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Introduction

Let M be a connected homogeneous complex manifold on which a con-
nected Lie group G acts transitively as a group of holomorphic transforma-
tions. We assume that M admits a G-invariant volume element v. If v has
an expression

v=1"F(z, 2)dz; N\ - Ndz, NdZ, \ --- N dZ,

in a local coordinate system {z, ---, z,}, then the G-invariant hermitian form
. 0% log F(z, 2) -
h= f‘v_; aziafj dZide

is called the canonical hermitian form of M. If M carries a G-invariant
Ké&hler metric and if v is the volume element determined by this metric, the
Ricci tensor of the Kidhler manifold is equal to —hA. From now on, M is
assumed to be a homogeneous Kihler manifold unless otherwise specified.
The canonical hermitian form 4 plays an important role in the investigation
of homogeneous Kidhler manifolds, and results in this direction are the fol-
lowing :

(1) If G is a semi-simple Lie group, then A is non-degenerate and the
number of negative squares of h is equal to the difference between the
dimension of a maximal compact subgroup of G and the dimension of the
isotropy subgroup of G at a point of M [8].

(ii) If G is a unimodular Lie group and if 4 is non-degenerate, then G
is a semi-simple Lie group [2].

(iii) % is negative definite if and only if G is a compact semi-simple
Lie group [8], [11]

In [13], E.B. Vinberg, S.G. Gindikin, L L. Pjateckii-éapiro studied the
structure of J-algebras. The J-algebra of a homogeneous bounded domain is
proper in their sense. They proved the following:

(iv) Every proper J-algebra is isomorphic to the J-algebra of a homo-
geneous Siegel domain of the second kind. Since this domain is holomor-
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phically isomorphic to a homogeneous bounded domain, the canonical hermi-
tian form A of a proper J-algebra is positive definite. Moreover there exists
a solvable Lie group which acts simply transitively on the homogeneous
bounded domain. '

Further they developed the theory of Ké&hler algebras and they proved
1], (141

(v) If a connected simply connected Kdhler manifold M admits a simply
transitive solvable and splittable Lie group G, then M is a holomorphic fibre
bundle whose base space is a homogeneous bounded domain and whose fibre
is a locally flat homogeneous Kihler manifold. (A Lie group G is said to be
splittable if the adjoint operator ad (X) has only real eigenvalues for any
element X in the Lie algebra of G.)

We assume that the canonical hermitian form of M is positive definite
and that M admits a transitive solvable Lie group. Then the corresponding
Kihler algebra of M is a proper J-algebra and hence the universal covering
manifold of M is holomorphically isomorphic to a homogeneous bounded
domain.

Now, we shall denote by G the identity component of the group of all
holomorphic transformations of M leaving 4 invariant. If & is non-degenerate,
the group G is a Lie group acting on M as a Lie transformation group.  In
[3], Hano proved

(vi) Let M be a homogeneous complex (not necessarily Kdhler) manifold
with non-degenerate canonical hermitian form. Then the adjoint group
Adg(G) of G is the identity component of a real algebraic group in GL(@, R),
where § is the Lie algebra of G.

In the present paper, we show that the positive definiteness of & follows
from its non-degeneracy provided that a (not necessarily splittable) solvable
Lie group acts on M simply transitively. Precisely speaking, we prove the
following theorem:

THEOREM. Let M be a connected simply connected homogeneous Kahler
manifold with non-degenerate canonical hermitian form h. If M admits a
simply transitive solvable Lie group, then the canonical hermitian form h is
positive definite and hence M is holomorphically isomorphic to a homogeneous
bounded domain.

We denote by I°%(M) the identity component of the group of all iso-
metries of M. If the canonical hermitian form is non-degénerate, then
IM)YC G [6], and the center of a transitive subgroup of I°(M) is discrete.
Moreover, if M is a homogeneous bounded domain, then we have G =I°(M)
and the isotropy subgroup of G at a point 0o € M is a maximal compact
subgroup of G, and the center of the group G is reduced to the identity [5].
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As immediate applications of our theorem and (vi), we have

COROLLARY 1. Let M be a connected homogeneous Kdhler manifold with
non-degenerate canonical hermitian form. We assume that M admits a transi-
tive Lie group G whose isotropy subgroup K at a point o of M is a maximal
compact subgroup of G and that the group G coincides with I1°(M) and of finite
center., Then M is holomorphically isomorphic to a homogeneous bounded
domain.

COROLLARY 2. Let M be a connected simply connected homogeneous Kdhler
manifold with non-degenerate canonical hermitian form. We assume that a
point o € M has no conjugate point and that the group G coincides with I°(M)
and of finite center. Then M is holomorphically isomorphic to a homogeneous
bounded domain.

The author wishes to thank Professor S. Murakami for his constant help
and encouragement.

§1. Preliminaries

A. A 2m-dimensional real vector space V is called a symplectic space
if there exists a skew symmetric bilinear form ¢ on V and a linear endo-
morphism J of V satisfying the following conditions; for u, ve V

.]2u=_u9
o(Ju, Jv)=0(u, v),
o(Ju, w)>0, u+0.

In this case V may be regarded as a complex vector space with the complex
structure J, which we shall denote by V. Moreover,

(u, vy =0(Ju, v)+1io(u, v) (u,ve V)

~

is a positive definite hermitian form on this complex vector space V.
For a real linear transformation f of V, we put

) = A/2(fw—Jf(Ju),
[~ =/2(fw+Jf(Juw), ueV.

Then, we have f=f*+f-, f*J=Jf*, and f~J=—Jf". Let uy u,, -+, u, be an
orthonormal basis of V with respect to the hermitian form (u, v). Put

m
FH(uy) :kgl QrjUk ag; €C,

f_(uj):kglbkjuk, bkjEC.
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~ m
Identifying V and C™ by means of the map usz Ziu;j— 2 =42y, 25 =+, Zp), |
=1

may be considered as a map z— Az-+BZ, where A={(ay;), B=(b;;) and z=
"2, -+, Zm). We denote this map f by f=(A4, B). If we have f=(A4’, BY)
with respect to another orthonormal basis of ¥V, then there exists a unitary
matrix U such that

A'=UAU, B'=UB'U.
A real linear transformation f of V is said to be symplectic if
o(f(w), v)+o(u, f(v)) =0
for u, v= V. It is easy to see that f=(A4, B) is symplectic if and only if A is
a skew-hermitian matrix and B is a symmetric matrix. By a simple calcula-
tion, we see that if f is symplectic, then Trf=0.

Now, let / be a real linear transformation of ¥V which commutes with J.
For real numbers «a, 3, we put

Viwip=1ue V; (f—(a+B])™u=0 for some m}
and
V[a] = % V(a+z’,8) .

Then, we have V=2 V., and Vi, is the largest subspace of V on which

the real parts of the eigenvalues of f are equal to a.

B. We denote by M a connected Kdhler manifold on which a Lie group
G acts simply transitively as a group of holomorphic isometries. Let (I, g)
be the Kidhler structure on M, i.e. [ is a G-invariant complex structure ten-
sor on M and g is a G-invariant Kahler metric on M.

Let g be the Lie algebra of all left invariant vector fields on G, and let
m be the canonical projection from G onto M defined by z(a)=a-0, for a€G,
where o is a fixed point of M. Let =, denote the differential of 7 at the
identity e of G, and let X,, I, and g, be the values of X=g, I and g at ¢ and
o respectively. Then there exist a linear endomorphism J of g and a skew
symmetric bilinear form p on ¢ such that

T JX)e = Lo(m . Xe)
p(X, Y) =gz X, Lom.Ye),
for X, Y=g. Then (g, ], p) satisfies the following properties ([[1], [8]:
(K.1) I’ X=-X;
(K.2) L/X, JY1=JUJX, YI+JLX, JYI+LX, Y];
K.3) o(JX,JY)=p(X, Y);
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(K.4) o(JX, X)>0, X=x0;

(K.5) p([X, Y1, Z2)+pY, Z], X)+p(Z, X], Y)=0;
where X, Y, Z<g.

(8, J, p) will be called the normal K&hler algebra of M.

It is known that the canonical hermitian form 4 of a homogeneous Kihler
manifold M has the following expression due to J.L. Koszul [8]

Putting
(1.1) X, Y)=hr.X,, 7. Ye),
and
(1.2) P(X)=Tre(ad (JX)—Jad (X)),
we have
(1.3 (X, Y)=Q1/2¢JX, YD,
for X, Y=g. The form 7 satisfies the following properties:
(14) (X, Y)=9(Y, X),
(L.5) n(JX, JY)=7X, Y),
for X, Yeg.

Now, the following lemma is due to [1].
LEMMA 1. For E, X, Y g,
—Cg—p(ex;) tad (JE)X, exptad (JE)Y)
=p(JE, exptad (JE)LX, Y]).
- PROOF. By the property (K.5) of the Kéihler algebra,

(exptad (JE)X, exptad (JE)Y)
=p([JE, exptad (JE)X], exptad (JE)Y)
+p(exp tad (JE)X, [JE, exptad (JE)Y )
=p(JE, [exptad (JE)X, exptad (]E)Y])
=p(JE,exptad (JE)X, Y]). Q.E.D.

Now, let g be a real Lie algebra and let f be a subalgebra of g. Suppose
that there exist a linear endomorphism J of ¢ and a 1-form w on g, which
satisfy the following conditions:

J.1 Jtct, J*X=—X(mod¥);
J.2) (W, JX1=J[W, X1(mod¥);

_a
dt ?
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(J.3) CJX, JY1=JUJX, YI+J[X, JY1+[X, Y ](mod¥);
(J4) oW, X1)=0;

(J.5) - o[JX, JYD=wlX, Y]);

J.6) oJX, X])>0, Xe&t;

where X, Yeg, Wel
Then, (g, t, J, o) will be called a J-algebra.
Let (g, %, J, w) be a J-algebra and let g’ be a subalgebra such that

Jo' g+t

We can then define a linear endomorphism J’ of g’ so that JX' = J X'(mod¥),
for X’=¢g’. We define a 1l-form o’ on g’ as the restriction of w on g’ and
we put ¥ =¥ g’. It is easy to see that (¢/,¥, ), @) is a J-algebra. It is
called a J-subalgebra of (g, ¥, J, w).

A J-algebra (g,f,J, w) is said to be proper, if it satisfies the following
condition (P):

(P) Every compact semi-simple J-subalgebra of (g,f, /, ®) is contained
in L

A J-algebra (g, %, /, ) will be called normal if =0, and we denote it by
(8, J, ®.

We know then the following theorem (cf. Introduction (iv)):

Let (g, /, w) be a normal J-algebra and let g be a solvable Lie algebra.
Then this J-algebra is proper, and is isomorphic to the J-algebra of a homo-
geneous bounded domain.

§2. Statement of Theorem

In this section, we shall state our theorem and sketch the proof.

THEOREM. Let M be a connected Kdhler manifold on which a connected
solvable Lie group G acts simply transitively as a group of holomorphic iso-
metries. Let (g, ], p) be the normal Kdhler algebra of M. If the canonical
hermitian form h of M is non-degenerate, then we get the decomposition

@.1) g :é‘i g

of g into direct sum of vector spaces with the following properties:
1) g is a J-invariant subalgebra in which there exist an element E, < g,
and a subspace v, with the following properties:

(2.2) 8 = {JEu} +{Ex} +b¢;
(2.3 Joe C o
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(2.4) LJEx, Ex]=E;;

(2.5) LJEk, pel T

Moreover the real parts of the eigenvalues of ad (JE;) on p, are equal to 1/2,
and

(2.6) LEw pel = {0} ;
2.7 [he, D] C {Ex} .
2) Put v
(2.8) 8" = grs1tGesat -+,
then, we have
(2.9) [JEx, g*]C g,

Moreover the real parts of the eigenvalues of ad (JE,) on g¥** are equal to 0,
and

(2.10) LE: ¢**1]={0};
(2.11) Chr, 6¥ 1 C P
3) The form 7 defined by (1.2) and (1.3) is positive definite on g and the

factors of the decomposition g= {nj({]Ek}—i—{Ek} +p.) are mutually orthogonal
with respect to this form 1. .

Under the same assumption of [Theoreml, (8,/, ¢) becomes a solvable
normal J-algebra, since 7 is positive definite on ¢ (cf. § 1. B). Therefore it
is isomorphic to a J-algebra of a homogeneous bounded domain (cf. Intro-
duction (iv) and § 1. B). Hence we have our theorem in the introduction.

As for the proof of [Theoreml, put g'=g¢g. We shall show by induction on
n that there exists a decomposition of g

n—1
(2.12) g= El gr+g"
with the following properties:
1) For each k=1, 2, ---, n—1, there exist an element E; g, and a sub-

space P, C g, with the properties as stated in Theorem 1).

n—1
2) Put g"“:ké‘:,lgﬁ—g”. Then g¢*"' has the properties as stated in

Theorem 2).
3) The form 7 which is non-degenerate on g is positive definite on

-1 n—1
nEgk and the factors of the decomposition g:kZ({]Ek}+{Ek}+pk)+g" are
k=1 =1

mutually orthogonal with respect to this form 7.
Now, our theorem will follow by this inductive process, since we shall
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have g™*'= {0} for a certain m.

Suppose we have a decomposition for an integer n. Then g; (1=
k=n—1) and g¢" are clearly J-invariant solvable subalgebras of g.

Define

(2.13) 0(X, Y)=¢(LX, Y1),

for X, Yep, A=k=n—1). Then (9, J, 0x) becomes a symplectic space (cf.
§1. A). A representation f, of g" in b, is defined by

(2.14) XU =[X, V]

where Xe g™, Uesy,, and f, is symplectic, i.e. fx(X) is a symplectic trans-
formation of p, for X=g". Indeed, for X=g* U, Ve, we have

CX, LU, VII1=[[X, U], VI+LU, [X, V1.
By [2.7) and [2.10), the left side of the equation is equal to 0, and hence

O([[X, U], VD)+¢(U, [X, VI)=0.
Therefore f,(X) is symplectic.

§3. Proof of Theorem: Existence of E, in g"

We shall prove the following.

PROPOSITION 1. Suppose we have a decomposition (2.12) with the properties
given there for an integer n=1. Then, there exists a non-zero element E, in
g™ such that

[X, E,J=2X)E,, AX)eR, for Xeg”;

LJE,, E,]=E,.

In the first place, we show
LEMMA 2. A real solvable Lie algebra g contains a commutative ideal of
dimension 1 or 2 spanned by the elements E, F such that for X< g

[X, E]=AX)E+u(X)F,

3.1

where A, p ave linear functions on g.
PROOF. Let g be a real solvable Lie algebra and let g¢°={X+:1Y; X, Y
e g} be its complexification. By Lie’s theorem, there exists a non-zero ele-
ment Z in g° such that [W, Z]=k(W)Z holds for all W< g® with (W) e C.
Let E (resp. F) denote the real part (resp. imaginary part) of Z. Then
for any Xe=g,
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[X, E]=(X)E+u(X)F,
[X, F1=—p(X)E+AX)F,

(3.2)

hold, where 4, ¢ are linear functions on g.

Let t={E, F} be the real vector subspace spanned by the elements E, F.
If E, F are linearly dependent, r is a one-dimensional ideal of g. If E, F are
linearly independent, r is a two-dimensional ideal of g satisfying the above
conditions. For, since [E, E]=0, we get A(F)=¢(E)=0 by the first relation
in (3.2), which implies [E, F]=0 by the second relation in (3.2) and then t is
a commutative ideal. Q.E.D.

We shall now prove that g" contains a one-dimensional ideal. In view of
it is sufficient to prove that g" contains no two-dimensional ideal
t={E, F} as in

Let vt={E, F} be such an ideal of g*. By a simple calculation, we have

(3.3) ([g" ¢"1, t1={0} .

LEMMA 3. Let X be an element of g". If ¢([X,CL)=0 for all C&r, then
[X,C1=0 for all Cerx.

PROOF. First we note that ¢ =0 on t. In fact, if ¢ =0 on 1, p(Y, D)=
O(CJY, D])=0 for Y=g, D=r. Since 7 is non-degenerate on g*, it follows
t= {0}, which is a contradiction. Therefore ¢ =0 on r. Since [X, E]=
AX)E+u(X)F, [X, F1=—wX)E+A(X)F, we have AX)(E)+p(X)p(F)=0,
—u(X)P(E)F2AX)P(F)=0. As ¢(E)x0 or ¢(F)=0, A(X)*+u(X)*=0 holds,
and hence we have A(X)=p(X)=0, which implies [X, C]=0 for all Cer.

Q.E.D.

We put

v'={Cer; ¢(JC ED=¢(LJC, F])=0}.
Then, the following three cases are possible:
dimt*=0, dimt"=1 or dimt"=2.

We shall show that dimt°x0. Suppose dimt*=0. Then 7 is non-
degenerate on t and hence there exists a unique non-zero element At such
that ¢([JA, CD)=¢(C), for all Cer. When A=aE-+BF (a, < R), we put
B= —BE+aF. Then A, B is a base of t such that for X g"

[X, A1=2(X)A+p'(X)B,
(3.4)
[X, B]= —#/(X)A+2(X)B,

where 4’ and g’ are linear functions on ¢". Now, for C&t, we have by [(1.5),
3.3
1\ i
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¢(CJLJA, A, CD)=—¢([JA, A, JCD)
=¢([LA, JC, JAD+¢(([LJC, JAT, AD)
=—¢([4, JCI)
=¢(LJA, CD
=¢(C).
Thus we get [JA, A=A, and so [JA, B]= B by (3.4). When we put [ /B, A]
= A A4+p,B, 2y, 1y € R, then [ JB, B]= —p,A+1,B by (3.4). Hence by (K.2)
[LJA, JB], A1=[J[JA, B1+J[4, JB], A]
=[JB—4JA—p,JB, A]
=—ALJA, Al+(1—p)lJB, A]
= —Aotto A+ pto(1—p20) B .

Since [[JA4, JB], A]J=0 by [3.3), we have p,=0 or g,=1 and 1,=0. In the
case #,=0, put y=¢(B), 0=—¢(A). Then, since ¢ =0 on r, at least one of
7> 0 is not zero and y¢(A)+-0¢(B)=0. Let X=yA+0B. Then X=0 and we
have

P(LJA, XD =gy A+0B) = r¢(A)+0¢(B) =0,
$(LJB, X1 =¢(yAA+0AB) = A(yP(A)+0¢(B)=0.

Since 7 is non-degenerate on t, it follows that X =0, which is a contradiction.
Suppose g, =1 and 4,=0. Then we have by (K.2),

LJA, JB1=JLJA, B]+J[A, JB]=]B—]B=0.
From this and (K.5), it follows
p(LJA, JB], B)+p(LJB, B], JA)+p([B, JA], JB)=0,
p(JA, A)+p(JB, B)=0,

which is a contradiction since p(JA, A) >0 and p(/B, B)>0. Thus we have
shown that dimt*=0 is impossible.

We show that dimt®x1. Suppose dim:t®*=1 and let A be a non-zero
element in % When A=aE+BF (a, B R), we put B=—BE+aF. Then A,
B form a basis of t such that for X<g¢"

[X, A]=2(X)A+p (X)B
LX, B]l= —p/(X)A+2/(X)B,

where A’ and g’ are linear functions on ¢”. Since ¢([JA, AJ)=¢(JA, B])=0,
we have ¢([JA, C])=0 for all C &t and it follows by that [JA, A]
=0 and [JA, B]=0. From this and 3.3}, we have '

(3.5
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0=¢([LJA, JB], AD)
=¢(LJLJA, Bl+JLA, JB], AD)
=¢(LJLA, JB], AD),

0=¢(CLJA, JB], B])
=¢(LJLJA, B1+JL4, JB], B])

=¢(LJLA, JB], B]).

Hence there exists a real number A, such that [ /B, AJ=41,4. Then [ /B, B]
=21,B by (3.5). Since Be&1r° it follows that either ¢([/B, B])=2,¢(B) or
H([JB, A])=2,(A) is not zero. Therefore 4,0. On the other hand, we
have by (K.2) and (K.5)

0= o(LJA, JB1, A)+p(LJB, A, JA)+p(CA, JAL, JB)
— o(JLJA, BY, A+p(JTA, JB], A)+p(LJB, A, JA)+p(CA, JAL, JB)
= —22,0(JA, A).

Since p(JA4, A)>0, we get 1,=0, which is a contradiction. Thus dimt’=1
does not occur.

Suppose now dimt*=2. Since ¢([JC, E])=0, ¢([JC, F])=0 for any Cer,
it follows by that [JC, E]=[JC, F]=0 for all Cet and hence we
have

(3.6) CJr,x]1={0}.

Now, we put

3.7 p={Peg"; [P,E]=[JP, E]1=0}.
Then, clearly

3.8) JpCy.

Moreover we see

(3.9 ad (JE)pC oy, and

(3.10) ad (JE)J=Jad (JE) on p.

Indeed, since [ JE, JP]1=]J[JE, P14+ J[E, JP1+LE, P1=]J[JE, P] for P=yp, we
have ad (JE)/=/Jad (JE) on p. Since [[JE, P], E]=0 and [JLJE, P], E]=
[[JE,JP], E]=0 by [(3.3), we have ad (JE)pC .

Now, for X g", we get by [3.3),

[LJE, X1, E]=0,
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CJUJE, X1, E1=[LJE, JX1-JLE, JX]1-[E, X7, E]

=[LJE, JX], E]

=0,
which implies that [ JE, X] <9y, and hence we have
8.11) ad (JE)g"Cp.

Let P=yp. We have
p(JE,LJE, P1)=—p(E, JLJE, PJ)

= —p(E, LJE, JP])
=p(JE,[JP, ED)+p(JP, [E, JED
=0,

and it follows that for X & g”

(3.12) p(JE, ad (JE)*X)=0.

Applying and (3.12), we have for X, Y g

_C_id:T plexptad (JE)X, exptad(JE)Y)

= % o(JE, exp tad (JE)[X, Y1)

= p(JE, ad (JE)’exp tad (JE)[X, Y])

=0.
Hence we may put

(3.13) plexptad (JE)X, exptad (JE)Y)=at>+bt+c,

where a, b and ¢ are real numbers not depending on ¢.

Now, let a+i8 (a, B = R) be an eigenvalue of ad (JE) on p. Since ad (JE)/
=Jad(JE) on 9 by (3.10), there exists a non-zero element P< ) such that
ad (JE)P=(a+B/)P, and hence exptad (JE)P=exp t(a+BJ)P. Therefore we
have by (K.3) and (3.10),

plexp tad (JE)JP, exptad (JE)P)
= o(Jexp tad (JE)P, exp tad (JE)P)
= p(J exp tla+B])P, exp Ha+p])P)
= p(exp Ha+pB))JP, exp Ha+B])P)
— 2(a+i‘8)te(a+i‘6)t,0(jp, P)
=e*'p(JP, P).
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From this and [(3.13), we have
at*4-bt+c=e**'p(JP, P).

Since p(JP, P)>0, it follows a =0. Thus the real parts of the eigenvalues
of ad (JE) on p are equal to 0.
Now, we put

(3.14) (X)) ="Trr(ad (JX)—Jad (X)) for Xeg.

From the facts that ad (JE)g"Cyp (3.11) and the real parts of the eigenvalues
of ad (JE) on p are equal to 0, it follows that Tr.rad (JE)=Tryad (JE)=0.
On the other hand, by and Jad(E)s"C Jr, we have Trinjad(E)=
Try.Jad(E)=0. These imply that

¢u(E)=0.
Taking F instead of E, we have

Gu(F)=0.
Thus we know

(3.15) $=0 onrt.

Now, for X=g", Py, we have [ X, JE,J=¢*", [X, E,1=0, [X, P1=Y; and
Try, [:(X)=0, where f; is a symplectic representation of g" in p, (2.14). It
follows that for X =g”

3.16) P(X) =Tr.i(ad (JX)—Jad (X))

:ETrpk(fk<JX>—ffk<X>>+¢n<X>

- -2 TrogJfl(X)+¢a(X) .

Put fL(E)=(A, B), f:(JE)=(C, D) in the sense of §1.A. Since [f(JE), f{E)]
=f([JE, E])=0, it becomes that

(3.17) CA—AC+DB—BD =0.

By (K.2), we have

(3.18) L] fR(JE)—=Q/2L), F(E)]]=0.
From this and J=(1, 0), we know
(3.19) D=iB.

Since B is a symmetric matrix, there exists a unitary matrix U such that
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A

UBU = Ar

Zr+1.
',21

where ;>0 for 117, 2;,=0 for »+1=<:1=</. Hence we may assume that

(3.20) B= A

. N
where 4; >0 for 1=:1<7r, ,=0 for »+1<i</. Since D=1B, we have
(3.21) CA—AC+2B*=0.
Taking the trace of the both sides of the formula [3.21), it follows that

which implies that B=0, and hence f.(F)= (A, 0). From this we know that

(3.22) JE)Y]=Jf«(E)  on p.
Using [3.15), (3.16) and [3.22), we have
(3.23) O(LE, X])=— :éllTrpk]fkq:E’ XD+¢a(lE, X7T)

= = S Try JLAE), A(X)]
= — S T BV —JF XfUE)
= — S Trn B I X E)

— E’I‘r L/E), Jfl(X)]

=0, for Xeg.

Since 7 is non-degenerate on g", it follows that £=0, which is a contradic-
tion. Thus we have known that g" contains a one-dimensional ideal r of g".
Now, let E be a non-zero element of r and suppose that [JE, E]=0. Put

p={Peg®; [P, E]=LJP, E]=0}.
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Then, by the argument as used above, we see the followings. First ad (JE)g"
Cp, and the real parts of the eigenvalues of ad (JE) on p are equal to 0,
and ¢((E, X])=0 for any X=g". This is a contradiction, because 7 is non-
degenerate on g". Therefore [JE, E]=0.

Putting E£,=AF with a non-zero constant A, we have

(3.24) LJE,, E,]=E,.

Thus [Proposition 1| is proved.

§4. Proof of Theorem (continued): Decomposition of g”

PROPOSITION 2. Let E, be an element in g™ as in Proposition 1. Then, we
get the decomposition

(4.1) ¢" = {JEn} +{En} +-pp+g"""

of g" into the direct sum of vector spaces with the following properties:
1) g,={JE.}+{E,}+D, is a J-invariant subalgebra such that

(4.2) T C P
(4.3) LJE,, E,]=E,;
(4.4) LJE,, p,1C pn.

Moreover the real parts of the eigenvalues of ad (JE,) on b, are equal to 1/2,
and

(4.5) LE, 9 1=0;
(4.6) [Pns P21 CH{EL} .

2) ¢"*!' is a J-invariant subalgebra such that
(4.7) LJE,, g™ ]C g™,

Moreover the real parts of the eigenvalues of ad (JE,) on g™t are equal to 0,
and

(4.8) LE, ¢"]1=0;
(4.9) [hn 6" 1C s

3) The form n is positive definite on g, and the factors of the decomposi-
tion g, = {JE,} +{E,} +p, are mutually orthogonal with respect to this form .
Further, the form n is non-degenerate on g**'.

PROOF. For the convenience of notation, we denote the element E, by
E. We put

(4.10) v={Peg"; [P, E]1=[JP, E]=0}.
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Then, we have

(4.11) JpCyp, ad (JEWCY,
(4.12) ad(JE)J=Jad(JE) on?,
4.13) g"={JE}+{E}+».

Indeed, and (4.12) can be shown in the same way as [3.8), and (3.10).
Since {E} is a one-dimensional ideal of g*, we get [X, El=a(X)E, [JX, E]
= B(X)E for X< g", where a, B8 are linear functions on g¢"”. It is easily seen
that P= X—a(X)JE—B(X)E belongs to p for any X <g"

LEMMA 4. The real parts of the eigenvalues of ad (JE) on p are equal to
0 or 1/2.

PrROOF. By [Lemma 1, we have for Py,

Tidt‘ plexp t ad (JE)E, exp tad (JE)P)

= p(JE, exp tad (JE)LE, PJ)
=0.
Since exptad (JE)E=¢'E, this implies that
o(E, exptad (JE)P)=a'e""

where a’ is a constant determined by P and independent of t. We have then

o(JE, exp tad (JE)P)= —p(E, ] exp t ad (JE)P)
= —p(E, exp tad (JE)JP)

—=ae

where a is the constant determined by JP. Since any element X in g" is
expressed in the form X=AJE4pE+P, where 4, p= R and Pebp (4.13), we
have

p(JE, exp tad (JE)X) = p(JE, 2JE+pe*E+exp t ad (JE)P)
= pp(JE, E)e'+p(JE, exp tad (JE)P)
=ae "+ bet

where a, b are constant independent of ¢£. This fact and imply that
for X, Yeg*

73_ o(exp tad (JE)X, exp t ad (JE)Y)

= p(JE, exp tad (JE)LX, Y])
=qe t+-bet .
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Hence we obtain
(4.14) plexptad (JE)X, exptad (JE)Y)=ae ‘+be'+c,

where @, b and ¢ are constant independent of £. Let a+if (@, S R) be an
eigenvalue of ad (JE) on 9. Since ad (JE)/=/ad (JE) on b, there exists a
non-zero element P in p such that ad (JE)P=(a+B/)P. Hence we have

plexp tad (JE)JP, exptad (JE)P)
= p(Jexp tad (JE)P, exp tad (JE)P)
= p(J exp t(a+BJ)P, exp fla+p/)P)
= p(exp Ha~+B/)JP, exp a+B])P)
= o1 Plg( P, P)

=e***p(JP, P).
Therefore
e o(JP, P)=ae "+be'+c.

This implies that «a =0 or 1/2 or —1/2, since p(JP, P)>0. We put
4.15 Paripy={PE€Y; (ad (JE)—(a+B/)))"P=0 for some integer m >0} .
Then we have

(4.16) D=2 Piatipys
a+if

where « is equal to 0 or 1/2 or —1/2. Let P be a non-zero element in Pea+:p.
Then there exists a positive integer m such that (ad (JE)—(a+j/))"P=0.
Hence we have

exp tad (JE)P = exp tlat5))'S - (ad (JE)—(a-+ B)'P
= ¢**{cos ‘Bttg—;%(ad (JE)—(a+B])'P

+sin 'S, Fi-(ad (JE)—(a-+BN)JP.
Therefore
o(JE, exp tad (JE)P)

— e {cos Bt'S - pUE, (ad JE)—(a+RI)'P)t

+sin §1'S, - o(JE, (ad (JE)—(@-+BI)TPIE} .
We put
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20 =§171TP(JE, (ad (JE)—(a+BI)'PYE

k(t)— l' p(JE, (ad (JE)—(a+B])"JP)t .

Then, A(f) and k(¢) are polynomials whose degrees are m—1 at most. We
have then
h(f) cos Bt-+Ek(t) sin Bt = ae 1+t

*h?(nl:) ,Bt—i—ﬁg) sin ﬁtl ——’

~(1+a>t

4.17)

.

We assume that a=0. Since 1+a >0 and since A(¢#) and k(f) are polynomials
of degree<m—1, the left side of the above formula approaches to 0
and the right side to co, when t— —co. This is a contradiction, and we must
have a=0. This implies that

o(JE,exptad (JE)P)=0, for PEVasip -
Hence we have
o(JE, exptad (JE)P)=0, for Pep.
Therefore
e p(JP, P)=be'+c.

This implies that « =0 or 1/2, which proves Lemma 4
Now, put

p[a] = % p(a+i15) .

Then, we have
TP C Prayy ad (JE)D C Prag s

P=PatPu.

Moreover the real parts of the eigenvalues of ad (JE) on p; are equal to a.
Hence we get the following decomposition;

(4.18) 8" = 8roat+ 8tz t 8ru1 »

where gy = {JE} 4Pt 8121 =Py and gy = {E}. Moreover, ad (JE)gra C 8tay
and the real parts of the eigenvalues of ad (JE) on g, are equal to a. We
put

(4.19) Pn=Prusen s
(4.20) 0n = {JE}+{E} +hum,
(4.21) g™ = Pron .

. Then, g, is clearly a J-invariant subalgebra. We prove that g"*! is also a J-
invariant subalgebra. First we have Jg"*'C g¢"*'. Now, since [8r, 8ror] < Sros
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if P, Q=g"", we have .
LP, Q1=4AJE+P’,

where A= R and P’ =y, and therefore

([P, Q], E]=2E.

On the other hand, we have

(LR, Q1, E1=[[P, E], Q1+[P, [Q, EJ]1=0.

This implies that A=0. Thus we have [P, Q] < g"*!, which shows that g"*!
is a subalgebra.
.. Now, we shall show that the factors of the decomposition

g" = {JE}+{E} +Pym+dn

are mutually orthogonal with respect to the non-degenerate form 7. Indeed,
for PE Py, Q € 9oy, put PP=[JP, Q). Then P’ &pyp. Since the real parts
of the eigenvalues of ad (JE) on Py, are equal to 1/2, ad (JE) is non-singular
on P, and hence there exists an element P” € P,y such that [ JE, P”]=P"’.
We have then 29(P, Q)=¢(JP, Q) =¢(JE, P"])=—¢((E, JP"])=0. This
shows that py/; and py; are orthogonal with respect to ». It is clear that
the other pairs of factors are mutually orthogonal with respect to 7.
LEMMA 5.
P(E)>0.

PROOF. Recall that (9, /, 0,) is a symplectic space where o, is defined
in and that f; is a symplectic representation of g” in p; defined by [(2.14).
Since

LAJE), fi(E)]=SW(E),

CJ, fx(JE)—(1/2LJ, f«(E)]11=0,
we have by [10]
1) pe=pf+pr+pd direct sum;
2) pi, vr and p} are invariant by fi (JE);
3) the real parts of the eigenvalues of f,(JE) on pi, by and p} are 1/2,
—1/2 and 0 respectively;
4) Jpr =vf, Joi =1, in particular dimp; =dim pg, Try, f(JE)=0;

|

\)) j on pl: ’

0 . on pE+pi.
These show that Try,Jfi(E)=—dimp;. On the other hand Tre(ad (JE)—
Jad (E)) > 0. Indeed, TrgnJad (E) = —1 because Jad(E)g"C {JE} and Jad (E)JE

= —JE. Moreover, the real parts of the eigenvalues of ad (JE) on g" are
equal to 0, 1/2 or 1, and ad (JE)E=E. Therefore we have Trsad (JE) > 0.

e ={
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These imply that Trg2(ad (JE)—/Jad (E)) > 0. Therefore we have

HE) =~ 8 Tr JFuE)+ Trn(ad (JE)—J ad ()

= :élldim b7 +Tren(ad (JE)—J ad (E)) > 0.

Q.E.D.
LEMMA 6. 7 is positive definite on Pyx.

PROOF. We shall first prove that the decomposition Pge = Epu/z;iﬁ}) is
8

an orthogonal decomposition with respect to . Let P and Q be non-zero

elements in Pae+is, Pase+ipy respectively and assume S 8/. Then there exist
positive integers m, n such that

(ad (JE)—(1/2+B))"P=0,
(ad (JE)—Q1/2+p))"Q=0.

Hence we have
exp tad (JE)P=exp t(l/zﬂff)ﬂ:;_o1 %(ad (JE)—~Q/2+BD)'P,
exptad (JE)Q=exp t(1/2+p')) g %(ad (JE)—/24+8'])'Q.

Since [Prse1 P ] C {E}, it becomes that [JP, Q1=A4E, where A= R. By
[Lemma 1, we have

‘7;17 olexp tad (JE)JP, exp t ad (JE)Q)

(4.22)
= p(JE, exptad (JE)LJP, ¢]J).

The left side of this equation is equal to

,(%‘ p(Jexp tad (JE)P, exptad (JE)Q)
= p(J exp (1/2+ B))'E —-(ad (JE)-(1/2+ )P,
exp 11/2+5)) 5 - (ad (JE)—(1/2+§))'Q)
=~ plexp BtJ'S - (ad (JEY—(W/2+BI)IP,
exp §1]°5 - ad (JE)—(1/2+ B 1)'Q)

= 7%—@‘9< {cos Bt-+(sin Bt)J} u(®), {cos §'t+(sin B't)]}v(2)
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= Q?t‘_ e'(cos Bt cos B't+sin St sin ,B’t)p(u(t),‘ v(t))

+(sin Bt cos p’'t—cos Bt sin f't) p(Ju(?), v(t))
= ¢ {h(t) cos (B—B")t+k(t) sin (B— )t}

=e'{a(?) cos (B—B')t+b(t) sin (B— )t} ,

where
u(t)="5 F1-(ad JE)~(U/2+ 8NP,

W) =5 F-ad (JEY~(W/2+ ).
h(t) = p(utt), (1),

b= p(Jult), (1),

alty = hO+h (O+E—BOk(D)

b(t) = (D) /() —(B— BCE)

Hence a(?) and b(¢) are polynomials. On the other hand, the right side of
the equation (4.22) is equal to

o(JE, exp tad (JE)LJP, Q)= p(JE, 2¢'E)
=e'20(JE, E).
Therefore we have
a(t) cos (B—B)t-+b(t) sin (B—pB)t=2p(JE, E) .

Since a(t)—Ap(JE, E) is a polynomial and since a(t,)—2Ap(JE, E)=0 for t,
=2nn/(f—pB’), where n integer, it follows that a(f) is a constant a. Similarly
b(t) is a constant b. Hence we have

acos (B—pB)t+bsin (f—p)t=2p(JE, E).
By this formula, we have (8—p)*2p(JE, E)=0. Since 83— =0 and p(JE, E)
>0, 2 must be 0. Thus we have
(P, Q)= ¢ JP, Q)= A¢(E)=0.

This implies that P+ and Do, are mutually orthogonal with respect
to 7.

Now, let P be a non-zero element in Py..is. Then, there exists a posi-
tive integer m such that

(ad (JE)—(1/2+8])"P=0,
and hence
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exptad (JE)P=expt(1/2+B])u(t),

m— L
where u(t):gl%(ad (JE)—1/2+8/))'P. On the other hand, we have by
Lemma 1

(4.23) 2 plexp tad (JE)JP, exp tad (JE)P)
=p(JE, exptad (JE)LJP, P]).

The left side of this equation is equal to
& _p(Jexptad (JE)P, exptad (JE)P)

= 7?7 o(J exp t(1/2+B))u(t), exp t(1/2+ B u(t))

- ‘}'ft“ p(exp H(1/2+ B))Ju(t), exp t(1/2+ B])u(t))

___7(11?e<1/2+iﬁ)5e<1/2+"/3”p(]u(l‘), u(t))

=% cto(Jutt), u(h)

=e'(M(H+h(),

where h(t) = p(Ju(t), u(t)), and h(t) is a polynomial of degree <2m—2. Because
[JP, P]=AE where A< R, the right side of the equation is equal to

o(JE, 2e'E)=¢'20(JE, E).
Hence we have
h'(D+h(t) = 20(JE, E) .

The solution of this equation is h(f) =ce '+ 2p(JE, E), where ¢ is an arbitrary
constant. However, A(f) is a polynomial, and so ¢ must be 0. Hence we have

h(t)y=2p(JE, E),
and hence it follows that

R KO olJP,P)
(4.24) A=(E E) ~ pUE E) ~ pUEE) >0

Therefore we have by and
(P, P)=¢(JP, P1)=2¢(E)>0.
This shows that 7 is positive definite on P/z+ip, and hence on ppy = %1’(1/2”5)-
Q.E.D.

This completes the proof of

As explained in § 2 our theorem follows then by induction on 7, applying
Propositions 1 and 2 successively.
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§5. Proof of corollaries

PROOF OF COROLLARY 1. Let K be the isotropy subgroup of G at the
point 0. Since G=1I°M), K is a compact subgroup of G. By a theorem of
Iwasawa, G/K=G/K is homeomorphic to a Euclidean space. Hence K is a
maximal compact subgroup of G. Let f be the Lie subalgebra of § corre-
sponding to K. By a theorem of Hano (Introduction (vi)), the adjoint group
G=Ads(G) of G is the identity component of a real algebraic group in
GL(§, R). Since the center of G is finite and since K= - Adg (K) is a compact
subgroup of G K is a maximal compact subgroup of G. Hence there exists
a connected triangular subgroup T of G such that G= TK where Tr\K con-
sists of the identity only [12]. Thus we have G=TK, where T=Ads (1),
and T is a solvable Lie group which acts transitively on M. The Kihler
algebra corresponding to T is normal, solvable and the canonical hermitian
form is non-degenerate. By our theorem, M is holomorphically isomorphic
to a homogeneous bounded domain.

PROOF OF COROLLARY 2. Since M is complete, simply connected, and
since o0 has no conjugate point, the exponential map exp,: T\(M)— M is a
homeomorphism. Therefore the isotropy subgroup of /°(M) at 0 is a maximal
compact subgroup of I°(M). Therefore, by the proof is completed.
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