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Introduction.

In studying model theory by using proof theoretic techniques, the author
-noticed the utility of distinguishing two kinds of logics, which will be called
‘here “object logic” and “ morphism logic”. The former are those to which
:algebraic structures are related, while the morphisms between algebraic
structures are related to the latter. The exact definitions of these logics will
"be given below in §1 and §2; however we explain here briefly how to con-
-struct a morphism logic from a family of object logics {L;}; 4. Let PC be
:a set of predicate constants which do not appear in any logics in {L;}z:4;
-every predicate constant in PC is intended to denote a morphism. Then the
morphism logic L= L(L;); 4 for the family of object logics {L;},.1 is defined
:as the logic with the usual Gentzen type inference rules whose set of for-
mulas are obtained by applying the usual first order operations 1, A, V, V,
3 (A and V are used to mean countable conjunction and countable disjunc-
‘tion) to the formulas of the following two types:

(i) The formulas of the form P(x, ---, x,), where P PC, and x,, ---, x,
-are free variables;

(ii) The formulas in one of L, A& /.

It will be shown in this paper that a kind of cut-elimination theorem,
.called “normal derivation theorem ”, holds in the morphism logic L. This
theorem will be stated explicitly in §3 and proved in §4 below. Roughly
‘speaking, this theorem asserts that cut rules whose cut formulas contain
‘predicate constants denoting morphisms can be eliminated in L. Cut rules
‘whose cut formulas are included in an object logic can not always be elimi-
nated, but the above assertion is powerful enough to simplify the proofs and
‘to generalize interpolation theorems and preservation theorems in mathe-
matical logic. This shows the significance of making distinction between
.object logics and morphism logics.

The purpose of this paper is to prove the “ normal derivation theorem.”
"The applications will be appeared in sequels to this paper, [2], [3], [4].

Finally the author would like to thank Professor Shoji Maehara for his
~valuable advices during his research.
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§1. Object logics.

Consider a family of logics {L;},:4. Let FM, be the set of formulas in
L, and PFM, be the set of provable formulas in L, for each Ae 4. If Z=
<Xy, *+, X,y is a finite sequence of distinct free individual variables in L,
Y=<y, -, ¥,> is a finite sequence of individual variables in L, and 8 € FM,,

then by 6’(;) we shall denote the expression obtained from € by replacing

Xy, **+, X bY ¥, -+, ¥, respectively. We may write § for (%) and 0(;) for
f(¥) as far as no confusion is likely to occur.

Now we impose the following requirements on {L;}iz4. When these
requirements are satisfied, each L; is called an object logic.

1.1. REQUIREMENTS ON {L;};=4.

@O FEach L; has the common countable infinite set of free individual
variables (this set will be denoted by FV), and the common uncountable set
©of bound individual variables (this set will be denoted by BV).

® {FM;},=4 are mutually disjoint sets.

® Every formula in L; has only finitely many free individual variables.

@ For any sequences of free individual variables %, ¥ of the same length
such that all the variables in % are distinct, 8(X) € FM, implies 6(¥) = FM,,
and 6(x) € PFM; implies 68(¥) € PFM,.

® If 6= FM; then 760 = FM,.

® If @ is a non-empty countable set of formulas in FM,; which has only
finitely many free individual variables, then A®, V@  FM,.

® If 0(x)e FM,;, x< FV and v BV does not occur in 8(x), then (Yv)8(v),
@E)(v) € FM,.

By x, v, z (with or without suffixes) we shall denote elements in FV and
by u, v, w (with or without suffixes) we shall denote elements in BV. By
g, o, ¢ (with or without suffixes) we shall denote elements in ZyAFMZ.

§2. Morphism logic L= L(L));e4.

Roughly speaking, the morphism logic L = L(L;);e4 for a family of object
logics {L;}1=4 is a logic obtained from {L;} ;=4 by applying first order opera-
tions. Now we give the explicit definition of L. Let PC be a set of predicate
.constants which are not contained in L, for any A< 4.

Then the set of formulas in L (denoted by FM) is defined recursively
by the following rules:

@ If P PC is an n-ary predicate constant and x, ---, x, = FV then
P(xy, -+, x,) is a formula in L (called an atomic m-formula).
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2 If = FM; then 6 is a formula in L (called a A-formula) for each
ie .

‘3 If Fis a formula in L, then 7F is a formula in L.

4 If K is a non-empty countable set of formulas in L such that only
finitely many free individual variables occur in K, then AK, VV K are formulas
in L.

3 If F(x) is a formula in L and v BV does not occur in F(x), then
(Vv)F(v), (3v)F(v) are formulas in L.

® All the formulas in L are obtained from ©—G&.

A formula F in L is said to be m-formula if F is not a A-formula for
any A< 4. By F, G (with or without suffixes), we shall denote formulas in
L. A sequent in L is a configuration of the form I'—© where I' and © are
countable (possibly empty) sets of formulas in L such that only finitely many
free individual variables occur in 'V 6.

A sequent of the forms {F} —{F} (where F is an m-atomic formula or
a A-formula) or — {F} (where Fe PFM,) is called an axiom sequent. An ar-
rangement of sequents in tree form (possibly infinite) is called a derivation
of the lowest sequent, provided the following conditions are satisfied:

(a) all uppermost sequents are axiom sequents,

(b) consecutive sequents in any branch of the tree are connected by one

of the following inference rules;
Structural inference rules
I'—e@
W, I 00 p Ur—eve,

I,—6, r,—e,
C P O, Z(FISe,.=(Fiue,

where, of course, [I,\UI,—{F} means ',V (I",—{F}) and
@,—{F}U®, means (O,—{F})\UBO,.

Logical inference rules

(7=, F, 7F) {QF?J?i}@ (=7, F, 7F) ﬁi}@\“&;?} |
(A= F, nK) - (AE NG 8 (FeK) (ALK /\K)—;:’—g%—gf/(}[(giﬁ)
{F(x)}ur—@ O U {F(x)}

(V= F (;)'(V”)F W) (i Foror=e &Y F@, (WF@)- F—»@u (VO F@)T
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r—-6u{F(5)}
(Fy VI —0O J
@~ FG, @FOGopenor=e (3 F(). GF) r—go@roy

with the restrictions on variables; the individual variable x in (—V, F(x),
(Vo)F(v)), @—, F(x), Gv)F(v)) is called the eigenvariable of these inference rules
and must not occur in the lower sequent.

(7—) rules are rules of the form (7—, F, 7F) for some F. Similarly
the notions “(—7), (A=), (—A), (V—=), (—V), (V=), (—V), @), (—=3) rules”
will be used. By left rules, we shall mean the rules (7—), (A—), (V—), (V—),
(3—) and by right rules, (—7), (—A), (—V), (—=V), (—=3). Notice that every
logical inference rule R has the form R=(r, ry, ¥,), Where 7, or every its
element is called a side formula of R and 7, called the principal formula of
R. The formula F in (C, F) is called the cut formula of this inference rule
and if F is an m-formula, (C, F) is called an m-cut rule. A sequent I'— 6 is
provable in L (expressed by II— I’ — ) if there is a derivation ® whose lowest

sequent is I'— 6@, when we say that ® is a derivation of I'—6®. A formula
F is provable in L (expressed by PI—F) if I:H{F}. If f is a mapping from

FV to FV, FeFM and ® is a derivation, then by f(F) and f(%), we shall
denote the expressions obtained from F and ® by replacing every x= FV by
f(x), respectively. Obviously f(F) is a formula in L (c¢f. 1.1 ® and @) but
|
L'w—0Oyhe H) .
I'—6

f(®) is not always a derivation. A part of the form R in a
!

derivation ® is called an instance of R in D.

§3. Normal derivation.

In this section, we shall state the main theorem in this paper, ‘“ normal
derivation theorem ”, which means roughly the following: Every provable
sequent has a derivation in which any m-cut rule does not appear, the rules
(A=), (—=V), (V=), (—3) are applied as early as possible and the rules (V—),
(—=A), (3-), (—V) are applied as late as possible. We divide the set of
inference rules into two types. The set of inference rules of type 1 consists of
the following inference rules: (A—), (—V), (V=), (—3) rules whose side for-
mulas are m-formulas but not atomic m-formulas, (3—) rules whose side for-
mulas are m-formulas and have the forms VK and (3v)G(), (—V) rules whose
side formulas are m-formulas and have the forms NK and (Vu)G(u). The set
of inference rules of fype 2 consists of the rules which are not of type 1.

A derivation ® is said to be m-cut free if ® has no instances of m-cut
rules and satisfies the following eigenvariable condition (x):
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(x) If a free variable x is used as an eigenvariable in an instance of a
rule R in ®, then x does not occur in ® except in sequents above the lower
sequent of this instance.

3.1. DEFINITION OF NORMAL DERIVATION. A derivation ® is said to be
normal if ® is m-cut free and satisfies (*x) below.

(*x) If an inference rule R of type 1 is applied next to an instance of
a rule R,, then the principal formula of R, is the side formula R and R, R,
are both left rules or both right rules.

3.2. EXAMPLES.

EXAMPLE 1. Let D, be

p. P} = {P(0}

Rl {P(x0)} = {@v)P)}

{(VyP()} — {3Fv)P(v)} *
where R,=(—3, P(x), @v)P(v))
R,=(—, P(x), Yv)P(v)).

Then ¥, is normal because R,, R, are of type 2.

(Notice that the side formula of R, and R, is an atomic m-formula.)
EXAMPLE 2. Let ®, be

R. A@0I(x, v)} = {FV)6(x, v)}
* {@)0(x, v)} = {GWEV)0(y, v)}

R (Gu) @y, v)) — (GuEn)8y, v))
‘where R, =(—3, @v)0(x, v), Bu)3v)0(u, v))
R4 = (3_’9 (HU)O(X, U), (au)(av)a(uy ‘U)) .

“Then ¥, is normal because R, R, are of type 2.
{Notice that the side formula of R; and R, is not an m-formula.)
EXAMPLE 3. Let ®, be

R {Pl(xlv yl)} - {Pl(jxlv yl)}____ B
R5 {Pl(xlr le}:_{_(az1)_f, (;El,_ 1)}
8 {Pl(xlv vy} — {@v) Py(xy, vy), (EUZ)P (xz, vz)} K

‘D, be
{Pz(fzy_.‘zz)}:w{ Py(x,, yz)}
R7 {Pz(§2L312)}:{§392)f2(x2, 1)2)}
8 {Py(xy, ¥5)} — {@Qvy) Pi(xy, vy), (avz)P (s, vz)} ’
'@5 be l SD l @4

R {P(xn J’l)}”‘*@ { Py(x,, yz)}—*@
R” {Pi(x1, Y1) V Po(x5, ¥2)} — O

10 {(avz)(P (xn Y1)V P (xzy v,))} — C)

n {(avl)(HVZ)(P (xl’ vl) V P,(x,, Uz))}’"'a

127 {(Vu,)(Fv,) Qug) (Py(xy, vy) V Py, v,))} — O
Rys ™ {(Wui,)(Vtd) G03) Fv,) Py (143, 1) V Py(uts, v0)} — 6 2
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where 6= {(37}1)})1(7(1: V1), (HUZ)PZ(XW ?}2)}

D, be 1 D
p. L= {@v)Pi(xy, v)), Qvy) Po(x,, v5)}
RM F—“’{(Vu1)<avl)P (un, V), (HUZ)P (-xz’ 2)}
v - {(Vul)(avl)P (uu 1)v(vu2)(av2)P (u29 V,), (Quy) Py(x,, v5)}

R F“’ {(vu1)<aU1)P (uly 1)\/(Vu2)(3vz)P (uzy vz); (Vuz)(3v2>P (uzy V2>}
Raa™ P2 (Yu) 30, Py, 1)V (Yug)@0,) Pyt v,)) ,

where  I"= {(V1,)(V1,)G0:) va)(Pil1as, v1) V Poluty, v2))}

and
Ry =(—3, Py(x,, ¥y), Qv,)Pi(xy, v1)),

Ry = (W, ¢, {(Fv,) Py(xs, v)}),
R, = (=3, Py(x5, ¥2), Qo) Pu(x,, ),
Ry = (W, ¢, {Qu) Pi(xy, v1)}),
Ry = (V—, {Py(x1, 1), Pa(tz, ¥2)}, Po(, 1) V Poly, 32)),
Rip= 3=, Pi(x;, y)V Palxs, 3), Quo)(Pi(x, ¥V Polxs, v2)))
Ry = (3=, @ua)(Pi(xy, 1)V Py, 1)), (Fv1)Fvo)(Pi(x1, v1)V Polxe, v2)))
R, = (V—, Quv)Ev,)(Py(xy, v)V Py(x,, v5),
(V1,)Fv 1) B )(Py(x1, 01)V Polty, 2)))
Ry = (V—, (Vu,) ) u,)(Py(x1, v,)V Py(uy, v,)),
(Vi) (Vi) (Fv1) o) (Py (s, 03)V Py(thy, 1))
Ry ==V, @u)Pix,, vy), Vu,)Fv,) P(uy, vy)),
Rug= (=, (Yau)@03) Py, v3), (V) @03) Pyltty, v2)V (V1) @0) Poltey v5)),
Rio = (—=V, Qu,) Py x,, v,), V) Fv,) Po(us, v,)),
Ry =(—=V, (Vu,)3v,) Py(u,, v,), Vu)@v,) Pi(uy, v1)V (V) Fv,) Poltts, v3)) .

Then D, D,, D; and D, are normal, R, R,;, R, R Ris, Ry, are inference
rules of type 1.
Let ®, be 1 D5

o D= {@U)P(x, v, @u)Py(x, v}
RM wlj_i{_(vul)(avl)P (un V1), (3v2)P2(x2s vz)} _
1 F_’{(Vlf1)£3_7{1)P (uly 1) (Vuzxavz)P (U, 2>}

glswl”:% {(Vu1)(3U1)P1<u1, 1)V(Vu2)(avz)P (u2v 'Uz)y (Vuz)(avz)P (uZ’ Uz)}

17*F:A{<7vuil)(av1>P (un J)V(V‘uz)(avz)P (242, vz)}
Then ®, is not normal because R,, R,; and R,;, R,; do not satisfy (xx).

3.3. PROPOSITION. If {Dp}renm are normal derivations, R is an inference

H
vule of type 2 and D is an m-cut free derivation of the form R @}‘SZE@ )
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then ® is normal.

3.4. THEOREM (Normal derivation theorem). For any derivation ®, there
is a normal derivation of the lowest sequent of D.

35. REMARK. We can not hope that “ general cut elimination theorem '™
holds in every morphism logic, because 7 ¢V ¢ € PFM, implies };—go—wb but

obviously we can not prove this fact without using cut rules in L= L(L;);: 4.
for some {L;};-4.

§4. A proof of the normal derivation theorem.

4.1. LEMMA. Suppose ® is an m-cut free derivation of a sequent I'— @~
and f is a mapping from FV to FV satisfying the following conditions: Let

x,ye FV:if f(x)=f(y) and x is used as an eigenvariable in D, then x=}y.
Then f(D) is an m-cut free derivation.

PROOF. Obvious from the definition of derivations.

4.2. LEMMA. For any m-cut free derivations ®, of 'y —0,, ®, of I';,—6,.
and any formula F, there is an m-cut free derivation of

Flblr2—{F} ‘_’@1—{F}U@2-

PrOOF. First we should remark that Lemma 4.1 permits us to assume,.

) 1D
. . . . ) Fl g 1@1 ) FZ g 2@2
without loss of generality, that the derivation (C, F)F«QT#—“{FY—T@WL FYOT6;
1 2 1 2.

satisfies the eigenvariable condition.
Formally we have to prove this lemma by induction on F using, in each
induction step, induction on (®,, ®,). However in dividing the cases as follows,.
one easily obtains a proof of this lemma which can be immediately rewritten.
in formal language. (Cf. Feferman [1].)
CASE 1. 9, is an axiom sequent. If Fe& ©,,
— - Flf’,@l\, .
(Wy[‘z {F}y@2) Flul"z_*{F}_)@l_{F}ng
is an m-cut free derivation. So, we assume that F®,. Then [I';,—©, is.
{F}—>{F}or —{F}. f I'y,—-0O,is {F}—{F} then I',UI,—{F}—-0,—{F}Ue,

is {F}UI,—©, Hence (W, {F},

2) (FYOT.Se, isan m-cut free deriva--
tion of

Flupz—‘{F}_’@l“{F}U@z.
If I'y—60, is — {F} then F is a A-formula for some 1< 4. Hence

1 D,
, Fy = 1= 0,

- I',—{F}—-0,
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iAs an m-cut free derivation.
CASE 2. 9, is an axiom sequent. Similar to case 1.
Let R, be the last rule of ®, and R, be the last rule of D,.

1//__,@{/

CASE 3. R, is (W, I, 0), i.e.D, is Rl"if{UF{’ﬂ@-f’U@i . By the hypo-

-thesis of induction, there is an m-cut free derivation ©’ of
rrur,—{F}—-0r—{F}\Je,.

1D
'@ I I, —{F} =67 —{F}\J0,
W, I'}, —{F}) T U, —{F1=0,—{F} U8,
-is an m-cut free derivation.
CASE 4. R, is (W, '}, ©@)). Similar to case 3.

CASE 5. R, is (C, G), i.e. D, is
l @11 l @12

Fu—’@u Flz_’@m
! Fnupm_‘{G}_’@u_{G}U@Jz ’

“Then

R

where

F1=F11UF12—{G}
@1 = @11—{0} U@m .

“Then by the hypotheses of induction, there are two m-cut free derivations
wnof ')y I',—{F}—-0,—{F}\U8, and ®,, of

Flzurz_{F}_—’@lz_{F}uez-
‘Since G is not an m-formula,

| D | Dhe
(C, G) __l;u_U_Czj {Ef};j’ @llj{f_}__u_‘@_z_ 1:_12}1} I:zj—{F} "_’@1_2_— {F} UQz
FnUplz_‘{G} Urz_{F}—’@n_{F, G} U@lz_{F} U@2

‘is an m-cut free derivation of I,V ,—{F}—60,—{F}\U®,.

CASE 6. R, is (C, F). Similar to case 5.

CASE 7. R, is a logical inference rule but not a right inference rule
“whose principal formula is F.

SUBCASE 7.1. R, is (7—, F,, 7F), i.e. ®, is

| B
R _Ti—0,V{F}
TATVRIVIN—-6,
I'i={7F}Jl.

If F,=F, by the hypothesis of induction, there is an m-cut free derivation
Dy of ''VI,—{F}—6,—{F}U®,. By applying (W, {7F.},0), we get an

“where
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m-cut free derivation of I', U [ ,—{F}—60,—{F}\JU@,. Suppose F,# F. Then
by the hypothesis of induction, there is an m-cut free derivation ® of I'|'UI," ™
—{F}—(©,V{F,})—{F}\JU6O,. By applying R, we get an m-cut free deriva-
tion of ')\ VI ,—{F}—6,—{F}\UO,.

SUBCASE 7.2. R, is (—7) or (A—) or (—A) or (V—)or (—V) or (V—) or
(—VY) or (3—) or (—3). Similar to subcase 7.1.

CASE 8. R, is a logical inference rule but not a left inference rule whose:
principal formula is F. Similar to case 7.

CASE 9. R, is a right inference rule whose principal formula is F and:
R, is a left inference rule whose principal formula is F.

SUBCASE 9.1. F=7G, i.e. Ry=(—7,G, F) and R,=(7—, G, F). Then

!
Fé—’@zv,‘{g}*
P{F}VUI -6,

!
{GyurI,—6;

D, is R
where

O,=01JU{F} and I',={F}JUlj.
By the hypotheses of induction, there are two m-cut free derivations ®] of

Gyl VUlry—{F}—@—{F}J6,
and ¥} of
' lri—{F}—-0{—{F}\Je,J{G}.
Since F is more complex than G, again by the hypothesis of induction, there:
is an m-cut free derivation of

' or—{FyJr'.—{GyJI';—{F, G} - O—{F, G} VO,— {G}\VO|—{F}U6,,
i.e.
rvr,—{F}—-6,—{F}\ue,.

SUBCASE 9.2. F=AK, i.e. R, is (—A, K, AK) and R, is (A—, G,, AK)
for some G,= K. Then

! !
: I''—6;VI{G (Ge K) N G I3 —6,
D, is R, I 50U {F} and 9, is R, (FYUT,=0,
where

O,=0]J{F} and I',={F}Jlrj.
By the hypotheses of induction, there are two m-cut free derivations of

''orI;—{F}—-60—{F}U{G,}\6,
and
I'''JV{G)YVWI{—{F}—-0O;—{F}\UJ8,.

Again by the hypothesis of induction, there is an m-cut free derivation of
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Ir'Jr;—{F}—-0—{Fiue,, ie. 'VUI,—{F}—-6,—{F}\U6,.

SUBCASE 9.3. F= VK. Similar to subcase 9.2.
SUBCASE 9.4. F=(uw)G), i.e. R, is (—V, G(»), Vu)G(u)) and R, is

(¥= 6(5), (¥wGw). Then

{
| D {G(;)}UF;—»@z
@1 18 Rl F;”*“@*(O'—{“}‘ — and SDZ 18 Rz {F} uIr= @2 ’

where

O, =0\ {F} and I,={F}ulrl}.
Define f: FV to FV by f(z2)=2z if z+ x and f(x)=y. (Without loss of gener-
ality, we can assume that y is not used in ®,; as an eigenvariable.) Then
D, and f satisfy the hypotheses of Lemma 4.1. Hence f(®,,) is an m-cut free

derivation of F1—>@{U{G<;>}. By the hypotheses of induction, there are

two m-cut free derivations of

I V{G(;)}V Ii—{F} —6{—{F}Ve,
and
IV Ti—{F} - 6i—(F} V{G(})} 6.

Again by the hypothesis of induction, there is an m-cut free derivation of
FIL’}FZ_{F}—‘)QI_{F}U@2-

SUBCASE 9.5. F=(3u)G(u). Similar to subcase 9.4. (Q.E.D)

4.3. LEMMA. For any sequent I'— 0, if —1'— 0O, there is an m-cut free
derivation of I'— 6. -

PrOOF. By the induction on a derivation ® of I'—@. This is obvious
from Lemmas 4.1 and 4.2.

44. NORMAL SEQUENCE. A sequence R:(Rl, -« R,> of logical inference
rules is said to be normal if

@® R, is of type 2,

® R, ---, R, are of type 1,

® the principal formula of R, is the side formula of R,y; and R,, R,

are both left rules or both right rules for i=1, ---, n—1.

4.5. DEFINITION OF n(®) AND R(®). For each normal derivation ®, we
shall associate a normal derivation n(®) and a normal sequence R(®) by the
following rules: ,

CASE 1. D is an axiom sequent. Let n(®)=D and RD®)=0 (the empty
sequence). Let R be the last rule of ®.
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CASE 2. R is a structural inference rule. Let n(®)=%9 and R(®)=0.

CASE 3. R is a logical inference rule of type 2. Let n(®)=%® and
R(®)=<{R>.

CASE 4. Risof typel. Then D has the form R~—FS_21@~. Let n(®)=nDd,)
and R(®)=<{(R(D,), R>.

For example, if ®,, ®,, ---, D; are derivations in example 3.2,
n®,) =9, and R(®,)=<R,,
n(D,) =D, and R(®,)=<{(R,),
(D) =D, and R(®,) =0,
n®,) =9, and R(®,)=0,
n(Ds;) = R, l"'_, @l and R(D;)=<Ry, Ry, Ry, Ry Risy,
n®)=Riy p L= and R@®)=(Ru, R

4.6. PROPOSITION. (O Suppose D is a normal derivation and R 1is the last
rule of ®. If R 1is of type 1, then R(®)=<R,, -, R,), n=2 and D has the
Sform

R N
R, Fl"*@lw (D)

R2 Fz‘_’@2

Rn*[v:__)—@;” .

D If {Dy}ren are normal derivations, R= (R, -+, Ry> is a normal sequence
and

ts an m-cut free derivation, then this derivation is also normal.

4.7. LEMMA. For any normal derivation ® of a sequent I'— 6 and any
m-formula F:

(a) Let K< FM and suppose NANKe FM; If Fe K and Fe I then there
is a normal derivation of {AK}JI—{F}—0 (t.e. {(NK}JI'—{F})—0O);

(b) Let KS FM and suppose VK FM; If Fe K and F= © then there
is a normal derivation of ' - {VK}\JO—{F};
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(¢) If F=vKel and G K, then there is a normal derivation of
{(GY VT —-{F}—6O;

(d) If F=AKe @ and G< K, then there is a normal derivation of I'—
{G}VO—{F};

(e) If F:F(;) e I', then there is a normal derivation of {(VO)Fw)}\JI’
—{F}—-0;

) If F:F(§> € O, then there is a normal derivation of I'— {(Fv)F(v)}
UO—{F};

(@) If F=@v)GWw)e I and x does not appear in I'\JO, then there is a
normal derivation of {G(xX)} VI —{F}—0;

(h) If F=(Nv)Gw)eO® and x does not appear in I'\J O, then there is a
normal derivation of I'— {G(x)} \VO—{F}.

PROOF. By the induction on D.

CASE 1. D is an axiom sequent. Obvious.

Let R be the last rule of D.

CASE 2. R is of type 2. Obvious from Proposition 3.3.

CASE 3. R is of type 1. Let n(d=D, and R®)=<R,, -+, R,>. Then
by Proposition 4.6.0, ® has the form

B S ¥
gl [’1_—)@1 }91

*r,—0,
=,
and n=2, R=R,, I',=1", ©,=60. Let F, be the principal formula of R,
i=1, -, n
SUBCASE 3.1. R, is (A—, F,, F}). Then by the definition of normal
sequence, R,, ---, R, are all left rules. So, ® has the form

{
{F} U T} —
RAFyOUTI— 0 )™

P {R}UT— 6
Reryor~e-
and F;& I, i=0,---,n. Then I, S} J{F, F,, -, F,_,} because [}, S
I't\V{F;}, i=0, ---, n—1.
Now we prove (a) only because (b)—(h) are similarly proved. Suppose
ANKeFM, Fel' ={F,}JI',, FE K.
1D

If F=F,, then (A—) P} I =6 is a normal derivation of {AK}\U
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I'—{F}—@. (Of course it is necessary to prove that this derivation satisfies
the eigenvariable condition (*), but we can assume this without loss of gen-
erality by Lemma 4.1.)

If F=F, 0<i1<mn, then

|
R (FyUTi—6
" {(R)UT—0
(R} VI 6

{Fz 1}\lF: 1_’@
e AR —60
it {Fz+1}uri+1_’aﬂ_

R,-
FYUTTS O
W ANKY O e v TR U T7 0

is a normal derivation of {AK}UI'—{F}—6, where I'l,;=1"y,—{F}, -,
I'sr=r,—{F}).
If F=F,, then
l
{F} U ;,
is a normal derivation of {AK}UI'—{F}—6©, where I'” =I",—{F} because
(A—, Fy, AK) is of type 2.

If Fg {F,, F,, ---, F,} then Fe I';. By the hypothesis of induction, there
is a normal derivation of {AK}\U{F,} UIt—{F}—6. By applying R,, -+, R,,
we get a normal derivation of {AK} U {F,} UI,—{F}—6© by 4.6.Q.

SUBCASE 3.2. R, is (7—) or (—7) or (—V) or (V=) or (—3) or (V—) or
(—A) or (3—) or (—V). Similar to subcase 3.1.

PROOF OF THEOREM. By Lemma 4.3, we can assume, without loss of
generality, that every derivation considered in the following is m-cut free,
Suppose ® is an m-cut free derivation of I'— ®. By induction on ®, we shall
prove this theorem.

CASE 1. D is an axiom sequent. D itself is normal.

Let R be the last rule of D.

CASE 2. R is an inference rule of type 2. Then ® has the form

R- gD"F(h E@EL_ By the hypothesis of induction, we can assume that 9, is

normal for any A< H. Then by 3.3, © is also normal.
CAase 3. R is of type 1.
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RON
SUBCASE 31. Ris(A—, F, AK). Then® has the form Ry A{%‘d?:g

where I'= {AK}UI"’. By the hypothesis of induction, we can assume that.
D, is normal. Then by (a) in the Lemma 4.7, there is a normal derivation of’
{ANK}JI'"—{F}-—0©. Hence there is a normal derivation of {AK}\UI"’'—@6..
(Notice that I/ may have F.)
SUBCASE 3.2. R is (—V) or (V=) or (—3). Similar to subcase 3.1.
SUBCASE 33. R is (33—, F(x), Gv)F(v)) and F(x) is of the forms VK or
3uw)G(u). Suppose F(x) has the form @Qu,)--- Qu,)F,(uy, -+, Uy, x) and Fy(u,,.

ey Ug, X) = (VK)(uy, -+, Uy, x) is an m-formula. Then ® has the form
1D,
R {F(x)}yVI"— 6

{@WF)IIUT" -0’

where I'= {@v)F()} U I"’. By the hypothesis of induction, we can assume:
that 9, is normal. Let x, ---, x, be free individual variables which do not
appear in ®©,. (Without loss of generality, we can assume that there are such.
variables.) Then by (c¢), (g), in the Lemma 4.7, for any G(u,, -+, u,, x) € K,.

there is a normal derivation of {G(xi, ---, x,, X)} \JI"— 6O, because (Tu,) -~
Au)F Uy, o, Ugy, X)E L7, o) Fy(Xq, o+, Xy, X) £ T,
Then '
!

{G(xly xzv ey Xop, x)} UF,'——)@ (G(xly KXoy ** s Xny x) = K(xlr Tty Xny x))
‘{fjl(qu’ Tt ;xn,FZC)} UI—’/'—’@

(V=)
(F-)

{@F) VI —6

is a normal derivation of I'—6.
SUBCASE 3.6. R is (—V, F(x), (Vv)F(@®)). Similar to subcase 3.3.
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