On homogeneous Kähler manifolds of solvable Lie groups

By Hirohiko SHIMA

(Received April 24, 1972)

Introduction

Let M be a connected homogeneous complex manifold on which a connected Lie group G acts transitively as a group of holomorphic transformations. We assume that M admits a G-invariant volume element v. If v has an expression

$$v = i^n F(z, \bar{z}) dz_1 \wedge \cdots \wedge dz_n \wedge d\bar{z}_1 \wedge \cdots \wedge d\bar{z}_n$$

in a local coordinate system $\{z_1, \dots, z_n\}$, then the G-invariant hermitian form

$$h = \sum_{i,j} \frac{\partial^2 \log F(z,\bar{z})}{\partial z_i \partial \bar{z}_j} dz_i d\bar{z}_j$$

is called the canonical hermitian form of M. If M carries a G-invariant Kähler metric and if v is the volume element determined by this metric, the Ricci tensor of the Kähler manifold is equal to -h. From now on, M is assumed to be a homogeneous Kähler manifold unless otherwise specified. The canonical hermitian form h plays an important role in the investigation of homogeneous Kähler manifolds, and results in this direction are the following:

- (i) If G is a semi-simple Lie group, then h is non-degenerate and the number of negative squares of h is equal to the difference between the dimension of a maximal compact subgroup of G and the dimension of the isotropy subgroup of G at a point of M [8].
- (ii) If G is a unimodular Lie group and if h is non-degenerate, then G is a semi-simple Lie group $\lceil 2 \rceil$.
- (iii) h is negative definite if and only if G is a compact semi-simple Lie group [8], [11].
- In [13], E.B. Vinberg, S.G. Gindikin, I.I. Pjateckii-Šapiro studied the structure of J-algebras. The J-algebra of a homogeneous bounded domain is proper in their sense. They proved the following:
- (iv) Every proper J-algebra is isomorphic to the J-algebra of a homogeneous Siegel domain of the second kind. Since this domain is holomor-

phically isomorphic to a homogeneous bounded domain, the canonical hermitian form h of a proper J-algebra is positive definite. Moreover there exists a solvable Lie group which acts simply transitively on the homogeneous bounded domain.

Further they developed the theory of Kähler algebras and they proved [1], [14].

(v) If a connected simply connected Kähler manifold M admits a simply transitive solvable and splittable Lie group G, then M is a holomorphic fibre bundle whose base space is a homogeneous bounded domain and whose fibre is a locally flat homogeneous Kähler manifold. (A Lie group G is said to be splittable if the adjoint operator $\operatorname{ad}(X)$ has only real eigenvalues for any element X in the Lie algebra of G.)

We assume that the canonical hermitian form of M is positive definite and that M admits a transitive solvable Lie group. Then the corresponding Kähler algebra of M is a proper J-algebra and hence the universal covering manifold of M is holomorphically isomorphic to a homogeneous bounded domain.

Now, we shall denote by \hat{G} the identity component of the group of all holomorphic transformations of M leaving h invariant. If h is non-degenerate, the group \hat{G} is a Lie group acting on M as a Lie transformation group. In [3], Hano proved

(vi) Let M be a homogeneous complex (not necessarily Kähler) manifold with non-degenerate canonical hermitian form. Then the adjoint group $\mathrm{Ad}_{\hat{G}}(\hat{G})$ of \hat{G} is the identity component of a real algebraic group in $GL(\hat{\mathfrak{g}}, \mathbf{R})$, where $\hat{\mathfrak{g}}$ is the Lie algebra of \hat{G} .

In the present paper, we show that the positive definiteness of h follows from its non-degeneracy provided that a (not necessarily splittable) solvable Lie group acts on M simply transitively. Precisely speaking, we prove the following theorem:

THEOREM. Let M be a connected simply connected homogeneous Kähler manifold with non-degenerate canonical hermitian form h. If M admits a simply transitive solvable Lie group, then the canonical hermitian form h is positive definite and hence M is holomorphically isomorphic to a homogeneous bounded domain.

We denote by $I^0(M)$ the identity component of the group of all isometries of M. If the canonical hermitian form is non-degenerate, then $I^0(M) \subset \hat{G}$ [6], and the center of a transitive subgroup of $I^0(M)$ is discrete. Moreover, if M is a homogeneous bounded domain, then we have $\hat{G} = I^0(M)$ [4] and the isotropy subgroup of \hat{G} at a point $o \in M$ is a maximal compact subgroup of \hat{G} , and the center of the group \hat{G} is reduced to the identity [5].

As immediate applications of our theorem and (vi), we have

COROLLARY 1. Let M be a connected homogeneous Kähler manifold with non-degenerate canonical hermitian form. We assume that M admits a transitive Lie group G whose isotropy subgroup K at a point o of M is a maximal compact subgroup of G and that the group \hat{G} coincides with $I^{o}(M)$ and of finite center. Then M is holomorphically isomorphic to a homogeneous bounded domain.

COROLLARY 2. Let M be a connected simply connected homogeneous $K\ddot{a}hler$ manifold with non-degenerate canonical hermitian form. We assume that a point $o \in M$ has no conjugate point and that the group \hat{G} coincides with $I^o(M)$ and of finite center. Then M is holomorphically isomorphic to a homogeneous bounded domain.

The author wishes to thank Professor S. Murakami for his constant help and encouragement.

§ 1. Preliminaries

A. A 2m-dimensional real vector space V is called a symplectic space if there exists a skew symmetric bilinear form σ on V and a linear endomorphism J of V satisfying the following conditions; for $u, v \in V$

$$J^{2}u = -u,$$

$$\sigma(Ju, Jv) = \sigma(u, v),$$

$$\sigma(Ju, u) > 0, \quad u \neq 0.$$

In this case V may be regarded as a complex vector space with the complex structure J, which we shall denote by \tilde{V} . Moreover,

$$(u, v) = \sigma(Ju, v) + i\sigma(u, v) \qquad (u, v \in \hat{V})$$

is a positive definite hermitian form on this complex vector space \tilde{V} . For a real linear transformation f of V, we put

$$f^+(u) = (1/2)(f(u) - Jf(Ju)),$$

 $f^-(u) = (1/2)(f(u) + Jf(Ju)), \quad u \in V.$

Then, we have $f=f^++f^-$, $f^+J=Jf^+$, and $f^-J=-Jf^-$. Let u_1,u_2,\cdots,u_m be an orthonormal basis of \tilde{V} with respect to the hermitian form (u,v). Put

$$f^+(u_j) = \sum\limits_{k=1}^{m} a_{kj} u_k$$
, $a_{kj} \in C$,

$$f^-(u_j) = \sum_{k=1}^m b_{kj} u_k$$
, $b_{kj} \in C$.

Identifying \tilde{V} and C^m by means of the map $u = \sum_{j=1}^m z_j u_j \to z = {}^t(z_1, z_2, \cdots, z_m)$, f may be considered as a map $z \to Az + B\bar{z}$, where $A = (a_{kj})$, $B = (b_{kj})$ and $\bar{z} = {}^t(\bar{z}_1, \cdots, \bar{z}_m)$. We denote this map f by f = (A, B). If we have f = (A', B') with respect to another orthonormal basis of \tilde{V} , then there exists a unitary matrix U such that

$$A' = UA^t \overline{U}$$
, $B' = UB^t U$.

A real linear transformation f of V is said to be symplectic if

$$\sigma(f(u), v) + \sigma(u, f(v)) = 0$$

for $u, v \in V$. It is easy to see that f = (A, B) is symplectic if and only if A is a skew-hermitian matrix and B is a symmetric matrix. By a simple calculation, we see that if f is symplectic, then $\operatorname{Tr} f = 0$.

Now, let f be a real linear transformation of V which commutes with J. For real numbers α , β , we put

$$V_{(\alpha+i\beta)} = \{u \in V; (f-(\alpha+\beta J))^m u = 0 \text{ for some } m\}$$

and

$$V_{[\alpha]} = \sum_{\beta} V_{(\alpha+i\beta)}$$
.

Then, we have $V = \sum_{\alpha} V_{[\alpha]}$ and $V_{[\alpha]}$ is the largest subspace of V on which the real parts of the eigenvalues of f are equal to α .

B. We denote by M a connected Kähler manifold on which a Lie group G acts simply transitively as a group of holomorphic isometries. Let (I, g) be the Kähler structure on M, i.e. I is a G-invariant complex structure tensor on M and g is a G-invariant Kähler metric on M.

Let g be the Lie algebra of all left invariant vector fields on G, and let π be the canonical projection from G onto M defined by $\pi(a) = a \cdot o$, for $a \in G$, where o is a fixed point of M. Let π_e denote the differential of π at the identity e of G, and let X_e , I_o and g_o be the values of $X \in \mathfrak{g}$, I and g at e and o respectively. Then there exist a linear endomorphism I of \mathfrak{g} and a skew symmetric bilinear form o on \mathfrak{g} such that

$$\pi_e(JX)_e=I_o(\pi_eX_e)$$
 , $ho(X,\ Y)=g_o(\pi_eX_e,\ I_o\pi_eY_e)$,

for $X, Y \in \mathfrak{g}$. Then (\mathfrak{g}, J, ρ) satisfies the following properties ([1], [8]):

$$(K.1) J^2X = -X;$$

$$[JX, JY] = J[JX, Y] + J[X, JY] + [X, Y];$$

$$\rho(JX, JY) = \rho(X, Y);$$

426. H. Shima

$$\rho(JX, X) > 0, \qquad X \neq 0;$$

$$\rho([X, Y], Z) + \rho([Y, Z], X) + \rho([Z, X], Y) = 0;$$

where X, Y, $Z \in \mathfrak{g}$.

 (g, J, ρ) will be called the normal Kähler algebra of M.

It is known that the canonical hermitian form h of a homogeneous Kähler manifold M has the following expression due to J. L. Koszul [8].

Putting

and

$$\phi(X) = \operatorname{Tr}_{\mathfrak{g}} (\operatorname{ad} (JX) - J \operatorname{ad} (X)),$$

we have

(1.3)
$$\eta(X, Y) = (1/2)\phi([JX, Y]),$$

for X, $Y \in \mathfrak{g}$. The form η satisfies the following properties:

$$\eta(X, Y) = \eta(Y, X),$$

(1.5)
$$\eta(JX, JY) = \eta(X, Y),$$

for X, $Y \in \mathfrak{g}$.

Now, the following lemma is due to [1].

LEMMA 1. For E, X, $Y \in \mathfrak{g}$,

$$\frac{d}{dt} \rho(\exp t \operatorname{ad} (JE)X, \exp t \operatorname{ad} (JE)Y)$$

$$= \rho(JE, \exp t \operatorname{ad} (JE)[X, Y]).$$

PROOF. By the property (K.5) of the Kähler algebra,

$$\frac{d}{dt} \rho(\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y)$$

$$= \rho([JE, \exp t \operatorname{ad}(JE)X], \exp t \operatorname{ad}(JE)Y)$$

$$+ \rho(\exp t \operatorname{ad}(JE)X, [JE, \exp t \operatorname{ad}(JE)Y])$$

$$= \rho(JE, [\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y])$$

$$= \rho(JE, \exp t \operatorname{ad}(JE)[X, Y]). Q. E. D.$$

Now, let g be a real Lie algebra and let f be a subalgebra of g. Suppose that there exist a linear endomorphism J of g and a 1-form ω on g, which satisfy the following conditions:

$$[W, JX] \equiv J[W, X] \pmod{\mathfrak{t}};$$

$$[JX, JY] \equiv J[JX, Y] + J[X, JY] + [X, Y] \pmod{\mathfrak{t}};$$

$$\omega(\llbracket W, X \rrbracket) = 0;$$

(J.5)
$$\omega([JX, JY]) = \omega([X, Y]);$$

(J.6)
$$\omega([JX, X]) > 0$$
, $X \in \mathfrak{k}$;

where X, $Y \in \mathfrak{g}$, $W \in \mathfrak{k}$.

Then, (g, f, J, ω) will be called a J-algebra.

Let (g, f, J, ω) be a J-algebra and let g' be a subalgebra such that

$$J\mathfrak{g}'\subset\mathfrak{g}'+\mathfrak{k}$$
.

We can then define a linear endomorphism J' of \mathfrak{g}' so that $JX' \equiv J'X' \pmod{\mathfrak{f}}$, for $X' \in \mathfrak{g}'$. We define a 1-form ω' on \mathfrak{g}' as the restriction of ω on \mathfrak{g}' and we put $\mathfrak{f}' = \mathfrak{f} \cap \mathfrak{g}'$. It is easy to see that $(\mathfrak{g}', \mathfrak{f}', J', \omega')$ is a J-algebra. It is called a J-subalgebra of $(\mathfrak{g}, \mathfrak{f}, J, \omega)$.

A J-algebra (g, f, J, ω) is said to be proper, if it satisfies the following condition (P):

(P) Every compact semi-simple J-subalgebra of (g, f, J, ω) is contained in f.

A J-algebra (g, f, J, ω) will be called normal if f = 0, and we denote it by (g, J, ω) .

We know then the following theorem (cf. Introduction (iv)):

Let (g, J, ω) be a normal J-algebra and let g be a solvable Lie algebra. Then this J-algebra is proper, and is isomorphic to the J-algebra of a homogeneous bounded domain.

§ 2. Statement of Theorem

In this section, we shall state our theorem and sketch the proof.

THEOREM. Let M be a connected Kähler manifold on which a connected solvable Lie group G acts simply transitively as a group of holomorphic isometries. Let (\mathfrak{g}, J, ρ) be the normal Kähler algebra of M. If the canonical hermitian form h of M is non-degenerate, then we get the decomposition

$$g = \sum_{k=1}^{m} g_k$$

of g into direct sum of vector spaces with the following properties:

1) g_k is a J-invariant subalgebra in which there exist an element $E_k \in g_k$ and a subspace p_k with the following properties:

(2.2)
$$g_k = \{JE_k\} + \{E_h\} + \mathfrak{p}_k;$$

$$/\mathfrak{p}_k \subset \mathfrak{p}_k;$$

$$[JE_k, E_k] = E_k;$$

$$[JE_k, \mathfrak{p}_k] \subset \mathfrak{p}_k.$$

Moreover the real parts of the eigenvalues of $\operatorname{ad}(JE_k)$ on \mathfrak{p}_k are equal to 1/2, and

$$[E_k, \mathfrak{p}_k] = \{0\} ;$$

$$[\mathfrak{p}_k,\mathfrak{p}_k] \subset \{E_k\} \ .$$

2) *Put*

(2.8)
$$g^{k+1} = g_{k+1} + g_{k+2} + \cdots + g_m$$
,

then, we have

$$[JE_k, \mathfrak{g}^{k+1}] \subset \mathfrak{g}^{k+1}.$$

Moreover the real parts of the eigenvalues of $ad(JE_k)$ on g^{k+1} are equal to 0, and

$$[\mathfrak{p}_k,\,\mathfrak{g}^{k+1}] \subset \mathfrak{p}_k \,.$$

3) The form η defined by (1.2) and (1.3) is positive definite on \mathfrak{g} and the factors of the decomposition $\mathfrak{g} = \sum_{k=1}^{m} (\{JE_k\} + \{E_k\} + \mathfrak{p}_k)$ are mutually orthogonal with respect to this form η .

Under the same assumption of Theorem, (\mathfrak{g},J,ϕ) becomes a solvable normal J-algebra, since η is positive definite on \mathfrak{g} (cf. § 1. B). Therefore it is isomorphic to a J-algebra of a homogeneous bounded domain (cf. Introduction (iv) and § 1. B). Hence we have our theorem in the introduction.

As for the proof of Theorem, put $g^1 = g$. We shall show by induction on n that there exists a decomposition of g

$$\mathfrak{g} = \sum_{k=1}^{n-1} \mathfrak{g}_k + \mathfrak{g}^n$$

with the following properties:

- 1) For each $k=1, 2, \dots, n-1$, there exist an element $E_k \in \mathfrak{g}_k$ and a subspace $\mathfrak{p}_k \subset \mathfrak{g}_k$ with the properties as stated in Theorem 1).
- 2) Put $\mathfrak{g}^{k+1} = \sum_{l=k+1}^{n-1} \mathfrak{g}_l + \mathfrak{g}^n$. Then \mathfrak{g}^{k+1} has the properties as stated in Theorem 2).
- 3) The form η which is non-degenerate on \mathfrak{g} is positive definite on $\sum_{k=1}^{n-1}\mathfrak{g}_k$ and the factors of the decomposition $\mathfrak{g}=\sum_{k=1}^{n-1}(\{JE_k\}+\{E_k\}+\mathfrak{p}_k)+\mathfrak{g}^n$ are mutually orthogonal with respect to this form η .

Now, our theorem will follow by this inductive process, since we shall

have $g^{m+1} = \{0\}$ for a certain m.

Suppose we have a decomposition (2.12) for an integer n. Then \mathfrak{g}_k ($1 \le k \le n-1$) and \mathfrak{g}^n are clearly J-invariant solvable subalgebras of \mathfrak{g} .

Define

(2.13)
$$\sigma_k(X, Y) = \phi(\lceil X, Y \rceil),$$

for X, $Y \in \mathfrak{p}_k$ $(1 \le k \le n-1)$. Then $(\mathfrak{p}_k, J, \sigma_k)$ becomes a symplectic space (cf. § 1. A). A representation f_k of \mathfrak{g}^n in \mathfrak{p}_k is defined by

$$(2.14) f_k(X)U = [X, V]$$

where $X \in \mathfrak{g}^n$, $U \in \mathfrak{p}_k$, and f_k is symplectic, i. e. $f_k(X)$ is a symplectic transformation of \mathfrak{p}_k for $X \in \mathfrak{g}^n$. Indeed, for $X \in \mathfrak{g}^n$, U, $V \in \mathfrak{p}_k$, we have

$$[X, [U, V]] = [[X, U], V] + [U, [X, V]].$$

By (2.7) and (2.10), the left side of the equation is equal to 0, and hence

$$\phi([[X, U], V]) + \phi([U, [X, V]]) = 0.$$

Therefore $f_k(X)$ is symplectic.

§ 3. Proof of Theorem: Existence of E_n in \mathfrak{g}^n

We shall prove the following.

PROPOSITION 1. Suppose we have a decomposition (2.12) with the properties given there for an integer $n \ge 1$. Then, there exists a non-zero element E_n in \mathfrak{g}^n such that

$$[X, E_n] = \lambda(X)E_n$$
, $\lambda(X) \in \mathbf{R}$, for $X \in \mathfrak{g}^n$;
$$[JE_n, E_n] = E_n$$
.

In the first place, we show

LEMMA 2. A real solvable Lie algebra $\mathfrak g$ contains a commutative ideal of dimension 1 or 2 spanned by the elements E, F such that for $X \in \mathfrak g$

(3.1)
$$[X, E] = \lambda(X)E + \mu(X)F,$$

$$[X, F] = -\mu(X)E + \lambda(X)F,$$

where λ , μ are linear functions on \mathfrak{g} .

PROOF. Let \mathfrak{g} be a real solvable Lie algebra and let $\mathfrak{g}^c = \{X+iY; X, Y \in \mathfrak{g}\}$ be its complexification. By Lie's theorem, there exists a non-zero element Z in \mathfrak{g}^c such that [W, Z] = k(W)Z holds for all $W \in \mathfrak{g}^c$ with $k(W) \in C$.

Let E (resp. F) denote the real part (resp. imaginary part) of Z. Then for any $X \in \mathfrak{g}$,

(3.2)
$$[X, E] = \lambda(X)E + \mu(X)F,$$

$$[X, F] = -\mu(X)E + \lambda(X)F,$$

hold, where λ , μ are linear functions on g.

Let $\mathfrak{r}=\{E,F\}$ be the real vector subspace spanned by the elements E,F. If E,F are linearly dependent, \mathfrak{r} is a one-dimensional ideal of \mathfrak{g} . If E,F are linearly independent, \mathfrak{r} is a two-dimensional ideal of \mathfrak{g} satisfying the above conditions. For, since [E,E]=0, we get $\lambda(E)=\mu(E)=0$ by the first relation in (3.2), which implies [E,F]=0 by the second relation in (3.2) and then \mathfrak{r} is a commutative ideal. Q. E. D.

We shall now prove that \mathfrak{g}^n contains a one-dimensional ideal. In view of Lemma 2, it is sufficient to prove that \mathfrak{g}^n contains no two-dimensional ideal $\mathfrak{r} = \{E, F\}$ as in Lemma 2.

Let $r = \{E, F\}$ be such an ideal of g^n . By a simple calculation, we have

$$[[\mathfrak{g}^n, \mathfrak{g}^n], \mathfrak{r}] = \{0\} .$$

LEMMA 3. Let X be an element of \mathfrak{g}^n . If $\psi([X, C]) = 0$ for all $C \in \mathfrak{r}$, then [X, C] = 0 for all $C \in \mathfrak{r}$.

PROOF. First we note that $\phi \neq 0$ on \mathfrak{r} . In fact, if $\phi = 0$ on \mathfrak{r} , $\eta(Y,D) = \phi(\lceil JY,D \rceil) = 0$ for $Y \in \mathfrak{g}^n$, $D \in \mathfrak{r}$. Since η is non-degenerate on \mathfrak{g}^n , it follows $\mathfrak{r} = \{0\}$, which is a contradiction. Therefore $\phi \neq 0$ on \mathfrak{r} . Since $\lceil X,E \rceil = \lambda(X)E + \mu(X)F$, $\lceil X,F \rceil = -\mu(X)E + \lambda(X)F$, we have $\lambda(X)\phi(E) + \mu(X)\phi(F) = 0$, $-\mu(X)\phi(E) + \lambda(X)\phi(F) = 0$. As $\phi(E) \neq 0$ or $\phi(F) \neq 0$, $\lambda(X)^2 + \mu(X)^2 = 0$ holds, and hence we have $\lambda(X) = \mu(X) = 0$, which implies $\lceil X,C \rceil = 0$ for all $C \in \mathfrak{r}$.

Q. E. D.

We put

$$\mathfrak{r}^0 = \{C \in \mathfrak{r} ; \phi([JC, E]) = \phi([JC, F]) = 0\}$$
.

Then, the following three cases are possible:

$$\dim \mathfrak{r}^0 = 0$$
, $\dim \mathfrak{r}^0 = 1$ or $\dim \mathfrak{r}^0 = 2$.

We shall show that $\dim \mathfrak{r}^0 \neq 0$. Suppose $\dim \mathfrak{r}^0 = 0$. Then η is non-degenerate on \mathfrak{r} and hence there exists a unique non-zero element $A \in \mathfrak{r}$ such that $\psi(\lceil JA,C \rceil) = \psi(C)$, for all $C \in \mathfrak{r}$. When $A = \alpha E + \beta F$ (α , $\beta \in \mathbf{R}$), we put $B = -\beta E + \alpha F$. Then A, B is a base of \mathfrak{r} such that for $X \in \mathfrak{g}^n$

$$[X, A] = \lambda'(X)A + \mu'(X)B,$$

$$[X, B] = -\mu'(X)A + \lambda'(X)B,$$

where λ' and μ' are linear functions on \mathfrak{g}^n . Now, for $C \in \mathfrak{r}$, we have by (1.5), (3.3),

$$\begin{split} \phi(\lceil J \lceil JA, A \rceil, C \rceil) &= -\phi(\lceil \lceil JA, A \rceil, JC \rceil) \\ &= \phi(\lceil \lceil A, JC \rceil, JA \rceil) + \phi(\lceil \lceil JC, JA \rceil, A \rceil) \\ &= -\phi(\lceil A, JC \rceil) \\ &= \phi(\lceil JA, C \rceil) \\ &= \phi(C) \; . \end{split}$$

Thus we get [JA, A] = A, and so [JA, B] = B by (3.4). When we put $[JB, A] = \lambda_0 A + \mu_0 B$, λ_0 , $\mu_0 \in \mathbb{R}$, then $[JB, B] = -\mu_0 A + \lambda_0 B$ by (3.4). Hence by (K.2)

Since [[JA, JB], A] = 0 by (3.3), we have $\mu_0 = 0$ or $\mu_0 = 1$ and $\lambda_0 = 0$. In the case $\mu_0 = 0$, put $\gamma = \psi(B)$, $\delta = -\psi(A)$. Then, since $\phi \neq 0$ on \mathfrak{r} , at least one of γ , δ is not zero and $\gamma\psi(A) + \delta\psi(B) = 0$. Let $X = \gamma A + \delta B$. Then $X \neq 0$ and we have

$$\begin{split} & \phi([JA, X]) = \phi(\gamma A + \delta B) = \gamma \phi(A) + \delta \phi(B) = 0 \;, \\ & \phi([JB, X]) = \phi(\gamma \lambda A + \delta \lambda B) = \lambda(\gamma \phi(A) + \delta \phi(B)) = 0 \;. \end{split}$$

Since η is non-degenerate on r, it follows that X=0, which is a contradiction. Suppose $\mu_0=1$ and $\lambda_0=0$. Then we have by (K.2),

$$[JA, JB] = J[JA, B] + J[A, JB] = JB - JB = 0.$$

From this and (K.5), it follows

$$\rho(\lceil JA, JB \rceil, B) + \rho(\lceil JB, B \rceil, JA) + \rho(\lceil B, JA \rceil, JB) = 0,$$

$$\rho(JA, A) + \rho(JB, B) = 0,$$

which is a contradiction since $\rho(JA, A) > 0$ and $\rho(JB, B) > 0$. Thus we have shown that dim $r^0 = 0$ is impossible.

We show that $\dim \mathfrak{r}^0 \neq 1$. Suppose $\dim \mathfrak{r}^0 = 1$ and let A be a non-zero element in \mathfrak{r}^0 . When $A = \alpha E + \beta F$ $(\alpha, \beta \in \mathbf{R})$, we put $B = -\beta E + \alpha F$. Then A, B form a basis of \mathfrak{r} such that for $X \in \mathfrak{g}^n$

(3.5)
$$[X, A] = \lambda'(X)A + \mu'(X)B$$

$$[X, B] = -\mu'(X)A + \lambda'(X)B,$$

where λ' and μ' are linear functions on \mathfrak{g}^n . Since $\psi([JA, A]) = \psi([JA, B]) = 0$, we have $\psi([JA, C]) = 0$ for all $C \in \mathfrak{r}$ and it follows by Lemma 3 that [JA, A] = 0 and [JA, B] = 0. From this and (3.3), we have

$$0 = \phi(\lceil JA, JB \rceil, A \rceil)$$

$$= \phi(\lceil J\lceil JA, B \rceil + J\lceil A, JB \rceil, A \rceil)$$

$$= \phi(\lceil J\lceil A, JB \rceil, A \rceil),$$

$$0 = \phi(\lceil JA, JB \rceil, B \rceil)$$

$$= \phi(\lceil J\lceil JA, B \rceil + J\lceil A, JB \rceil, B \rceil)$$

$$= \phi(\lceil J\lceil A, JB \rceil, B \rceil).$$

Hence there exists a real number λ_0 such that $[JB, A] = \lambda_0 A$. Then $[JB, B] = \lambda_0 B$ by (3.5). Since $B \in \mathfrak{r}^0$, it follows that either $\psi([JB, B]) = \lambda_0 \psi(B)$ or $\psi([JB, A]) = \lambda_0 \psi(A)$ is not zero. Therefore $\lambda_0 \neq 0$. On the other hand, we have by (K.2) and (K.5)

$$0 = \rho(\lceil JA, JB \rceil, A) + \rho(\lceil JB, A \rceil, JA) + \rho(\lceil A, JA \rceil, JB)$$

$$= \rho(J \lceil JA, B \rceil, A) + \rho(J \lceil A, JB \rceil, A) + \rho(\lceil JB, A \rceil, JA) + \rho(\lceil A, JA \rceil, JB)$$

$$= -2\lambda_0 \rho(JA, A).$$

Since $\rho(JA, A) > 0$, we get $\lambda_0 = 0$, which is a contradiction. Thus dim $r^0 = 1$ does not occur.

Suppose now dim $\mathfrak{r}^0=2$. Since $\psi(\lceil JC,E\rceil)=0$, $\psi(\lceil JC,F\rceil)=0$ for any $C\in\mathfrak{r}$, it follows by Lemma 3 that $\lceil JC,E\rceil=\lceil JC,F\rceil=0$ for all $C\in\mathfrak{r}$ and hence we have

$$[Jr, r] = \{0\}.$$

Now, we put

$$\mathfrak{p} = \{ P \in \mathfrak{g}^n \; ; \; [P, E] = [JP, E] = 0 \} \; .$$

Then, clearly

$$(3.8) J\mathfrak{p} \subset \mathfrak{p}.$$

Moreover we see

(3.9) ad
$$(JE)\mathfrak{p}\subset\mathfrak{p}$$
, and

(3.10)
$$\operatorname{ad}(JE)J = J\operatorname{ad}(JE) \quad \text{on } \mathfrak{p}.$$

Indeed, since [JE, JP] = J[JE, P] + J[E, JP] + [E, P] = J[JE, P] for $P \in \mathfrak{p}$, we have ad (JE)J = J ad (JE) on \mathfrak{p} . Since [[JE, P], E] = 0 and [J[JE, P], E] = [[JE, JP], E] = 0 by (3.3), we have ad $(JE)\mathfrak{p} \subset \mathfrak{p}$.

Now, for $X \in \mathfrak{g}^n$, we get by (3.3), (3.6)

$$[[JE, X], E] = 0$$
,

$$[J[JE, X], E] = [[JE, JX] - J[E, JX] - [E, X], E]$$

$$= [[JE, JX], E]$$

$$= 0,$$

which implies that $[JE, X] \in \mathfrak{p}$, and hence we have

(3.11)
$$\operatorname{ad}(JE)\mathfrak{g}^{n} \subset \mathfrak{p}.$$

Let $P \in \mathfrak{p}$. We have

$$\begin{split} \rho(JE, \lceil JE, P \rceil) &= -\rho(E, J\lceil JE, P \rceil) \\ &= -\rho(E, \lceil JE, JP \rceil) \\ &= \rho(JE, \lceil JP, E \rceil) + \rho(JP, \lceil E, JE \rceil) \\ &= 0 \, . \end{split}$$

and it follows that for $X \in \mathfrak{g}^n$

(3.12)
$$\rho(JE, \text{ ad } (JE)^2 X) = 0.$$

Applying Lemma 1 and (3.12), we have for $X, Y \in \mathfrak{g}^n$

$$\frac{d^3}{dt^3} \rho(\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y)$$

$$= \frac{d^2}{dt^2} \rho(JE, \exp t \operatorname{ad}(JE)[X, Y])$$

$$= \rho(JE, \operatorname{ad}(JE)^2 \exp t \operatorname{ad}(JE)[X, Y])$$

$$= 0.$$

Hence we may put

(3.13)
$$\rho(\exp t \text{ ad } (JE)X, \exp t \text{ ad } (JE)Y) = at^2 + bt + c,$$

where a, b and c are real numbers not depending on t.

Now, let $\alpha+i\beta$ (α , $\beta\in R$) be an eigenvalue of ad (JE) on \mathfrak{p} . Since ad (JE)J=J ad (JE) on \mathfrak{p} by (3.10), there exists a non-zero element $P\in\mathfrak{p}$ such that ad (JE) $P=(\alpha+\beta J)P$, and hence $\exp t$ ad (JE) $P=\exp t(\alpha+\beta J)P$. Therefore we have by (K.3) and (3.10),

$$\rho(\exp t \text{ ad } (JE)JP, \ \exp t \text{ ad } (JE)P)$$

$$= \rho(J \exp t \text{ ad } (JE)P, \ \exp t \text{ ad } (JE)P)$$

$$= \rho(J \exp t(\alpha + \beta J)P, \ \exp t(\alpha + \beta J)P)$$

$$= \rho(\exp t(\alpha + \beta J)JP, \ \exp t(\alpha + \beta J)P)$$

$$= e^{(\alpha + i\beta)t}\overline{e^{(\alpha + i\beta)t}}\rho(JP, P)$$

$$= e^{2\alpha t}\rho(JP, P).$$

From this and (3.13), we have

$$at^2+bt+c=e^{2\alpha t}\rho(JP,P)$$
.

Since $\rho(JP, P) > 0$, it follows $\alpha = 0$. Thus the real parts of the eigenvalues of ad (JE) on \mathfrak{p} are equal to 0.

Now, we put

$$(3.14) \psi_n(X) = \operatorname{Tr}_{\mathcal{I}^n}(\operatorname{ad}(JX) - J\operatorname{ad}(X)) \text{for } X \in \mathfrak{g}^n.$$

From the facts that $\operatorname{ad}(JE)\mathfrak{g}^n\subset\mathfrak{p}$ (3.11) and the real parts of the eigenvalues of $\operatorname{ad}(JE)$ on \mathfrak{p} are equal to 0, it follows that $\operatorname{Tr}_{\iota^n}\operatorname{ad}(JE)=\operatorname{Tr}_{\mathfrak{p}}\operatorname{ad}(JE)=0$. On the other hand, by (3.6) and $\operatorname{Jad}(E)\mathfrak{g}^n\subset\operatorname{Jr}$, we have $\operatorname{Tr}_{\iota^n}\operatorname{Jad}(E)=\operatorname{Tr}_{\operatorname{Jr}}\operatorname{Jad}(E)=0$. These imply that

$$\phi_n(E) = 0$$
.

Taking F instead of E, we have

$$\phi_n(F) = 0$$
.

Thus we know

$$\phi_n = 0 \quad \text{on } \mathbf{r}.$$

Now, for $X \in \mathfrak{g}^n$, $P \in \mathfrak{p}_k$, we have $[X, JE_k] \in \mathfrak{g}^{k+1}$, $[X, E_k] = 0$, $[X, P] \in \mathfrak{p}_k$ and $\operatorname{Tr}_{\mathfrak{p}_k} f_k(X) = 0$, where f_k is a symplectic representation of \mathfrak{g}^n in \mathfrak{p}_k (2.14). It follows that for $X \in \mathfrak{g}^n$

(3.16)
$$\begin{aligned} \psi(X) &= \operatorname{Tr}_{\mathfrak{g}}(\operatorname{ad}(JX) - J\operatorname{ad}(X)) \\ &= \sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}}(f_{k}(JX) - Jf_{k}(X)) + \psi_{n}(X) \\ &= -\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} Jf_{k}(X) + \psi_{n}(X) \; . \end{aligned}$$

Put $f_k(E) = (A, B)$, $f_k(JE) = (C, D)$ in the sense of § 1.A. Since $[f_k(JE), f_k(E)] = f_k([JE, E]) = 0$, it becomes that

$$(3.17) CA - AC + D\bar{B} - B\bar{D} = 0.$$

By (K.2), we have

$$[J, f_k(JE) - (1/2)[J, f_k(E)]] = 0.$$

From this and J=(i, 0), we know

$$(3.19) D = iB.$$

Since B is a symmetric matrix, there exists a unitary matrix U such that

$$UB^{t}U = \begin{pmatrix} \lambda_{1} & & & 0 \\ & \ddots & & & 0 \\ & & \lambda_{r} & & \\ & & & \lambda_{r+1} & \\ & & & & \ddots & \\ & & & & & \lambda_{t} \end{pmatrix}$$

where $\lambda_i > 0$ for $1 \le i \le r$, $\lambda_i = 0$ for $r+1 \le i \le l$. Hence we may assume that

$$(3.20) B = \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_r & & \\ & & \lambda_{r+1} & \\ 0 & & & \lambda_l \end{pmatrix}$$

where $\lambda_i > 0$ for $1 \le i \le r$, $\lambda_i = 0$ for $r+1 \le i \le l$. Since D = iB, we have

(3.21)
$$CA - AC + 2iB^2 = 0$$
.

Taking the trace of the both sides of the formula (3.21), it follows that

$$2i\sum_{k=1}^{l}\lambda_k^2=0,$$

which implies that B=0, and hence $f_k(E)=(A,0)$. From this we know that

$$(3.22) f_k(E) I = I f_k(E) on \mathfrak{p}_k.$$

Using (3.15), (3.16) and (3.22), we have

$$(3.23) \qquad \phi(\llbracket E, X \rrbracket) = -\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} J f_{k}(\llbracket E, X \rrbracket) + \phi_{n}(\llbracket E, X \rrbracket)$$

$$= -\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} J \llbracket f_{k}(E), f_{k}(X) \rrbracket$$

$$= -\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} (J f_{k}(E) f_{k}(X) - J f_{k}(X) f_{k}(E))$$

$$= -\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} [f_{k}(E) J f_{k}(X) - J f_{k}(X) f_{k}(E)]$$

$$= -\sum_{k=1}^{n-1} \operatorname{Tr}_{\mathfrak{p}_{k}} [f_{k}(E), J f_{k}(X)]$$

$$= 0, \quad \text{for } X \in \mathfrak{g}^{n}.$$

Since η is non-degenerate on \mathfrak{g}^n , it follows that E=0, which is a contradiction. Thus we have known that \mathfrak{g}^n contains a one-dimensional ideal \mathfrak{r} of \mathfrak{g}^n . Now, let E be a non-zero element of \mathfrak{r} and suppose that [JE, E]=0. Put

$$\mathfrak{p} = \{ P \in \mathfrak{q}^n : \lceil P, E \rceil = \lceil IP, E \rceil = 0 \}$$
.

Then, by the argument as used above, we see the followings. First ad $(JE)\mathfrak{g}^n$ $\subset \mathfrak{p}$, and the real parts of the eigenvalues of ad (JE) on \mathfrak{p} are equal to 0, and $\psi([E, X]) = 0$ for any $X \in \mathfrak{g}^n$. This is a contradiction, because η is non-degenerate on \mathfrak{g}^n . Therefore $[JE, E] \neq 0$.

Putting $E_n = \lambda E$ with a non-zero constant λ , we have

$$[JE_n, E_n] = E_n.$$

Thus Proposition 1 is proved.

$\S 4$. Proof of Theorem (continued): Decomposition of \mathfrak{g}^n

PROPOSITION 2. Let E_n be an element in \mathfrak{g}^n as in Proposition 1. Then, we get the decomposition

(4.1)
$$g^{n} = \{JE_{n}\} + \{E_{n}\} + \mathfrak{p}_{n} + \mathfrak{g}^{n+1}$$

of g^n into the direct sum of vector spaces with the following properties:

1)
$$g_n = \{JE_n\} + \{E_n\} + \mathfrak{p}_n \text{ is a J-invariant subalgebra such that}$$

$$(4.2) J\mathfrak{p}_n \subset \mathfrak{p}_n;$$

$$[JE_n, E_n] = E_n;$$

$$[JE_n, \mathfrak{p}_n] \subset \mathfrak{p}_n.$$

Moreover the real parts of the eigenvalues of $\operatorname{ad}(JE_n)$ on \mathfrak{p}_n are equal to 1/2, and

$$[E_n, \mathfrak{p}_n] = 0;$$

$$[\mathfrak{p}_n,\mathfrak{p}_n] \subset \{E_n\} .$$

2) g^{n+1} is a J-invariant subalgebra such that

$$[JE_n, \mathfrak{g}^{n+1}] \subset \mathfrak{g}^{n+1}.$$

Moreover the real parts of the eigenvalues of $ad(JE_n)$ on g^{n+1} are equal to 0, and

$$[\mathfrak{p}_n, \mathfrak{g}^{n+1}] \subset \mathfrak{p}_n .$$

3) The form η is positive definite on \mathfrak{g}_n and the factors of the decomposition $\mathfrak{g}_n = \{JE_n\} + \{E_n\} + \mathfrak{p}_n$ are mutually orthogonal with respect to this form η . Further, the form η is non-degenerate on \mathfrak{g}^{n+1} .

PROOF. For the convenience of notation, we denote the element E_n by E. We put

$$(4.10) \mathfrak{p} = \{ P \in \mathfrak{g}^n ; [P, E] = [JP, E] = 0 \}.$$

Then, we have

$$(4.11) J\mathfrak{p}\subset\mathfrak{p}, \text{ ad } (JE)\mathfrak{p}\subset\mathfrak{p},$$

$$(4.12) ad(JE)J = J ad(JE) on \mathfrak{p},$$

(4.13)
$$g^{n} = \{JE\} + \{E\} + \mathfrak{p}.$$

Indeed, (4.11) and (4.12) can be shown in the same way as (3.8), (3.9) and (3.10). Since $\{E\}$ is a one-dimensional ideal of \mathfrak{g}^n , we get $[X, E] = \alpha(X)E$, $[JX, E] = \beta(X)E$ for $X \in \mathfrak{g}^n$, where α , β are linear functions on \mathfrak{g}^n . It is easily seen that $P = X - \alpha(X)JE - \beta(X)E$ belongs to \mathfrak{p} for any $X \in \mathfrak{g}^n$.

LEMMA 4. The real parts of the eigenvalues of ad(JE) on \mathfrak{p} are equal to 0 or 1/2.

PROOF. By Lemma 1, we have for $P \in \mathfrak{p}$,

$$\frac{d}{dt} \rho(\exp t \text{ ad } (JE)E, \exp t \text{ ad } (JE)P)$$

$$= \rho(JE, \exp t \text{ ad } (JE)[E, P])$$

$$= 0.$$

Since exp t ad $(JE)E = e^t E$, this implies that

$$\rho(E, \exp t \operatorname{ad}(JE)P) = a'e^{-t}$$

where a' is a constant determined by P and independent of t. We have then

$$\begin{split} \rho(JE, \exp t \text{ ad } (JE)P) &= -\rho(E, J \exp t \text{ ad } (JE)P) \\ &= -\rho(E, \exp t \text{ ad } (JE)JP) \\ &= ae^{-t} \end{split}$$

where a is the constant determined by JP. Since any element X in \mathfrak{g}^n is expressed in the form $X = \lambda JE + \mu E + P$, where λ , $\mu \in \mathbf{R}$ and $P \in \mathfrak{p}$ (4.13), we have

$$\rho(JE, \exp t \text{ ad } (JE)X) = \rho(JE, \lambda JE + \mu e^t E + \exp t \text{ ad } (JE)P)$$

$$= \mu \rho(JE, E)e^t + \rho(JE, \exp t \text{ ad } (JE)P)$$

$$= ae^{-t} + be^t$$

where a, b are constant independent of t. This fact and Lemma 1 imply that for $X, Y \in \mathfrak{g}^n$

$$\frac{d}{dt} \rho(\exp t \operatorname{ad} (JE)X, \exp t \operatorname{ad} (JE)Y)$$

$$= \rho(JE, \exp t \operatorname{ad} (JE)[X, Y])$$

$$= ae^{-t} + be^{t}.$$

Hence we obtain

(4.14)
$$\rho(\exp t \operatorname{ad}(JE)X, \exp t \operatorname{ad}(JE)Y) = ae^{-t} + be^{t} + c,$$

where a, b and c are constant independent of t. Let $\alpha+i\beta$ (α , $\beta\in R$) be an eigenvalue of ad (JE) on \mathfrak{p} . Since ad (JE)J=J ad (JE) on \mathfrak{p} , there exists a non-zero element P in \mathfrak{p} such that ad $(JE)P=(\alpha+\beta J)P$. Hence we have

$$\rho(\exp t \text{ ad } (JE)JP, \exp t \text{ ad } (JE)P)$$

$$= \rho(J \exp t \text{ ad } (JE)P, \exp t \text{ ad } (JE)P)$$

$$= \rho(J \exp t(\alpha + \beta J)P, \exp t(\alpha + \beta J)P)$$

$$= \rho(\exp t(\alpha + \beta J)JP, \exp t(\alpha + \beta J)P)$$

$$= e^{(\alpha + i\beta)t}e^{(\alpha + i\beta)t}\rho(JP, P)$$

$$= e^{2\alpha t}\rho(JP, P).$$

Therefore

$$e^{2\alpha t}\rho(JP, P) = ae^{-t} + be^{t} + c$$
.

This implies that $\alpha = 0$ or 1/2 or -1/2, since $\rho(JP, P) > 0$. We put

(4.15)
$$\mathfrak{p}_{(\alpha+i\beta)} = \{ P \in \mathfrak{p}; (\text{ad} (JE) - (\alpha+\beta J))^m P = 0 \text{ for some integer } m > 0 \}.$$

Then we have

$$\mathfrak{p} = \sum_{\alpha + i\beta} \mathfrak{p}_{(\alpha + i\beta)},$$

where α is equal to 0 or 1/2 or -1/2. Let P be a non-zero element in $\mathfrak{p}_{(\alpha+i\beta)}$. Then there exists a positive integer m such that $(\operatorname{ad}(JE)-(\alpha+\beta J))^mP=0$. Hence we have

$$\begin{split} \exp t \, \mathrm{ad} \, (JE)P &= \exp t (\alpha + \beta J) \sum_{l=0}^{m-1} \frac{t^l}{l\,!} (\mathrm{ad} \, (JE) - (\alpha + \beta J))^l P \\ &= e^{\alpha t} \{\cos \beta t \sum_{l=0}^{m-1} \frac{t^l}{l\,!} (\mathrm{ad} \, (JE) - (\alpha + \beta J))^l P \\ &+ \sin \beta t \sum_{l=0}^{m-1} \frac{t^l}{l\,!} (\mathrm{ad} \, (JE) - (\alpha + \beta J))^l J P \,. \end{split}$$

Therefore

$$\begin{split} &\rho(JE,\,\exp t\,\mathrm{ad}\,(JE)P)\\ &=e^{\alpha t}\{\cos\beta t\sum_{l=0}^{m-1}\frac{1}{l\,!}\,\rho(JE,\,(\mathrm{ad}\,(JE)-(\alpha+\beta J))^lP)t^l\\ &+\sin\beta t\sum_{l=0}^{m-1}\frac{1}{l\,!}\,\rho(JE,\,(\mathrm{ad}\,(JE)-(\alpha+\beta J))^lJP)t^l\}\;. \end{split}$$

We put

$$h(t) = \sum_{l=0}^{m-1} \frac{1}{l!} \rho(JE, (\text{ad}(JE) - (\alpha + \beta J))^{l}P)t^{l},$$

$$k(t) = \sum_{l=0}^{m-1} \frac{1}{l!} \rho(JE, (\text{ad}(JE) - (\alpha + \beta J))^{l} JP) t^{l}.$$

Then, h(t) and k(t) are polynomials whose degrees are m-1 at most. We have then

$$h(t)\cos\beta t + k(t)\sin\beta t = ae^{-(1+\alpha)t}$$
,

(4.17)
$$\left| \frac{h(t)}{t^m} \cos \beta t + \frac{k(t)}{t^m} \sin \beta t \right| = \left| a \frac{e^{-(1+\alpha)t}}{t^m} \right|.$$

We assume that $a \neq 0$. Since $1+\alpha > 0$ and since h(t) and k(t) are polynomials of degree $\leq m-1$, the left side of the above formula (4.17) approaches to 0 and the right side to ∞ , when $t \to -\infty$. This is a contradiction, and we must have a=0. This implies that

$$\rho(JE, \exp t \operatorname{ad}(JE)P) = 0$$
, for $P \in \mathfrak{p}_{(\alpha+i\beta)}$.

Hence we have

$$\rho(JE, \exp t \operatorname{ad}(JE)P) = 0$$
, for $P \in \mathfrak{p}$.

Therefore

$$e^{2\alpha t}\rho(IP, P) = be^t + c$$
.

This implies that $\alpha = 0$ or 1/2, which proves Lemma 4.

Now, put

$$\mathfrak{p}_{[\alpha]} = \sum_{\beta} \mathfrak{p}_{(\alpha+i\beta)}$$
.

Then, we have

$$J\mathfrak{p}_{[\alpha]} \subset \mathfrak{p}_{[\alpha]}, \text{ ad } (JE)\mathfrak{p}_{[\alpha]} \subset \mathfrak{p}_{[\alpha]},$$

$$\mathfrak{p} = \mathfrak{p}_{[0]} + \mathfrak{p}_{[1]}.$$

Moreover the real parts of the eigenvalues of ad(JE) on $\mathfrak{p}_{[\alpha]}$ are equal to α . Hence we get the following decomposition;

(4.18)
$$g^{n} = g_{[0]} + g_{[1/2]} + g_{[1]},$$

where $\mathfrak{g}_{[0]} = \{JE\} + \mathfrak{p}_{[0]}$, $\mathfrak{g}_{[1/2]} = \mathfrak{p}_{[1/2]}$ and $\mathfrak{g}_{[1]} = \{E\}$. Moreover, ad $(JE)\mathfrak{g}_{[\alpha]} \subset \mathfrak{g}_{[\alpha]}$ and the real parts of the eigenvalues of ad (JE) on $\mathfrak{g}_{[\alpha]}$ are equal to α . We put

$$\mathfrak{p}_n = \mathfrak{p}_{[1/2]},$$

$$\mathfrak{g}_n = \{JE\} + \{E\} + \mathfrak{p}_{[1/2]},$$

$$\mathfrak{g}^{n+1} = \mathfrak{p}_{[0]}.$$

Then, \mathfrak{g}_n is clearly a *J*-invariant subalgebra. We prove that \mathfrak{g}^{n+1} is also a *J*-invariant subalgebra. First we have $J\mathfrak{g}^{n+1} \subset \mathfrak{g}^{n+1}$. Now, since $[\mathfrak{g}_{[0]}, \mathfrak{g}_{[0]}] \subset \mathfrak{g}_{[0]}$,

if P, $Q \in \mathfrak{g}^{n+1}$, we have

$$[P, Q] = \lambda JE + P'$$

where $\lambda \in \mathbf{R}$ and $P' \in \mathfrak{p}_{[0]}$, and therefore

$$[[P, Q], E] = \lambda E$$
.

On the other hand, we have

$$[[P, Q], E] = [[P, E], Q] + [P, [Q, E]] = 0.$$

This implies that $\lambda = 0$. Thus we have $[P, Q] \in \mathfrak{g}^{n+1}$, which shows that \mathfrak{g}^{n+1} is a subalgebra.

Now, we shall show that the factors of the decomposition

$$\mathfrak{g}^n = \{JE\} + \{E\} + \mathfrak{p}_{\texttt{C1/2}} + \mathfrak{p}_{\texttt{C0}}$$

are mutually orthogonal with respect to the non-degenerate form η . Indeed, for $P \in \mathfrak{p}_{[1/2]}$, $Q \in \mathfrak{p}_{[0]}$, put $P' = \lceil JP, Q \rceil$. Then $P' \in \mathfrak{p}_{[1/2]}$. Since the real parts of the eigenvalues of $\operatorname{ad}(JE)$ on $\mathfrak{p}_{[1/2]}$ are equal to 1/2, $\operatorname{ad}(JE)$ is non-singular on $\mathfrak{p}_{[1/2]}$ and hence there exists an element $P'' \in \mathfrak{p}_{[1/2]}$ such that $\lceil JE, P'' \rceil = P'$. We have then $2\eta(P,Q) = \psi(\lceil JP,Q \rceil) = \psi(\lceil JE,P'' \rceil) = -\psi(\lceil E,JP'' \rceil) = 0$. This shows that $\mathfrak{p}_{[1/2]}$ and $\mathfrak{p}_{[0]}$ are orthogonal with respect to η . It is clear that the other pairs of factors are mutually orthogonal with respect to η .

LEMMA 5.

$$\phi(E) > 0$$
.

PROOF. Recall that $(\mathfrak{p}_k, J, \sigma_k)$ is a symplectic space where σ_k is defined in (2.13) and that f_k is a symplectic representation of \mathfrak{g}^n in \mathfrak{p}_k defined by (2.14). Since

$$[f_k(JE), f_k(E)] = f_k(E),$$

$$[f_k(JE) - (1/2)[J, f_k(E)]] = 0.$$

we have by [10]

- 1) $\mathfrak{p}_k = \mathfrak{p}_k^+ + \mathfrak{p}_k^- + \mathfrak{p}_k^0$ direct sum;
- 2) \mathfrak{p}_k^+ , \mathfrak{p}_k^- and \mathfrak{p}_k^0 are invariant by $f_k(JE)$;
- 3) the real parts of the eigenvalues of $f_k(JE)$ on \mathfrak{p}_k^+ , \mathfrak{p}_k^- and \mathfrak{p}_k^0 are 1/2, -1/2 and 0 respectively;
 - 4) $J\mathfrak{p}_k^- = \mathfrak{p}_k^+, J\mathfrak{p}_k^0 = \mathfrak{p}_k^0$, in particular dim $\mathfrak{p}_k^- = \dim \mathfrak{p}_k^+, \operatorname{Tr}_{\mathfrak{p}_k} f_k(JE) = 0$;

5)
$$f_k(E) = \begin{cases} \int & \text{on } \mathfrak{p}_k^-, \\ 0 & \text{on } \mathfrak{p}_k^+ + \mathfrak{p}_k^0. \end{cases}$$

These show that $\operatorname{Tr}_{\mathfrak{p}_k} Jf_k(E) = -\dim \mathfrak{p}_k^-$. On the other hand $\operatorname{Tr}_{\mathfrak{g}^n}(\operatorname{ad}(JE) - J\operatorname{ad}(E)) > 0$. Indeed, $\operatorname{Tr}_{\mathfrak{g}^n} J\operatorname{ad}(E) = -1$ because $J\operatorname{ad}(E)\mathfrak{g}^n \subset \{JE\}$ and $J\operatorname{ad}(E)JE = -JE$. Moreover, the real parts of the eigenvalues of $\operatorname{ad}(JE)$ on \mathfrak{g}^n are equal to 0, 1/2 or 1, and $\operatorname{ad}(JE)E = E$. Therefore we have $\operatorname{Tr}_{\mathfrak{g}^n}\operatorname{ad}(JE) > 0$.

These imply that $\operatorname{Tr}_{\mathfrak{g}^n}(\operatorname{ad}(JE)-J\operatorname{ad}(E))>0$. Therefore we have

$$\begin{split} \psi(E) &= -\sum_{k=1}^{n-1} \mathrm{Tr}_{\mathfrak{p}_k} J f_k(E) + \mathrm{Tr}_{\mathfrak{g}^n}(\mathrm{ad}\,(JE) - J\,\mathrm{ad}\,(E)) \\ &= \sum_{k=1}^{n-1} \dim \mathfrak{p}_k^- + \mathrm{Tr}_{\mathfrak{g}^n}(\mathrm{ad}\,(JE) - J\,\mathrm{ad}\,(E)) > 0 \;. \end{split}$$
 Q. E. D.

Lemma 6. η is positive definite on $\mathfrak{p}_{[1/2]}$.

PROOF. We shall first prove that the decomposition $\mathfrak{p}_{[1/2]} = \sum_{\beta} \mathfrak{p}_{(1/2+i\beta)}$ is an orthogonal decomposition with respect to η . Let P and Q be non-zero elements in $\mathfrak{p}_{(1/2+i\beta)}$, $\mathfrak{p}_{(1/2+i\beta')}$ respectively and assume $\beta \neq \beta'$. Then there exist positive integers m, n such that

$$(ad (JE)-(1/2+\beta J))^m P = 0,$$

 $(ad (JE)-(1/2+\beta'J))^n Q = 0.$

Hence we have

$$\exp t \text{ ad } (JE)P = \exp t(1/2 + \beta J) \sum_{l=0}^{m-1} \frac{t^{l}}{l!} (\text{ad } (JE) - (1/2 + \beta J))^{l}P,$$

$$\exp t \text{ ad } (JE)Q = \exp t(1/2 + \beta'J) \sum_{l=0}^{m-1} \frac{t^{l}}{l!} (\text{ad } (JE) - (1/2 + \beta'J))^{l}Q.$$

Since $[\mathfrak{p}_{[1/2]}, \mathfrak{p}_{[1/2]}] \subset \{E\}$, it becomes that $[JP, Q] = \lambda E$, where $\lambda \in \mathbb{R}$. By Lemma 1, we have

(4.22)
$$\frac{d}{dt} \rho(\exp t \operatorname{ad} (JE)JP, \exp t \operatorname{ad} (JE)Q)$$
$$= \rho(JE, \exp t \operatorname{ad} (JE)[JP, Q]).$$

The left side of this equation is equal to

$$\begin{split} \frac{d}{dt} \rho(J \exp t \text{ ad } (JE)P, & \exp t \text{ ad } (JE)Q) \\ &= \frac{d}{dt} \rho(J \exp t(1/2 + \beta J) \sum_{l=0}^{m-1} \frac{t^l}{l!} (\text{ad } (JE) - (1/2 + \beta J))^l P, \\ & \exp t(1/2 + \beta'J) \sum_{l=0}^{n-1} \frac{t^l}{l!} (\text{ad } (JE) - (1/2 + \beta'J))^l Q) \\ &= \frac{d}{dt} e^t \rho(\exp \beta t J \sum_{l=0}^{m-1} \frac{t^l}{l!} (\text{ad } (JE) - (1/2 + \beta J))^l J P, \\ & \exp \beta' t J \sum_{l=0}^{n-1} \frac{t^l}{l!} (\text{ad } (JE) - (1/2 + \beta'J))^l Q) \\ &= \frac{d}{dt} e^t \rho(\{\cos \beta t + (\sin \beta t)J\} u(t), \{\cos \beta' t + (\sin \beta' t)J\} v(t)) \end{split}$$

$$\begin{split} &= \frac{d}{dt} \, e^t (\cos \beta t \cos \beta' t + \sin \beta t \sin \beta' t) \rho(u(t), \, v(t)) \\ &+ (\sin \beta t \cos \beta' t - \cos \beta t \sin \beta' t) \rho(Ju(t), \, v(t)) \\ &= \frac{d}{dt} \, e^t \{h(t) \cos (\beta - \beta') t + k(t) \sin (\beta - \beta') t\} \\ &= e^t \{a(t) \cos (\beta - \beta') t + b(t) \sin (\beta - \beta') t\} \;, \end{split}$$

where

$$\begin{split} u(t) &= \sum_{l=0}^{m-1} \frac{t^l}{l\,!} (\operatorname{ad}(JE) - (1/2 + \beta J))^l J P \,, \\ v(t) &= \sum_{l=0}^{m-1} \frac{t^l}{l\,!} (\operatorname{ad}(JE) - (1/2 + \beta' J))^l Q \,, \\ h(t) &= \rho(u(t), \ v(t)) \,, \\ k(t) &= \rho(Ju(t), \ v(t)) \,, \\ a(t) &= h(t) + h'(t) + (\beta - \beta') h(t) \,, \\ b(t) &= k(t) + k'(t) - (\beta - \beta') h(t) \,. \end{split}$$

Hence a(t) and b(t) are polynomials. On the other hand, the right side of the equation (4.22) is equal to

$$\rho(JE, \exp t \operatorname{ad}(JE)[JP, Q]) = \rho(JE, \lambda e^{t}E)$$
$$= e^{t}\lambda \rho(JE, E).$$

Therefore we have

$$a(t)\cos(\beta-\beta')t+b(t)\sin(\beta-\beta')t=\lambda\rho(JE,E)$$
.

Since $a(t)-\lambda\rho(JE,E)$ is a polynomial and since $a(t_n)-\lambda\rho(JE,E)=0$ for $t_n=2n\pi/(\beta-\beta')$, where n integer, it follows that a(t) is a constant a. Similarly b(t) is a constant b. Hence we have

$$a\cos(\beta-\beta')t+b\sin(\beta-\beta')t=\lambda\rho(JE,E)$$
.

By this formula, we have $(\beta - \beta')^2 \lambda \rho(JE, E) = 0$. Since $\beta - \beta' \neq 0$ and $\rho(JE, E) > 0$, λ must be 0. Thus we have

$$\eta(P, Q) = \phi([JP, Q]) = \lambda \phi(E) = 0.$$

This implies that $\mathfrak{p}_{(1/2+i\beta)}$ and $\mathfrak{p}_{(1/2+i\beta')}$ are mutually orthogonal with respect to n.

Now, let P be a non-zero element in $\mathfrak{p}_{(1/2+i\beta)}$. Then, there exists a positive integer m such that

$$(ad(JE)-(1/2+\beta J))^m P = 0$$
,

and hence

$$\exp t \operatorname{ad} (JE)P = \exp t (1/2 + \beta J)u(t)$$
,

where $u(t) = \sum_{l=0}^{m-1} \frac{t^l}{l!} (\operatorname{ad}(JE) - (1/2 + \beta J))^l P$. On the other hand, we have by Lemma 1

(4.23)
$$\frac{d}{dt} \rho(\exp t \operatorname{ad}(JE)JP, \exp t \operatorname{ad}(JE)P) = \rho(JE, \exp t \operatorname{ad}(JE)[JP, P]).$$

The left side of this equation is equal to

$$\frac{d}{dt} \rho(J \exp t \operatorname{ad}(JE)P, \exp t \operatorname{ad}(JE)P)$$

$$= \frac{d}{dt} \rho(J \exp t(1/2 + \beta J)u(t), \exp t(1/2 + \beta J)u(t))$$

$$= \frac{d}{dt} \rho(\exp t(1/2 + \beta J)Ju(t), \exp t(1/2 + \beta J)u(t))$$

$$= \frac{d}{dt} e^{(1/2 + i\beta)t} e^{\overline{(1/2 + i\beta)t}} \rho(Ju(t), u(t))$$

$$= \frac{d}{dt} e^{t} \rho(Ju(t), u(t))$$

$$= e^{t} (h'(t) + h(t)),$$

where $h(t) = \rho(Ju(t), u(t))$, and h(t) is a polynomial of degree $\leq 2m-2$. Because $\lfloor JP, P \rfloor = \lambda E$ where $\lambda \in \mathbb{R}$, the right side of the equation (4.23) is equal to

$$\rho(JE, \lambda e^t E) = e^t \lambda \rho(JE, E)$$
.

Hence we have

$$h'(t)+h(t)=\lambda\rho(IE,E)$$
.

The solution of this equation is $h(t) = ce^{-t} + \lambda \rho(JE, E)$, where c is an arbitrary constant. However, h(t) is a polynomial, and so c must be 0. Hence we have

$$h(t) = \lambda \rho(JE, E)$$
,

and hence it follows that

(4.24)
$$\lambda = \frac{h(t)}{\rho(JE, E)} = \frac{h(0)}{\rho(JE, E)} = \frac{\rho(JP, P)}{\rho(JE, E)} > 0.$$

Therefore we have by Lemma 5 and (4.24)

$$\eta(P, P) = \phi([JP, P]) = \lambda \phi(E) > 0.$$

This shows that η is positive definite on $\mathfrak{p}_{(1/2+i\beta)}$, and hence on $\mathfrak{p}_{[1/2]} = \sum_{\beta} \mathfrak{p}_{(1/2+i\beta)}$.

Q. E. D.

This completes the proof of Proposition 2.

As explained in $\S 2$ our theorem follows then by induction on n, applying Propositions 1 and 2 successively.

§ 5. Proof of corollaries

PROOF OF COROLLARY 1. Let \hat{K} be the isotropy subgroup of \hat{G} at the point o. Since $\hat{G} = I^o(M)$, \hat{K} is a compact subgroup of \hat{G} . By a theorem of Iwasawa, $\hat{G}/\hat{K} = G/K$ is homeomorphic to a Euclidean space. Hence \hat{K} is a maximal compact subgroup of \hat{G} . Let \hat{f} be the Lie subalgebra of \hat{g} corresponding to \hat{K} . By a theorem of Hano (Introduction (vi)), the adjoint group $\tilde{G} = \mathrm{Ad}_{\hat{G}}(\hat{G})$ of \hat{G} is the identity component of a real algebraic group in $GL(\hat{g}, R)$. Since the center of \hat{G} is finite and since $\tilde{K} = \mathrm{Ad}_{\hat{G}}(\hat{K})$ is a compact subgroup of \tilde{G} , \tilde{K} is a maximal compact subgroup of \tilde{G} . Hence there exists a connected triangular subgroup \tilde{T} of \tilde{G} such that $\tilde{G} = \tilde{T}\tilde{K}$, where $\tilde{T} \cap \tilde{K}$ consists of the identity only [12]. Thus we have $\hat{G} = \hat{T}\hat{K}$, where $\hat{T} = \mathrm{Ad}_{\hat{G}}^{-1}(\tilde{T})$, and \hat{T} is a solvable Lie group which acts transitively on M. The Kähler algebra corresponding to \hat{T} is normal, solvable and the canonical hermitian form is non-degenerate. By our theorem, M is holomorphically isomorphic to a homogeneous bounded domain.

PROOF OF COROLLARY 2. Since M is complete, simply connected, and since o has no conjugate point, the exponential map $\exp_0: T_0(M) \to M$ is a homeomorphism. Therefore the isotropy subgroup of $I^0(M)$ at o is a maximal compact subgroup of $I^0(M)$. Therefore, by Corollary 1 the proof is completed.

References

- [1] S. G. Gindikin, I. I. Pjateckii-Šapiro and E. B. Vinberg, Homogeneous Kähler manifolds, in "Geometry of Homogeneous Bounded Domains", Centro Int. Math. Estivo, 3 Ciclo, Urbino, Italy, 1967, 3-87.
- [2] J. Hano, On kaehlerian homogeneous spaces of unimodular Lie groups, Amer. J. Math., 79 (1957), 885-900.
- [3] J. Hano, Equivariant projective immersion of a complex coset space with non-degenerate canonical hermitian form, Scripta Math., 29 (1971).
- [4] S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [5] S. Kaneyuki, On the automorphism groups of homogeneous bounded domains, J. Fac. Sci. Univ. Tokyo, 14 (1967), 89-130.
- [6] S. Kobayashi and K. Nomizu, On automorphisms of a Kählerian structure, Nagoya Math. J., 11 (1957), 115-124.
- [7] S. Kobayashi and K. Nomizu, Foundations of differential geometry, II, Interscience Publishers, New York, 1969.
- [8] J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canad. J. Math., 7 (1955), 562-576.
- [9] I.I. Pjateckii-Sapiro, Bounded homogeneous domains in n-dimensional complex space, Izv. Akad. Nauk SSSR Ser. Math., 26 (1962), 107-124; English transl., Amer. Math. Soc. Transl., (2) 43 (1964), 299-320.
- [10] I.I. Pjateckii-Šapiro, The structure of j-algebras, Izv. Akad. Nauk SSSR Ser.

- Math., 26 (1962), 453-484; English transl., Amer. Math. Soc. Transl., (2) 55 (1966), 207-241.
- [11] H. Shima, On homogeneous complex manifolds with negative definite canonical hermitian form, Proc. Japan Acad., (3) 46 (1970), 209-211.
- [12] E.B. Vinberg, The Morozov-Borel theorem for real Lie groups, Dokl. Acad. Nauk SSSR, 141 (1961), 270-273; English transl., Soviet Math. Dokl., 2 (1961), 1416-1419.
- [13] E. B. Vinberg, S. G. Gindikin and I. I. Pjateckii-Šapiro, Classification and canonical realization of complex bounded homogeneous domains, Trudy Moscow Math. Obshch., 12 (1963), 359-388; English transl., Trans. Moscow Math. Soc., 12 (1963), 404-437.
- [14] E. B. Vinberg and S. G. Gindikin, Kaehlerian manifolds admitting a transitive solvable automorphism group, English transl., Math. Sb., 74 (116) (1967), 333-351.

Hirohiko SHIMA
Department of Mathematics
Yamaguchi University
Yoshida, Yamaguchi
Japan