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§1. Introduction.

Let A= A(X, D,) be a formally self-adjoint elliptic differential operator
of order m which is defined on a bounded domain £ in the n-dimensional
real space K" and Avbea self-adjoint realization of A in L*Q) with domain
in H,(2), which is bounded from below. The asymptotic distribution of
eigenvalues {4,} of A has been studied in many papers.

S. Agmon showed the asymptotic formula of the form

NH)=Z1l=c¢ t"/"‘+0(t(""’)/m) .............................. (1)
Aj<t
where ¢ is an arbitrary number less than 1 if the principal part of A has
constant coefficients and less than 1/2 if the principal part has variable co-
efficients (see [3]).

The estimate (1) was shown by using the asymptotic estimate for spectral
functions e(t; x, x) of ﬁ, which was derived from the asymptotic estimate of
resolvent kernels for the operator defined on R" (see [3]).

The purpose of the present paper is to give another simple proof of the
asymptotic formula (see in section 4) of resolvent kernels for the
operator of order m >n which is defined on R".

For the proof we shall use the parametrix of an elliptic differential
operator, which was used by L. Hoérmander to obtain the asymptotic
behavior of spectral functions and its Riesz mean.

Using the method of the present paper we can obtain similar results to
those of for the case of semi-elliptic operators.

§2. Notation and lemmas.

We use following notation;
Dx:(D.rp Tty Dzn) ’ ij: '_lazJ: —1(8/8x]) ’ ]: 1; )

a=(ay, -+, a,), @;; non negative integer for j=1, ---, n,
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la|=a;+ -+ +a,, Di=Dg-- Dir,
x%=x®--x% and [x|=(I+ - Fx2)2 for x€ R".

We consider the differential operator

AX, D)= AX, D)=3 % A(x)Ds

J=0 la|=j

of order m > n with coefficients of class 3*(R%), where B3°(R?) = {f(x)eC~(R%);
|D%f(x)|<C, for any a}.

In what follows we assume that the principal part A,(x, & of A(X, D,)
is real valued for &< R™ and uniformly elliptic, that is, there is a constant
C, such that

2.1 Am(x, &) =MZ=M A0 = ColEI™ (G >0).
For a complex number 4 we denote the distance from 4 to positive real

axis (0, o0) by d(4), that is,

|ImA| for Re1=0
(2.2) d(2) =
| 2] for ReA<0.

LEMMA 2.1. Let 6 be a positive number less than 1. Under assumptions
that d(Q) = C,|A|*"% and |2|=C, (C,, C,>0), there exists a positive constant C,
such that

(2.3) | An(x, §)—2| = C(|E]™+121)7°.
PrROOF. We put A=pg+iv. When ¢ =<0, we have
| An(x, §) =21 = (1/2)(An(x, §)—p+|v])
2 (1/2)(GCol &1 —p+1v])
= (1/2)(ColE1™ 141
= C([&I™+ 1212,
When 0< ¢ <(1/2)Co|&|™, we have
| An(x, =21 = (1/2)(An(x, &)—p+v])
= 172G E1m—p+ v ])
= 1/2)((A/2)C, 1 €1™+ [v 1)
= [1/2(A/DC | €™ +(1/2) e+ | ])
= Co(1€1™+121)
= Cy(1g|™+121)°.
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When p=(1/2)C|¢|™, we have [v]=d(2)=C,|2]""? so
| An(x, &) =21 = v = (1/2)Co| 212+ (1/2) | v]
= (1/2)Copt =0+ (1/2)Cy | 21172

=Cy'(JgI™+ A1) 2. Q.E.D.

For any function p(x, §) <S5, where S5o={p(x, &) =C*(R2X RE);

| D30g p(x, £)| < Cas 14+ |E])*"™ for any a, 8}, we define the operator p(X, D,)
by

pX, Dou@ = e p(x, Ha@ds  for ues

where dé=2n)""d¢&, 4(§) :j -tz (x)dx and S = {u(x) €C*(R?) ;J l1l_rp |x|¥| D2u(x))

e
RT
=0 for any real number 2 and multi-integer «a}.

The operator is called a pseudo-differential operator with its symbol
p(x, §), and we denote a(p(X, D,)) = p(x, &).

For any symbol p(x, §) we denote p(3(x, &) = D30g p(x, &), p“°(x, §) =3¢ p(x, &)
and pes)(x, £)=Dip(x, &) (see [8). In the followings we denote fRnby J

§3. Parametrix of the operator A(X, D,)—A.
For the brevity of notations we use
P4, x, &) = An(x, £)—4
P4, x, & =A;x &, j=01,--,m—1.

We determine the series {gx(4, x, &)}, of symbols as follows.
Using the expansion formula for symbols of pseudo-differential operators
(see [6], [8]), we obtain formally that

(3.1)

o({AX, D=2+ 3 x4, X, D)

~a( 5 32, X, D02 X, D)

Nj% EO 2 %—‘ ;7?—)—,1'(/27 X, S)Qk(a)(zy X, E)
~E R 5 O 6.
‘Oéj;miv ’

So we define the symbols ¢,(4, x, §), £=0,1, ---, as follows;

(32) pm(zy X, E)QO<2) X, 5) - 1 ’
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(Y PR x O %O B Ep0R % Ot x §=0,

J+lal=l
k=L
for (=1, 2, ---.
Then we have following propositions.
PROPOSITION 3.1. The symbols {qi(4, x, &)} 5-o have following properties;

(34) Qk(tm/z’ X, tE) - t_m_ ka(Zy X, S) fOT (lny t> O ’

1 1

(3.5) 9o(4, x, §) = P, % 8 Ap(x, =1

2k
— P, (%, &) b=
(3~6) Qk(z, xr E) ng pm(z’ x, é)j+l ’ ly 27
where py,i(x, ) are homogeneous polynomials in & of degree mj—k with co-
efficients of class B*(R%) for mj—k =0 and py,;(x,E)=0 for mj—k<0. In
particular if pL(4, x, &) is independent of x, that is, the principal part of
A(X, D,) has constant coefficients, then

— v D8 _
(3.7 74, x, §) = El S x B k=1, 2,

where py, (x, &) have the same property as the case of variable coefficients.

PROOF. The equality is clear from (3.2), and {3.4) follows from [3.5)
and [3.6) So we show the equality by induction in k.
We note that the equality can be rewritten in the form

(3.3 GO, % Obalhy %, E)F 3 L A0 (%, Ogx, (A %, ) =0.

ktsilal=t O}
kL

For /=1 we have

3.3)” 044, X, E)bn(4, X, )+ An-1(x, £)44(4, x, &)
+|0§3:1JZ§Z“(-’C, o4, X, ) =0.

When |a|+[8]+0, we have by induction in |a|+|f]

(39 apx O="5 Lhrnl
where p§;s(x, §) are homogeneous polynomials in & of order mj—|a| (=0)
with coefficients of class B<(R%). \

The equality for k=1 follows from [3.3) and [3.8).

We assume that is true for any £</[. Then we have by induction
in |a|+|B], for 1=k =1

- _ HalHBl pE s o(x, £)
3.9) Wk 1 =" 2 = S
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where pg;s(x, §) are homogeneous polynomials in & of degree mj—k—|a|
with coefficients of class $*(R%).

From [3.8), [(3.9) and [(3.3), we have
QHI(R) .?C, é)pm(zy xr'é)

2k+lal 1 DitalX, &)

_{ . > AR (x, ) b S
ktital=t+1, =2 & Pml4, %, §)

k41

k0

le] _1__ (@) po,i,a(xy &)
sat Eo al Ano(x, E)W
la |70

+L’4m—(l+1)(x: 5)q0(2y X, &)} .

In the above equality the second and third terms are equal to zero if
m<I[+1. Thus we obtain for [+1.
When p,(4, x, €) is independent of x, we have in place of and [(3.9),

& pGiex, §)
/ (a) — 0,7, B\
(3.8) (10(5)(2, X, E) ]Z—‘: ‘—‘—pm(z"‘ x, E)j+1
for |a|+0, and if |8]+ 0 then the right hand side of [3.8) is equal to zero,

’ Eilal pu j (xv E) —
(a) — k7,8 f— [N
3.9 a4, x, &) El 5z, B k=1,2,

where pf;5(x, &) are the same as in and [(3.9).

Using [3.8} and [3.9) we get for the case of constant coefficients.
Q.E.D.

PROPOSITION 3.2. When d(2)=C,|2|'"% and || =C,, we have
(310 |G55(A, %, &)1 = Ci |1 |2k 0p-ctmxksian
In particular if pn(A, x, &) is independent of x, we have
3.11) | G54, X, E)1 = Ci o, (1§17 | ]2 AP HmEHED

ProoF. By [Lemma 2.1l and [(3.9) we have

PEXCRACTEg L2 Y

“® = Tpa(, x, €77
2k+|al+i gl
SChlag 3 [EIMHI(g[ "] 2]) 020w

mj—k—|a |20

2k+lal+H 81

Cllc,.a,ﬁ j=22 (|51m+ |2|)5J'—(1/m)(k+1a'1)

IA

< Ck o 5(151m+ 1 1 |)6(2k+|a’\+iﬁl)—(1/mxk+lal> .



Asymptotic behavior of resolvent kernels 469

When p.(2, x, &) has constant coefficients, using and [3.9) we
obtain,

Et+lal
|04, %, O = Choap ng (|&| ™| 2])%I-/mck+aD
= Cia ﬁ(lE‘m-{- | 2 l)ﬁ(k-l—lﬂ’l)—(l/m)(kﬂa]) .
Q.E.D.

REMARK. Considering A as a parameter, we have g4, x, &) € S;77* for
d(2) # 0, that is,

1634, %, &)1 = Crpayp,a(|§ 1)~ W/DmrERED,

For any natural number N we put

(3.12) Qx4 % O =B 03, %,9).
PROPOSITION 3.3. It holds that
(3.13) {A(X, D;)—2}-Qn(2, X, D)u(x) =u(x)+Ry(2, X, D)u(x)
for any us S where
(3.14) Ry z &= 3 Lop@2 % 8,4 5 8).

ktitlalzne !
kSN

PRrROOF. Using the expansion formula for symbols and equalities and

we have
o({AX, D=2} Qu(h, X, D)
=% 3% 0(bn-s(4 X, D)-x3, X, D)

-3 1 @
- 2 e m—j(zy X, S)Qk(a)(zy X, 5)

=0 j+xial=t !

oD PR % DR %, )

Jtk+lealz
k=N
= 1—|—RN(27 xy E) .
Thus, we obtain the proposition. Q.E.D.
PROPOSITION 3.4. When d(A)=C,|2|*"% and |2|> C,, it holds that
(3.15) | R34, %, €)1 = Cry,arp( |17+ 121)%

where 0,=0Q2N+ |a|+|B|+m)—1/m)(N+ |a]|)+2.
In particular if p,(A, x, £) has constant coefficients, we have

(316) IR%()ls)('z’ X, E) l é CN,a,ﬁ(lEIm—I_ IZ |)02
where 0, =0(N+|a|)—1/m)(N+ |a])+2.
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PROOF. By the definition of Ry(4, x, £), we have

1
@ k+j+lrlaN+1 ajtag=a r! aly02,81,P2
k<N B1+82=8
lar+yl+ism

pm—jg};—:)al)(29 X, $)qk$—2€‘32)(21 X, S) .
Hence, using Proposition 3.2 we obtain

[R5 %, O = Chyayp X Pm- iy (A %, )1 X 1415, (4, %, €)1

é Cf\'/,a.ﬁ 2 (IE | m+ |2 ‘)(l/m)<m-j—|r+a1 D+aC2k+ g+l 7 +B2)-(1/mXk+ lag D

é fo'd'ﬁ 2 (IE I m+ u l)6(2k+|a2|+Ir+,82|)—(1/m)(k+la|)+(1/m)(m-j—Irl)

where summations can be taken for k4+j+|y|= N+1, k<N, |as|+ 7| +ism,
a,ta,=a and B,+8,=p.
So we get
IRyG@4 %, 1=C X (|§]™+ 12"
N—m=k=N

= Crya (111217
The inequality can be shown by the same way using Q.E.D.

§4. Asymptotic behavior of resolvent kernels.
Since the estimate
(4.1) lulm = COAX, Dulo+lulle)  for ues

holds where |u|, is the Sobolev norm, that is,

lul2 = A+ 1812 1)1,

considering the operator A= A(X, D,) in L} R?) with domain C,(R%), A can
be extended uniquely to a closed operator A with its domain H,(R"™) =
{fueS; |ulln <oo}.

Since the principal part A,(x, &) of A is real valued, A can be written
in the form A(X, D,)= A\(X, D,)+B(X, D,) where A (X, D,) is formally self-
adjoint and B(X, D,) is an operator of order m—1. So using the same method
as in S. Agmon [T], we can prove that the resolvent set of A contains the
set A= {dQ)=C,|2|*"¥™ |2|=C,} for some C, C,>0.

Furthermore we have the same assertion for the formal adjoint A* of A
and ﬁ*:(ﬁ)*. By the closed graph theorem it holds that for 1€ 4, (/—Nl—l)"1
and (ﬁ*—l)‘1 are bounded operators from L*(R™ to H,(R™).

Since m > n, by the kernel theorem, which was shown by S. Agmon [2],
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we get that the resolvent operator (f~1—2)“ is an integral operator with con-
tinuous and bounded kernel R,(x, y), that is,

42 Rau(x)= (A=) "u(x)= [ Ri(x, Yu(y)dy ~ for ue L¥RY),
and

I'Z l (n/m)
4.3) | R (x, y)l§C——mj-— for i€ 4.

LEMMA 41. For any ue S we have
(4.4 Ru—Qn(4, X, D)u=—R;-Ry(, X, Du.
PROOF. By definitions we have

(ﬁ—l)-Rzu:Rz-(A——Z)uzu for any ue S.

So by [Proposition 3.3 we obtain

Ru—Qn(4, X, Dp)u=Ru—R;-(A—2)-Qn(4, X, D)u

- Rlu_Rl{u—l'RN(xy Xy Dx>u}

= —R;-Ry(2, X, D)u. Q.E.D.
From the equality it can be written in the form;
N
“5) Rix, )= 2 )@, % x=3)— [ R, 2R 2, 2—3)dz
where,
46) 62, %, 2) = [e%q,2, x, &),
&7 Ry, x, 2) = [e*Ry(4, x, §)dt .

In fact, the integrability of right hand side of and is true be-
cause ¢;(4, x, §) € S;,¢7 and Ry(4, x, &) e S;p ¥ 1and m >n. By we have

JRitx, i)y = 2 fe=q,2, x, O
—[Rulx, 2)f e Ry(2, 2, £)0(e)agdz
= é [ei=2q,2, x, &)fe-eu(y)dyde

——jR;((x, z)je”"’RN(Z, z, E)je'iyfu(y)dyd&'dz .

Since u € S, changing the order of integrals we have
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JRx, pyutdy = 3 [[ee-rq,2, x, e)dgu(y)dy
—[Rutx, [ [ <Ry, 2, Odsu(3)dydz
N
=2 {6, x, x—y)u()dy

—[Rilx, 2 [Ri(d, 2, z—y)u(3)dydz .

So we obtain if R(x, 2)R%(A, z, z—y) is integrable in z. We shall
refer to the integrability of Ry(x, 2)R4(4, z, z—y) in the proof of the follow-
ing theorem.

THEOREM. (i) When d(A)=C,|2|1"Ve™+ and C,<[{A] (0<e<m/2), we
have

48) [(=2=m Ry, 2)= 23 C,()(—A) /™| S Corl 2140/
for any N.
(1) If dn(a, x, &) is independent of x, we have
“9 |(—2P=mRy(x, D)= 3 C()(—2) ™| = Co,ol 4] =450/
j=o

Jor dA) = Cy|A|1"V™e, 2| =C, and 0<e<1/m.
In these inequalities C;(x) are functions in B*(R%) and in particular,

(4.10) Co(x) = dé.

1 _ 1
j‘ pm(_l; X, 5) ds——j L'41n,(-xy §)+1
PRrROOF. By we have

G4 x, 0= (4, % &)t .

Hence, by the [Proposition 3.1 we get
g @, x, 0)=(=vm1-im{g(—1, x, E)dt

= Cy(x)(—yr/mi-iim.,
For any multi-integer a we get

2 Riy(A, x, 2) =2 Ry(2, x, £)dE

= (—i) [t RE(, x, £)dE .

Using (3.15) for 6 =1/2m—e¢, we obtain
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|2 Riy(R, 2, 2)] < Caf (|| |2])0Vem-oasmsian-aimxier e g

< CQ“.(IE || 2] )" 1eV/2me ON 4 metlaDers ge

Thus, taking a large N such that 2Nme—3 > n, we have
Iza.R-’N(l, X, Z)] < C:Z NIZI-(2N+m+]al)s—]a}/2m+n/m+3 .
Hence, we obtain
|RN(4, %, 2)| < Cly (14| 2|) %[ 2] @V +mets

for any % and sufficiently large N.
Using and taking k> N, we have

n/m
MRz(X, 2)-Ry(4, z, z—y)dz|=C ‘fi(ll) lzl—(2N+m):+4j(1+ lz—y])*dz
< Cv,l . u[ - (N+m)e+5
=7 d) '

Thus, by we have

N
Rilx, )= 2454 % 0+ [Ro(x, DRA(R, 2 2=9)dz

= év C .(x)(__,Q)n/m-l—f/m_{_O(*l,,,,lz | —(2N+m)+5)
= d(4)

for |4]=C, and d(2) = C,|2|*~/*™*e,
Hence, we have

Ry(x, x)— ]é C(x)(— 2)r/m-dim=1

_ NiM C -(x)(—Dn/m-l—jlm+0<”1ﬁ'* 12 —(2N+2M)E—me+5)
5 d(2) :

Now taking M sufficiently large we get the estimate

The estimate can be shown by the same way by using estimates
for the case of constant coefficients. Q.E.D.

When A(X, D,) is formally self-adjoint and defined in a bounded open
domain £, we consider a self-adjoint realization A with domain D(ﬁ)CHm(Q),
which is bounded from below.

S. Agmon obtained the asymptotic estimate for spectral functions
and the asymptotic distribution (1) of eigenvalues by using Theorem 3.5.

When the operator A(X, D,) has the form A(X, D,)= Ay(X, D,)+B(X, D,)
where Ay (X, D,) is formally self-adjoint and B(X, D,) is of order m—1,
S. Agmon showed that

(i) the resolvent set of A= A,+B contains the set
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A={2;dA) = C,|AI*""™, (2] > Cy} for some C,, C,>0

where 1710 is a self-adjoint realization of A, with domain D(leO)CHm(Q), and

~

B is an operator with domain D(ﬁ)CHm_I(.Q) and satisfies
|Bullo,o < Cltln-ro for ue D(B),

(ii) A has discrete eigenvalues {4;},-,,
(iii)
Nit)y= 3 1=Cyt"™+o(tV™).
Re Zj<t

Using the and the method in S. Agmon and [3], we have
N(t) — 2 1= Cotn/m+0(t(n—a)/m)

Re Xj<t

where ¢ is the same as in section 1 (see Maruo [9]).
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