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The nullity spaces of the conformal curvature tensor
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§1. Introduction.

A. Gray [2] has studied the nullity space of the Riemannian tensor which
is a tensor field of type (1, 3) on a Riemannian manifold having the same
formal properties as the curvature tensor field, and unified the studies of the
nullity spaces of several tensor fields. But the Weyl conformal curvature
tensor C on a Riemannian manifold is not a Riemannian tensor. It is invari-
ant under a conformal change of the metric and vanishes identically on
3-dimensional Riemannian manifold. The invariant tensor on 3-dimensional
Riemannian manifold is the tensor field ¢ defined by (2.7) in § 2.

We shall define the nullity space C, of the conformal curvature tensor
as the subspace of the tangent space T,(M)at p = M spanned by Xe& T,(M)
such that Cyy=0 and ¢(X, Y)=0 for any YT, M), and prove that a
maximal integral manifold of the distribution p—C, is totally umbilic and
conformally flat.

I should like to express my hearty gratitude to Prof. S. Tachibana for
his kind suggestions and many valuable advices.

§2. Conformal curvature tensor.

Throughout this paper, we denote by M an n-dimensional differentiable
Riemannian manifold of class C* (n>2), by T,(M) the tangent space of M
at p= M. Let §(M) be the algebra of differentiable real-valued functions on
M, ¥(M) the Lie algebra of differentiable vector fields on M. The metric
tensor field will be denoted by ¢, >, the Riemannian connection by Vy (Xe&
¥(M)), and the curvature operator by Ryy=[Vx, Vyl—V s,y (X, Y EX(M)).
The tensors on each tangent space determined by the tensor fields will be
denoted by the same symbols. The Weyl conformal curvature tensor on M
is the tensor field C of type (1, 3) defined by

21) CxyZ=RyxyZ+QA/(n—2){S(X, 2)Y—=S(Y, Z)X+<X, Z,QY Y, Z,QX}
—(K/(n—=1)n—2){KX, ZY—<Y, Z)X}
for any X, Y, Z= X(M), where we denote by S, Q and K the Ricci tensor,
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the Ricci operator defined by (X, QY)>=S(X, Y) and the scalar curvature
respectively.

Now we prepare the identities of the conformal curvature tensor, which
are obtained by straightforward calculations.

LEMMA 1. The Weyl conformal curvature tensor satisfies the following
equations:

(2.2) Cxyr=—Crx,

(2.3) (CxyZ, W)= —CxyW, Z7,

@ 8 Curz=0,

(2.5) trace(Z—> CzxY)=0,

@6 WO W=(1/(n—2)S Ke(X, Y), WyZ—Z, W)e(X, )} ,

where the tensor field ¢ of type (1, 2) is defined by
(2.7) (X, Y)=F Q)Y -y Q)X—1/2n—){(XK)Y—(YK)X} .

Because of the equation (2.6), the Weyl conformal curvature tensor C is
not a Riemannian tensor on M, (if M has the parallel Ricci tensor then C is
a Riemannian tensor). The}following lemma is also proved by direct calcula-
tions.

LEMMA 2. The tensor field c¢ satisfies the following equations:

(2.8) (X, Y)=—c(¥, X),

(2.9) Bl Y) 25=0,

(2.10) EWx)Y, Z)=C RxyQZ= & CxrQZ,

(211) trace (W —> (V5 C)xy Z) =((n—3)/(n—2)Xc(X, ¥), Z) .

A Riemannian manifold on which C=0 for n >3 and ¢=0 for n=3 is

said to be conformally flat.
LEMMA 3. For X, Y, Zc ¥(M) we have

@12) & ([Vx, Cral—Cuxinsa} W
=U/n—2) & Ke(X, Y), WYZ—(Z, WX, V),
213) © (7 x(c(Y, Z)—c([X, Y], 2} = & CxrQZ.

PrOOF. We have VY-V, X=[X, Y] for X, Y €¥(M), and so by (2.6)
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(1/(n—2))X§Z{< «X, Y), WHZ—<Z W)X, Y)}
- X@?Z{[Vm CYZ]_‘CVxYZ_CYVXz} w
=6 {[VXy CYZ]—C[X,Y]Z}W'
xvz

Similarly we have the equation g.e.d.

§ 3. Nullity space of the conformal curvature tensor.

We shall define the nullity space C, of the conformal curvature tensor
and study the differentiability and the integrability of the distribution p—C,.
DEFINITION. Let p M. We define

Cor=1{XeT,(M)|Cxy=0 and ¢(X, Y)=0 for any Y e T,(M)}

and we denote by C the distribution p—C,. We call the subspace C, of
Tpo(M) the nullity space of the conformal curvature tensor at p, and pe(p)=
dim C, the index of nullity of the conformal curvature tensor at p. We call the
orthogonal complement of C, in T,(M) the conullity space of the conformal
curvature tensor at p, and denote it by Cj.

The function g is upper semicontinuous, and the set on which p; assumes
its minimum value is open in M.

LEMMA 4. For each point p M, either p(p)y=n or p(p)=n—2.

PrOOF. If we assume g.(p)=n—1, then we can choose a non-zero vector
X&Cpo It follows that there is a vector Y & T,(M) such that Cxy #0 or a
vector Z& T,(M) such that ¢(X, Z)#0. In both cases, Y (resp. Z) does not
belong to €, and it is linearly independent of X because of (resp. (2.8)).
Hence dim C; = 2. g.e.d.

THEOREM 1. In a region U of M where ps(p) is positive and constant for
any point p< U, the distribution C is differentiable.

PrROOF. For pe U, let A, be the linear subspace of T,(M) spanned
by vectors of the form CyyZ and A(X, Y), where X, Y, Z&T,(M) and
CAX,Y), Z)={c(Z,Y), X). Then, if WeC(,, the relations

<CXY27 W>:<CZWX’ Y>:0’
(AKX, Y), WH=<c(W,Y), X>=0

hold, which shows that A,CC;. If JA,+#C;, there is a non-zero vector
W e C, such that {<W, A,>=0. But then, for any X, Y, Ze T,(M), we have

(CwxY, Z)=LCyz W, X)=—(Cyz X, W)=0,
(W, X), Y>=<AY, X), W)=0,
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so that WeC,. Hence, it follows that W =0 and hence A,=C;.

For any fixed point g U, let F=(F,, -+, F,) be a frame field defined on
a neighborhood U, of ¢ in U, and let the vector fields C,,. and A,, be defined
by formulas C,. = Cr, r,F. and A, = A(F,, F,). These vector fields are dif-
ferentiable in U,. Since A,=Cj;, we see that the vectors Cgp(p) and Ag(p)
span C; for each pe U, So, let us suppose that the vectors {Casc(Q),
A4} caveanrer, where I is an index set, are a basis for C;. Then the vector
fields Cgp. and Ag ((abcde) € I) are differentiable vector fields defined on U, ;
they are linearly independent in some (possibly smaller) neighborhood V of
g, and they span C; for each p = V, because of the fact that the index p is
constant on V. Since the distributions € and C* are orthogonal, it follows
that the distribution € is differentiable. qg.e.d.

THEOREM 2. Let U be a region of M on which the index pg is positive
and constant. Then the distribution C is integrable on U.

PrROOF. Let X and Y be vector fields in €. From it follows
that [X, Y] is in C. g.e.d.

§4. Local properties of the integral manifolds.

Let L be a Riemannian manifold isometrically immbedded into another
Riemannian manifold M. Let Z(L) be the restriction of vector fields on M
to L, then we write

E(L)=X(L)DX(L)"

where X(L)* is the collection of vector fields normal to L. Let P denote the
orthogonal projection of Z(L) to ¥(L). For X< ¥(L) we denote the Rieman-

nian connection on L by Fy. It is known that I7XY:PI7XY holds for X,
Y eX(L).

The configuration tensor (cf. [, [3]) of L in M is an F(M)-linear map
T: ¥(L)x%(L)— %(L) defined by

T, Y=F, V-7,V for X, Ye¥Ll),
TyZ=PFyZ for XeX¥(L), Z<¥(L)".

We now list some well-known properties of this operator. (For the proof

see for example.)
LEMMA 5. The configuration tensor T has the following properties:

4.1) TyY=TyX for X, Y<X(L),
4.2) (TxY, Z)=—Y,TxZ> for XeX¥(L), Y, Ze ¥(L),
4.3) TxE(L)cCX(L): and TxX(L))CX(L) for XeX(L).
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We note that the configuration tensor is determined by its effect on X(L)
or on ¥(L)*, and it has the same informations as the second fundamental form.

Next we shall prove that a maximal integral manifold L of the distri-
bution C is totally umbilic. First we state a lemma, the proof of which is
given in a way similar to that used in the first step of the proof of Theo-
rem 1.

LEMMA 6. Let L be a maximal integral manifold of C. If X, Y, Z belong
to X(L)*, then CxyZ and c¢(X, Y) also belong to X(L)*.

THEOREM 3. Let L be a maximal integral manifold of C; then L is totally
umbilic.

PROOF. Let XeX(L) and Y, Z, U= ¥(L)*. Since CyzU = X(L)* we have

PX§ZVX(CYZU): Pl x(CyzU)+V y(CzxU)4-V z(CxyU)}
:TchzU.
On the other hand, we get by and
(n—2)PSV 4(Cy,U)
XYz
= PSZKC(Xy V), U>Z—Z, Uyc(X, Y)+(n—2)CyzV yU+Cix,y1zU)}
=P{c(Y, Z), Uy X+(n—2)(Cy 2PV xU+Cpix,y12U~+Cprz,x1wU )}
=<cY,2), U>X.

Therefore we see that
(4.4) TxCyzU=Q1/n—-2)Xc(Y, 2), U > X.

Next let W e ¥(L). Then TxyW e X¥(L)* and so by CyzTxWe
X(L). From [(4.4) and Lemma 5, we have

(n—=2XCyzTxW, U)=n—2XTxCyzU, W)>=<X, WXc(Y, 2), U>.

Hence
((—=2)CyzTxyW—L X, W)c(Y, 2), U>=0

and so
n—=2)CyzTxW—LX, WHc(Y, Z)e X(L)NX(L)*.
This implies
@4.5) (n—2)Cy,TxW—X, Wc(Y, Z)=0.
Especially setting X=W and (X, X)>=1, we have
(4.6) CyzTx X—Q/(n—2))c(Y, Z)=0.
Let us put
txW=Txy WX, WXTxX
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for any unit X< X¥(L). Then by and [(4.6), we have
(4.7) Cyzwa:O

for any unit X< ¥(L) and any WeX(L), Y, Z= X(L)* ; however, the equation
holds also for any Y, Z< ¥(L), and so by (2.3) and we see that

CTxWY =0 and C(TX W, Y) =0

for any unit X< ¥(L) and any We ¥(L), Y € £(L). Hence 7xyW = X¥(L) and
so txW=0. This implies '

TXw: < X, W>TxX

for any unit vector field X on L and any vector field W on L. Taking
account of (4.1), we see that TyX is independent of the choice of a unit
vector field X on L. This proves that L is totally umbilic. q.e.d.

We remark that a maximal integral manifold L of C is conformally flat
provided dim L >3 by the Gauss equation for the Weyl conformal curvature
tensor (cf. [7].

On a Riemannian manifold, we know another interesting curvature tensor
B defined by

ByyZ=(p—DRxrZ+(1/2{S(X, Z)Y—=S(Y, Z)X+LX, Z)QY—Y, Z5Q X}

—((n—p)K/n(n—1){ X, Z5Y Y, 25X}, p=23--,n—1,

which has appeared in Tachibana and Tomonaga [6]. Our method can
be applied to studies of nullity spaces of this curvature tensor. Precisely,
we define the tensor field & by

WX, V)= Q)Y -V yQ) X—((n—p)/n(n—IN{(XK)Y —(YK) X} ,

then we have the same results as in Theorems 1, 2 and 3 for B and b.
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