)

e(l, s)= )
I (1+0+-5 ) (1+5)0)

From [Corollary 4.4, we can conclude that @; is injective on V' if and only
if e(l, s)#0. On the other hand for G=S0,(n, 1)

B 1
9= (51490 +5 ) I (-5-1+9)0)

2(]+S)0‘

= 2r (1 s)e)

From [Proposition 2.1 e(s) #0 if and only if 2 is injective on C(B). But we
can obtain a more precise information on the injectivity of ®; on V* by e(l, s).
In fact, assume that e(s)=0. Then —(1+s)o=N° and for [>—(1+59)g,
e(l, s)=0. Hence @(VH={0} for [>—(1+5s)o. -
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§5. Poisson transform of a hyperfunction on B.

In this section we define the Poisson transform @(7T) on a real hyper-
bolic space X of a hyperfunction T on B=K/M and prove which
asserts that if e(s) #0, @, is an isomorphism of #B(B) onto J,(X), where B(B)
is the space of Sato’s hyperfunctions ((18]) and .4 ,(X) is the space of eigen-
functions of 4 on X with eigenvalue (s*—1)<p, p).

At first we review the topology of the space of real analytic functions
on a real analytic manifold. Let F be a paracompact connected real analytic
manifold of dimension m. Then there exists a paracompact complex m-
dimensional manifold W which contains F as a real analytic closed submani-
fold (see [1]). For an open subset U of W, we denote by H(U) the space of
holomorphic functions on U topologized by uniform convergence on compact
subsets. Then JA(F), the space of real analytic functions on F, is topologized
by

A(F)Y=1lim H(U),
uor

where lim H(U) denotes the inductive limit of the topological space H(U) (cf.
—

[12], [14]). We denote by A'(F) the space of continuous linear functions
of JA(F) into C. The elements of A/(F) are called analytic functionals on
F. If, in particular, F is an oriented compact connected real analytic mani-
fold, by Sato [18] A/(F) is canonmically isomorphic to B(F), the space of
hyperfunctions on F. (According to [14], A/(F) is isomorphic to B(F) even
if F is not oriented.)

On the other hand, if Fis a compact connected real analytic riemannian
manifold, A(F) can be characterized as follows (for details see [15, §1] or
[4, §1]). Let @ be the laplacian on F and L*F) be the space of square-
integrable functions on F with respect to the measure induced by the rie-
mannian metric on F. We denote the unitary inner product and the norm
of L*(F) by (,) and | || respectively. As is well-known, the eigenvalues of
® are non-negative and countable, and the space of eigenfunctions of each
eigenvalue is finite-dimensional. We denote the eigenvalues of w by 2,
(ne N° and order them so that 4,<A, if n<m. Let E, be the space of
eigenfunctions of « with eigenvalue 2, and d(n) be the dimension of E,.
Then as an orthonormal base of £,, we can choose analytic functions ¢ on
F (neN° 1=<i<d(n)), and

{pt | ne N’ 1=i=dn)}

is a complete orthonormal base of L*(F). For each ¢<=C=(F) we define
w*¢p = C(F) by
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d(n)
W= 3 U argr,
n=NO i=1

where a?=(¢, ¢7). We define seminorms || [|» (A>0) on C*(F) and subspaces
JA(F) of C>(F) by
m/2
I91s= sup T rya

AF)={p & C*(F) | [$ln<oco}.

Then Ax(F) is a Banach space with the norm | ||. From Proposition 1.6 in
[15], A(F) coincides with the inductive limit of 4,(F) as a topological space.
That is,
AF)=lim A(F).
Py

From now on, we put F=B (= K/M). Since K=SO(n) and M=S0(n—1),
B is real-analytically isomorphic to the (#—1)-dimensional sphere S®*. There-
fore A’(B) is isomorphic to B(B) by the above arguments. Henceforth we
write B(B) for A’'(B) and call the elements of A’(B) hyperfunctions on B.
We denote the value of T= 8(B) at ¢ = A(B) by

{ _S(O)TR).

As in [15], we take the Casimir operator wx as the laplacian on B. Then
we can take A;, V!, d(l) which are introduced in §2 and §4 as 2,, E,, d(n)
respectively. Put

F,(B) = ()0 | 1= C, 3, 3 latlexp (—ta) <o for any >0}
&ND i=1
and define a mapping ¥ of 8(B) into C¥ by
UV(T)y=(a), a=[ (b)aT),
B

for T #(B). Then by Theorem 1.8 and the remark in [15, §1], ¥ is an
isomorphism of B(B) onto F,(B) and F,(B) is also given by

o)
Fy(B)={(a))iEza0 | aeC, 3 Zl |a}]® exp (—t4")<oco for any t>0}. (5.1)
eN0 i=1

Now, we define the Poisson transform @,(T) on the real hyperbolic space
X of a hyperfunction 7 on B. Since the Poisson kernel Py(z, b) is real
analytic in b, we can operate T € B(B) on Pz b). Thus we put

2(T)&) = Pz, b)dT().

PROPOSITION 5.1. Let T be a hyperfunction on B and put ¥ (T)=(al). Then
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&M=, 3 difi()

for any z in X, where fl,= P, (H}).
ProOOF. Fix an arbitrary z in X. Then P;(z b) can be expanded in an
absolutely and uniformly convergent Fourier series

P,z b=, SHO) P 03B,

which converges also in A(B) by Corollary 1 to Proposition 1.7 in [15].
Taking complex conjugate of the above equality, we have

Pz, b)= 5 1) | Pz Hoib)db,

which also converges in A(B). From the continuity of T on A(B) we have

2=, 3 [ JOAT®) Pz pieds.

Since
ai={ GUb)AT(b)
. B
and
Fuz)= [ Pz, b)gib)db,
B
we obtain

2T =% S aifi(z),

which completes the proof.
PRroOPOSITION 5.2. (1) For any complex number s and any sequence (@) in
Fy(B), the series

d(l)
2 2 a: f4(2)
N0 =1

converges absolutely and uniformly on every compact subset in X.
(1) Suppose furthermore that e(s)+0. Let f be a function in H(X) and
expand f as
ac)
=2 > akfl
LENO i=1
by Proposition 2.2. Then the sequence (al) lies in F,(B).
For the proof of the proposition, we need the following
LEMMA 53. Let a and B be complex numbers and y be a positive number.
Then for any h with 0 < h<1, there exists an integer [, N° such that for any
integer 1 =1,
1) |F(+ea, B, 47 2)|=(1A—=m)"?" for |z| <A’
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@) [F(+a, §, 147 by 25 (1—h)Fe®,
PROOF. We notice that ([11, p. 258])
F{, 8, 1;2)=01-2)",
and that

.om+lal .. mta
lim =, =lim =1, (5.2)

(1) Assume that |z|<h%. Then

n

< § el g, 2T

Since 1/A>1, by we can choose a non-negative integer [, so that

mtlal _ 1-
m+y T h

for m=/,. Then for [=/, and n=0,

(U+lal), 1
Fp. =R

0

A

Therefore we have
|Flta, 8, 1473 2| = 3 (18D = (18D
BT BN = "al T P
=F(Q,|81,1; )y=Q0—h)""# .

(2) Since (1—x)"*¥ is continuous in —1< x<1, we can choose an ¢>1
such that ¢ <1 and

0< (L—eh)™#1—(1—h)" 1< - (1—h)"Re® (5.3)
On the other hand, since

=3

n=0

(+a), h"
(y—D)®
we have

|Fl4a, B, I+7; H—(1—-h)F| = go‘%%%):—_li(lm)"%'

We can choose an integer [, by such that for m=1,

mta -
mty ll__.s 1.

By the way, it can be easily shown that |z;—1|=Ze—1 (i=1, ---, k) implies
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|z, -+ z,—1| <e*—1. Therefore we have

(e, ‘< "
(. HEST

for [=1], and n=0. Hence we obtain
oo hn
|F(l+a, ﬁr H’T? h)—(l'—h)-ﬁl é Eo(sn_l)(iﬁl)nT

(eh)"

n!

IA

= 3 (18— B (8D

FQ1,181,1;eh)—F(Q,|81,1; h)
(1—eh)" ¥ —(1—R)"1P (5.4)

On the other hand, we have
|F(l+a, B, I4+y; H—(1—h)P?|=2|(1—h)?|—=|F(l+a, B, I+7; b)]
=1—h)Re®—|F(l+a, B, I+7;h)]. (55)
From [(5.3), and (5.5) it follows immediately that

|F(l+a, 8, I4+r; h)| = _%,(1_,1)-&3(@)

for any /=1, which completes the proof of the lemma.

PROOF OF PROPOSITION 5.2. First we notice (Corollary 4.4) that
fﬁ(ath) = él(ath) = d(l)me(l, S)(tanh t)l(COSh t)m—na

X F(I+(1—~$)3, =50+, l+o+—5 ; (tanh )?),

fila K)=0 (2=i=d()), (5.6)
where
2l +n—2 I'{l4+n—2)

A== T =2’
e I (o+-4 )T (+(1+5)0)
e(l, s)= ,

I (1+0+-4)(1+5)0)
oz—‘g——l—qz n—2—1

We put £=Re(s) and u=|—sa+%—’.

(1) For every >0 we define a compact subset U, in X by

U,={2=kayK | |tanht|<exp (—27), ke K}.
Put
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Sw@)=3 3 lail | 7421

Then for the proof of (1), we have only to show the uniform convergence
of the series S, on every U, (>0). Fix an arbitrary »>0. It is easy to

see that
lliml d(D)2e(l, )| <1. ‘ (6.7)

Since exp 7>1and 0<exp (—2%) <1, from and we can choose
an [, N° such that for [=],

ld()*2e(l, s)| "' <exp 7,

‘F(H—(l—s)o, —soti, ot 2)
=(I—exp(—27))"" for |z|=exp(—4y). (5.8)

Since |74(k)|=1 (k= K) and from [2.6)

acd
f.lsi<k2) = ]:’;1 gj(z>fij(k) ’

we have

=
~

{

Si(ka K)= 3 2 |aif [ fifas )| 1 74(k)]

zlg t,J=1

~

<
il

=2 2 il ekl

L

V2

Therefore, from and (5.8), putting r=|tanh ¢| we have for z=ka, KU,
ac)
WS T T latl| Alauk)]

=< (cosh )*¢"Y?(1—exp (—27))* 2 dﬁ;) @] (r] d(1)2e(l, s)| ")t
lzly 1=1

We put
My=(1—exp (—27))™ sup )(cosht)2<5—1>",

r=exp (—27
Since
rld(1)2e(l, s)|V* < exp (—27n) exp () =exp (—7),

we have for [ =, that

aw
Si(B) =My 2 i§ lailexp (—xl).

=lg

o~

On the other hand

3 _ l(+n—2)
T 2(n—2)
implies that

. l 1/2
g S A S (5.9)
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for /e N°. Hence we have
dact)
Si(2) =My 3 > |atlexp (—nAt?),
izlg i=1

which is finite because (@) € F,(B). Consequently S,(z) is uniformly conver-
gent in Uy
(2) Let »>0 and choose a =R so that

r=tanh = exp <T\T_(;?_:T) .

From the assumption that e(s)#0, it follows that e(/, s)#0 for /= N° and
that
ILim le(l, s)|"'=1. (5.10)

Therefore by Lemma 5.3 and (5.10) we can find an /[, € N° such that for [=/,
2/l > [/
le(l) S)I :eXp< 2'\/2(71_2) >’

‘F(lJr(l—s)o, —sa—’r% , [+o T >|:f0 —rR)fo-1z

Then, for z=a, K, from [Proposition 2.2 we have

”¢zf“2 = t?zvod(l)—l(ji:l‘—'i lal | 2)(;1(;’1 |f§1(2> | 2)
2 303 a1
= %(1—1*2>25a—1(cosh t)4(5v1)al§0(| e(l, s) | 2/17,2>l<id§(é) | 2)

= —-lA—(l—rg)Z*:"‘l(cosh HE-ne s ( dzml at|®) exp <,____i;>
= 4 lzly i=1 ! \/2(71'—2) ’

since

r*lel, $)|* zexp (

2¢;(Z—2) Jexo( 2«/-2_(2—2> )

=exp (7 /9( =5 5
Therefore from we have

lo71* = ——}4—(1 r%)*e-1(cosh t)*¢-17 2 ( 2 |at]?) exp (—nA7),

__0 1=1

which implies that

Aal)
5, (S 1at]7) exp (—7a) < oo,
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Since 7 is arbitrary, we can conclude that (@) lies in F,(B) by (5.1). This
finishes the proof.

PROPOSITION 5.4. Let G be a connected real semisimple Lie group of real
rank one with finite center, K be a maximal compact subgroup of G and 4 be
the laplacian on X=G/K corresponding to the riemannian metric induced by
the Killing form of the Lie algebra of G. Suppose that f, (ne N°) are eigen-
Sfunctions of 4 with eigenvalue p and that nEZNOfn 1s absolutely and uniformly

convergent on every compact subset in X. Then Zofn 1s also an eigenfunction
nenN

of 4 with the same eigenvalue p.
PrROOF. For x= G, we define an operator M® on C(X) by

(Mf)(g) = [ flghxK)dk  (g<C)

for feC(X). Then by [6, Chap. X, Lemma 7.1 and Theorem 7.2] there exists
a C>-function A on X such that

(M=fo)(2)=AxK)f2(2)  (z€ X)),
(AA)(eK)=p.

Since 2f, is absolutely and uniformly convergent on every compact subset
in X, we have

[M*( % f)1(@) = % (Mf)(2)
= 3 AK)fA(2)
= xK)( 3 f)(2) .

Therefore by [6, Chap. X, Theorem 7.2], Qof" is an eigenfunction of 4 with

eigenvalue (42)(eK)=y, which completes the proof.
Now we can state the main theorem. For the notation, see § 2.
THEOREM b.5. Let X=G/K be a real hyperbolic space.
(1) The Poisson transform P, maps B(B) into I (X).
(2) If e(s)#0, P is an isomorphism of B(B) onto H(X).
COROLLARY 5.6. For a real hyperbolic space, any eigenfunction f of 4 can
be represented as

f&)={ Pz, bdT(b)

with some complex number s and some hyperfunction T on B.
ProOF. Let 4f=pf. We can choose an s<C such that p=(s*—1)<p, p)
and Re(s)=0. Then e(s)#0 and we have only to apply to f.
Proor OF THEOREM 5.5. (1) Let T be a hyperfunction on B and put
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¥(T)=(a}). By Proposition 5.1,
2= B, T ar),

which is absolutely and uniformly convergent on every compact subset in X
by [Proposition 5.2l Since f%; lies in 4(X), we can conclude from
5.4 that P,(T) also lies in 4 (X).

(2) The surjectivity of P, is clear from (2) in [Proposition 5.2l Assume
that @,(T)=0 (T € 8(B)). Then, putting ¥(T)=(d}), we have

a)

2 2afulz)=0 (z€X).

LeN0 §=1

Replacing z by kz, from we have

acd)
> d() 2 Y alfi2)di(k)=0.
leNg i,j=1
Since ¢}; are linearly independent on K, we obtain
afi(z2)=0 (ze X)

for / and 1<:=<d(l). The condition e(s)# 0 implies f,;7=0 on X. Therefore
we have a:=0, which completes the proof.
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