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In this paper we define the normality of sequences in the scale of not
necessarily integral $\beta$ and give a construction of $\beta$ -normal sequences as a
generalization of Champernowne’s construction of normal sequences.

Let $\beta>1$ be a fixed real number. Define a transformation $T_{\beta}$ on the unit
interval, which we call $\beta$ -transformation, as follows: $T_{\beta}x=\beta x-[\beta x],$ $0\leqq x<1$ ,

where $[z]$ is the integral part of $z$. Then $T_{\beta}$ has an invariant probability
measure $\mu_{\beta}$ , under which $T_{\beta}$ is ergodic, such that

$1-\beta^{-1}<\frac{d\mu_{\beta}}{dx}=\frac{1}{E_{\beta}}\sum_{n=0}^{\infty}\frac{c_{n}(x)}{\beta^{n}}<(1-\beta^{-1})^{-1}$

where

$c_{n}(x)=\left\{\begin{array}{ll}1 & if x<T^{n}1 ,\\0 & if x\geqq T^{n}1,\end{array}\right.$

$T^{0}1=1$ , $T^{n}1=T\beta^{-1}(\beta-[\beta])$ ,

and $E_{\beta}$ is the normalizing constant (see [2]). Recently the first named author
and Y. Takahashi investigated in [1] the $\beta$ -transformations as a class of
symbolic dynamics and obtained various new results. Our theorem (in this
paper) is a byproduct of these results.

Consider the $\beta$ -adic expansion of a real number $x,$ $0\leqq x<1,$ $i$ . $e$ .

$x=\sum_{n=0}^{\infty}\omega_{n}(x)\beta^{-n- 1}$

where $\omega_{n}(x)=[\beta T^{n}x],$ $n\geqq 0$ . Then through the mapping $\pi_{\beta}(x)=\omega_{0}(x)\omega_{1}(x)\cdots$

$\beta$-transformation is isomorphic to a shift on the one-sided product space $A^{N}$

where $A$ is the state space $\{0,1, \cdots , \beta_{0}\}$ and $\beta_{0}$ is the greatest integer less
than $\beta$ . Of course the measure on $A^{N}$ is generated by $\pi_{\beta}\pi_{\beta}^{-1}$ , which we again
denote by $\mu_{\beta}$ . Now we define the $\beta$ -normality of a sequence in $A^{N}$ .

A sequence $ b=b_{0}b_{1}b_{2}\cdots$ in $A^{N}$ is said to be $\beta$ -normal if for any positive
integer $k$ and any word $u=u_{1}u_{2}\cdots u_{k}$ of length $k$ we have

$\lim_{n\rightarrow\infty}n^{-1}F_{n}(u)=\mu_{\beta}(u)$



Construction of $\beta$ -normal sequences 21

where $F_{n}(u)=F_{n}(u, b)$ is the number of indices $i,$ $0\leqq i\leqq n-1$ , for which $b_{i}b_{i+1}$

$b_{i+k-1}=u_{1}u_{2}\cdots u_{k}$ . Then the following criterion for $\beta$ -normality can be
obtained easily as a special case of tbe theorem 6 in [3] (p. 46).

Criterion for $\beta$ -normality. Let $b$ be a sequence in $A^{N}$ . Suppose that
there exists a constant $C$ depending at most on $\beta$ such that the relation

$\lim_{\mapsto}\sup_{\infty}n^{-1}F_{n}(u)<C\mu_{\beta}(u)$

holds for any word $u$ of any length. Then $b$ is $\beta$ -normal.
Construction. $A$ word $u=u_{1}u_{2}\cdots u_{k}$ of length $k$ is said to be $\beta$ -admissible

if there exists a number $x,$ $0\leqq x<1$ , and an integer $n\geqq 0$ such that $u_{1}u_{2}\cdots u_{k}$

$=\omega_{n}(x)\omega_{n+1}(x)\cdots\omega_{n+k- 1}(x)$ where $\omega_{j}(x),$ $i\geqq 0$ is the j-th coordinate of the $\beta-$

expansion of $x$. The set of all $\beta$ -admissible word of length $k$ will be denoted
by $W_{k}$ and the cardinality of the set by card $(W_{k})$ . Let

$C_{k}=C_{k,1}C_{k,2}\cdots C_{k,card(W_{k})}$

be the word of length $k$ . card $(W_{k})$ obtained by aligning all words in $W_{k}$

lexicographically. Consider the sequence defined by

$ b_{\beta}=C_{1}C_{2}\cdots C_{k}\cdots$ .
THEOREM. The sequence $b_{\beta}$ is $\beta$ -normal.
REMARK 1. These arguments show that for $\beta$ -normality of the sequence

$b_{\beta}$ , the ordering of $\beta$ -admissible words of length $k$ in $C_{k}$ is not substantial
and so we may obtain a set of $\beta$ -normal sequence having the power of the
continuum by making all possible permutation, for each $k\geqq 1$ , on all $\beta$ -admis-
sible words in $W_{k}$ . If $\beta$ is an integer greater than 1 then the sequence $b_{\beta}$

becomes the Champernowne sequence. In [4] A. G. Postnikov generalized
the Champernowne’s construction to the Markovian cases and to the case of
continued fraction expansion.

PROOF OF THE THEOREM. For any word $u$ of length $k$ we denote by

card $(W_{n}(u))$ the number of words in $W_{n+k}$ whose first $k$ digits coincide with
$u$ . Then we know the following

LEMMA. For any word $u$ of length $k$

$\lim_{n\rightarrow\infty}\beta^{-k- n}$ card $(W_{n}(u))=\frac{R_{\beta}(u)}{M_{\beta}(1-\beta^{-1})}$

and hence

$\lim_{n\rightarrow\infty}\beta^{-n}$ card $(W_{n})=\frac{1}{M_{\beta}(1-\beta^{-1})}$

where $R_{\beta}(u)$ is the Lebesgue measure of the interval $\pi_{\beta}^{-1}u$ and $M_{\beta}$ is a constant
which depends only on $\beta$ .

For the proof of this lemma see [2].
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REMARK 2. From this lemma Sh. Ito and Y. Takahashi deduced in [1]
several Properties of the system $(T_{\beta}, \mu_{\beta})$ ; for example, the absolute continuity
of the invariant measure $\mu_{\beta}$ with respect to Lebesgue measure, the Bernoulli
property and the fact that the metrical entropy of $(T_{\beta}, \mu_{\beta})$ attains the topo-
logical entropy.

Let $F(u, c_{n})$ be the number of $u$ appearing in $c_{n}$ . Then we have

$F(u, c_{n})\leqq\sum_{J=0}^{n-k}card$ $(W_{j})$ card $(W_{n-j- k}(u))+(k-1)$ card $(W_{n})$

and so
$\frac{F(u,c_{n})}{ncard(W_{n})}$

$\leqq\frac{1}{n-k+1}\sum_{J=0}^{n-k}\frac{card(W_{j})}{\beta^{j}}$ . $\frac{card(W_{n- j-k}(u))}{\beta^{n-j}}$ . $\frac{\beta^{n}}{card(W_{n})}+O(\frac{1}{n})$ .
From the above lemma we obtain

$\lim_{n\rightarrow}\sup_{\infty}\frac{F(u,c_{n})}{ncard(W_{n})}\leqq\frac{R_{\beta}(u)}{M_{\beta}(1-\beta^{-1})}$

$\leqq\frac{\beta^{(u)}}{M_{\beta}(1-\beta^{-1})^{2}}$

since $1-\beta^{-1}<d\mu_{\beta}/dx$.
Put $p_{j}=\sum_{i=1}^{j}i$ .card $(W_{i})$ then

$F_{p_{j}}(u)=F_{p_{j}}(u, b_{\beta})=\sum_{i=1}^{j}F(u, c_{t})+O(j)$ .
Hence we have

$\lim_{n\rightarrow}\sup_{\infty}\frac{F_{p_{j}}(u)}{p_{j}}\leqq\frac{\mu_{\beta}(u)}{M_{\beta}(1-\beta^{-1})}$ .

But for any $n\geqq 1$ we have

$n^{-1}F_{n}(u)\leqq\frac{F_{p_{j+1}}(u)}{p_{j+1}}$ .
$\frac{p_{j+1}}{p_{j}}$

where $k$ is the integer such that $p_{j}\leqq n<p_{j+1}$ . Therefore we obtain

$\lim_{\rightarrow}\sup_{\infty}n^{-1}F_{n}(u)\leqq\frac{\beta+1}{M_{\beta}(1+\beta^{-1})^{2}}\mu_{\beta}(u)$ .

The proof of our theorem is thus complete by the criterion.
REMARK 3. Let $A$ be a finite set with discrete topology $and|_{-}$, let $A^{N}$

$=\prod_{k=1}^{\infty}A_{k},$ $A_{k}=A(k=1, 2, )$ . The shift transformation on the space $A^{N}$ is

dePned by the mapping

$\sigma:(a_{1}a_{2}\cdots)\rightarrow(a_{2}a_{3}\cdots)$ , $(a_{1}a_{2}\cdots)\in A^{N}$ .
$A$ subshift is the pair (X, a) where $X$ is a closed, with respect to the product
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topology, a-invariant subset of $A^{N}$ . Let $W_{k}=W_{k}(X)$ be the set of all words
of length $k$ appeared in $X$. Denote by

$c_{k}=c_{k}(X)=C_{k}{}_{1}C_{k}$ ${}_{2}C_{k,card(W_{k})}$

the word of length $k$ . card $(W_{k})$ obtained by aligning all words in $W_{k}$ lexico-
graphically and define the sequence

$ b(X)=c_{1}c_{2}\cdots c_{k}\cdots$

as an analogue of the Champernowne sequence. If the orbit $\{\sigma^{n}b(X);n=0,1, \cdots\}$

has such ‘special uniformity’ as is mentioned in Lemma, the sequence $b(X)$

is normal with respect to some $\sigma$-invariant measure. (The definition of the
normality of a sequence with respect to an arbitrary measure on $X$ can be
found in [3].) In general we may conjecture that the sequence $b(X)$ is
normal with respect to the corresponding a-invariant measure $\mu$ on $X$ (if it
is unique) and moreover, the metrical entropy of the system (X, $\sigma,$ $\mu$) attains
the topological entropy. This is the case for Markov subshifts (see [1]) and
also for $\beta$ -transformations as we have already shown though they are not
necessarily Markov.
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