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§1. Introduction.

The present note is concerned with the limiting behavior as ¢—0; of
solutions u#. of the equation

(L.1) (1—eA)uit)—Bu )= f.(1).

A and B are maximal dissipative linear operators in a complex Hilbert space:
H, A is self-adjoint and D(A)C D(B). We wish to show that if f.—f and
u(0)— x in a suitable fashion, then u. converges to the solution u of

(1.2) w)—Bu@®)=f1), w0)=rx,

that u,—u’ and that the rate of convergence is O(+/¢). The conditions im-
posed on A and B imply that B is relatively bounded with respect to A so
that is a singular perturbation of [1.2). Our results apply in particular
when ((1.2) is a partial differential equation of parabolic or of Schroedinger
type.

Equation arises in a variety of physical problems including fluid
flow through a fissured rock [1], shear in second order fluids [3, 107, soil
mechanics [9], thermodynamics and many others [4], and is often.
used as an approximating model when the physical constant ¢ is small.
Convergence of solutions of to solutions of was considered by T.W.
Ting [11] in the following special situation : H= L% ) where £ is a bounded
open set in R® with smooth boundary and A and B are, respectively, the:
realizations in L*(2) of the partial differential operators

A= é _5% (aijwa% >——a(x) ’ a(X) g 0 ’

i, j=1

) 9
=3 50 @ffa}c}’ —b(x), b(x)=0,

i,7=1

under Dirichlet boundary conditions. The matrices (a;;) and (b;;) were assumed
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to be real, symmetric and uniformly positive definite in £ and the coefficients
in 4 and in @ were assumed to be smooth in 2. If £.()=F1)=0 and u.(0)
=xe H'(Q)NHY¥D) (¢>0), Ting proved that uJ f) converges in L*) as
e—0,, uniformly on [0, o), and that the rate of convergence is O(~¢).
Although it was claimed that the limit of u. is the solution of [1.2), Ting’s
proof does not show this and it turns out that the proof of this fact is
.decidedly nontrivial and in particular makes use of the convergence of us,
which is also not proved in [11]. We remark that our proof of the conver-
gence of u. in the general case is substantially simpler and more direct than
‘the proof given in for the special case just discussed.

The main results of this paper are contained in Section 3. Our assump-
‘tions and the necessary preliminary results are given in Section 2.

§2. Preliminaries.

In this section we state our assumptions and a number of results which
will be needed in Section 3. Many of the results of this section are known
's0 we omit or only briefly sketch their proofs.

Let V and H be complex Hilbert spaces with V C H algebraically and
‘topologically such that V is dense in H. We denote the inner product and
norm in H by (-,-) and |-| respectively, and the norm in V by ||-|. Let
.a(u, v) and b(u, v) be continuous sesquilinear forms on V which satisfy the
following conditions.

a(u, v)=av, u), a(v, ) <0,
(2.1)
AoV EF—a(v, v) = ¢,llv|?, ve V.
\(22) Re b('l), U)éO, lb(l’, 7))1261”1}“2; ve V7

where 4, ¢, and ¢, are positive constants independent of v.

Let D(A) be the set of u e V such that the mapping v— a(u, v) is con-
tinuous on V in the topology induced by H. D(A) is the domain of a linear,
-self-adjoint, dissipative operator A in H such that

a(u, v) = (Au, v)

for all u= D(A) and ve V (see e.g., Lions [6]). If ¢>0, (1—eA) is an iso-
morphism of D(A) onto H and

IX—eA)"f ]| = (const.)e™ | /1,
|I—eA)fI=1fl, feH.

In a similar way, b(u, v) defines a linear, maximal dissipative operator B
in H such that
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b(u, v) = (Bu, v)

for all ueD(B)CV and ve V, and B is an isomorphism of D(B) onto H.
We remark that the domains of A and B are dense both in H and in V.

Since B is maximal dissipative, it is the generator of a (C,)-semigroup
{e!B: t=0} of contractions on H. If in (2.2) the condition Reb(v,v)=0 is
satisfied, then B is skew-adjoint and this semigroup may be extended to a
(Cy)-group {e‘B: —oo <t< 400} of unitary operators on H.

THEOREM 2.1. Suppose B satisfies (2.2). Let f= C([0, o); H) such that f
is locally strongly absolutely continuous and differentiable a.e. with derivative
fre L3 ([0, o) ; H). Let x& D(B). There is one and only one function ue
C’([0, o) ; H) such that u(0)=x, u(t) € D(B) and

(2.3 uw/(t)— Bu(t) = f(¢)
for all t>0.
This result is proved in when fe C'([0, o0); H). A slight modifica-
tion of that proof yields [Theorem 2.1. u(f) is given by
(2.4) u(t) = 2+ ‘0B ds |
0

COROLLARY 2.1. Suppose B satisfies (2.2) and Re b(v, v)=0. Let f < C((—oo,
oo0); H) such that f is locally strongly absolutely continuous and differentiable
a.e. with derivative f' < Lg ((—oo, 00); H). Let x& D(B). Then (24) is a func-
tion in C'((—oo, o0); H), u(t) e D(B) and satisfies (2.3) everywhere in (—oo, co).

We now turn to the equation

(2.5) (1—eA)ui(t)— Bu(t) = f.(t) .

DEFINITION. A solution of (2.5) is a function u.e C((—oo, c0); V) which
is locally strongly absolutely continuous and differentiable a.e. such that
u(t) € D(B), u.(t) e D(A) and (2.5) is satisfied a.e. in (—oo, c0).

The proof of the following result is essentially contained in [8] (c. f. [5]).

THEOREM 2.2. Suppose A and B satisfy (2.1) and (2.2) and D(A)C D(B).
Let €>0, f.e Li,;((—o0, ) ; H) and x.= D(B). Then (2.5) has a unique solu-
tion u(t) such that u(0)= x.. Moreover, u.c C((—oo, 00); Dp) and u, & L}, .((—co,
o) ; D,) where D, (respectively, Dpg) is the Hilbert space D(A) (vespectively, D(B))
equipped with the norm (| Au|®+ |u|®)'® (respectively, | Bul). - If f.e C((—oo, o) ;
H) then u. e C((—oo, o0); D,) and (2.5) is satisfied everywhere in (—co, co).

In fact the unique solution of is given by

2.6) ut) = e+ | :e“‘s”’ﬁ(l—eA)“fs(s)ds

where B. is the bounded linear operator on V given by
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B.=cl(1—eA)'B

where cl (1—eA)™'B means the closure of (1—¢A)™'B as an operator in V and
{e'Be: —00 <t < +oo} is the corresponding uniformly continuous group gen-
erated by B..

LEMMA 2.1. Let A and B satisfy (2.1) and (2.2). Then D V algebraically
and topologically and if D(A)C D(B), then D,C Dp topologically.

PrROOF. From (2.2), for u = D(B) we have

lul® < et b(u, u)| = cr*|(Bu, )| = (const.)| Bu| |u]|

which proves the first part of the lemma. If also D(A)C D(B) then as a
consequence of the closed graph theorem we have (see e.g. Yosida

| Bu| < (const.)(| Au|+ul)

which proves the second part.
From this lemma follows that (1—esA) !B is a bounded linear operator on
Dg whenever D(A)C D(B), since

| Bl—eA)"*Bu| < (const.)(| Al—eA) 'Bu|+|(1—eA)'Bu|) < K| Bu|

where K, is a constant depending only on e. It also follows from the lemma
and the definition of B. that e¢'®¢ along with B. maps D(B) into itself and

e'Bex —=exp (t(1—eA)'B)x, x< D(B),

again provided that D(A)C D(B), where {exp (t(1—eA)'B): —oo <t < 400} is
the uniformly continuous group of operators on Dp generated by (1—eA)™'B.

Next we study the growth properties of e¢'®c, For this we introduce for
each ¢e>0and », v in V

2.7 (4, v).= (u, v)—ea(u, v) .

defines an inner product on V and the corresponding norm defined by
l u I e '\/@ﬂ

is equivalent to ||-|| because of (2.1).

LEMMA 2.2. Let A and B satisfy (2.1) and (2.2). Then for each ¢ >0 and
xeV,

(2.3) lePex| < |xl., t=0.

If also Reb(v, v)=0, then

|eBex|,=|x]s, —oo<t< +oo0,

PROOF. For v D(B) we have
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Re (B.v, v).=Re (1—¢A) *Bv, v).= Re (Bv, v)
=Re b(v, 1) 0.
Since D(B) is dense in V we see that B, is dissipative on V with respect to
the inner product (-,).. This implies (2.8). If Reb(v, v)=0, then B. is skew-
adjoint with respect to (-, -). so that the operators ¢‘®c are all unitary with
respect to |-|..

The next two lemmas will be needed in the proof of [Theorem 3.1
LEMMA 2.3. Let A satisfy (21). Then for ¢ >0,

(2.9 (1—eA)'Au, Au) < —e (Au,u), uesD(A).
PrROOF. For we D(A) we have
(Aw, w)—e| Aw|*=(Aw, 1—eAw) <0.
Setting w=(1—¢A) v, ve D(A), we obtain
(Al—eA) v, v) = ((1—eA) (cAv+(1—eA)), Av) <0

which is the same as [2.9).

LEMMA 24. Let A and B satisfy (2.1) and (2.2). Then D(AB) is dense in
Dg and, therefore, in V.

PROOF. Suppose (Bu, Bv)=0 for all u = D(AB) and some ve< D(B). Set
w=(1—eA) By, ¢>0. Then

0=(Bu, 1—eAw)={((1—cA)Bu, w)

for all uED(AB):D((l—sA)B).b For ¢>0, 1—¢A)B is an isomorphism of
D(AB) onto H and therefore w =0 which implies v=0.

§3. Main results.

THEOREM 3.1. Suppose A and B satisfy (2.1) and (2.2) and that D(A)C
D(B). Then for each x&V

lim |eBex.—e'Bx| =0
e—04

for any filter {x} CV such that |x.—x|.—0. Moreover, for each x = D(B) and
any filter {x.} C D(B) such that |Bx,—Bx|—0 we have

lim | B.e'*®ex,— Be'Px|=0.
e—04

In each case the convergence is uniform on bounded subsets of [0, co) or, when
Re b(v, v) =0, on bounded subsets of (—oo, 00). In addition we have the estimate

|e'Bex—e'Bx| < (const.)|t|ve (| Bx|+ | ABx|)
for each x€ D(AB) and for such x
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lim |e*Bex—e'Bx|,=0.

=04
is the key to the comparison of solutions of
3.1 (I—eAudt)—BuH)=f), ul0)=rx.,
with solutions of
32 | W) —But)=£),  u(0)=x.

THEOREM 3.2. Suppose A and B satisfy (2.1) and (2.2), that D(A)C D(B)
and that {f.} C L,.((— oo, c0); H), |f(t)| < F(t) where Fe L}, (—co,c0) and
| f()—f@®)|—0 a.e. in (—oo, ©) as e—04. Then

|fole“‘”BE(l—sA)‘1f5(s)ds—f:e“‘”Bf(s)ds —0

as €—0, for each t=0 or, if Reb(v, v)=0, for each t < (—oo, o).

COROLLARY 3.1. In addition to the hypothesis of Theorem 3.2, let f satisfy
the conditions of Corollary 2.1, {x.} C D(B), x< D(B) and |x.—x|.—0. If u.is
the solution of (3.1) and u the solution of (3.2), then u(t)—u(t) in H as e—0,
for each t =0 or, if Reb(v, v) =0, for each t in (—oo, o).

THEOREM 3.3. Suppose A and B satisfy (2.1) and (2.2), that D(A) D(B)
and that

(i) {x}cD(B), x€ D(B) and |Bx.—Bx|—0 as ¢—0,.

(i) f and f. are locally strongly absolutely continuous and differentiable

; 4
a.e. in (—oo, 00),

e Lig((=00, 00); H),  [fOI+1/DI=F @)

where Fe Ll ,(—o0, o), and as ¢— 0,

7 (BH—fBD]—0, |fO—r®1—0
a.e. in (—oo, o),
Let u. be the solution of (3.1) and u the solution of (3.2). Then as ¢— 04
lu@)—u® -0,  |u®)—uw()]—0
Jor each t=0 or, if Reb(v,v)=0, for each t in (—oo, co).
PROOF OF THEOREM 3.1. Since
|e'Bex,—e'Bx| < |e'Be(x,—x)| + | e'Bex—e'Bx|
élxs"’xle_f_letBsx_ethl!

to prove the first part it suffices to show that |e'Zex—e'Bx| tends to zero as
£— 04, uniformly on bounded ¢ sets.
Let e>7>0and x€ V. We write
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t d
tB tBe, (t-$)Be 8By
e'Bix—e =x_j‘0 s (e Yo Brx)ds

e j te“‘*’Be(Bn—Bs)em’?x ds.
0
By we have

|etBex—etBux|, < f ' |(B.— By)esBrx| ds .
1]
Suppose x < D(B). Then v,(s) = e*Brx = D(B) and
(Be—Bp)vy(s) = (1—eA) ' —(1—nA) ) Bvy(s)

= (e—n)(1—eA)*A(1—nA) *Bu,(s)

=(e—n)(1—ecA) ' AByx(s) .
Therefore
[ (B.—Byp)vy(s) |2 = (1—e A)(B.— By)vx(s), (Be— By)vy(s))

= (e—9))(AByvy(s), (1—eA) P AByvy(3)) .
Applying we have
|(Be=Byyu(9)12 = —e(1— 1) (AByn(s), Bytr(s)
The negative of the inner product on the right equals
| a(Byuy(s), Byvx(s))| = (const.)|| Byvy(s)|*
= (const.) | b(Byvy(s), Byuy(s))|
= (const.) | (BByvy(s), Byvy(s))|
= (const.) | (1—1A) B3 v(s), Byvy(s))|
= (const.) | (B3 vy(s), Byvy(s))y|
= (const.)| (¢*B7B% x, ¢*51Byx), |

where (const.) does not depend on ¢, 7, s or x. Applying the Schwarz in-
equality and we obtain

|(Be—By)un(s) 2 = (conste(1—-1-) | By xl| By
provided x = D(B). For such x
| Byx|3 = (Bx, (1—9A)"'Bx) <|Bx|®.
Now suppose x< D(AB). By
| B x|5 = (BU1—7nA)"'Bx, 1—7A)"B(1—nA)™'Bx)
=|B(1—nA)~Bx|*
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= (const.)(| Al—7A)'Bx|*+ |(1—7nA)"'Bx|?)
< (const.)(| ABx|®*+|Bx|%.

We have therefore proved that for x& D(AB) and =0,
(3.3) |etBex—etBrx |, < (const.)| ] JZ@-{-) (|Bx|+| ABx|)

provided € > >0. An analogous argument gives the same inequality for all
t whenever Reb(v, v)=0. Since |-|=Z]|-|. for each ¢>0, we see that e'Pex
converges in H as ¢—0, for each x € D(AB), uniformly on bounded subsets of
[0, c0) or, if Re b(v, v) =0, uniformly on bounded subsets of (—co, c0). There-
fore, for each x= D(AB) we may define

(3.4) S(t)x = lim e*Pex

e—04.

the limit being taken in H. From we have
|etBex—S(H)x| < (const.)|t| Ve (| Bx|+ | ABx|).
We wish to show that S({)x< V and that
(35)  lim [ePex—S(t)x|, =0, x< D(AB).
0y

Let ¢ >0 be fixed. From [(3.3) we obtain
letBrx| . < K(1, ¢, X)

for all » in (0,¢]. Thus if V. is the Hilbert space (V, |-|.), then the set
{e’B1x: 0<n=¢} is bounded in V. and therefore {exp ({By,)x} converges
weakly in V. for some sequence 7, | 0. Since V.=V algebraically and topo-
logically, this sequence converges weakly in V and, therefore, in H since V
is continuously embedded in H. The limit of this sequence must be S(f)x
because of [3.4). It follows that e‘®rx converges weakly in V to S(f)x as
7—0s, for each x< D(AB). Therefore S(t)x= V and {[[¢"Bx|:0<p=¢} is
bounded. Since

|etBrx—S()x|3 =|etBrx—S()x|*
—na(eBrx—S(t)x, e!Brx—S(t)x)

and the right side goes to zero as »—0,; by what we have proved, the
desired conclusion follows.

Now let x& V and {x} CD(AB) such that |x—x|<—%. Then |x—x,
< % for all sufficiently small ¢ >0. If ¢>%>0 we have
|eBex—eBrx| < | ¢B(x—15) | o | (P —eB0)x, | + [ ePH(x— )|

Slx—xglot [ x—x 5+ | (€PBe—etBr)x, |
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Thus

lim sup |etBx—etBrx| < 2 s k=12, -,
€04 k

uniformly on bounded ¢ sets, and so S({)x may be defined by for each
x< V. The mapping t— S(t)x of [0, o) (or of (—oo, o)) into H is continuous
since for each of the approximations ¢'2¢ we have

|etBex—eBex| < | x—e@ PBex| — ()
as t—s—0. Also, for x= V and each ¢,
|S(Hx| = lim |eBex| < lim | x|.=|x] .
€04 =04
Since V is dense in H, S({) may be extended by continuity to a bounded

linear operator on H. We next show that S(+s)=S()S(s). Let x= D(ADB).
Then S(z)x< V and we have

| SE+35)x—S(H)S(s)x| £ | S(t+5)x— et+9Be x|
+ | etBe(esBex— S(s)x) | + | (eBe—S(£)S(s)x].
The first and third terms on the right go to zero as e—0. and the second is
bounded by |ePex—S(s)x|. so that it too goes to zero by [35) Since D(AB)
is dense in H and |S(z)x|=|x|, the desired conclusion follows easily.

We have therefore proved that {S():0=t< oo} is a (C,)-semigroup of
contractions and, if Re b(v, v) =0, {S(f): —oco << o0} is a (Cy)-group of unitary
operators (since for a group, |S()x|<|x| for all ¢t implies |S(¥)x|=|x| for
all #). We next prove that

lim | B.et®ex,—S()Bx| =0

e—04

for each xe< D(B), uniformly on bounded ¢ sets, provided {x.} C D(B) and
| Bx.—Bx|—0. Since

l etBeBsxe—S<t)Bxl é 1 Ba(xe—*x) !e+ I elBsBsx— S(t)Bxl
<|Bx.—Bx|+|e®B.x—S(t)Bx|,

we may assume that x.=x. Let {x.} C D(AB) such that | Bx,—Bx|< 7}3—. We

have
[e'PeB.x—S(t)Bx| = | eP(B.x—B.xy) |

+1eB«(Bxy— Bxy) | 4 | (€7 —S()) Bz |
+ | S(t)(Bx— Bx) |

= |Bx—x0)| e+ (Be— B)xi | 4| Bx— Bx|
+(e"Pe—S()) Bxy| .
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The first term on the right does not exceed |Bx—Bx;| and the second and
fourth terms approach zero with . Therefore

lim sup | e'®¢B,x—S(t)Bx| < %, h=1,2, -
e~04-

for each x<= D(B), uniformly on bounded ¢ sets.
The only thing left to prove is S(f)=¢'3. Let x= D(B). Then

' t t
SHx—x=1lim | eB<B.xds=| lim e¢*B<B.xds
e—~04 Y0 0 e—04

= j tS(s)Bx ds
0
and so

lim 1(S()x—x) = Bx.
t—04.

Thus the infinitesimal generator B of S(¢) is an extension of B. But both B
and B are maximal dissipative operators and must therefore coincide. It
follows that S(f)=e!5.

PrROOF OF THEOREM 3.2. The conclusion of the theorem is a consequence
of the dominated convergence theorem. In fact we have

| B (1—e A) " f(s)| = |1 —eA)fLs) ]

‘ Sf()IZF(s)
and

et=9Be(1 —c A) 1 (8)— e VBf(5) | = |(L—e A) M f(s)—f(8)) ]«
+ |(Be9%— BetOmBf(s)]

The right side clearly converges to zero a.e. in (—o0, o) as & »0s.

PROOF OF COROLLARY 3.1. This is a consequence of [2.4), and Theo-
rems 3.1 and 3.2

PrROOF OF THEOREM 3.3. The only thing left to prove is that ui(t)— u/(¥).
Under the stated hypotheses we may write ([7], Section 6)

(3.6) U(t) = B.etBox,+eBe(1—e A)f.(0)+ j ole“"”Bs(l—eA)‘l f1(s)ds,

3.7 w(t)= BeBx+enf(0)+ | :e“"”Bf’(s)dS .

The first term in converges to the first term in by [Theorem 3..
Using the same argument as above one shows that the integral in /3.6) con-
verges to the integral in and that

lim | e"%(1—eA)7f(0)—e"f(0)|=0.
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Addendum

Professor T. Kato has kindly communicated to the present author the
following, very direct, proof of the convergence of u. to u. Kato defines

P.=B(l—cA)* e L£(H),
Q.=(1—cA)'Be £(Dg)
and writes the solution of as
w(t)= 0% x+(1—e A P ()ds
As is known, assumptions (2.1) and (2.2) imply the existence of a dissipative
operator R.= L(H) such that
B=(1—cA)"*R(1—cA)"?,
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the domain relation being exact. In terms of R. the solution of is
u(t) = (1—e A)2eRe(l—e A)*x,+(1—e A) 2| - 0R(1 e Ay V21 (5)ds
. [

provided x.€ V=D((1—ecA)"?). It is to be noted that B! and R;! both belong
to L(H). This follows from (2.2) since, for example,
|b(v, v)| = (R{(1—eA)*"*v, (1—eA)'"v)
= CilvP=C|(1—eA)v|? ve V,
from some C.>0. Hence |R:'|z<C;! and similarly one proves |B™'|y < oco.
Kato next proves that e'®c—e'® as ¢—0, strongly and uniformly in any
finite subinterval of [0, co). As is well known, this is equivalent to R;*— B!

strongly as e—0. To prove strong convergence of R;' to B!, fix an g,>0
and note that

Rt =(1—eA) (1~ A RG(1—e A *(1—e, A)77
— (1—&A) Rg(1 e, A) 2 = B~

as ¢—0. It follows from what has been proved that u(t)— u(f) strongly in
H provided

(*) (1—eA)?x,—x in H

and f.—f in L*(H). Certain other results of the present paper can be proved
in a similar way. Note that in (%), x need not be in V. If x is in V, then (x)
is equivalent to the condition |x.—x|.—0 which appears earlier.
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