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§1. Introduction.

Let A be a commutative Banach algebra with unit 1. We denote the set
of all homomorphisms of A onto C by M(A), which is called the maximal
ideal space of A. For ¢ = M(A), a point derivation on A at ¢ is an (alge-
braic) linear functional D on A with the property that D(fg)=¢(f)D(g)
+¢(g)D(f) for all f, g A. In this paper we consider the point derivations
which are defined as follows. Let f(¢)=¢(F) be the Gelfand transform and
let {¢, t;} be a pair of nets in HM(A) X C\{0} with the following properties :

(1.1) ¢, converges to ¢ in M(A) with the weak*-topology,
(1.2) iy converges to 0 in C,
(1.3) M—ﬂ%&@ converges for any f€ A.

Then the limit D(f)= lim ﬂf—);—f@— defines a point derivation at ¢.
7

In section 2 considering this kind of point derivation we shall give an
another proof of Browder’s theorem ; there exists a nonzero point derivation
at ¢ if ¢ is not isolated in M(A) with the metric topology. Also we shall
prove that there exists a nonzero continuous point derivation at ¢ if ¢ is
not isolated in M(A) with the metric topology and the norm |[¢—¢| of the
metric topology is equivalent to a semi-metric |¢(w,)—@(wy)|+ - +|P(w,)
—@(w,)| of the weak* topology in some metric neighborhood of ¢ in H(A),
where wy, -+, w, € A.

In the remaining sections we shall consider the function algebra A(X)
on a compact plane set X. In this case we obtain more exact results. As
is well known, these results are translated for the case R(X) and the proofs
for the case R(X) are performed similarly. We state here the corresponding
results for R(X). Let R,(X) be the set of all rational functions with poles
off X. R(X) is the uniform closure of R,(X) on X. The maximal ideal space
of R(X) is identified with X. It is known that each of the following condi-
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tions is equivalent to the existence of a nonzero continuous point derivation
on R(X) at x= X:

(r.1) There exists a constant 2 such that |f(x)] <k| f| for all fe R,(X).

(r.2) (Wilken [5].) There exists a complex representing measure g for x

such that j CTL’J'SCZ\)

(r.3) (Hallstrom [4]) Z 2 T(E (x; TN\X) < o0

where E, (x; r):{z: —2%—1— <lz—x| <%}, and 7 is the analytic capacity. For
a plane set D, the analytic capacity of D, y(D), is defined by
7(D)=sup {|f'(e0)| : f& AD)},

where A(D) is the set of all functions on the Riemann sphere S? such that
f is analytic off a compact subset of D, | flls2=1 and f(c0)=0. In section 3
we shall give two another equivalent conditions:

(r.4) There exists a sequence x,< X which converges to x and has the

S —f(x)_
Xp—X

property that converges for any f€ R(X).

R
(r.5) IZLIJIEI “lzz x”l <o0;
z= X

where |.|® denotes the R(X)-metric norm, which is defined by [x—y|?
=sup {| f(0)—F(»]:fe R(X), | fl=1}.

In section 4 we aim to estimates the A(X)-metric norm by the continuous
analytic capacity. Although the estimates for A(X) are given in section 4
precisely, we write here the main corresponding three estimates for R(X).
Let x, ye X and let 4(x; r)={z: |z—x|<r}. We denote the distance between
a point z and a set T by d(z, T).

co 2n
1 4:4‘:0-7,—7’(En(xi "N\ X) 7(d(x; \X)

(R-2) [ x—y|® = —=- Al ey
RS T oRETTOS SN S N IR

Let 0<o<1 and C be a universal constant. If |x—yl<—£—, then

R-t)  Jeyir s[5 SAYIEI 52 )

4 & 2 . 4
+; Z 7 n(X,T)\X)+ 1

n=[ §1ogy 5157 ]

i 2"

—0 5 alx—y]|

7(Eny; ol 1=y INX) ]

where l:—%-log2 —‘x—i—yl—] denotes the maximum integer which does not exceed
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1 r 7
—z—loggw. If Ix—yl < g then

(R-5)  fx—y|B<Cla—y|[ 7'—‘2]1):—3)‘ n 45 go—g—r(En(x;r)\m
1 4 & on '
T e TS a7 E el IND)].

In section 5 we shall prove the following results by the application of
the above estimates. Let x,< X be a sequence which converges to x. Then
x, converges to x in the R(X)-metric topology if and only if

lim 3 1B ol =5, N\ X) =0

noo bep 0| X— X,

for any fixed 0<o<1. And x, has the property (r.4) if and only if

— = ok
M m T & ol

A T(E(xn; olx— 2, )\ X) < o0

for any fixed 0<o <1.

The notations 4(x;7), E,(x; ), and d(z, T) remain valid throughout the
paper.
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tion algebras with Professors S. Koshi and T. Ando at Hokkaido University.
He thanks them for all their encouragement and advice during his research.
The argument in section 3 is an analogue of Browder [1] and the estimates
(A-1) and [[A-2) in section 4 are essentially due to Curtis [2].

§2. Sequential derivations.

Let A be a commutative Banach algebra and <(A) the maximal ideal
space. For ¢ € M(A), Dg(A)T4(A)) denotes the set of all (continuous) point
derivations on A at ¢, and Ay denotes the kernel of ¢. It is easy to see
that a linear functional D on A is a point derivation at ¢ if and only if
D(fg)=0 for all f, g€ Ay and D(1)=0. Thus Dy(A) is identified with the
algebraic dual space of Az/Af, where A3={/fig:+ - +/28: [i, 8 € Ag}.

2.1. DEFINITION. Let ¢ = M(A) and let {¢;, &y} be a pair of nets in
M(A) X C\{0} with the properties (1.1), (1.2) and (1.3). Then we say that

{¢r, t;} is a sequential derivation at ¢ for A and that D(f)=lim —Jigé%r_—]l@—
I8
is the point derivation defined by {¢;, t}.

2.2. THEOREM. If {¢,, t,}n=1 is a sequential derivation at ¢, then the point
derivation D defined by {¢,, t,} is continuous; more precisely, it follows that
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D1 = i 148 < T 10l
In particular, ¢, must converge to ¢ in the metric topology.
PRrROOF. Regarding ¢, and ¢ asAbounded linear functionals on the Banach

space A, we have (M)(f):l@"%:ﬁ@— for fe A. Hence, the theorem

follows from the uniform boundedness theorem.

2.3. CorOLLARY (Browder [1]). If ¢ is not isolated in M(A) with the
metric topology, then there exists a nonzero point derivation at ¢.

PrOOF. By the hypothesis we can take a sequence ¢, in H(A) such that
¢,+¢ and ¢, converges to ¢ in the metric topology. If Ds(A)= {0}, then
As=As. Therefore any element f of A can be represented in the form
f—f(¢):g1h1+ -+ +gh, for some g;, h;= As. Hence, we have

A G)=F(®)] _ i 3 168 —p(2) | 6a(ho)

=1

R e s =1
= & g —gllad
lim % g —g) | 9aI1=0.

Since this holds for all f= A, we have

|/ (@n k (81)—0(g; n(hy) —B(hy _
i LGl i 3 =gl L)l .

Therefore {¢,, |9,—¢[*} must be a sequential derivation. Since HIE ll‘g" 9?1[{2
=oo0, we have a contradiction.

Now we shall consider a pair {¢r, f;} of nets under a slight weak con-
dition.

2.4. LEMMA. Let {¢:, t;} be a pair of nets in M(A) X C\{0} with the pro-
perties (1.1), (1.2) and

2.1) ) =Tim f(—@{fi@}@o for all feA.
7 7

ll/\

Then p is a semi-norm on A. If a linear functional D on A satisfies
(2.2) ID())=p(f)  Jor all feA,

then D is a point derivation at ¢. And if lim——“ﬁ;—gbu—<oo, then the point
. . . 7 7

derivation D 1S continuous.
Proor. It is clear that p is a semi-norm. If D is a linear functional on

A with the property [2.2), then for any f, g Ay it holds that

lD(fg)|<p(fg)—*11rn f<¢7> f<¢) (6 + g(¢r> 8(9) f(¢)

=p(Hle(@)+p(2)e(f)]=0
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and |D(1)|=p(1)=0. Hence D is a point derivation at ¢. Since p(f)
< l—i‘rﬁigéﬁj—ﬁsi /1, the last statement holds.
T

As an application of the Hahn-Banach extension theorem, we have the
following corollary.

2.5. COROLLARY. If there is an element w of A such that p(w)+0, then
there exists a nonzero point derivation D at ¢ such that D(w)=p(w) and |D(f)|
<p(f) for all f= A.

2.6. THEOREM. Let w,, ---,w,€ Ay Let {¢;} be a net in JM(A) which
converges to ¢ and has the property

- =9l o
(23) Hm g T+ - + g <%

Then there exists a nonzero continuous point derivation at ¢. Moreover, if (2.3)
diverges for any lack of elements wy, -+, w,, then dim T¢(A)= n.

PrROOF. Removing elements out of w,, :--, w, within the property as
we can, it suffices to verify the last statement. Hence we assume and
that for each k=1, ---, n,

Then there exists a subnet ¢;, for each £ such that

S T T
and this yields
— lgr, =l — 1
lim 55—~ =lim —
Tr | ¢7k(wk> l Tk i; I ¢7k(wi) [ z;e | ¢7’k(wi) [
Igr,—0l  lr,— 9l
B el (7t ) PR

B 6wl

Therefore we can define continuous semi-norms p, on A by

_— f(¢r)—S()]
Pk(f)—11721 6r ()| for feA.

Since p,(w,)=1, there exist continuous point derivations D, at ¢ by Corollary
2.5 such that

Dy(wy)=1 and [D(f)I=p.(f) for feA.

Finally, D,, ---, D, are linearly independent, for
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_ s o)l — &1 s g
w;)= lim —— Lk < k =0
bl = g T = 0 = 3T Tg )]
This completes the proof.
2.7. COROLLARY. Let ¢ be a non-isolated point of M(A) in the metric
topology. If there exist w,, -, w, € A with the property;

if k#J.

lim ”91’”95” < oo,

o5 1P|+ - +[Pwa)]

then there exists a nonzero continuous point derivation at ¢.

For wy, -, w,€ A4, (wy, ---, w,)(¢, )= é}l |p(w;)—d(w;)| is a semi-metric

on M(A) for the weak* topology. The semi-metric (w,, -, w,)(¢, §) and the
metric of the norm [¢—¢| are said to be equivalent on a subset M of SH(A)
if and only if for ¢, =M

Klg—gl = (w,, -+, wa)(9, §) = max [wil-lg—gl ;.

where K is some constant and the last inequality holds always.

2.8. COROLLARY. Let wy, -, w,€ A. If the semi-metric (wy, -+, w,) (¢, @)
and the metric of the norm |p—@| are equivalent on a metric open set U of
M(A), then there exists a nonzero continuous point derivation at any non-isolated
point ¢ of U.

The following lemma is for the next section.

2.9. LEMMA. Let ¢ = M(A). Let {¢r, t;} be a pair of nets in M(A)X C\ {0}

with the properties (1.1), (1.2) and Tl_rr—lﬂ-?—t:;féﬂ— < oo, Suppose there exists a
dense subset A, of A such that ’ ‘

tim LD it for aut re 4,

7

Then {¢r, 1y} is a sequential derivation at ¢ for A.
The proof is formal and will be omitted.

§3. Point derivations for A(X).

From now on X denotes a compact subset of the complex plane C, and
A(X) denotes the uniform closed algebra of all continuous functions on X
which is analytic in the interior of X. The interior of X will be denoted by
X° Let x=X. Let A(X; x) be the set of all functions of A(X) which admit
analytic continuation to some neighborhood of x. Then A(X; x) is a uniformly
dense subalgebra of A(X), and this implies that the maximal ideal space of
A(X) is X ([3], Chap. II, Th. 1.8 and Cor. 1.10). When the functional f— f/(x)
is continuous on A(X; x), the unique continuous extension on A(X) of this
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functional is a continuous point derivation on A(X) at x, and so we may use
the notation f’(x) also for all f A(X). We can easily verify that any con-
tinuous point derivation on A(X) at x is a constant multiple of f—f/(x) if
there exists a nonzero continuous point derivation on A(X) at x.

Now we prove the equivalence of the following conditions which were

stated for R(X) in section 1:
(a.0) There exists a nonzero continuous point derivation on A(X) at x.
(a.1) There exists a constant k2 such that |f/(x)|Z k| f|| for all fe A(X; x).

(a.2) There exists a complex representing measure g such that

d| pl(
j zﬂ le) <.

(a.3) ZO 7,2 alE,(x; Y\ X®) <oo; where a denotes the continuous analytic

capacity (see section 4).

(a.4) There exists a sequential derivation of the form {x,, x,—x} at x

for A(X).
_ A
@5 LA <o
zeX

where |z—x|4 denotes the metric norm for A(X), i.e.,

lz— x4 =sup {| f(2)—F(x)| : fe AX), |f]=1}.

The equivalence of (a.0) and (a.l) follows from the comments at the beginning
of this section. Hence the equivalence of the conditions (a.0)~(a.3) is a formal
modification of Wilken’s [6] and Hallstrom’s [3]. By Theorem 2.2, (a.4)
implies (a.1). Furthermore, Corollary 2.7 and Lemma 2.9 imply :

3.1. THEOREM. {x,, x,—x} is a sequential derivation at x if and only if

I x,— x| 4
m oo,
}Lw | X, — x| <

This shows the equivalence of (a.4) and (a.5). Hence, to complete the
equivalence, it suffices to show that (a.2) implies (a.4).

Let m be the two-dimensional Lebesgue measure on the complex plane
C. Let g be a (regular Borel) measure on X. For each xC, we put

‘u(z)_j' dlpl(w)

lw—2z|
ﬁ(z):f—‘i—uﬁ_(—_w?)— when f(z)<co.

An application of Fibini’s theorem shows that # is locally integrable with
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respect to m, in particular, g(z)<oo a.e. (m). If f(x)<co, then f;(_]fzc is a
measure on X. Hence, for each z=C, we also put

(3.1) ﬂ(z,x>~(ﬂ<w>><)__ d|p|(w)

lw—z|{lw—x|

(3.2) iz, x)= (L () ) ()= f i dzﬂ)%) 5 When Az x)<eo.

Let 4 be a complex representing measure for x, i.e., jfdy:f(x) for all
fe A(X). When f(z) <o, we put

(3.3) c= j oL dp(w)=1+(z—2)A() .
If ¢+0, then we can easily see that the point z belongs to X and

(3.4) dy(w) = d p(w)

c(w z)

is a complex representing measure for z.
3.2. LEMMA (Browder [1]). Let p be a measure on X, and let xe C. For

each positive integer n, let An:{z: Iz——xlé—-}l;t—}. Then

m(}!n) L |z—x|A(z) dm (2) —> |pl({x}) as n—oo.

33. LEMMA. Let xe X, let p be a complex representing measure with the
property (a.2). Let >0 and 6 =¢/(e-+2|pl+2). For each z€ X,

|z—x|fi(z, x) <8 and |z—x|f(2) <6 min (1, 1/4(x))
imply
M_ﬂx)‘ée“fn for all fe A(X).

Z—X

PRrROOF. Our assumption is f(x) <oo. Thus we can define a measure p’ by
dp'(w)= (2 — () dpuw)

Then we have [fdu/(w)=F(x) for all f& A(X); indeed, it suffices to show

this only for fe A(X; x), but this will follow easily. Take z= X in our as-
sumption. Since 0<1, c=1+(z—x)2(2)#0. Thus we can define a complex
representing measure v for z by [3.4) Now

dv(wi:(}icﬂ(w) _ zix ( Céuw——x@ ——1>dp(w)

1 w— 2=+ W=2) 4 ()

zZ2—Xx c(w—2z)
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:__< 1 _ ﬁ(CZ) )dpe(w).

c(lw—z)
Moreover,

dy(w)—dp(w)
Z—x

:[ c(wl——z) N w—l—x _~< ﬁ(cZ) —ﬁ(x))]d;e(w)

B L G

c(w—2z)(w—x)

—dp'(w)

— 1 4(2)
< [ (w—2)((w—x) ij 2c J((C 2)(C—x) C#—Zx )a’y(C)]dy(w)
= (i, )= @A) Jdpw).

Thus, for fe A(X),

=171 'Z,j"' [ﬂ(z, O+ 7 A+ iz, 1) +1 4D I]

= Al 2 (e, D+ AL+ )

= ”f“T_T<1+H/JH)=EHf|| .

This proves the lemma.
3.4, THEOREM. Suppose there exists a nonzero continuous point derivation
on A(X) at x. For any ¢>0, we put

D(x={zex :|-LEZLD_pi|<eifl for atl fe A},

and
An:{zeC: | z— x| é_}l?}
Then
m(D(x)N4,)
lim —="y —=1.

PROOF. Let ¢ be a complex representing measure for x with the pro-

perty (a2), i.e, A(x)<co. Clearly, |¢|({x)=0, and |22 |((x}) =0. Let
b=min (1, 1/4(x)). We put

Kn: {ZEATL: ‘Z—xlﬂ(zs x)§5}
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L,={ze4d,: |z—x|f(z) £ bd} .
Then, by Lemma 3.3,
m(D(x) N 4y) = m(L, N Ky)

2 md)—~ (5§, 12— %1z 0 dm(2)

oy §, 1222 dm()
Hence we obtain

(D) N\ 4 11 (W) Y
MO 2 e () ane

1

v

iy |, | dma)

Now the theorem follows from Lemma 3.2.

3.5. COROLLARY. I[f there exists a nonzero continuous point derivation at
xe X, then there exists a sequence x, in X such that x, converges to x and, as
linear functionals on A(X),

S(x2)— () f(x) (uniformly).

Xp—X

That completes the equivalence of the conditions (a.0)~(a.b).
3.6. COROLLARY. Let D,: f— f'(x) be the point derivation at x. Then

1D, = lim_”i—_ﬂi
zl = z—x|
_ A
PrROOF. Let lei_rr_)l‘zz—_’%—. There is a sequence x, in X with
A _
lim —ﬂiL_ix“r—:M. Since the linear functional fw—ﬂ;]é-)j]]gi@— strongly con-

verges to D, by Lemma 2.9, |D,.| <M. The reverse inequality follows from
the above Corollary.

§4. Estimates of the A(X)-metric norm.

Let D be a plane set. The continuous analytic capacity of D, a(D), is

defined by
a(D)=sup {|f'(0)| : f& AC(D)},

where AC(D) is the set of all continuous functions f on the Riemann sphere
S? such that f are analytic off a compact subset of D, || fllse<1 and f(c0)=0.

For integers ¢, N, M(N< M, and it may be M=co) and a positive number
7, we employ the notation a{*¥(x;r) which is defined by
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NoM( 2o ) — 141 % _Z_nt_ E(x: 0y .
at (x,?’) 2 n:EN ,',-t a( n(.x,?’)\X),

as it were, this means continuous analytic capacity at x of dgree ¢ with
radius 7 and ratio 1/2 from N to M. We shall use the notation a,(x;7)
instead of a)®(x;r). Let us attend to the following facts;

(41) x= X is a peak point for A(X) if and only if a,(x;7)=oc0o (Melnikov),

(4.2) there exists a nonzero continuous point derivation on A(X) at x
if and only if a,(x;7r)<co (Hallstrom, cf. (a.3)).

To obtain one side estimates, we repeat the argument in Curtis which
is based only on the above definition of « and the following lemma.

41. LEMMA (see [2], [3]). Let K be a compact plane set and f a con-
tinuous function on S* which is analytic off K and vanishes at co, Then

7)) = 5B s

where we admit the right hand to attain the value co when z< K.
4.2. ESTIMATE (essentially due to Curtis [2]). For x, y€ X, it holds

(Alx; N el \XY)
(A1) b2l = G AR a0, 4G PN
(A-2) | x—y|4 g_l_ a(x;7) a(d(x; r\X°)

5 3tax;r)  d(y, d(x; TNX®) -

PrROOF. We shall only prove [[A-2). Let ¢>0 and let M be a positive
integer, and we set E,=FE,(x; 7). Then there exist compact sets K,CE,\X"°
and functions f, € AC(K,) for 0=n=<M such that

A(E\X®)— —pomm e < fl(00) < a( B\ X?) .

M1 2"
We define a function g on S* by
M n
8(2)= 2 L (fi(e)~(z=0f(2)

=3 2 (fie0)— T E- (= 012).

n=0 Y
M
Since g(o0)=0, g is continuous on S? and analytic off K=\U K,. Hence
n=0

M n
ge A(X), and g(x)= Zo%f;(w), Since (z—x) f,(2) is analytic off K,, by the

maximum modulus principle,

| Z - s = 2@

=1.
Eq
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On the other hand, applying Lemma 4.1 to f,,

Hence, if 23;1 <lz—x|<—5 2, , then the distance from z to E, is at least

e — sl for n#j—1, j, j+1, and hence for such n

n n v 0 n+2
2 )| s e g BB < 2T (BAXY).
e

M
Now, for ze \J E,, we have
n=0

1812 3 E-fieor+ 3 | B = 1,(2)

M 27L 0 M 27L 0
=3 2 aBA\X) 45 L a(EAX)+3
=2 7)+3.

Again, by the maximum modulus principle, this estimate holds for all z&S?,
and applying Lemma 4.1 to g, we obtain

2] < 5B (Sparx; 1) +3).

Since Ilgllxé%a?'M(x; )43, we have for ye X

n

x 2
ngo p ~fa(0) a(K)
l—yl4 = TSR0

1 a¥(x;r)—4e a(d(x; ¥\ X%

5 3+at(x;7r) d(y, 4(x; T\ X" °

1\%

Now let ¢ |0 and M—oco, we have the estimate [(A-2). One can also prove

the estimate by the similar modification of [2], Theorem 3.2.
To obtain the opposite estimate, we need the following theorem (3],

Chap. VIII, Th. 12.6).
(Melnikov’s Estimate) Let J be an open anulus of conformal radius 7, and

let K be a compact subset of J and f a continuous function on J which is
analytic in J/AK. Then

U ,,Jﬂz)dz( =1 I FlbalENT),
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where ¢ is a universal constant and b/ denotes the boundary of J.

The estimate is not so simple, that we first make some calculations. Let
x, ¥ be distinct points in X. We denote by A(X; x, y) the set of all functions
of A(X) which admit analytic continuation to some neighborhood of x and
y. Let f€e A(X;x,v). We extend f to a continuous function on S? such
that f is analytic in some neighborhood of x and y, and the norm | fl|lsz is
sufficiently near to ||flly. Now let », be a positive number such that f is
analytic in 4(x;7,). Our aim is to estimate |f(x)—f(¥)|. Let I'={z:|z—x|
=7} and

o) = LA=LO)

Then g is continuous on S? and analytic wherever fis. Thus it follows from
Cauchy’s integral formula

(43) f@-fin =522 £ ac.

2m

Now we fix a number é such that 0<d<|x—y|, and take a continuously

differentiable function % on S? such that 4 is supported on 4(y; 8), ” ah "<

0=h(z)=1 on S*® and A(z)=1 when zed(} ; T) In order to estimate
we consider the integral of the form

(4.4) Gw)y=-L[[£ED=LW) Ok () ey

= g w)h(w)+ (g2 2 (2L dedn;

where z=£&+in. From [3], Chap. II, Lemma 1.7, G is analytic wherever g is
and analytic in S®\4(y; d), and G—g is analytic wherever g is and analytic

in A(y; —g—) Moreover, a crude estimate yields

| oh déd
jL(y ) l”‘ZJI

I
Since the last integral attains the maximum 270 when w=y, the definition
of g yields

|Gw)| < | g(w)| +—- = 18l s 2

(45) |Gw) = g(w) |+ EL 2 on5= gy + 321 1.

2

And, by the maximum modulus principle,

(4.6) 1G—gls:=1G—2l ,, 2 )0 22121 1, 2o+ 51 7]
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2l 40
=2 _5_ +'*—Hfi| T\\fﬂ.

[\

If we 4(y;d), attending to that A(w)=0 in we have

“lw —y|—0

271 oAfL 4 &
=Tw—y]=5 T 6 5 Tw—y[—0
2

|Gw)—gw)| = lg(W>l+ Nl 4.

Therefore,
(47) Cw—gw)| < —pokle for Jw—y|>s.
Now return to (4.3),

f%@ f (g C) dC*f G(C)
=

If necessary, we shrink r, sufficiently so that 4(x; )N 4(y; 6)=0. Since G(2)
is analytic in S?\4(y; d), an application of Cauchy’s integral formula yields

[ Qg f (87000 grof GO g,

r {—=x c-yi=5 C—

We compute the integrals separately.
(The first integral): Let r>|x—y|+0, and we fix a integer 2>0 such

that —‘2—:71— >|x—y|-+0. For sufficiently large integer M=%, we may assume
F:{z; ]z—xlz—zél—}. Then

B0 g | (8000 4§ (8610 gz
—X

K-z =7 C'—JC =0V DEp(xi T

Divide the second term into two parts at k, apply (4.6) for i<k and the first
term, and apply for iz k. Then Melnikov’s estimate yields

U (g G)(C) d '_ r(rZM 18| £l

—|x—y|—0)
PR _ 18] /1 a(En(xr; MN\XY)
nxo__zm__lx—y]—a TRl

alEy(x; I\ X

14
on+1

+26 34 71

(The second integral): This time we can write as follows;
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[ 6@ g5 Qg

17—y 1=5 C—“x VE (Y 6) C x
since the terms of the right hand are vanishing for sufficiently large n;
because —g%— is analytic in some neighborhood of y. Thus, by and

the definition of g, Melnikov’s estimate yields

G(©) 1 21/ . 32 g
§ o et = s 2cz< e g Iy ONX)
2¢ 0
= s DA By MK

We put these together, and let M—oco. Since A(X; x,y) is uniformly
dense in A(X), we have the following estimate.
43. ESTIMATE. Let x, yeX. Let >0, 6>0 such that »>|x—y|+9,

and 0<d<|x—y|. Let & be a positive integer such that —2{:7 > x—y|+9,
then

(A-3) le—yli“éClx—yl[ ,,_|x_1_y; -
k-1 1 2"
T4E — — a(Eq(x; r\X")
ToEAT | x—y]—
J——l— be(x; r)+— |X—T 1(}’;5)]r

where C is a universal constant, for instance, we take C=36rc.

Now we shall derive two versions of which have meaning in the
cases (4.1), (4.2) respectively.

4.4, ESTIMATE. Let x, ye X, 0<o<1 and r>0. If |x—y|<—£—, then

a0 -y =[G+ 2 e et )
+ i ay; olx—yD)],

where k:[—;}z— logzlxrfyd; that is, £ is the maximum integer with 21k

> \/M:yfl,'_
= r

ProOOF. Let 0=o0|x—y| in (A-3). Then we have only to consider the
second term in [(A-3). This is converted as follows;

k—1 1
=yl 42—
B e Ea e

2 a(Ey(x; AX)
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4| x—y]| kloom
= Ty =2 x—y] 2 7

V]x—y]
= V2 x—y| -

4.5. ESTIMATE. Let x, ye X, 0<o<1 and r>0. If |x—y|<—4, then

a(Eq(x; T\X")

(A5) x4 = Cla—y| [ sy + o ols N2 a1<y;0|x—yl>],

—0 | x—y]

PrROOF. Let k2 be the maximum integer such that 2k =4lx—y|. We
must be concerned with the second and the third terms in [(A-3). Since

4

“onET | x—y|— ~—2—Z+—r—2 ! 1 4

L=y

for n <k, the second term is converted as follows;

E—1 1 on . .
43— 2 a(Ey(x; T\X®)
=0 e — lx—y|—
E—1 2n+2 2n
=13 a(B(x; X £ -2 a(x; 7).

e S 2

Also, the third term is converted as follows; let d=0|x—y],

43 2B, (X =5 5 -E (B XY,

Alx—yl o 27
e -

8 g”

n==r

(B X" S 7).

COMMENT. Our estimates are unintelligible. However, if we consider
when x is fixed and ¢ is a constant, then the first three terms in (A-4) and
the first two terms in (A-5) are determined by the usual metric |x—v|, and

hence we have only to warry about the last term containing a,(y; g|x—y|)
for (A-4) and (A-5).

§5. Applications of the estimates.
We use the following simple facts:
(B.1) ald(x;r)=r.
(5.2) If D,CD,, then a(D,)=a(D,).

The first application is to show the following well known theorem (see

21 3D
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5.1. THEOREM. Let x= X.
— . 0
(@) If Tim -2AENXD 0 then x is a peak point for A(X).
r—0
(b) If ay(x;r)=oc0 for some r>0, then x is a peak point for A(X).
PRrROOF. (a) By the assumption, there exist 7, | 0 such that

lim al(d(x; ra)\X") 0.

nves Tn

Let y= X be a distinct point from x, and set C,=a(d(x; r,)\X°). Then, by
(A_lr

Sn C lim E"
lx—y[4 = lim n__ n — o Ta_ 50,
e 1+_%_ d(y, 4Cx; Ta\X") I+ 1im S”

since d(y, 4(x; r,)\X°)—|x—y| and C,=a(d(x;r,\X°)<7,—0. This shows
that x is isolated in X with the A(X)-metric topology. Therefore x must be
a peak point for A(X) by a Corollary of Theorem 2 in Browder’'s [1]. (b)

will follow from the similar argument with the use of instead of
5.2. THEOREM. Let x= X and let x, (#+x) be a sequence in X.

(a) If x, converges to x in the A(X)-metric topology, then for any ¢ >0

lim a(d(x,; 0] x,— x| )\X°)

N-—r00 Xn—— X

=0.

(b) If {x,, x,—x} is a sequential derivation for A(X) at x, then for any
>0

lim a(d(x,; o] x,—x]\X®) =0.

n—oo |-xnﬂ-xl2

PROOF. (a) By the assumption x is not a peak point for A(X). Hence
. 0
lim (405 IAX®)
r—0 v
inequality

(A(xn; ol 22— xIN\X") _ (A(x; A+0) | x,—x[N\XT)
e It U e E [

=0 by Theorem 5.1 (a), so the conclusion yields to the

(b) In this case there is a nonzero bounded point derivation on A(X) at
. 0
x. Hence 11113 “(A(";I)\X ) =0 ([4], Th. 2). The remains are similar.
53. THEOREM. Let x= X. Let x, be a sequence in X which converges to
x in the natural topology of C.
(a) Suppose x is not a peak point for A(X). x, converges to x in the
A(X)-metric topology if and only if

lim a,(x,; 0| x,—x|)=0;

n—oo
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where d is any fixed number 0 <o <1.
(b) Suppose there exists a nonzero continuous point derivation on A(X) at
x. Then {x,, x,—x} is a sequential derivation for A(X) at x if and only if

= a(n,;olx,

—x|)
< 00}
n—reoo |xn_~xl ’

where a is any fixed number 0 <o <1.
PrROOF. (a) We shall prove “if only” part. From (A-2),

a1<xn; len—xD _ C((A(Xn ) O'l-xn'—xl)\Xo)
3+a,(x,; 0] x,—x]) | t,— x| —0|x,—x]

P

. - 0
Since we have seen lim a(d(x, 'lzlf_”xlxl)\X) =0 in Theorem 5.2 (a), the

second term in the right hand tends to 0 as n—co, and the assumption is
| x,—x]4—0, thus a,(x,; g|x,—x|) must converge to 0. “if” part is an easy
consequence of the estimate (A-4) and the last comment in the previous

section.
(b) We shall prove “if only” part. From [A-2),

ay(Xy; 0| X, —x])_
“xn—_x“A >__1___ Ixn—-xl . a(A(-xn; o-k{cn_—_xl)\XS R
lxn—xl =5 3+a1<xn;alxn—xl> lxn—xl(lxn—xl—olxn——xl) ’

We have seen in Theorem 5.2 (b) that the second term in the right hand
tends to zero. And since x, converges to x in the metric topology,
ay(x,; 0l x,—x|) converges to 0 by (a). Thus Theorem 3.1 implies the first
half. The latter half follows from (A-5) and the last comment in the pre-
vious section.

Addendum. After this paper was submitted for publication, James Li-
ming Wang sent to the author his paper “An approximate Taylor’s theorem
for R(X)” (Aarhus Univ. Preprint Series, 1972/73, No. 59). With another
remarkable facts he showed independently in it that the arguments in section
3 are valid for ¢-th order point derivation.

Suggested by his paper, the author obtained the estimates in the case of
t-th order point derivation. In particular, it was proved that the linear func-

tional i(%)—:%(—@— on A(X) converges uniformly to f/(x) if and only if

lim al(xn; O'|.7Cn'—Xl) —
n Ixn'—xl

0, for any fixed 0 <o < 1.
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