Theta series and automorphic forms on GL_2

By Hideo SHIMIZU

(Received Jan. 17, 1972)

The main purpose of the present paper is to give another proof of Jacquet-Langlands [5, Th. 14.4], the assertion of which is the following.

Let $\mathcal K$ be a division quaternion algebra over a global field F. To every irreducible admissible representation π of the Hecke algebra $\mathcal H(\mathcal K_A^\times)$, we can make correspond an irreducible admissible representation π^* of the Hecke algebra $\mathcal H(GL_2(A))$ so that, if π is a constituent of the representation of $\mathcal H(\mathcal K_A^\times)$ in $\mathcal A(\eta,\,\mathcal K_A^\times)$ (the space of automorphic forms on $\mathcal K_A^\times$ with a character η), then π^* is a constituent of the representation of $\mathcal H(GL_2(A))$ in $\mathcal A_0(\eta,\,GL_2(A))$ (the space of cusp forms on $GL_2(A)$ with a character η) under the condition that the component π_v of π is infinite dimensional for all places v of F unramified in $\mathcal H$.

In view of various ideas in Jacquet-Langlands [5], and also of Shalika-Tanaka [7] and Weil [11], we find it natural to consider theta series made of Weil representation of $SL_2(A)$ in the Schwartz space on \mathcal{K}_A , and in order to construct an irreducible subspace of $\mathcal{A}_0(\eta, GL_2(A))$ from the space of theta series, to make use of a spherical function associated with automorphic forms on \mathcal{K}_A^{\times} . In this way we obtain a proof of the above theorem, somewhat more direct than the original one, under a weaker condition that π is not one-dimensional (in substance our proof is quite similar to that of [5, Th. 13.1]). The main theorem in our formulation is stated as Theorem 1 (§ 5, No. 12). Applied to the holomorphic automorphic forms, it gives a generalization of Eichler [1, 2]. It is stated as Theorem 2 (§ 6, No. 5).

For convenience sake we summarize in § 1-§ 3 generalities on admissible representations, theta series, automorphic forms and spherical functions.

§ 1. Admissible representation of GL_2 .

- 1. Definition (non-archimedean case). In No. 1—No. 4, F will be a non-archimedean local field. By an admissible representation π of $GL_2(F)$ we understand a representation π of $GL_2(F)$ in a vector space \mathcal{CV} over C satisfying the following conditions.
- (1.1) For any $x \in \mathcal{O}$, the group of elements g in $GL_2(F)$ such that

 $\pi(g)x = x$ is an open subgroup of $GL_2(F)$.

(1.2) For any open compact subgroup H of $GL_2(F)$, the space of elements x in $\mathcal{C}V$ such that $\pi(h)x = x$ for all $h \in H$ is finite dimensional.

We say that π is irreducible if $\mathcal{C}V$ has no proper invariant subspace.

2. Local Hecke algebra. Let \mathcal{H}_F be the space of all C-valued locally constant functions of compact support on $GL_2(F)$. It forms an associative algebra under the convolution:

$$f_1 * f_2(g) = \int_{GL_2(F)} f_1(gh) f_2(h^{-1}) dh$$
.

We call \mathcal{H}_F the Hecke algebra of $GL_2(F)$. For an admissible representation π of $GL_2(F)$ in $\mathcal{C}V$, we define a representation π of \mathcal{H}_F in $\mathcal{C}V$ by

$$\pi(f)x = \int_{GL_2(F)} f(g)\pi(g)xdg \qquad (f \in \mathcal{H}_F, \ x \in \mathcal{CV}).$$

For a fixed x, $f(g)\pi(g)x$ is a \mathcal{CV} -valued locally constant function of compact support on $GL_2(F)$. Therefore, the integral in the above expression is actually a finite sum. Denote by $\rho(g)f$ or $\lambda(g)f$ the right or left translate of a function f on $GL_2(F)$ by an element g in $GL_2(F)$:

$$(\rho(g)f)(h) = f(hg), \qquad (\lambda(g)f)(h) = f(g^{-1}h).$$

By definition we have

(1.3)
$$\pi(\lambda(g)f) = \pi(g)\pi(f) \quad \text{for } g \in GL_2(F) \text{ and } f \in \mathcal{H}_F.$$

Let $\mathfrak o$ be the ring of all integers in F, and put $K=GL_2(\mathfrak o)$. By an elementary idempotent we understand a function ξ on K of the form

$$\xi(k) = \sum \dim \sigma_i \operatorname{tr} \sigma_i(k^{-1}),$$

 σ_i being a finite number of inequivalent irreducible representations of K. ξ is in fact an idempotent in \mathcal{H}_F , if we regard ξ as a function on $GL_2(F)$, putting $\xi(g) = 0$ for $g \in K$.

By (1.1) and (1.2) the representation π of \mathcal{H}_F has the following properties.

- (1.4) For any $x \in \mathcal{CV}$, there exists a function f in \mathcal{H}_F such that $\pi(f)x = x$.
- (1.5) For any elementary idempotent ξ , $\pi(\xi)$ \mathcal{V} is finite dimensional.

Conversely, for any representation π of \mathcal{H}_F in \mathcal{CV} with these properties, there exists an admissible representation π of $GL_2(F)$ satisfying (1.3).

3. Principal series of representations. We denote by $|\alpha|_F$ the module of α in F^{\times} ; namely, $d(\alpha\alpha_1) = |\alpha|_F d\alpha_1$, $d\alpha_1$ being the additive Haar measure of F. Let T be the group of all upper triangular elements in $GL_2(F)$. Every one-dimensional representation ζ of T can be written in the form

$$\zeta\left(\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix}\right) = \mu_1(\alpha)\mu_2(\delta) \left| \begin{array}{cc} \alpha & \beta \\ \delta & \end{array} \right|_F^{1/2},$$

where μ_1 , μ_2 are quasi-characters of F^{\times} . Let $\mathcal{B}(\mu_1, \mu_2)$ be the space of all locally constant functions f on $GL_2(F)$ satisfying

$$f(tg) = \zeta(t)f(g)$$
 $(t \in T, g \in GL_2(F)).$

The right translation ρ defines a representation of $GL_2(F)$ in $\mathcal{B}(\mu_1, \mu_2)$. It can be shown that ρ is admissible. By [5, Th. 3.3] the irreducible constituents of $\mathcal{B}(\mu_1, \mu_2)$ are the following.

- i) If $\mu_1\mu_2^{-1}$ equals neither $| \cdot |_F$ nor $| \cdot |_F^{-1}$, $\mathcal{B}(\mu_1, \mu_2)$ is irreducible.
- ii) If $\mu_1\mu_2^{-1}=|\ |_F$, $\mathcal{B}(\mu_1, \mu_2)$ contains the only one proper invariant subspace $\mathcal{B}_s(\mu_1, \mu_2)$, which is of codimension 1.
- iii) If $\mu_1\mu_2^{-1}=|\ |_F^{-1}$, $\mathcal{B}(\mu_1, \mu_2)$ contains the only one proper invariant subspace $\mathcal{B}_f(\mu_1, \mu_2)$, which is of dimension 1.

In the case i) we write $\pi(\mu_1, \mu_2)$ for ρ . In the case ii) we write $\sigma(\mu_1, \mu_2)$ (resp. $\pi(\mu_1, \mu_2)$) for the representation of $GL_2(F)$ in $\mathcal{B}_s(\mu_1, \mu_2)$ (resp. $\mathcal{B}(\mu_1, \mu_2)/\mathcal{B}_s(\mu_1, \mu_2)$) induced by ρ . In the case iii) we write $\sigma(\mu_1, \mu_2)$ (resp. $\pi(\mu_1, \mu_2)$) for the representation of $GL_2(F)$ in $\mathcal{B}(\mu_1, \mu_2)/\mathcal{B}_f(\mu_1, \mu_2)$ (resp. $\mathcal{B}_f(\mu_1, \mu_2)$) induced by ρ .

 $\pi(\mu_1, \mu_2)$ (resp. $\sigma(\mu_1, \mu_2)$) and $\pi(\mu_2, \mu_1)$ (resp. $\sigma(\mu_2, \mu_1)$) are equivalent, and there is no other equivalence relation among these representations (cf. [4, § 1, Th. 7]).

By [5, Prop. 2.7] a finite dimensional irreducible admissible representation π of $GL_2(F)$ is necessarily one-dimensional, and we have $\pi(g) = \chi$ (det g) with a quasi-character χ of F^* . If $\mu_1(\alpha) = \chi(\alpha) |\alpha|_F^{1/2}$, $\mu_2(\alpha) = \chi(\alpha) |\alpha|_F^{-1/2}$, π is equivalent to $\pi(\mu_1, \mu_2)$.

- 4. Absolutely cuspidal representations. An irreducible admissible representation π of $GL_2(F)$ is called absolutely cuspidal if it is not a constituent of $\mathcal{B}(\mu_1, \mu_2)$ for any choice of μ_1, μ_2 .
- 5. Definition (archimedean case). In No. 5-No. 7, we assume that F is an archimedean local field so that F is either the real number field R or the complex number field C. Let K be a maximal compact subgroup of $GL_2(F)$. Let dg (resp. dk) be a fixed Haar measure of $GL_2(F)$ (resp. K). We denote by \mathcal{H}_F the space of Radon measures on $GL_2(F)$ spanned by the following two kinds of measures:
- i) f(g)dg; f is a C^{∞} function of compact support on $GL_2(F)$, which is K-finite on both sides.
- ii) $\xi(k)dk$; $\xi(k)$ is a matrix coefficient of some irreducible representation of K.

In the following we identify f(g)dg (resp. $\xi(k)dk$) with a function f (resp. ξ).

Let \mathcal{H}'_F be the space spanned by the measures of type i) and \mathcal{H}''_F the space spanned by the measures of type ii). If * denotes the convolution of measures, \mathcal{H}_F forms an associative algebra under *. In fact, * coincides on \mathcal{H}'_F (resp. \mathcal{H}''_F) with the convolution of functions on $GL_2(F)$ (resp. K), and

$$f * \xi(g) = \int_{\kappa} f(gk)\xi(k^{-1})dk$$
,

$$\xi * f(g) = \int_K \xi(k^{-1}) f(kg) dk.$$

We note that an elementary idempotent can be defined in the same way as in No. 2, and it is an element of \mathcal{H}_F'' .

We say that a representation π of \mathcal{H}_F in $\subset V$ is admissible if it satisfies the following conditions.

(1.6) For any $x \in \mathcal{CV}$, we can find $f_i \in \mathcal{H}_F$ and $x_i \in \mathcal{CV}$ such that

$$x = \sum_{i=1}^{r} \pi(f_i) x_i.$$

- (1.7) For any elementary idempotent ξ , $\pi(\xi)$ is finite dimensional.
- (1.8) For any $x \in \mathcal{V}$ and for any elementary idempotent ξ , the mapping $f \to \pi(f)x$ of $\xi * \mathcal{H}_F' * \xi$ into $\pi(\xi) \subset \mathcal{V}$ is continuous (the topology in $\pi(\xi) \subset \mathcal{V}$ is the usual topology in a finite dimensional vector space over C, and the topology in $\xi * \mathcal{H}_F' * \xi$ is the one induced by the Schwartz topology in the space of all C^{∞} functions of compact support on $GL_2(F)$).

REMARK. If we limit ourselves to a special case where CV is a space consisting of continuous functions on $GL_2(F)$ and π is defined by

$$\pi(\mu)\varphi(h) = \int \varphi(hg)d\mu(g) \qquad (\varphi \in \mathcal{CV}, \ \mu \in \mathcal{H}_F),$$

then (1.6)-(1.8) can be replaced by the following conditions.

- $\varphi(1.6)'$ For any $\varphi \in \mathcal{CV}$, there is an elementary idempotent ξ such that $\pi(\xi)\varphi = \varphi$.
- (1.7)' For any elementary idempotent ξ , $\pi(\xi)$ is finite dimensional.
- *(1.8)' Let φ , ξ be as in (1.8). Let f_i be a sequence of functions in $\xi * \mathcal{H}_F' * \xi$ such that the supports of f_i are all contained in a compact set of $GL_2(F)$, on which f_i converges uniformly to 0, together with all derivatives of higher order. Then $\pi(f_i)\varphi(g)$ converges to 0 for all $g \in GL_2(F)$.

In this situation, (1.8)' is trivially satisfied. It can be shown that (1.8)' implies (1.8), and that (1.6)' and (1.7)' imply (1.6).

6. Representation of Z, K or $\mathfrak U$ induced by an admissible representation. Let π be an admissible representation of $\mathcal H_F$ in $\mathcal V$. Let Z be the center of $GL_2(F)$. We can define a representation π of Z (resp. K) by the condition that $\pi(g)\pi(f)=\pi(\lambda(g)f)$ is satisfied for all f in $\mathcal H_F$, if g is in Z (resp. K).

Let \mathfrak{g} be the Lie algebra of $GL_2(F)$ and \mathfrak{U} the universal enveloping algebra of $\mathfrak{g}_C = \mathfrak{g} \bigotimes_{\kappa} C$. π being as above, we can define a representation π of \mathfrak{U} in \mathscr{C} so that we have

$$\pi(X)\pi(f) = \pi(X*f), \qquad \pi(f)\pi(X) = \pi(f*X)$$

for all $f \in \mathcal{H}_F'$ and $X \in \mathfrak{g}$. Here

$$X*f(g) = [(d/d\alpha)f(\exp(-\alpha X)g)]_{\alpha=0}$$
,

$$f * X(g) = [(d/d\alpha)f(g \exp(-\alpha X))]_{\alpha=0}$$
.

If g is in Z or K, we have

$$\pi(\text{Ad}(g)X) = \pi(g)\pi(X)\pi(g^{-1}).$$

7. Classification of admissible representations. Let T, ζ , μ_1 , μ_2 be as in No. 3. Let $\mathcal{B}(\mu_1, \mu_2)$ be the space of all functions φ on $GL_2(F)$ which are K-finite on the right and satisfy

$$\varphi(tg) = \zeta(t)\varphi(g)$$
 for $t \in T$.

Note that any function in $\mathcal{B}(\mu_1, \mu_2)$ is necessarily a C^{∞} function. If we put

$$\rho(\mu)\varphi(g_1) = \int \varphi(g_1g)d\mu(g)$$

for $\mu \in \mathcal{H}_F$ and $\varphi \in \mathcal{B}(\mu_1, \mu_2)$, we obtain a representation ρ of \mathcal{H}_F in $\mathcal{B}(\mu_1, \mu_2)$. It is admissible. By [5, Th. 5.11 and Th. 6.2] every irreducible admissible representation of \mathcal{H}_F is equivalent to a constituent of some $\mathcal{B}(\mu_1, \mu_2)$.

The case $F = \mathbf{R}$. If $F = \mathbf{R}$, the irreducible constituents of $\mathcal{B}(\mu_1, \mu_2)$ are the following ([5, Th. 5.11]).

- i) If $\mu_1\mu_2^{-1}(\alpha)$ is not of the form $\alpha^p \operatorname{sgn} \alpha$ with a non-zero integer p, $\mathcal{B}(\mu_1, \mu_2)$ is irreducible.
- ii) If $\mu_1\mu_2^{-1}(\alpha) = \alpha^p \operatorname{sgn} \alpha$ for a positive integer p, $\mathcal{B}(\mu_1, \mu_2)$ contains the only one proper invariant subspace $\mathcal{B}_s(\mu_1, \mu_2)$, which is of finite codimension.
- iii) If $\mu_1\mu_2^{-1}(\alpha) = \alpha^p \operatorname{sgn} \alpha$ for a negative integer p, $\mathcal{B}(\mu_1, \mu_2)$ contains the only one proper invariant subspace $\mathcal{B}_f(\mu_1, \mu_2)$, which is of finite dimension.

In the case i) we write $\pi(\mu_1, \mu_2)$ for the representation ρ of \mathcal{H}_F in $\mathcal{B}(\mu_1, \mu_2)$. In the case ii) we write $\sigma(\mu_1, \mu_2)$ (resp. $\pi(\mu_1, \mu_2)$) for the representation of \mathcal{H}_F in $\mathcal{B}_s(\mu_1, \mu_2)$ (resp. $\mathcal{B}(\mu_1, \mu_2)/\mathcal{B}_s(\mu_1, \mu_2)$) induced by ρ . In the case iii) we write $\sigma(\mu_1, \mu_2)$ (resp. $\pi(\mu_1, \mu_2)$) for the representation of \mathcal{H}_F in $\mathcal{B}(\mu_1, \mu_2)/\mathcal{B}_f(\mu_1, \mu_2)$ (resp. $\mathcal{B}_f(\mu_1, \mu_2)$) induced by ρ .

The equivalence relations of these representations are as follows. $\pi(\mu_1, \mu_2)$ and $\sigma(\mu_1', \mu_2')$ are not equivalent. $\pi(\mu_1, \mu_2)$ and $\pi(\mu_1', \mu_2')$ are equivalent if and only if $(\mu_1, \mu_2) = (\mu_1', \mu_2')$ or (μ_2', μ_1') . $\sigma(\mu_1, \mu_2)$ and $\sigma(\mu_1', \mu_2')$ are equivalent if and only if (μ_1, μ_2) is one of the four pairs (μ_1', μ_2') , (μ_2', μ_1') , (μ_1', μ_2)

 $\mu_2'\eta$), $(\mu_2'\eta, \mu_1'\eta)$. Here $\eta(\alpha) = \operatorname{sgn} \alpha$.

The case F = C. If F = C, the irreducible constituents of $\mathcal{B}(\mu_1, \mu_2)$ are the following ([5, Th. 6.2]).

- i) If $\mu_1\mu_2^{-1}(\alpha)$ is not of the form $\alpha^p\bar{\alpha}^q$ or $\alpha^{-p}\bar{\alpha}^{-q}$, p and q being positive integers, then $\mathcal{B}(\mu_1, \mu_2)$ is irreducible.
- ii) If $\mu_1\mu_2^{-1}(\alpha) = \alpha^p \bar{\alpha}^q$ with positive integers p, q, $\mathcal{B}(\mu_1, \mu_2)$ contains the only one proper invariant subspace $\mathcal{B}_s(\mu_1, \mu_2)$, which is of finite codimension.
- iii) If $\mu_1\mu_2^{-1}(\alpha) = \alpha^{-p}\bar{\alpha}^{-q}$ with positive integers p, q, $\mathcal{B}(\mu_1, \mu_2)$ contains the only one proper invariant subspace $\mathcal{B}_f(\mu_1, \mu_2)$, which is of finite dimension.

We define $\pi(\mu_1, \mu_2)$ or $\sigma(\mu_1, \mu_2)$ in the same way as in the real case. Unlike the real case, every irreducible admissible representation is equivalent to some $\pi(\mu_1, \mu_2)$. $\pi(\mu_1, \mu_2)$ and $\pi(\mu_1', \mu_2')$ are equivalent if and only if $(\mu_1, \mu_2) = (\mu_1', \mu_2')$ or (μ_2', μ_1') .

8. The case of quaternion algebras. We consider in this section the multiplicative group of a division quaternion algebra \mathcal{K} over a local field F.

We define the Hecke algebra $\mathcal{H}(\mathcal{K}^{\times})$ and admissible representations of $\mathcal{H}(\mathcal{K}^{\times})$ exactly in the same way as in No. 2 or No. 5, taking \mathcal{K}^{\times} (resp. the unique maximal compact subgroup of \mathcal{K}^{\times}) for $GL_2(F)$ (resp. K). In this case we still denote by K the maximal compact subgroup of \mathcal{K}^{\times} . Write n(x) for the reduced norm of x in \mathcal{K} . Then K is the group of all $g \in \mathcal{K}^{\times}$ with $n(g) \in \mathfrak{o}^{\times}$ (resp. n(g)=1) if F is non-archimedean (resp. F=R) (there is no division quaternion algebra over C). However, for any admissible representation π of $\mathcal{H}(\mathcal{K}^{\times})$, there exists always a representation π of $\mathcal{H}(\mathcal{K}^{\times})$, there exists always a representation π of $\mathcal{H}(\mathcal{K}^{\times})$ (even if F is archimedean, because K is a normal subgroup of \mathcal{H}^{\times}). If π is irreducible, the corresponding representation π of $\mathcal{H}(\mathcal{H}^{\times})$ is an irreducible (continuous) representation of finite dimension.

9. Global Hecke algebra. In this section, we assume that F is a global field, i.e. an algebraic number field of finite degree or an algebraic function field over a finite field.

We write v for a place in F, F_v for the completion of F with respect to v, and A for the adele of F. Also we write \mathfrak{o}_v and \mathfrak{o} for the rings of all integers in F_v and F, respectively. (If F is a number field, denote by S_∞ the set of all archimedean places. If F is a function field, we fix a non-empty finite set S_∞ of places. By an integer in F we understand an element in F contained in \mathfrak{o}_v for all $v \in S_\infty$.)

Let \mathcal{K} be a quaternion algebra over F and put $\mathcal{K}_v = F_v \bigotimes_F \mathcal{K}$. We say that v is ramified in \mathcal{K} if \mathcal{K}_v is a division algebra. The number of ramified places is finite and even. Conversely, if there is given a set S of even number of non-archimedean or real places, there exists a unique (up to isomorphism) quaternion algebra \mathcal{K} over F such that S is exactly the set of places

ramified in \mathcal{K} .

For all v unramified in \mathcal{K} , we define an isomorphism θ_v of \mathcal{K}_v onto $M_2(F_v)^v$ in the following way. Take a maximal order $\mathbb O$ in $\mathcal K$ with respect to $\mathfrak O$. For an unramified v not in S_∞ , let $\mathbb O_v$ be the $\mathfrak O_v$ -module in $\mathcal K_v$ generated by $\mathbb O$. There is an isomorphism of $\mathbb O_v$ onto $M_2(\mathfrak O_v)$, which can be naturally extended to an isomorphism of $\mathcal K_v$ onto $M_2(F_v)$. Let θ_v be this isomorphism. For an unramified v in S_∞ , take θ_v to be any isomorphism of $\mathcal K_v$ onto $M_2(F_v)$. If $\mathbb O'$ is another maximal order, we have $\mathbb O_v = \mathbb O_v'$ for almost all v; hence the choice of $\{\theta_v\}$ is canonical so far as "almost all" v are concerned.

We fix $\{\theta_v\}$ once and for all and identify \mathcal{K}_v with $M_2(F_v)$ and hence \mathcal{K}_v^{\times} with $GL_2(F_v)$ by θ_v . Put

$$K_v = \left\{egin{array}{ll} GL_2(\mathfrak{o}_v) & ext{if } v ext{ is non-archimedean,} \ & \ & O_2(oldsymbol{R}) & ext{if } F_v = oldsymbol{R}\,, \ & \ & U_2(oldsymbol{C}) & ext{if } F_v = oldsymbol{C}\,, \end{array}
ight.$$

and denote by $\mathcal{H}(\mathcal{K}_v^{\times})$ the Hecke algebra of $\mathcal{K}_v^{\times} = GL_2(F_v)$.

If v is ramified in \mathcal{K} , we denote by K_v the maximal compact subgroup of \mathcal{K}_v^{\times} , and by $\mathcal{H}(\mathcal{K}_v^{\times})$ the Hecke algebra of \mathcal{K}_v^{\times} defined in No. 8.

Put $K = \prod_{v} K_v$. Let $\mathcal{H}(\mathcal{K}_A^{\times})$ be the space spanned by all $\underset{v}{\otimes} f_v$ with $f_v \in \mathcal{H}(\mathcal{K}_v^{\times})$, where almost all f_v are the characteristic functions of K_v . It forms an associative algebra (as a subalgebra of the tensor product of $\mathcal{H}(\mathcal{K}_v^{\times})$).

Let π_v be an admissible representation of $\mathcal{H}(\mathcal{K}_v^{\times})$ in \mathcal{O}_v and assume (1.9) for almost all v, the restriction of π_v to K_v contains the identity representation exactly once.

Take an element e_v in \mathcal{C}_v such that $\pi_v(k)e_v=e_v$ for all $k\in K_v$. Let \mathcal{C}_v be the restricted tensor product of \mathcal{C}_v with respect to $\{e_v\}$, i.e. the space spanned by all $\underset{v}{\otimes} x_v$ $(x_v\in\mathcal{C}_v)$ such that $x_v=e_v$ for almost all v. We can define a representation π of $\mathcal{H}(\mathcal{K}_A^{\times})$ in \mathcal{C}_v by putting

$$\pi(f)x = \bigotimes \pi_v(f_v)x_v$$

if $f = \bigotimes f_v$ and $x = \bigotimes x_v$. By the assumption (1.9) the equivalence class of π is independent of the choice of $\{e_v\}$. We call π the tensor product of π_v and write $\pi = \bigotimes \pi_v$ (note that (1.9) is implicitly assumed whenever we speak of the tensor product of admissible representations). π is irreducible if and only if all π_v are irreducible.

The tensor product of admissible representations of $\mathcal{H}(\mathcal{K}_{v}^{\times})$ is an admissible representation of $\mathcal{H}(\mathcal{K}_{A}^{\times})$ in the sense of [5, § 9], and every irreducible admissible representation of $\mathcal{H}(\mathcal{K}_{A}^{\times})$ is the tensor product of admissible representations of $\mathcal{H}(\mathcal{K}^{\times})$ ([5, Prop. 9.1]).

 $\mathcal{H}(\mathcal{K}_{A}^{\times})$ can be interpreted as an algebra of measures (of compact support) on \mathcal{K}_{A}^{\times} . If φ is a continuous function on \mathcal{K}_{A}^{\times} and $\mu \in \mathcal{H}(\mathcal{K}_{A}^{\times})$, we put

$$\rho(\mu)\varphi(h) = \int \varphi(hg)d\mu(g).$$

In particular, if an element f in $\mathcal{M}(\mathcal{K}_A^{\times})$ is of the form $\otimes f_v$, where f_v is a function on \mathcal{K}_v^{\times} , then f is identified with a function $f(g) = \prod f_v(g_v)$ on \mathcal{K}_A^{\times} , and we have

$$\rho(f)\varphi(h) = \int \varphi(hg)f(g)dg.$$

§ 2. Weil representations and theta series.

1. Weil representations (local case). Let us recall that the Schwartz space S(G) on a finite dimensional vector space G over a local field F is the space of all locally constant functions of compact support on G if F is non-archimedean, and S(G) is the space of all rapidly decreasing C^{∞} functions on G if F is archimedean.

Let F be a local field and let \mathcal{A} be either one of the following semisimple algebras over F:

- a) $F \oplus F$,
- b) a separable quadratic extension of F,
- c) a quaternion algebra over F.

In each case, denote by $x \rightarrow x'$ the following involution of \mathcal{A} over F:

- a) $(\alpha, \beta) \rightarrow (\beta, \alpha)$,
- b) the non-trivial automorphism of \mathcal{A} over F,
- c) the canonical involution of \mathcal{A} over F.

Put tr (a) = a + a', n(a) = aa' for $a \in \mathcal{A}$. n(a) is a homomorphism of \mathcal{A}^{\times} into F^{\times} .

Fix a non-trivial additive character ϕ of F. Since $(x, y) \to \operatorname{tr}(xy)$ is non-degenerate bilinear form on \mathcal{A} , \mathcal{A} can be identified with its dual by the pairing $\langle x, y \rangle = \phi(\operatorname{tr}(xy))$. Let dx be the unique Haar measure on \mathcal{A} which equals its dual. For $M \in \mathcal{S}(\mathcal{A})$, the Fourier transform M' of M is by definition

$$M'(x) = \int_{\mathcal{A}} M(y) \langle x, y \rangle dy$$

and M' is again in $\mathcal{S}(\mathcal{A})$. By the self-duality of dx we have

$$M(x) = \int_{\mathcal{A}} M'(y) \langle x, -y \rangle dy.$$

Put $f(x) = \psi(n(x)) = \psi(xx')$. By [11, Th. 2] there exists a constant $\gamma = \gamma(\mathcal{A}/F, \phi)$ such that $(M*f)'(x) = \gamma f(x')^{-1}M'(x)$ for all $M \in \mathcal{S}(\mathcal{A})$. $\gamma = 1$ if

646 H. SHIMIZU

 $\mathcal{A} = F \oplus F$ or $M_2(F)$ (cf. [11, Prop. 3]; note that the quadratic form n(x) on \mathcal{A} is then a kernel form). $\gamma = -1$ if \mathcal{A} is a division quaternion algebra over F (cf. [11, Prop. 4]). If \mathcal{A} is a separable quadratic extension of F, the value of γ is found in [5, Lemma 1.2] or [10] (in [10], it is assumed that the residue class field of F is not of characteristic 2).

Let r be a representation of $SL_2(F)$ in $S(\mathcal{A})$ defined by

(2.1)
$$r\left(\begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}\right) M(x) = \omega(\alpha) |\alpha|_{\mathcal{A}^{1/2}} M(\alpha x),$$

(2.2)
$$r\left(\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}\right)M(x) = \phi(\beta n(x))M(x),$$

(2.3)
$$r\left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\right)M(x) = \gamma(\mathcal{A}/F, \, \psi)M'(x').$$

Here ω is the non-trivial character of $F^{\times}/n(\mathcal{A}^{\times})$ if \mathcal{A} is a separable quadratic extension of F, and $\omega=1$ otherwise. $|\cdot|_{\mathcal{A}}$ is the module in \mathcal{A} . Since the elements of the form $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$, $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ generate $SL_2(F)$, r is uniquely determined by (2.1)-(2.3). That r is actually a representation is proved in [5, Prop. 1.3].

LEMMA 1. For an element a in \mathcal{A}^{\times} and a function f on \mathcal{A} , write $\rho(a)f(x)$ = f(xa), $\lambda(a)f(x) = f(a^{-1}x)$, $\iota(a)f(x) = f(a^{-1}xa)$. Let \mathcal{A}^1 be the group of all elements in \mathcal{A} with n(a)=1; let s be any element in $SL_2(F)$.

- i) r(s) commutes with $\rho(a)$ and $\lambda(a)$ for all $a \in \mathcal{A}^1$.
- ii) r(s) commutes with c(a) for all $a \in \mathcal{A}^*$. iii) $Put \ s' = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}^{-1} s \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ for $\alpha \in F^*$. If there is an element a in A with $n(a) = \alpha$, we have $\rho(a)r(s) = r(s')\rho(a)$.

PROOF. It is enough to prove i) and ii) when s is of the form $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$, $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. In the first two cases, this is immediately seen from definition. If $s = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, this amounts to see that, for $M \in \mathcal{S}(\mathcal{A})$, $(\rho(a)M)'$ $=\lambda(a)M', (\lambda(a)M)'=\rho(a)M' \ (a\in\mathcal{A}^1)$ and $(\iota(a)M)'=\iota(a)M' \ (a\in\mathcal{A}^{\times})$. This is easy to prove. iii) can be proved in the same way.

2. Special or absolutely cuspidal representations. Let \mathcal{A} be a separable quadratic extension or a division quaternion algebra over a local field F, and π an irreducible representation of ${\mathcal A}^{ imes}$ in a finite dimensional vector space Uover C. An element in the space $\mathcal{S}(\mathcal{A}) \bigotimes U$ is regarded as a function on \mathcal{A} taking values in U, whose coordinates (with respect to a basis of U) are Schwartz functions on \mathcal{A} . Denote again by r the representation $r \otimes 1$ of $SL_2(F)$ in $S(\mathcal{A}) \otimes U$, 1 being the identity representation of $SL_2(F)$ in U. Let $\mathcal{S}(\mathcal{A},\pi)$ be the space of all elements in $\mathcal{S}(\mathcal{A}) \bigotimes U$ such that

$$M(xg) = \pi(g^{-1})M(x)$$

for all $g \in \mathcal{A}^1$. It is invariant under the action of $SL_2(F)$ (Lemma 2, i)). Let G_+ be the group of all s in $GL_2(F)$ such that det $s \in n(\mathcal{A}^\times)$. By [5, Prop. 1.5] the representation r of $SL_2(F)$ in $S(\mathcal{A}, \pi)$ can be extended to a representation r_{π} of G_+ in $S(\mathcal{A}, \pi)$ by setting

$$r_{\pi}\left(\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}\right)M(x) = |h|_{\mathcal{A}}^{1/2}\pi(h)M(xh)$$

if $\alpha = n(h)$ for $h \in \mathcal{A}^{\times}$.

If F is non-archimedean, there exists a unique division quaternion algebra \mathcal{K} over F. Put $\mathcal{A}=\mathcal{K}$; then it is proved in [5, Th. 4.2] that the representation r_{π} of $G_{+}=GL_{2}(F)$ in $\mathcal{S}(\mathcal{K},\pi)$ is admissible and is a multiple of a single irreducible admissible representation π^{*} . If dim $\pi=1$, π is written as $\pi(g)=\chi(n(g))$ with a quasi-character χ of F^{\times} ; then π^{*} is a special representation $\sigma(\chi|_{F^{1/2}},\chi|_{F^{-1/2}})$. If dim $\pi>1$, π^{*} is an absolutely cuspidal representation. By [5, Th. 15.1], $\pi\to\pi^{*}$ gives a one to one correspondence between the equivalence classes of finite dimensional irreducible representations of \mathcal{K}^{\times} and the equivalence classes of special or absolutely cuspidal representations of $GL_{2}(F)$.

Assume now that F = R. Let $\mathcal K$ be a division quaternion algebra over R. Identify $\mathcal K$ with the set of matrices of the form $\begin{pmatrix} a & b \\ -\bar b & \bar a \end{pmatrix}$ with $a, b \in C$. Then $n(h) = \det h$ for $h \in \mathcal K$. Every irreducible finite dimensional representation π of $\mathcal K^{\times}$ is written as

$$\pi(h) = n(h)^r \rho_n(h)$$

with $r \in \mathbb{C}$, ρ_n being the *n*-th symmetric tensor representation of $GL_2(\mathbb{C})$. Let μ_1 , μ_2 be quasi-characters of \mathbb{R}^{\times} defined by

$$\mu_1(\alpha) = |\alpha|^{r+n+1/2}$$

$$\mu_2(\alpha) = |\alpha|^{r-1/2} (\operatorname{sgn} \alpha)^n$$

and put $\pi^* = \sigma(\mu_1, \mu_2)$. Every special representation of $\mathcal{H}(GL_2(\mathbf{R}))$ is obtained in this way. This correspondence of π and π^* is described in [5, § 5] by means of an intervening quasi-character of C^* .

3. Weil representations (global case) and theta series. Let F be a global field and \mathcal{K} a quaternion algebra over F. We use the notation in § 1, No. 9. Let ϕ be a non-trivial character of A/F and write $\phi(a) = \prod \phi_v(a_v)$ for $a = (a_v) \in A$. (We shall fix this character throughout this paper.) Let \mathfrak{a}_v be the largest \mathfrak{o}_v -lattice in F_v on which ϕ_v is trivial. We call \mathfrak{a}_v the conductor of

 ϕ_v . Almost all a_v coincide with o_v .

Using the above ψ_v , we define the Weil representation r_v of $SL_2(F_v)$ in $S(\mathcal{K}_v)$. Let $S_0(\mathcal{K}_A)$ be the space spanned by all elements of the form $\bigotimes_v M_v$ with $M_v \in S(\mathcal{K}_v)$, where for almost all v, M_v is the characteristic function M_v of \mathfrak{D}_v . We shall prove in Lemma 7 that, for almost all v, M_v is invariant under $r_v(s_v)$ for $s_v \in SL_2(\mathfrak{o}_v)$. Hence we get a representation r of $SL_2(A)$ in $S_0(\mathcal{K}_A)$ by setting

$$r(s)(\bigotimes M_v) = \bigotimes r_v(s_v)M_v$$

for $s = (s_v) \in SL_2(A)$.

 $\mathcal{S}_0(\mathcal{K}_A)$ is regarded as a subspace of the Schwartz space $\mathcal{S}(\mathcal{K}_A)$ on \mathcal{K}_A . By [11, Chap. III, No. 38, 39] the action of $SL_2(A)$ in $\mathcal{S}_0(\mathcal{K}_A)$ can be extended to $\mathcal{S}(\mathcal{K}_A)$, and the mapping $(s, M) \rightarrow r(s)M$ of $SL_2(A) \times \mathcal{S}(\mathcal{K}_A)$ into $\mathcal{S}(\mathcal{K}_A)$ is continuous. By [11, Chap. III, No. 41]

(2.4)
$$\Theta(M) = \sum_{\xi \in \mathcal{K}_F} M(\xi)$$

converges uniformly on any compact subset of $S(\mathcal{K}_A)$. It follows that $\Theta(r(s)M)$ is, as a function of s, continuous on $SL_2(A)$.

PROPOSITION 1. If $\sigma \in SL_2(F)$, then

(2.5)
$$\Theta(r(\sigma)M) = \Theta(M).$$

PROOF. We can assume that M is of the form $\otimes M_v$ with $M_v \in \mathcal{S}(\mathcal{K}_v)$. If $\sigma = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$ with $\alpha \in F^\times$ or $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$ with $\beta \in F$, the left hand side of (2.5) is reduced to

$$|\alpha|_{A_{\xi}} \sum_{i \in \mathcal{S}_F} M(\alpha \xi)$$
, or $\sum_{\xi \in \mathcal{A}_F} \phi(\beta n(\xi)) M(\xi)$,

which is clearly $\sum_{\xi} M(\xi)$, since $|\alpha|_A = 1$ and $\phi(\beta n(\xi)) = 1$.

To prove (2.5) for $\sigma = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, note first the following. If dx_v are the self-dual measures on \mathcal{K}_v with respect to $\langle x_v, y_v \rangle = \psi_v(\operatorname{tr}(x_v y_v))$, we can introduce the product measure dx of dx_v on \mathcal{K}_A , and dx is self-dual with respect to the pairing $\langle x, y \rangle = \psi(\operatorname{tr}(xy))$. If $M = \bigotimes M_v$, then $M' = \bigotimes M_v'$ is the Fourier transform of M. As is stated in No. 1, $\gamma(\mathcal{K}_v/F_v, \psi_v) = 1$ or -1 according as v is unramified or ramified in \mathcal{K} . Since the number of ramified v is even, we have $\prod_v \gamma(\mathcal{K}_v/F_v, \psi_v) = 1$. Consequently, (2.5) for $\sigma = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ is reduced to the Poisson's formula

$$\sum_{\xi \in \mathcal{K}_F} M(\xi) = \sum_{\xi \in \mathcal{K}_F} M'(\xi).$$

REMARK. The statement in the above is valid if we take, in place of

 \mathcal{K} , an algebra over F of type a), b) or c) in No. 1. The case of separable quadratic extension of F is discussed in Shalika-Tanaka [7], where $\Theta(r(s)M)$ is used to construct cusp forms on $SL_2(A)$.

Assume for a moment that the characteristic of F is not 2. In the notation in Weil [11], $Ps(\mathcal{A})_A$ is isomorphic to $Sp(\mathcal{A})_A$ and there is an obvious embedding of $SL_2(A)$ into $Sp(\mathcal{A})_A$, and hence into $Ps(\mathcal{A})_A$. We see that $s \to (s, r(s))$ gives an isomorphism of $SL_2(A)$ into $Mp(\mathcal{A})_A$, and the restriction of this isomorphism to $SL_2(F)$ is the same as r_F defined in [11, Chap. III, No. 40]. Then, Proposition 1, together with the remark preceding it, is a consequence of [11, Th. 6].

§ 3. Automorphic forms and spherical functions.

- 1. Definition of automorphic forms. Let \mathcal{K} be a quaternion algebra over a global field F and η a quasi-character of A^{\times}/F^{\times} . By an automorphic form: (more precisely, an automorphic form with a quasi-character η), we understand a continuous function φ on $\mathcal{K}_F^{\times}\backslash\mathcal{K}_A^{\times}$ satisfying the following conditions.
- (3.1) φ is K-finite on the right.
- (3.2) For any elementary idempotent ξ in $\mathcal{H}(\mathcal{K}_{A}^{\times})$, the space $\{\rho(\xi f)\varphi | f \in \mathcal{H}(\mathcal{K}_{A}^{\times})\}$ is finite dimensional.
- $(3.3) \qquad \varphi(zg) = \eta(z)\varphi(g) \text{ for all } z \in A^{\times} \text{ and } g \in \mathcal{K}_{A}^{\times}.$
- (3.4) For any compact set Ω in \mathcal{K}_A^{\times} and for any constant c > 0, there exist constants c_1 , c_2 such that

$$\left| \varphi \left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} g \right) \right| \leq c_1 |a|_{A^{c_2}}$$

for all $g \in \Omega$ and for all $a \in A^*$ with $|a|_A \ge c$.

(The condition (3.4) should be neglected unless $\mathcal{K}_A^{\times} = GL_2(A)$.) Here the notation is the same as in § 1, No. 9 and $|\cdot|_A$ is the module in \mathcal{K}_A . We denote by $\mathcal{A}(\eta, \mathcal{K}_A^{\times})$ the space of all automorphic forms with a quasi-character η .

Let $\mathcal{A}_0(\eta, GL_2(A))$ be the space of all φ in $\mathcal{A}(\eta, GL_2(A))$ such that

(C)
$$\int_{A/F} \varphi \left(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} g \right) du = 0$$

for all $g \in GL_2(A)$. Such a φ is called *cusp form*. To simplify the statement, we occasionally write $\mathcal{A}_0(\eta, \mathcal{K}_A^{\times})$ for $\mathcal{A}(\eta, \mathcal{K}_A^{\times})$ if \mathcal{K} is a division algebra.

If $\varphi \in \mathcal{A}(\eta, \mathcal{K}_A^{\times})$ and $\mu \in \mathcal{H}(\mathcal{K}_A^{\times})$, then $\rho(\mu)\varphi \in \mathcal{A}(\eta, \mathcal{K}_A^{\times})$; thus we obtain a representation ρ of $\mathcal{H}(\mathcal{K}_A^{\times})$ in $\mathcal{A}(\eta, \mathcal{K}_A^{\times})$. $\mathcal{A}_0(\eta, \mathcal{K}_A^{\times})$ is invariant under ρ . It can be shown that the restriction of ρ to $\mathcal{A}_0(\eta, \mathcal{K}_A^{\times})$ is the direct sum of irreducible admissible representations, each of which occurs with a finite-

·650 H. Shimizu

multiplicity ([5, Prop. 10.5, Prop. 10.9, Lemma 14.1]). Moreover, each multiplicity is at most 1 if $\mathcal{K}_{A}^{\times} = GL_{2}(A)$ ([5, Prop. 11.1.1]).

REMARK. For any quasi-character η of A^{\times}/F^{\times} , we can find a quasi-character χ such that $\chi^2\eta$ is a character. Put $\varphi'(g)=\chi(n(g))\varphi(g)$ for $\varphi\in\mathcal{A}_0(\eta,\,\mathcal{K}_A^{\times})$. Then $\varphi\to\varphi'$ gives an isomorphism of $\mathcal{A}_0(\eta,\,\mathcal{K}_A^{\times})$ onto $\mathcal{A}_0(\chi^2\eta,\,\mathcal{K}_A^{\times})$. If ρ is the representation of $\mathcal{H}(\mathcal{K}_A^{\times})$ in the former space, the representation in the latter space is the tensor product of ρ and the one-dimensional representation $\chi\circ n$. For this reason we may assume that η is a character without losing generality.

2. The space $L_0^2(\eta, \mathcal{K}_A^{\times})$. η being a character of A^{\times}/F^{\times} , let $L_0^2(\eta, \mathcal{K}_A^{\times})$ be the space of all functions φ on \mathcal{K}_A^{\times} satisfying the following conditions.

$$\varphi(3.5) \qquad \varphi(z\gamma g) = \eta(z)\varphi(g) \qquad \text{for } z \in A^{\times}, \ \gamma \in \mathcal{K}_F^{\times}, \ g \in \mathcal{K}_A^{\times},$$

$$(3.6) \qquad |\varphi(g)| \text{ is square-integrable on } P(\mathcal{K}^{\times})_F \backslash P(\mathcal{K}^{\times})_A \text{, where } P(\mathcal{K}^{\times}) = \mathcal{K}^{\times} / F^{\times}.$$

(3.7) If
$$\mathcal{K}_{\mathbf{A}}^{\times} = GL_2(\mathbf{A})$$
,

$$\int_{A/F} \varphi \Big(\begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} g \Big) du = 0 \quad \text{for almost all } g.$$

 $L_0^2(\eta, \mathcal{K}_A^{\times})$ forms a Hilbert space, the inner product being

$$(\varphi_1, \varphi_2) = \int_{P(X^{\times})_F \setminus P(X^{\times})_A} \varphi_1(g) \overline{\varphi_2(g)} d\dot{g}.$$

The right translation ρ defines a unitary representation of \mathcal{K}_{A}^{\times} in $L_0^2(\eta, \mathcal{K}_{A}^{\times})$. The space $\mathcal{A}_0(\eta, \mathcal{K}_{A}^{\times})$ coincides with the space of all K-finite functions in $L_0^2(\eta, \mathcal{K}_{A}^{\times})$ (cf. Godement [4, § 3, No. 1]).

If \mathcal{L} is a closed subspace of $L_0^2(\eta, \mathcal{K}_A^*)$ invariant and irreducible (topologically) under the action of \mathcal{K}_A^* , then $\mathcal{C} = \mathcal{L} \cap \mathcal{A}_0(\eta, \mathcal{K}_A^*)$ is invariant and irreducible under the action of $\mathcal{H}(\mathcal{K}_A^*)$; conversely if the subspace \mathcal{C} of $\mathcal{A}_0(\eta, \mathcal{K}_A^*)$ is irreducible under the action of $\mathcal{H}(\mathcal{K}_A^*)$, its closure \mathcal{L} is invariant and irreducible under the action of \mathcal{K}_A^* , and \mathcal{C} is the space of K-finite functions in \mathcal{L} (cf. [4, § 3, No. 3]).

3. Spherical functions. We write \mathcal{K}^1 for the group of all elements in \mathcal{K}^{\times} of reduced norm 1 and put $K_v^1 = K_v \cap \mathcal{K}_v^1$, $K^1 = K \cap \mathcal{K}_A^1$. Let \mathcal{L} be an irreducible closed subspace of $L_0^2(\eta, \mathcal{K}_A^{\times})$ and π a representation of \mathcal{K}_A^{\times} in \mathcal{L} . For an irreducible representation δ of K^1 , let $\mathcal{L}(\delta)$ be the space of all φ in \mathcal{L} such that

$$\int_{\kappa^1} \chi_b (k_1^{-1}) \pi(k_1) \varphi dk_1 = \varphi ,$$

where $\chi_b(k_1) = \dim b \operatorname{tr} b(k_1)$.

LEMMA 2. $\mathcal{L}(b)$ is finite dimensional.

PROOF. Let $\mathcal{C}V$ be the space of all K-finite vectors in \mathcal{L} . We first prove

that $\mathcal{L}(\mathfrak{d}) \subset \mathcal{O}$. By [4, § 3, Th. 2] π is the tensor product of irreducible unitary representations π_v of \mathcal{K}_v^{\times} in \mathcal{L}_v . Denote again by π (resp. π_v) the admissible representation of $\mathcal{H}(\mathcal{K}_A^{\times})$ (resp. $\mathcal{H}(\mathcal{K}_v^{\times})$) in \mathcal{O} (resp. \mathcal{O}_v), \mathcal{O}_v being the space of all K_v -finite vectors in \mathcal{L}_v . Let S be a finite set of places such that for all $v \in S$, the restriction of π_v to K_v contains the identity representation. If $v \in S$, we have $\pi_v = \pi(\mu_1, \mu_2)$ with unramified quasi-characters μ_1 , μ_2 of F_v^{\times} . Then it is easy to see that \mathcal{O}_v contains the unique (up to a scalar multiple) vector invariant under K_v^1 , which is still K_v -invariant (hence the same is true for \mathcal{L}_v). It follows that every element in $\mathcal{L}(\mathfrak{d})$ is H-finite if $H = Z(K)K^1\prod_{v \in S} K_v$, Z(K) being the center of K. Since H is of finite index in K, it is also K-finite.

It is evident that, if $\mathcal{L}(\mathfrak{d}) \neq \{0\}$, an element in $\mathcal{L}(\mathfrak{d})$ transforms under the action of H according to an irreducible representation $\widetilde{\mathfrak{d}}$ of H determined uniquely by \mathfrak{d} and η . If $\xi(k) = \sum \dim \sigma_i \operatorname{tr} \sigma_i(k^{-1})$, where σ_i are all the irreducible constituents of the representation of K induced by $\widetilde{\mathfrak{d}}$, then $\mathcal{L}(\mathfrak{d})$ is contained in $\pi(\xi) \subset \mathcal{V}$. Hence $\mathcal{L}(\mathfrak{d})$ is finite dimensional.

By Lemma 2 we can define the spherical function ω_b of type b of π (cf.. Godement [3]). By definition we have

$$\omega_{\mathfrak{d}}(g) = \operatorname{tr}(E(\mathfrak{d})\pi(g)),$$

 $E(\mathfrak{d})$ being the projection of \mathcal{L} to $\mathcal{L}(\mathfrak{d})$. It follows that

(3.8)
$$\omega_b(g) = \sum_{i=1}^{N} (\pi(g)\varphi_i, \varphi_i)$$

if $\{\varphi_1, \dots, \varphi_N\}$ is an orthonormal basis of $\mathcal{L}(\mathfrak{d})$. In a special case where the multiplicity of \mathfrak{d} in $\mathcal{L}(\mathfrak{d})$ is 1, we have

(3.9)
$$\varphi(g_0)\omega_b(g) = \dim b \int_{\kappa^1} \varphi(g_0 k g k^{-1}) dk$$

for any φ in $\mathcal{L}(\mathfrak{d})$ and for any g_0 in \mathcal{K}_{A}^{\times} (cf. [3, Th. 8]).

Since $\pi = \bigotimes_v \pi_v$ and $\mathfrak{d} = \bigotimes_v \mathfrak{d}_v$ with irreducible unitary representations π_v of \mathcal{K}_v^{\times} and irreducible representations \mathfrak{d}_v of K_v^1 , we have

(3.10)
$$\boldsymbol{\omega}_{b}\left(g\right) = \prod_{v} \boldsymbol{\omega}_{b_{v}}(g_{v}),$$

 $\omega_{\mathfrak{d}_v}$ being the spherical function of type \mathfrak{d}_v of π_v . Also we have

(3.11)
$$\omega_{b}(k_{1}gk_{1}^{-1}) = \omega_{b}(g) \quad \text{for } k_{1} \in K^{1},$$

(3.12)
$$\int_{\kappa_{1}} \chi_{b}(k_{1}^{-1}) \omega_{b}(k_{1}g) dk_{1} = \omega_{b}(g).$$

These are immediately seen from definition.

₹652 H. Shimizu

§ 4. Construction of a space of automorphic forms.

1. Let $\mathcal K$ be a division quaternion algebra over a global field F and η a character of A^{\times}/F^{\times} . Write $\eta(a)=\prod\eta_v(a_v)$ for $a=(a_v)\in A^{\times}$. Let $\mathcal V$ be an irreducible subspace of $\mathcal A(\eta,\,\mathcal K_A^{\times})$ and π the representation of $\mathcal H(\mathcal K_A^{\times})$ in $\mathcal V$. Let $\mathcal L$ be the closure of $\mathcal W$ in $L_0^2(\eta,\,\mathcal K_A^{\times})$ and write still π for the representation of $\mathcal K_A^{\times}$ in $\mathcal L$. In the notation in § 3, No. 2, let $\mathfrak d$ be any irreducible representation of K^1 such that $\mathcal L(\mathfrak d)\neq\{0\}$ and let $\{\varphi_i\}_{i=1}^N$ be an orthonormal basis of $\mathcal L(\mathfrak d)$.

Denote by $GL_2(A)$, the group of all $s \in GL_2(A)$ such that $\det s = n(h)$ for some $h \in \mathcal{K}_A^{\times}$ and put $GL_2(F) = GL_2(F) \cap GL_2(A)$. If s is in $GL_2(A)$, write $s = \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix} s_1$ and take an arbitrary h in \mathcal{K}_A^{\times} with $n(h) = \det s$. For an element M in $\mathcal{S}(\mathcal{K}_A)$, let ϕ_M be a function on $GL_2(A)$, defined by

$$\phi_{\mathit{M}}(s) = \sum_{i=1}^{N} |\det s|_{\mathit{A}} \int_{P(\mathsf{X}^{\times})_{\mathit{F}} \backslash P(\mathsf{X}^{\times})_{\mathit{A}}} \Phi_{\mathit{i}}(\mathit{M}, \, \mathit{s}, \, \mathit{g}) \overline{\phi_{\mathit{i}}(\mathit{g})} d\dot{\mathit{g}} \, ,$$

where

$$\Phi_i(M, s, g) = \int_{\mathcal{X}_F^1 \setminus \mathcal{X}_A^1} \varphi_i(g_1 h g) \Theta(\rho(g_1 h) \iota(g) r(s_1) M) dg_1.$$

Since $\Theta(\rho(\gamma)M) = \Theta(\lambda(\gamma)M) = \Theta(M)$ for $\gamma \in \mathcal{K}_F^{\times}$, the integrand in (4.2) is, as a function of g_1 , left \mathcal{K}_F^{1} -invariant, and the integral is independent of a choice of h. We see easily that $\Phi_i(M, s, g)$ is, as a function of g, left \mathcal{K}_F^{\times} -invariant.

LEMMA 3. $\phi_M(s)$ is a continuous function on $GL_2(A)_+$, and $\phi_M(\sigma s) = \phi_M(s)$ for all $\sigma \in GL_2(F)_+$ and $s \in GL_2(A)_+$.

PROOF. Since $x \to g^{-1}xhg$ is an automorphism of \mathcal{K}_A , the mapping $(h, g, s_1) \to \rho(h)\iota(g)r(s_1)M$ is a continuous mapping of $\mathcal{K}_A^\times \times \mathcal{K}_A^\times \times SL_2(A)$ into $\mathcal{S}(\mathcal{K}_A)$. Hence $\Theta(\rho(h)\iota(g)r(s_1)M)$ is a continuous function of h, g, s_1 (for a fixed ξ , $\rho(h)\iota(g)r(s_1)M(\xi)$ is a continuous function of h, g, s_1 and $\Theta(M)$ is uniformly convergent on a compact subset of $\mathcal{S}(\mathcal{K}_A)$). Since $P(\mathcal{K}^\times)_F \setminus P(\mathcal{K}^\times)_A$ and $\mathcal{K}_F^{-1} \setminus \mathcal{K}_A^{-1}$ are compact, the integrand in (4.1) is bounded if s stays in a compact set of $GL_2(A)_4$. It implies that ϕ_M is continuous.

Let σ be an element in $GL_2(F)_+$ of the form $\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$. We can find an element δ in \mathcal{K}_F^{\times} such that $n(\delta) = \alpha$. Substituting δh for h and then replacing g_1 by $\delta g_1 \delta^{-1}$ in (4.2), we see that $\Phi_i(M, \sigma s, g) = \Phi_i(M, s, g)$. Hence $\phi_M(\sigma s) = \phi_M(s)$. Assume now that $\sigma \in SL_2(F)$. By Lemma 1, if $s = \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix} s_1 = s_2 \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix}$, we have $\rho(g_1h)\iota(g)r(s_1)M = \rho(g_1h)r(s_1)\iota(g)M = r(s_2)\rho(g_1h)\iota(g)M$, and by Proposition 1, $\Theta(r(s_2)\rho(g_1h)\iota(g)M)$ remains invariant if we replace s_2 by σs_2 . Hence $\Phi_i(M, \sigma s, g) = \Phi_i(M, s, g)$ and $\Phi_M(\sigma s) = \Phi_M(s)$. This proves the lemma.

2. An element $s = (s_v)$ in $GL_2(A)$ belongs to $GL_2(A)_+$ if and only if det s_v

is positive for all real places v ramified in \mathcal{K} . From this it follows that $GL_2(A) = GL_2(F)GL_2(A)_4$. By Lemma 3 ϕ_M can be extended to a function on $GL_2(A)$ invariant under the left translations by elements of $GL_2(F)$. Obviously ϕ_M is then continuous on $GL_2(A)$.

Consider an arbitrary continuous function ϕ on $GL_2(F)\backslash GL_2(A)$. For a fixed s, $\phi\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}s$ is a function of $a\in A$, invariant under the translation $a\to a+\alpha$ for $\alpha\in F$. Let ϕ be as in § 2, No. 3. Every character of A/F can be written as $a\to\phi(\alpha a)$ with $\alpha\in F$. Hence the Fourier coefficients of the above function are

$$\hat{\phi}(\alpha, s) = \int_{A/F} \phi \left(\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} s \right) \psi(-\alpha a) da$$

da being the Haar measure of A such that the total volume of A/F is 1. We see that

$$\hat{\phi}(\alpha, s) = \hat{\phi}\left(1, \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} s \right) \quad \text{for } \alpha \in F^{\times}.$$

Let us now prove that

$$\phi_{M}(s) = \sum_{\alpha \in F} \hat{\phi}_{M}(\alpha, s)$$

for $M \in \mathcal{S}(\mathcal{K}_A)$. Assume first that $s \in GL_2(A)_+$. The term by term integration of (4.2) gives (this is permitted, since $\Theta(\rho(h)\iota(g)r(s_1)M)$ converges uniformly while (h, g, s_1) stays in a compact subset of $\mathcal{K}_A^\times \times \mathcal{K}_A^\times \times SL_2(A)$)

$$\begin{split} \boldsymbol{\varPhi}_{i}(M,\,s,\,g) &= \int_{\mathcal{K}_{F}^{1}\backslash\mathcal{K}_{A}^{1}} \varphi_{i}(\,g_{1}hg)r(s_{1})M(0)dg_{1} \\ &+ \sum_{\boldsymbol{\xi} \in \mathcal{K}_{F}^{\times}} \int_{\mathcal{K}_{F}^{1}\backslash\mathcal{K}_{A}^{1}} \varphi_{i}(\,g_{1}hg)r(s_{1})\iota(\,g)M(\boldsymbol{\xi}g_{1}h)dg_{1} \,. \end{split}$$

Here the second term can be written as

$$\sum_{\xi \in \mathcal{K}_F^{\times} / \mathcal{K}_F^{1}} \!\! \int_{\mathcal{K}_A^{1}} \!\! \varphi_i(g_1 \xi h g) r(s_1) \iota(g) M(g_1 \xi h) dg_1 \,.$$

Therefore, putting

$$\phi_0(s) = \sum_{i=1}^{N} |\det s|_{A} \int_{P(\mathcal{K}^{\times})_F \setminus P(\mathcal{K}^{\times})_A} \int_{\mathcal{X}_F^1 \setminus \mathcal{X}_A^1} \varphi_i(g_1 h g) r(s_1) M(0) \overline{\varphi_i(g)} dg_1 d\dot{g},$$

and

$$\phi_{1}(s) = \sum_{i=1}^{N} |\det s|_{A} \int_{P(\mathcal{K}^{\times})_{F} \setminus P(\mathcal{K}^{\times})_{A}} \int_{\mathcal{K}_{A}^{1}} \varphi_{i}(g_{1}hg)r(s_{1})\iota(g)M(g_{1}h)\overline{\varphi_{i}(g)}dg_{1}d\dot{g},$$

we have

654 Н. Ѕніміzu

(4.7)
$$\phi_{M}(s) = \phi_{0}(s) + \sum_{\alpha \in F^{\times}} \phi_{1} \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} s .$$

Here we have put $F_+^{\times} = F^{\times} \cap n(\mathcal{K}_F^{\times})$.

By the same reasoning as before, the Fourier coefficients of ϕ_M can be calculated term by term. If $s = s_2 \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix}$, we have

$$\int_{A/F} \Phi_{i}\left(M, \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} s, g\right) \psi(-\alpha a) da$$

$$= \sum_{\xi : \mathcal{K}_{F}} \int_{A/F} \int_{\mathcal{K}_{F}^{1} \setminus \mathcal{K}_{A}^{1}} \varphi_{i}(g_{1}hg) r(s_{2}) \rho(g_{1}h) \iota(g) M(\xi)$$

$$\psi(a \ n(\xi) - \alpha a) dg_{1} da.$$

This is not 0 if and only if there exists an element ξ in \mathcal{K}_F with $\alpha = n(\xi)$, and if $\alpha = n(\xi)$ for $\xi \in \mathcal{K}_F^{\times}$, then it equals

$$\int_{\mathcal{X}_{A}^{1}} \varphi_{i}(g_{1}hg)\rho(g_{1}h)r(s_{1})\iota(g)M(\xi)dg_{1}$$

$$= \int_{\mathcal{X}_{A}^{1}} \varphi_{i}(\xi g_{1}hg)r(s_{1})\iota(g)M(\xi g_{1}h)dg_{1}$$

$$= \int_{\mathcal{X}_{A}^{1}} \varphi_{i}(g_{1}\xi hg)r(s_{1})\iota(g)M(g_{1}\xi h)dg_{1}.$$

From this we see that $\hat{\phi}_{M}(0, s) = \phi_{0}(s)$ and

(4.8)
$$\hat{\phi}_{M}(\alpha, s) = \begin{cases} \phi_{1} \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} s & \text{if } \alpha \in F_{+}^{\times}, \\ 0 & \text{otherwise.} \end{cases}$$

Hence (4.4) (for $s \in GL_2(A)_+$) follows from (4.7).

If s is not in $GL_2(A)_+$, find an element β in F^\times such that $s' = \begin{pmatrix} \beta & 0 \\ 0 & 1 \end{pmatrix} s$ $\in GL_2(A)_+$. Then $\phi_M(s') = \phi_M(s)$ and $\hat{\phi}_M(\alpha, s') = \hat{\phi}_M(\alpha\beta, s)$ by (4.3) so that (4.4) is valid for s. Putting $\alpha = \beta^{-1}$ in the above equality, we see that $\hat{\phi}_M(1, s) = 0$ if $s \notin GL_2(A)_+$ (cf. (4.8)).

LEMMA 4. If π is not a representation of dimension 1, we have $\phi_{M}(0, s)=0$. PROOF. For $\varphi \in \mathcal{CV}$, put

$$H\varphi(g) = \int_{\mathcal{X}_F^1 \setminus \mathcal{X}_A^1} \varphi(g_1 g) dg_1.$$

It is easy to see that $H\varphi$ is a continuous function on \mathcal{K}_{A}^{\times} belonging to $L_0^2(\eta, \mathcal{K}_{A}^{\times})$. Furthermore, $H\varphi$ is right K-finite. Hence $H\varphi \in \mathcal{A}(\eta, \mathcal{K}_{A}^{\times})$. Since $\varphi \to H\varphi$ commutes with the right translation, either $H(\mathcal{C}V) = 0$ or the representation of $\mathcal{H}(\mathcal{K}_{A}^{\times})$ in $H(\mathcal{C}V)$ is equivalent to π . In the latter case π is necessarily one-dimensional representation, for $H\varphi(g)$ depends only on n(g). Hence

we have $H(CV) = \{0\}$, and $\hat{\phi}_M(0, s) = \phi_0(s) = 0$ by (4.5).

3. In the notation in No. 2, we put $W_M(s) = \hat{\phi}_M(1, s)$. Evidently

$$W_{\mathbf{M}}\begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \mathbf{s} = \phi(a)W_{\mathbf{M}}(\mathbf{s})$$

for $a \in A$. Remark that $\hat{\phi}_{M}(1, s)$ is $\phi_{1}(s)$ if $s \in GL_{2}(A)_{+}$ and 0 otherwise. In view of (4.6) and (3.8) we obtain

$$(4.9) W_{M}(s) = \begin{cases} |\det s|_{A} \int_{\mathcal{K}_{A}^{1}} \omega_{b}(g_{1}h) r(s_{1}) M(g_{1}h) dg_{1} & \text{if } s \in GL_{2}(A)_{+} \\ 0 & \text{if } s \notin GL_{2}(A)_{+} \end{cases}.$$

It follows from (3.11) and (3.12) that

$$W_{\mathit{M}} = W_{\widetilde{\mathit{M}}} = W_{\overline{\mathsf{z}}_{\mathsf{b}^{+}\mathit{M}}},$$

if we put

$$\widetilde{M}(x) = \int_{\kappa_1} M(k_1 x k_1^{-1}) dk_1$$
,

$$\bar{\chi}_{\mathrm{b}} * M(x) = \int_{\kappa^{1}} \chi_{\mathrm{b}}(k_{1}) M(k_{1}x) dk_{1}.$$

For this reason we may limit ourselves to the functions M such that $M = \tilde{M} = \tilde{\chi}_b * M$.

In a special case where the multiplicity of $\mathfrak d$ in $\mathcal L(\mathfrak d)$ is 1, we still obtain (4.9) if we put

$$(4.10) \qquad \varphi(g)\phi_{M}(s) = \dim \mathfrak{b} |\det s|_{A} \int_{\mathcal{X}_{F}^{1} \setminus \mathcal{X}_{A}^{1}} \varphi(g_{1}hg)\Theta(\rho(g_{1}h)r(s_{1})\iota(g)M) dg_{1}$$

for $s \in GL_2(A)_+$ and for $M \in \mathcal{S}(\mathcal{K}_A)$ such that $\widetilde{M} = M$, where φ is any non-zero function in $\mathcal{L}(\mathfrak{b})$ and g is any element in \mathcal{K}_A^{\times} with $\varphi(g) \neq 0$ (cf. (3.9)).

- 4. Let $S_1(\mathcal{K}_A)$ be the subspace of $S(\mathcal{K}_A)$ spanned by all M satisfying the following conditions.
 - i) $M(x) = \prod M_v(x_v)$ with $M_v \in \mathcal{S}(\mathcal{K}_v)$.
 - ii) $\widetilde{M} = M$.
 - iii) $\bar{\chi}_b * M = M$.
- iv) If $F_v = \mathbf{R}$ and \mathcal{K}_v is a division quaternion algebra over \mathbf{R} , \mathcal{K}_v is identified with the set of all matrices of the form $\begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$ with $a, b \in \mathbf{C}$. We have $n(x) = \det x$ for $x \in \mathcal{K}_v$. Assume that π_v is written as

$$\pi_v(g) = n(g)^r \rho_n(g)$$

 $(r \in C, \ \rho_n = \text{the } n\text{-th symmetric tensor representation of } GL_2(C))$ and that $\psi_v(\alpha) = \exp{(2\pi i u_v \alpha)}$ with $u_v \in R$. Let χ_n be the character of ρ_n . Then M_v is of the form

$$M_n(x) = \exp(-2\pi |u_n| n(x)) P(n(x)) \chi_n(x')$$

for $x \in \mathcal{K}_v$, P being a polynomial.

v) If $F_v = \mathbf{R}$ or \mathbf{C} and $\mathcal{K}_v = M_2(F_v)$, and if $\phi_v(\alpha) = \exp{(2\pi i u_v \operatorname{tr}_{F_v/\mathbf{R}}(\alpha))}$ with $u_v \in \mathbf{R}$, M_v is of the form

$$M_v(x) = \exp\left(-\pi d_v | u_v | \operatorname{tr}(x^t \bar{x})\right) P(x),$$

where $d_v = [F_v : \mathbf{R}]$ and P(x) is a polynomial of ξ_{ij} , $\bar{\xi}_{ij}$ if $x = \begin{pmatrix} \xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22} \end{pmatrix}$.

5. Let $\mathscr{C}V^*$ be the space spanned by all $\rho \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \phi_M$ for $M \in \mathcal{S}_1(\mathscr{K}_A)$ and $a \in E$, E being a representative system of $A^{\times}/(A^{\times})^2$. By (4.4) the mapping $\phi_M(s) \to W_M(s) = \hat{\phi}_M(1, s)$ is injective and commutes with the right translation. Let \mathscr{W}^* be the space spanned by all $\rho \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} W_M$ for $M \in \mathcal{S}_1(\mathscr{K}_A)$ and $a \in E$.

PROPOSITION 2. If π is not one-dimensional, \heartsuit^* is a subspace of $\mathcal{A}_0(\eta, GL_2(A))$.

PROOF. In § 5 we shall see that \mathcal{W}^* is invariant under $\rho(\mu)$ for all $\mu \in \mathcal{H}(GL_2(A))$ and the representation of $\mathcal{H}(GL_2(A))$ in \mathcal{W}^* is admissible. This implies the conditions (3.1) and (3.2) for all functions in \mathcal{CV}^* . So far we see that ϕ_M is continuous on $GL_2(A)$, left $GL_2(F)$ -invariant and cuspidal (i. e. $\hat{\phi}_M(0,s)=0$). Therefore it is enough to prove that ϕ_M satisfies (3.3) and (3.4) (then, every right translate of ϕ_M will also satisfy these conditions).

Let z be in A^* . Since

$$zs = \begin{pmatrix} z^2 \det s & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} z^{-1} & 0 \\ 0 & z \end{pmatrix} s_1,$$

$$r(\begin{pmatrix} z^{-1} & 0 \\ 0 & z \end{pmatrix})M = |z^{-1}|_{A}\rho(z^{-1})M$$
,

we see that $\Phi_i(M, zs, g) = |z^{-1}|_A \eta(z) \Phi_i(M, s, g)$ and hence that $\phi_M(zs) = \eta(z) \phi_M(s)$ (cf. (4.1), (4.2)).

To prove (3.4) in our case, we may assume that Ω is a compact subset of $GL_2(A)_+$ and a varies within $A_+^\times = n(\mathcal{K}_A^\times)$. Let us substitute $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} s$ for s in (4.1). Write $s = \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix} s_1$ and let h be an element in \mathcal{K}_A^\times such that $n(h) = a \det s$. If s varies in Ω and g varies in a compact fundamental domain Ω_1 of $P(\mathcal{K}^\times)_F$ in $P(\mathcal{K}^\times)_A$, $\iota(g)r(s_1)M$ stays in a compact subset of $\mathcal{S}(\mathcal{K}_A)$. By [11, Lemma 5] there exists a function M_0 in $\mathcal{S}(\mathcal{K}_A)$ such that

$$|\iota(g)r(s_1)M(x)| \leq \dot{M}_0(x)$$

for all $x \in \mathcal{X}_A$, $s \in \Omega$, $g \in \Omega_1$. On the other hand, the functions φ_i are bounded on \mathcal{X}_A^{\times} . Hence we get an estimate

$$\left|\phi_{M}\left(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} s\right)\right| \leq c_{1} |n(h)|_{A} \int_{\mathcal{X}_{F}^{1} \setminus \mathcal{X}_{A}^{1}} \Theta(\rho(g_{1}h)M_{0}) dg_{1},$$

 c_1 being a constant independent of a and s. Now (3.4) is a consequence of the following lemma.

LEMMA 5. Let c be a constant > 0, and M an element in $\mathcal{S}(\mathcal{K}_A)$. Then $\mathcal{O}(\rho(h)M)$ is bounded for all $h \in \mathcal{K}_A^{\times}$ such that $|n(h)|_A > c$.

PROOF. Assume first that F is a number field. Let S_{∞} be the set of all archimedean places in F and put $\mathcal{K}_{\infty} = \prod_{v \in S_{\infty}} \mathcal{K}_v$. We can assume that $M(x) = M_{\infty}(x_{\infty}) \prod_{v \in S_{\infty}} M_v(x_v)$, where $M_{\infty} \in \mathcal{S}(\mathcal{K}_{\infty})$ and M_v is the characteristic function of a \mathfrak{o}_v -lattice L_v in \mathcal{K}_v , and almost all L_v are \mathfrak{O}_v . Clearly $\Theta(\rho(h)M)$ does not change if we replace h by δh for $\delta \in \mathcal{K}_F^{\times}$. Let \mathcal{K}_A^0 be the group of all $g \in \mathcal{K}_A^{\times}$ with $|n(h)|_A = 1$. Identify an element $\alpha \in \mathbb{R}^{\times}$ with an element $g \in \mathcal{K}_A^{\times}$ such that $g_v = 1$ for $v \notin S_{\infty}$ and $g_v = \alpha$ for $v \in S_{\infty}$. We have $\mathcal{K}_A^{\times} = \mathbb{R}^{\times} \mathcal{K}_A^0$ and $\mathcal{K}_F^{\times} \setminus \mathcal{K}_A^0$ is compact. Hence we may assume that $h = \alpha \in \mathbb{R}^{\times}$ applying [11, Lemma 5] again.

Let L be the set of all $\xi \in \mathcal{K}_F$ such that $\xi \in L_v$ for all $v \in S_{\infty}$. Projecting L to \mathcal{K}_{∞} , we get a Z-lattice in \mathcal{K}_{∞} . We have

$$\Theta(\rho(\alpha)M) = \sum_{\xi \in L} M_{\infty}(\alpha\xi)$$
.

Let M'_{∞} be the Fourier transform of M_{∞} and L' the dual lattice of L. By Poisson's formula

$$\sum_{\xi\in \mathcal{L}} M_{\scriptscriptstyle \infty}(\alpha\xi) = |\alpha|^{-m} \sum_{\xi\in \mathcal{L}'} M_{\scriptscriptstyle \infty}'(\alpha^{-1}\xi) \,,$$

m being the dimension of \mathcal{K}_{∞} over R. Letting $|\alpha| \to \infty$, the right hand side converges to a constant multiple of $\int M'_{\infty}(x_{\infty})dx_{\infty}$. This proves our assertion.

If F is a function field, it is easy to show that the support of $\rho(h)M$ is contained in a fixed compact subset of \mathcal{K}_A for all h with $|n(h)|_A > c$. Then the lemma follows immediately.

§ 5. Whittaker spaces.

1. We shall prove that the representation of $\mathcal{A}(GL_2(A))$ in \mathcal{W}^* introduced in § 4, No. 4 is admissible, and determine its equivalence class.

From the definition of W_M and (3.10) it follows that, if $M(x) = \prod M_v(x_v)$ is an element of $S_1(\mathcal{H}_A)$, then we have

$$W_{M}(s) = \prod_{v} W_{Mv}(s_{v}),$$

where

(5.2)
$$W_{M_{v}}(s) = |\det s|_{F_{v}} \int_{\mathcal{X}_{v}^{1}} \omega_{v_{v}}(g_{1}h) r_{v}(s_{1}) M_{v}(g_{1}h) dg_{1}$$

for $s = \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix} s_1 \in GL_2(F_v)_+$, h being an element of \mathcal{K}_v^{\times} with $n(h) = \det s_+$ and

$$(5.3) W_{M_v}(s) = 0 for s \in GL_2(F_v)_{\div}.$$

Clearly we have

$$(5.4) W_{M_v}(ss') = W_{r_n(s')M_v}(s) for s' \in SL_2(F_v).$$

Let η_v be as in § 4, No. 1. By the same proof as in Proposition 2 we get

$$(5.5) W_{M_v}(sz) = \eta_v(z)W_{M_v}(s) for z \in F_v^{\times}.$$

Denote by $\mathcal{S}_{\mathbf{1}}(\mathcal{K}_v)$ the space of all $M_v \in \mathcal{S}(\mathcal{K}_v)$ satisfying

$$M_v(k_1xk_1^{-1}) = M_v(x) \quad (k_1 \in K_v^{-1}), \qquad \bar{\chi}_{b_v} * M_v = M_v$$

as well as the conditions iv), v) in § 4, No. 4. Let \mathcal{W}_v^* be the space spanned by all $\rho\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \mathcal{W}_{Mv}$ for $M_v \in \mathcal{S}_1(\mathcal{K}_v)$ and $\alpha \in E_v$, E_v being a representative-system of $F_v^\times/(F_v^\times)^2$. Let M_v^0 be the characteristic function of \mathbb{Q}_v and write $W_v^0 = W_{Mv}$ for $M_v = M_v^0$. We shall prove in Lemma 7 that, for almost all v, W_v^0 is invariant under the right translations by elements of $GL_2(\mathfrak{o}_v)$. By (5.1) we see that \mathcal{W}^* is the restricted tensor product of \mathcal{W}_v^* with respect to $\{W_v^0\}$ and that, if we let $\mathcal{H}(GL_2(A))$ (resp. $\mathcal{H}(GL_2(F_v))$) act on \mathcal{W}^* (resp. \mathcal{W}_v^*) by right translation, the representation of $\mathcal{H}(GL_2(A))$ in \mathcal{W}^* is the tensor product of the representations of $\mathcal{H}(GL_2(F_v))$ in \mathcal{W}_v^* (granted that \mathcal{W}^* or \mathcal{W}_v^* is invariant under this action, which we are going to prove).

 π being as in § 4, No. 1, write $\pi = \bigotimes \pi_v$. Let S be the set of all places in F ramified in \mathcal{K} .

PROPOSITION 3. \mathcal{W}_v^* is invariant under the action of $\mathcal{H}(GL_2(F_v))$ and the representation ρ_v of $\mathcal{H}(GL_2(F_v))$ in \mathcal{W}_v^* is admissible. If $v \in S$ and π_v is infinite dimensional, ρ_v is equivalent to π_v . If $v \in S$, ρ_v is equivalent to π_v^* (§ 2, No. 2).

The proof of this proposition will be given in No. 2-No. 11. Since all the arguments in the following are purely local, we write for simplicity r for r_v . b_v denotes always an irreducible representation of K_v^1 contained in the restriction of π_v to K_v^1 .

2. In No. 2-No. 6, v denotes a non-archimedean place in F unramified in \mathcal{K} so that $\mathcal{K}_v = M_2(F_v)$ and $\mathcal{K}_v^\times = GL_2(F_v)$. Assume first that $\pi_v = \pi(\mu_1, \mu_2)$ with quasi-characters μ_1 , μ_2 of F_v^\times such that $\mu_1\mu_2^{-1}$ is neither $|\cdot|_{F_v}$ nor $|\cdot|_{F_v}^{-1}$.

By Godement [3, No. 16] the spherical function ω_{b_n} is obtained in the

If ollowing way.*\(^\text{>}\) Let T, ζ be as in §1, No. 3 (take F to be F_v). Put $U = T \cap K_v^1$; then $\mathcal{K}_v^{\times} = TK_v^1$. If we put

$$\chi \xi_{\mathbf{v}}(tk) = \zeta(t) \int_{U} \zeta(u^{-1}) \chi_{\mathfrak{d}_{\mathbf{v}}}(uk) du$$

for $t \in T$ and $k \in K_v^1$, we have

$$\omega_{b_{v}}(g) = \int_{K_{v}^{1}} \chi \xi_{v}(k_{1}gk_{1}^{-1})dk_{1}$$

for $g \in \mathcal{K}_v^{\times}$. Here dk_1 (resp. du) is the Haar measure of K_v^1 (resp. U) with the total volume 1.

Let us calculate W_M for $M \in \mathcal{S}_1(\mathcal{K}_v)$. We put $T^1 = T \cap \mathcal{K}_v^1$. For $\alpha \in F_v^\times$ set $h = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$. Since $M(k_1 x k_1^{-1}) = M(x)$ and $\bar{\chi}_{b_v} * M = M$, we have

$$\begin{split} |\alpha|_{F_{v}^{-1}}W_{M}\Big(\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} \Big) &= \int_{\mathcal{K}_{v}^{1}} \omega_{b_{v}}(hg_{1})M(hg_{1})dg_{1} \\ &= \int_{\mathcal{K}_{v}^{1}} \chi \xi_{v}(hg_{1})M(hg_{1})dg_{1} \\ &= \int_{T^{1}/U} \int_{K_{v}^{1}} \int_{U} \zeta(ht_{1}u^{-1})\chi_{b_{v}}(uk_{1})M(ht_{1}k_{1})d\dot{t_{1}}dk_{1}du \\ &= \int_{T^{1}/U} \int_{U} \zeta(ht_{1}u^{-1})M(ht_{1}u^{-1})d\dot{t_{1}}du \\ &= \int_{T^{1}} \zeta(ht_{1})M(ht_{1})dt_{1} \,. \end{split}$$

Here dt_1 is the left invariant measure of T^1 and $dt_1=d\dot{t}_1du$. If we write $t_1=\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \gamma & 0 \\ 0 & \gamma^{-1} \end{pmatrix}$, we have $dt_1=|\gamma|_{F_v}^{-2}d\beta d^{\times}\gamma$. Then the last expression in the above equals

$$\mu_1(\alpha) |\alpha|_{F_v^{-1/2}} \int_{F_v^{\times}} \int_{F_v} \mu_1 \mu_2^{-1}(\gamma) M\left(\begin{pmatrix} \alpha \gamma & \beta \\ 0 & \gamma^{-1} \end{pmatrix}\right) d\beta d^{\times} \gamma.$$

Therefore, if $s = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} s_1$ with det $s = \alpha$, we get

$$\text{(5.7)} \qquad \qquad W_{\mathit{M}}(s) = \mu_{1}(\alpha) \, | \, \alpha \, | \, {}_{F_{v}}^{1/2} \! \int_{F_{v}^{\times}} \! \int_{F_{v}} \! \mu_{1} \mu_{2}^{-1}(\gamma) r(s_{1}) M\! \left(\begin{pmatrix} \alpha \gamma & \beta \\ 0 & \gamma^{-1} \end{pmatrix} \right) \! d\beta d^{\times} \gamma \; .$$

For $M \in \mathcal{S}(\mathcal{K}_v)$ and $(\alpha_1, \alpha_2) \in F_v \times F_v$, we put

$$f(M)(\alpha_1, \alpha_2) = \int_{F_v} M\left(\begin{pmatrix} \alpha_1 & \xi \\ 0 & \alpha_2 \end{pmatrix}\right) d\xi.$$

^{*)} In [3, No. 16] the space \mathfrak{D}^{ζ} of the induced representation consists of all constinuous functions on $GL_2(F_v)$ satisfying $f(tg) = \zeta(t)f(g)$ $(t \in T)$. The space $\mathcal{B}(\mu_1, \mu_2)$ of $\pi(\mu_1, \mu_2)$ is the space of all locally constant functions in \mathfrak{D}^{ζ} . However, the spherical functions of both representations are the same, for all K_v^1 -finite functions in \mathfrak{D}^{ζ} are Hocally constant.

Clearly $f(M) \in \mathcal{S}(F_v \oplus F_v)$. Denote by r_0 the Weil representation of $SL_2(F_v)$ in $\mathcal{S}(F_v \oplus F_v)$ (with respect to the character ϕ_v of F_v). By [5, Prop. 1.6] $r_{c,v}$ can be extended to a representation of $GL_2(F_v)$ such that

$$r_0(\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix})m(\alpha_1, \alpha_2) = m(\alpha \alpha_1, \alpha_2)$$

for $m \in \mathcal{S}(F_v \oplus F_v)$.

LEMMA 6. For $M \in \mathcal{S}(\mathcal{K}_v)$ and $s_1 \in SL_2(F_v)$ we have

$$f(r(s_1)M) = r_0(s_1)f(M)$$
.

The proof is immediate.

It follows from Lemma 6 and (5.7) that

(5.8)
$$W_{M}(s) = \mu_{1}(\det s) |\det s|_{F_{N}^{1/2}} \int_{F_{N}^{\times}} \mu_{1} \mu_{2}^{-1}(\gamma) r_{0}(s) f(M)(\gamma, \gamma^{-1}) d^{\times} \gamma$$

so that W_M is contained in the space $W(\mu_1, \mu_2; \phi_v)$ in the notation in [5, § 3]... By the assumption on μ_1 , μ_2 this space is the Whittaker space of $\pi(\mu_1, \mu_2)$, (cf. [5, Prop. 3.5]).

For $s_1 \in SL_2(F_v)$ and $M \in \mathcal{S}_1(\mathcal{K}_v)$, we have $\rho(s_1)W_M = W_N$ with $N = r(s_1)M$, and $\mathcal{S}_1(\mathcal{K}_v)$ is invariant under $r(s_1)$, because $r(s_1)$ commutes with $\rho(k_1)$ and $\lambda(k_1)$ for $k_1 \in K_v^{-1}$ (Lemma 1). By (5.4) and (5.5) the space \mathcal{W}_v^* spanned by all $\rho\left(\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}\right)W_M$ ($M \in \mathcal{S}_1(\mathcal{K}_v)$ and $\alpha \in E_v$) is invariant under $\rho(s)$ for all $s \in GL_2(F_v)$. \mathcal{W}_v^* is clearly non-zero. Since $W(\mu_1, \mu_2; \psi_v)$ is irreducible, we have $\mathcal{W}_v^* = W(\mu_1, \mu_2; \psi_v)$ and hence ρ_v is equivalent to $\pi(\mu_1, \mu_2)$.

- 3. Let π_v be $\pi(\mu_1, \mu_2)$ with quasi-characters μ_1 , μ_2 of F_v^{\times} such that $\mu_1\mu_2^{-1}=|\ |_{F_v^{-1}}$. Write $\mu_1(\alpha)=\chi(\alpha)|\alpha|_{F_v^{-1/2}}$, $\mu_2(\alpha)=\chi(\alpha)|\alpha|_{F_v^{1/2}}$. Then π_v is the one-dimensional representation $\chi\circ n$. Obviously \mathfrak{d}_v is the identity representation and $\omega_{\mathfrak{d}_v}(g)=\chi(n(g))$. By a simple calculation we again obtain (5.8) for $M\in\mathcal{S}_1(\mathcal{K}_v)$. As in No. 2, we see that \mathcal{W}_v^* is an invariant subspace of $W(\mu_1, \mu_2; \psi_v)$. Consequently ρ_v is admissible.
- 4. For almost all v, the restriction of π_v to K_v contains the identity representation. By [5, Lemma 3.9], if $\mathcal{K}_v^\times = GL_2(F_v)$ and v is non-archimedean, such a π_v is of the form $\pi(\mu_1, \mu_2)$ with unramified (= trivial on \mathfrak{o}_v^\times) quasicharacters μ_1 , μ_2 of F_v^\times .

LEMMA 7. Assume that $\pi_v = \pi(\mu_1, \mu_2)$ with unramified quasi-characters μ_1 , μ_2 of F_v^* . Let \mathfrak{a}_v be the conductor of ψ_v . Put

$$L_v = \mathfrak{o}_v e_{11} + \mathfrak{o}_v e_{12} + \mathfrak{a}_v e_{21} + \mathfrak{a}_v e_{22}$$
,

e_{ij} being a 2 by 2 matrix such that (i, j)-coefficient is 1 and the other coefficients: are 0. If N is the characteristic function of L_v , then $r(s_1)N = N$ for $s_1 \in SL_2(\mathfrak{o}_v)$. Furthermore, if $M = \int_{K-1} \lambda(k_1) N dk_1$, then $\rho(s)W_M = W_M$ for $s \in GL_2(\mathfrak{o}_v)$.

PROOF. $GL_2(\mathfrak{o}_v)$ is generated by $\begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$, $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ ($\alpha \in \mathfrak{o}_v^\times$, $\beta \in \mathfrak{o}_v$). We note that L_v is a \mathfrak{o}_v -lattice and $n(x) \in \mathfrak{a}_v$ for all $x \in L_v$. It follows from definition that r(s)N=N if $s=\begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}$ or $\begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix}$. Let L_v^* be the set of all $x \in \mathcal{K}_v$ such that $\operatorname{tr}(xL_v) \subset \mathfrak{a}_v$. Evidently $L_v^* = \mathfrak{a}_v e_{11} + \mathfrak{o}_v e_{12} + \mathfrak{a}_v e_{21} + \mathfrak{o}_v e_{22}$ and the Fourier transform N' of N is the characteristic function of L_v^* up to a positive constant. Hence $r(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix})N(x) = N'(x') = cN(x)$. Since $r(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix})^2N = r(-1)N = N$, c must be 1. This proves the first assertion. By Lemma 1, i), the same assertion is valid also for M. It follows from (5.8) that

$$W_{M}\left(s\begin{pmatrix}\alpha & 0\\ 0 & 1\end{pmatrix}\right) = \mu_{1}(\det s) |\det s|_{F_{v}^{1/2}}$$
$$\int \mu_{1}\mu_{2}^{-1}(\gamma)r_{0}(s)f\left(\rho\begin{pmatrix}\alpha & 0\\ 0 & 1\end{pmatrix}M\right)(\gamma, \gamma^{-1})d^{\times}\gamma.$$

If $\alpha \in \mathfrak{o}_v^{\times}$, we have $\rho \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} M = M$ so that $\rho \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix} W_{M} = W_{M}$. Together with what we have proved above, this proves the second assertion.

5. We assume now that $\pi_v = \sigma(\mu_1, \mu_2)$ with quasi-characters μ_1, μ_2 of F_v^{\times} such that $\mu_1\mu_2^{-1} = |\cdot|_{F_v}$. Write $\mu_1(\alpha) = \chi(\alpha)|\alpha|_{F_v^{1/2}}$, $\mu_2(\alpha) = \chi(\alpha)|\alpha|_{F_v^{-1/2}}$. In the notation in § 1, No. 3, put $CV = \mathcal{B}(\mu_1, \mu_2)$ and $CV_s = \mathcal{B}_s(\mu_1, \mu_2)$.

We first note that the restriction of π_v to K_v^1 does not contain the identity representation. If this is not true, there would be a non-zero function f in \mathcal{C}_s invariant under K_v^1 . By [5, §3]

$$\langle \varphi_1, \varphi_2 \rangle = \int_{K_n} \varphi_1(k) \varphi_2(k) dk$$

is a non-degenerate bilinear form on $\mathcal{B}(\mu_1, \mu_2) \times \mathcal{B}(\mu_1^{-1}, \mu_2^{-1})$ invariant under the right translation, and $\mathcal{B}_s(\mu_1, \mu_2)$ is the space of all $\varphi \in \mathcal{B}(\mu_1, \mu_2)$ orthogonal to the function $\chi^{-1} \circ \det$ in $\mathcal{B}(\mu_1^{-1}, \mu_2^{-1})$. Hence

$$\int_{K_n} \chi^{-1}(\det k) f(k) dk = \int_{\mathfrak{o}_v^{\times}} \chi^{-1}(\alpha) f\left(\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}\right) d^{\times} \alpha = 0.$$

It implies that f(1) = 0 so that f is identically 0. This is a contradiction. Let $\mathcal{O}(\mathfrak{d}_{v})$ be the space of all $f \in \mathcal{O}$ such that

$$\int_{K_{v}^{1}} \chi_{b_{v}}(k_{1}^{-1}) \rho(k_{1}) f = f,$$

and put $\mathcal{O}_s(\mathfrak{d}_v) = \mathcal{O}_s \cap \mathcal{O}(\mathfrak{d}_v)$. By the above remark \mathfrak{d}_v is not the identity representation. On the other hand, the representation of $GL_2(F_v)$ in $\mathcal{O}/\mathcal{O}_s$ is equivalent to $\mathfrak{X} \circ \det$, whose restriction to K_v^1 is the identity representation.

Hence $CV(\mathfrak{d}_v) = CV_s(\mathfrak{d}_v)$. From the definition of spherical functions it follows that (5.6) is still valid in our case.

As in No. 2, we have $W_M \in W(\mu_1, \mu_2; \psi_v)$ for $M \in \mathcal{S}_1(\mathcal{K}_v)$. By [5, Prop. 3.6] W_M belongs to the Whittaker space $W(\sigma(\mu_1, \mu_2); \psi_v)$ of $\sigma(\mu_1, \mu_2)$ if

(5.9)
$$\int_{F_v} f(M)(\xi_1, 0) d\xi_1$$
$$= \int_{F_v \times F_v} M\left(\begin{pmatrix} \xi_1 & \xi_2 \\ 0 & 0 \end{pmatrix}\right) d\xi_1 d\xi_2 = 0.$$

This condition is certainly satisfied by $M \in \mathcal{S}_1(\mathcal{K}_v)$, for

$$\begin{split} &\int_{F_{\boldsymbol{v}}\times F_{\boldsymbol{v}}} M\left(\binom{\xi_1}{0} \quad \stackrel{\xi_2}{0}\right) d\xi_1 d\xi_2 \\ &= \int_{F_{\boldsymbol{v}}\times F_{\boldsymbol{v}}} \int_{K_{\boldsymbol{v}}^1} M\left(\binom{\xi_1}{0} \quad \stackrel{\xi_2}{0}\right) k_1 \chi_{\mathfrak{b}_{\boldsymbol{v}}}(k_1) dk_1 d\xi_1 d\xi_2 \\ &= \int_{F_{\boldsymbol{v}}\times F_{\boldsymbol{v}}} \int_{K_{\boldsymbol{v}}^1} M\left(\binom{\xi_1'}{0} \quad \stackrel{\xi_2'}{0}\right) \chi_{\mathfrak{b}_{\boldsymbol{v}}}(k_1) dk_1 d\xi_1' d\xi_2' = 0 \,, \end{split}$$

since $\int \chi_{b_v}(k_1)dk_1 = 0$. By the same reasoning as in No. 2, we see that \mathcal{W}_v^* is the Whittaker space of $\sigma(\mu_1, \mu_2)$ so that ρ_v is equivalent to $\sigma(\mu_1, \mu_2)$.

6. Let us assume that π_v is absolutely cuspidal, and is realized in its Kirillov model ([5, § 2]). The representation space of π_v is then the space $\mathcal{S}(F_v^\times)$ of all locally constant functions of compact support on F_v^\times . Let Ψ be any non-trivial additive character of F_v . We may assume that

$$\pi_v \Big(\begin{pmatrix} \alpha & \beta \\ 0 & 1 \end{pmatrix} \Big) \varphi(\xi) = \Psi(\beta \xi) \varphi(\alpha \xi),$$
 $\pi_v \Big(\begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix} \Big) \varphi(\xi) = \eta_v(\alpha) \varphi(\xi)$

for $\alpha \in F_v^{\times}$, $\beta \in F_v$ and $\varphi \in \mathcal{S}(F_v^{\times})$. Hence π_v is determined by the action of $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

 μ being a character of $F_{\mathbf{v}}^{\times}$, we set

$$\hat{\varphi}(\mu) = \int_{F_n^{\times}} \varphi(\xi) \mu(\xi) d^{\times} \xi$$

for $\varphi \in \mathcal{S}(F_v^{\times})$. Transforming the action of $\pi_v(g)$ $(g \in \mathcal{K}_v^{\times})$ by the mapping $\varphi \to \widehat{\varphi}$, we obtain (cf. [5, Prop. 2.10])

(5.10)
$$\pi_{\mathbf{v}}\left(\begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}\right)\hat{\varphi}(\mu) = \mu^{-1}(\alpha)\hat{\varphi}(\mu),$$

$$(5.11) \pi_v\Big(\Big(\begin{matrix} 1 & \beta \\ 0 & 1 \end{matrix}\Big)\Big)\hat{\varphi}(\mu) = \int_{F_v^\times} \mu(\xi) \Psi(\beta \xi) \varphi(\xi) d^\times \xi ,$$

(5.12)
$$\pi_v \left(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right) \hat{\varphi}(\mu) = C(\mu) \hat{\varphi}(\mu^{-1} \eta_v^{-1})$$

with a constant $C(\mu)$ depending only on μ .

Here we sketch a proof. (5.10) and (5.11) are immediate. To see (5.12), let ν be a character of \mathfrak{o}_v^\times and φ_ν an element in $\mathcal{S}(F_v^\times)$ such that $\varphi_\nu(\xi) = \nu^{-1}(\xi)$ if $\xi \in \mathfrak{o}_v^\times$ and 0 outside of \mathfrak{o}_v^\times . If ϖ is a prime element in F_v , the functions $\pi_v\Big({{\varpi^{-n}}\atop 0}\ {1}\Big)\varphi_\nu$ (for all integers n and for all characters ν of \mathfrak{o}_v^\times) form a basis of $\mathcal{S}(F_v^\times)$. Let ν_0 be the restriction of η_v to \mathfrak{o}_v^\times . Write $w={0}\atop -1 \ 0$. Since $w{{\alpha^{-1}\atop 0}\ 1}w^{-1}={{\alpha}\atop 0}\ {\alpha}\Big)^{-1}{{\alpha}\atop 0}\ {\alpha}\Big)^{-1}$, we have

$$\pi_v \Big(\begin{pmatrix} lpha & 0 \\ 0 & 1 \end{pmatrix} \Big) \pi_v(w) \varphi_v = \nu \nu_0(lpha) \pi_v(w) \varphi_v$$

for $\alpha \in \mathfrak{o}_v^{\times}$. Therefore, we can write

$$\pi_v(w)\varphi_{\nu} = \sum_{n} C_n(\nu^{-1}\nu_0^{-1})\pi_v\Big(\begin{pmatrix} \overline{w}^{-n} & 0\\ 0 & 1 \end{pmatrix}\Big)\varphi_{\nu^{-1}\nu_0^{-1}}.$$

Taking the Fourier transforms of the both sides, we get

$$\pi_v(w)\hat{\varphi}_{\nu}(\mu) = \sum_{n} C_n(\nu^{-1}\nu_0^{-1})\mu(\varpi^n)\hat{\varphi}_{\nu^{-1}\nu_0^{-1}}(\mu)$$
.

Clearly $\hat{\varphi}_{\nu^{-1}\nu_0^{-1}}(\mu) = \hat{\varphi}_{\nu}(\eta_v^{-1}\mu^{-1})$ and this is not 0 if and only if the restriction μ_0 of μ to \mathfrak{o}_v^{\times} equals $\nu^{-1}\nu_0^{-1}$. Hence, if we put

$$C(\mu) = \sum_{\mathbf{n}} C_n(\mu_0) \mu(\boldsymbol{\omega}^n)$$
,

(5.12) holds for $\varphi = \varphi_{\nu}$. It is now easy to see that (5.12) holds for all $\pi_{\nu} \begin{pmatrix} \varpi^{-n} & 0 \\ 0 & 1 \end{pmatrix} \varphi_{\nu}$.

In the following we take ϕ_v for Ψ . It is shown in [5, Prop. 2.21.2] that the hermitian form

$$(\varphi_1, \varphi_2) = \int_{\mathcal{F}_0} \varphi_1(\xi) \overline{\varphi_2(\xi)} d^* \xi$$

on $\mathcal{S}(F_v^{\times})$ is invariant under π_v . Write $\mathcal{C}_v = \mathcal{S}(F_v^{\times})$ and define $\mathcal{C}_v(\mathfrak{d}_v)$ as in No. 5. Let $\{\varphi_i\}_{i=1}^N$ be an orthonormal basis of $\mathcal{C}_v(\mathfrak{d}_v)$. By definition

$$\omega_{b_{v}}(g) = \sum_{i=1}^{N} \int_{K_{v}^{1}} (\pi_{v}(k_{1}g)\varphi_{i}, \varphi_{i}) \chi_{b_{v}}(k_{1}^{-1}) dk_{1}.$$

Hence, if $M \in \mathcal{S}_1(\mathcal{K}_v)$, we have

(5.13)
$$W_{M}(g) = |\det s|_{F_{v}} \sum_{i=1}^{N} \int_{\mathcal{K}_{v}^{1}} (\pi_{v}(g_{1}h)\varphi_{i}, \varphi_{i}) r(s_{1}) M(g_{1}h) dg_{1},$$
where $s = \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix} s_{1}$ and $n(h) = \det s$.

As in No. 2 we see that \mathcal{W}_v^* is invariant under $\rho(s)$ for $s \in GL_2(F_v)$. For $W \in \mathcal{W}_v^*$ and $\xi \in F_v^\times$, put $\varphi_W(\xi) = W\begin{pmatrix} \xi & 0 \\ 0 & 1 \end{pmatrix}$.

LEMMA 8. $\varphi_W \in \mathcal{S}(F_v^{\times})$ for $W \in \mathcal{W}_v^{*}$.

PROOF. It is enough to prove this in case $W=W_M$ for $M\in\mathcal{S}_1(\mathcal{K}_v)$. Then it follows immediately from (5.13) that φ_W is locally constant and the support of φ_W is contained in a compact set of F_v . We now prove that $\varphi_W=0$ in a neighbourhood of 0. We shall prove in Lemma 14 that \mathfrak{d}_v is not the identity representation. Hence

$$M(0) = \int_{K_{v}^{1}} \chi_{b_{v}}(k_{1}) M(0) dk_{1} = 0$$

and hence there exists a neighbourhood V of 0 in \mathcal{K}_v on which M is identically 0.

It is easy to see (cf. the proof of [5, Prop. 2.20]) that the support of the function $(\pi_v(g)\varphi, \varphi)$ is compact modulo F_v^{\times} , if $\varphi \in \mathcal{S}(F_v^{\times})$. Hence there is a compact set C in \mathcal{K}_v^{\times} such that $F_v^{\times}C$ contains the support of $(\pi_v(g)\varphi_i, \varphi_i)$ for $i=1,\cdots,N$.

Set $s = h = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ in (5.13). $g_1 h$ is written in the form $\begin{pmatrix} \delta & 0 \\ 0 & \delta \end{pmatrix} k_1 \begin{pmatrix} \gamma & \beta \\ 0 & 1 \end{pmatrix}$ with $k_1 \in K_v^1$. Then $\alpha = \gamma \delta^2$. Assume that $k_1 \begin{pmatrix} \gamma & \beta \\ 0 & 1 \end{pmatrix} \in C$. Then γ is contained in a compact subset of F_v^{\times} . Consequently, we can find a small neighbourhood V' of 0 in F_v such that if $\alpha \in V'$, then δC is contained in V so that $M(g_1 h) = 0$, and hence $\varphi_W(\alpha) = 0$.

By Lemma 8, $W \to \varphi_W$ is a linear mapping of W_v^* into $S(F_v^*)$. It is easily seen that

(5.14)
$$\varphi_{X}(\xi) = \psi_{v}(\beta \xi) \varphi_{W}(\alpha \xi) \quad \text{if } X = \rho \left(\begin{pmatrix} \alpha & \beta \\ 0 & 1 \end{pmatrix} \right) W.$$

We now assert that

(5.15)
$$\pi_v(s)\varphi_W = \varphi_{\rho(s)W} \quad \text{for } s \in GL_2(F_v).$$

In view of (5.14) it is enough to prove (5.15) for $s = w = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$. To do this, let us calculate $\hat{\varphi}_W$. If $W = W_M$, we have

$$(5.16) \qquad \hat{\varphi}_{W}(\mu) = \int_{F_{v}^{\times}} \mu(\xi) d^{\times} \xi$$

$$\int_{\mathcal{X}_{v}^{1}} \sum_{i=1}^{N} |\xi|_{F_{v}} \left(\pi_{v} \left(g_{1} \begin{pmatrix} \xi & 0 \\ 0 & 1 \end{pmatrix} \right) \varphi_{i}, \, \varphi_{i} \right) M \left(g_{1} \begin{pmatrix} \xi & 0 \\ 0 & 1 \end{pmatrix} \right) dg_{1}$$

$$= \int_{\mathcal{X}_{v}^{\times}} \mu(\det g) |\det g|_{F_{v}} \sum_{i=1}^{N} (\pi_{v}(g) \varphi_{i}, \, \varphi_{i}) M(g) dg.$$

LEMMA 9. Let dx be the self-dual measure of \mathcal{K}_v (with respect to $\langle x, y \rangle$ = $\psi_v(\operatorname{tr}(xy))$) and dg the Haar measure of \mathcal{K}_v^* such that $|\det g|_{F_v}^2 dg$ coincides

with dx on \mathcal{K}_{v}^{\times} . Then we have

(5.17)
$$\int_{\mathcal{K}_{v}^{\times}} |\det g|_{F_{v}} \mu(\det g)(\pi_{v}(g)\varphi_{1}, \varphi_{2}) \psi_{v}(\operatorname{tr} g) dg$$
$$= C(\mu)(\varphi_{1}, \varphi_{2})$$

for $\varphi_1, \ \varphi_2 \in \mathcal{S}(F_{\boldsymbol{v}}^{\times}).$

PROOF. We follow the method in [5, Lemma 13.1.1]. Write $g = \begin{pmatrix} \gamma_{11} & \gamma_{12} \\ \gamma_{21} & \gamma_{22} \end{pmatrix}$ in the form

$$g = \begin{pmatrix} \delta & & 0 \\ 0 & & \delta \end{pmatrix} \begin{pmatrix} 1 & & -\beta' \\ 0 & & 1 \end{pmatrix} \begin{pmatrix} \gamma & & 0 \\ 0 & & 1 \end{pmatrix} w \begin{pmatrix} 1 & & \beta \\ 0 & & 1 \end{pmatrix}$$

if $\gamma_{21} \neq 0$. If $d\alpha$ is the self-dual measure of F_v (with respect to $\langle \alpha, \beta \rangle = \psi_v(\alpha \beta)$) and if $d^*\alpha = |\alpha|_{F_v}^{-1} d\alpha$, then $dg = |\gamma|_{F_v}^{-1} d\beta d\beta' d^*\gamma d^*\delta$. In the above notation we have

$$(\pi_v(g)\varphi_1,\,\varphi_2)=\eta_v(\delta)\Big(\pi_v\left(\begin{pmatrix}\gamma & 0\\ 0 & 1\end{pmatrix}w\begin{pmatrix}1 & \beta\\ 0 & 1\end{pmatrix}\right)\varphi_1,\,\pi_v\left(\begin{pmatrix}1 & \beta'\\ 0 & 1\end{pmatrix}\right)\varphi_2\Big)\,.$$

Put

$$f_1 = \pi_v \left(\begin{pmatrix} \gamma & 0 \\ 0 & 1 \end{pmatrix} w \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \right) \varphi_1, \qquad f_2 = \pi_v \left(\begin{pmatrix} 1 & \beta' \\ 0 & 1 \end{pmatrix} \right) \varphi_2.$$

By (5.10)-(5.12) we have

$$\hat{f}_{1}(\mu') = \mu'^{-1}(\gamma)C(\mu') \int_{F_{\eta}^{\times}} \mu'^{-1} \eta_{v}^{-1}(\xi) \phi_{v}(\xi\beta) \varphi_{1}(\xi) d^{\times}\xi ,$$

$$\hat{f}_{\scriptscriptstyle 2}(\mu') = \int_{F_n^\times} \mu'(\xi) \psi_v(\xi \beta') \varphi_{\scriptscriptstyle 2}(\xi) d^{\scriptscriptstyle \times} \xi \; .$$

If $d\mu$ is the dual-measure of $d^*\alpha$,

$$(f_1, f_2) = \int \widehat{f}_1(\mu') \overline{\widehat{f}_2(\mu')} d\mu'.$$

Therefore, the left hand side of (5.17) equals

$$\begin{split} & \int \!\! \left[\int \!\! \left| \delta^2 \gamma \right|_{F_v} \! \mu(\delta^2 \gamma) \eta_v(\delta) \mu'^{-1}(\gamma) C(\mu') \right. \\ & \left. \left\{ \int \!\! \mu'^{-1} \eta_v^{-1}(\xi) \psi_v(\xi\beta) \varphi_1(\xi) d^\times \xi \right\} \left\{ \overline{\int \!\! \mu'(\xi) \psi_v(\xi\beta') \varphi_2(\xi) d^\times \xi} \right\} \\ & \left. \psi_v(\delta(\beta'-\beta)) \, d\mu' \right] \!\! \left| \gamma \right|_{F_v}^{-1} \!\! d\beta d\beta' d^\times \gamma d^\times \delta \; . \end{split}$$

Now we have (by Fourier's inversion formula)

$$\begin{split} &\int \int \mu'(\xi)\varphi_{\scriptscriptstyle 2}(\xi)\psi_{\scriptscriptstyle v}(\xi\beta')\psi_{\scriptscriptstyle v}(-\delta\beta')d^{\scriptscriptstyle \times}\xi d\beta' = |\,\delta\,|_{F_{\scriptscriptstyle v}}^{-1}\mu'(\delta)\varphi_{\scriptscriptstyle 2}(\delta)\,,\\ &\int \int \mu'^{-1}\eta_{\scriptscriptstyle v}^{-1}(\xi)\varphi_{\scriptscriptstyle 1}(\xi)\psi_{\scriptscriptstyle v}(\xi\beta)\psi_{\scriptscriptstyle v}(-\delta\beta)d^{\scriptscriptstyle \times}\xi d\beta = |\,\delta\,|_{F_{\scriptscriptstyle v}}^{-1}\mu'^{-1}\eta_{\scriptscriptstyle v}^{-1}(\delta)\varphi_{\scriptscriptstyle 1}(\delta) \end{split}$$

so that (after a change of a variable) the left hand side of (5.17) equals

$$\int\!\!\mu\mu'^{-1}(\gamma)C(\mu')d\mu'd^{\times}\gamma\!\int\!\!\varphi_{1}(\delta)\overline{\varphi_{2}(\delta)}d^{\times}\delta\;.$$

Write $\mu(\varepsilon \varpi^n) = \nu(\varepsilon)t^n$ and $\mu'(\varepsilon \varpi^n) = \nu'(\varepsilon)t'^n$ with characters ν , ν' of \mathfrak{o}_v^\times and complex numbers t, t' of absolute value 1. Put $c = \int_{\mathfrak{o}_v^\times} d^\times \varepsilon$. If $\gamma = \varepsilon \varpi^m$ for $\varepsilon \in \mathfrak{o}_v^\times$, then

$$\begin{split} \int & \mu \mu'^{-1}(\gamma) C(\mu') d\mu' = 1/c \sum_{\nu'} \int_{|t'|=1} \nu \nu'^{-1}(\varepsilon) (tt'^{-1})^m \sum_n C_n(\nu') t'^n dt' \\ &= 1/c \sum_{\nu'} \nu \nu'^{-1}(\varepsilon) t^m C_m(\nu') \,. \end{split}$$

Hence, integrating it by $d^*\gamma$, we get

$$1/c \sum_{m} \int_{\mathfrak{o}_{v}^{\times}} \sum_{\nu'} \nu \nu'^{-1}(\varepsilon) t^{m} C_{m}(\nu') d^{\times} \varepsilon = \sum_{m} t^{m} C_{m}(\nu) = C(\mu).$$

This proves the lemma.

We assume in the following that dg is normalized as in Lemma 9, though the final result is independent of this normalization. Putting $W' = \rho(w)W$ in (5.16) in place of W, we obtain

$$\widehat{\varphi}_{\mathbf{W'}}(\mu) = \int_{\mathcal{K}_{\mathbf{v}}^{\times}} \mu(\det g) |\det g|_{F_{\mathbf{v}}} \sum_{\mathbf{i}} (\pi_{\mathbf{v}}(g)\varphi_{\mathbf{i}}, \varphi_{\mathbf{i}}) M'(g') dg.$$

Since

$$M'(g') = \int_{\mathcal{K}_{\bullet}^{\times}} M(h) \phi_v(\operatorname{tr}(hg')) |\det h|_{F_v}^2 dh,$$

we get (replacing g by gh^{r-1})

$$\begin{split} \hat{\varphi}_{W'}(\mu) &= \int \int |\det{(gh)}|_{F_v} \mu(\det{(gh^{-1})}) \\ &\qquad \qquad \sum_{\mathbf{i}} (\pi_v(gh^{i-1})\varphi_i, \, \varphi_i) M(h) \psi_v(\operatorname{tr}{g}) dh dg \\ &= C(\mu) \int |\det{h}|_{F_v} \mu^{-1}(\det{h}) \\ &\qquad \qquad \sum_{\mathbf{i}} (\pi_v(h^{i-1})\varphi_i, \, \varphi_i) M(h) dh \qquad \text{(by Lemma 9)} \\ &= C(\mu) \hat{\varphi}_W(\mu^{-1} \eta_n^{-1}) \, . \end{split}$$

This proves (5.15) for s = w.

(5.15) shows in particular that the space of all $W \in \mathcal{W}_v^*$ such that $\varphi_w = 0$ is $GL_2(F_v)$ -invariant. If $\varphi_w = 0$, then $\pi_v(s)\varphi_w = \varphi_{\rho(s)w} = 0$ and hence $W\left(\begin{pmatrix} \xi & 0 \\ 0 & 1 \end{pmatrix} s\right) = 0$ for all $s \in GL_2(F_v)$. Therefore, the mapping $W \to \varphi_W$ is injective.

tive. Its image is a non-zero π_v -invariant subspace of $\mathcal{S}(F_v^\times)$ so that it must be the whole space. It follows that \mathcal{W}_v^* is the Whittaker space of π_v and that ρ_v is equivalent to π_v .

7. We assume that v is non-archimedean and ramified in \mathcal{K} so that \mathcal{K}_v is now a division quaternion algebra over F_v . In this case π_v is an irreducible finite dimensional representation of \mathcal{K}_v^{\times} . Let χ be the character of π_v . It follows from definition that

$$\boldsymbol{\omega}_{\mathfrak{d}_{\boldsymbol{v}}}(g) = \int_{\boldsymbol{K}_{\boldsymbol{v}}^{1}} \chi_{\mathfrak{d}_{\boldsymbol{v}}}(k_{1}^{-1}) \chi(k_{1}g) dk_{1}$$

and hence that, if $M \in \mathcal{S}_1(\mathcal{K}_v)$,

$$W_M(s) = |\det s|_{F_v} \int_{\mathcal{K}_n^1} \chi(g_1 h) r(s_1) M(g_1 h) dg_1$$

for $s = \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix} s_1$ and for $h \in \mathcal{K}_v^{\times}$ with $n(h) = \det s$. Note that $\mathcal{K}_v^{-1} = K_v^{-1}$.

Let U be the space of functions on \mathcal{K}_v^{\times} spanned by all the coefficients of π_v . Let Ω be the representation of \mathcal{K}_v^{\times} in U defined by right translation:

$$\Omega(g)f(h) = f(hg)$$
 for $f \in U$.

 Ω is the direct sum of d copies of π_v , if $d = \dim \pi_v$. For $M \in \mathcal{S}_1(\mathcal{K}_v)$, $f \in U$, $g \in \mathcal{K}_v^{\times}$ and $x \in \mathcal{K}_v$, we put

$$\varphi_{M,f}(g, x) = \int_{\mathcal{X}_n^1} f(gg_1) M(xg_1) dg_1.$$

Since f, M are locally constant, this integral is in substance a finite sum and $\varphi_{M,f}(g,x) \in U$ for a fixed x. Furthermore, we have $\varphi_{M,f}(gg_1,x) = \varphi_{M,f}(g,xg_1^{-1})$ or $\Omega(g_1)\varphi_{M,f}(g,x) = \varphi_{M,f}(g,xg_1^{-1})$ for $g_1 \in \mathcal{K}_v^1$. Hence $\varphi_{M,f}(g,x)$ is (as a U-valued function of x) an element of $\mathcal{S}(\mathcal{K}_v,\Omega)$ in the notation in § 3, No. 2. If we write $r_{\mathcal{Q}}$ for the Weil representation of $GL_2(F_v)$ in $\mathcal{S}(\mathcal{K}_v,\Omega)$, we get

$$r_{\mathbf{Q}}(s)\varphi_{M,f} = |\det s|_{F_{\mathbf{V}}}\varphi_{\rho(h)r(s_1)M,\mathbf{Q}(h)f}$$
,

where s_1 and h are the same as before. Denote by \mathcal{CV}_1 the space spanned by $r_{\mathcal{Q}}(s)\varphi_{M,\chi}$ for all $s \in GL_2(F_v)$ and $M \in \mathcal{S}_1(\mathcal{K}_v)$. Let L be the linear map of $\mathcal{S}(\mathcal{K}_v, \mathcal{Q})$ into C defined by

$$L(\varphi) = (\varphi(1))(1)$$

for $\varphi \in \mathcal{S}(\mathcal{K}_v, \Omega)$ (this is the value of the function $\varphi(1)(g)$ in U at g=1). Let \mathcal{CV}_2 be the space of all $\varphi \in \mathcal{S}(\mathcal{K}_v, \Omega)$ such that $L(r_{\mathcal{Q}}(s)\varphi) = 0$ for all $s \in GL_2(F_v)$. Clearly \mathcal{CV}_2 is $GL_2(F_v)$ -invariant. We see at once that

$$L(r_{\mathbf{Q}}(s)\varphi_{\mathbf{M},\chi}) = W_{\mathbf{M}}(s)$$
.

It follows that the space \mathcal{W}_v^* coincides with the space of $L(r_{\mathcal{Q}}(s)\varphi)$ for all $\varphi \in \mathcal{O}_1$ and that the representation ρ_v of $GL_2(F_v)$ in \mathcal{W}_v^* is equivalent to the

representation of $GL_2(F_v)$ in $\mathcal{O}_1/\mathcal{O}_1 \cap \mathcal{O}_2$ induced by $r_{\boldsymbol{g}}$. Consequently, ρ_v is the direct sum of representations equivalent to π_v^* (cf. § 3, No. 2). By the uniqueness of the Whittaker space ([5, Th. 2.14]) we see that \mathcal{W}_v^* is irreducible and ρ_v is equivalent to π_v^* .

Here we prove a lemma which will be used in § 6. \mathfrak{p} denotes a prime ideal in \mathfrak{o}_v and \mathfrak{O}_v a maximal order in \mathcal{K}_v .

LEMMA 10. Assume that the restriction of π_v to K_v contains the identity representation. Then π_v is of the form $\mathfrak{X}_v \circ n$, \mathfrak{X}_v being an unramified quasicharacter of F_v^{\times} . Let \mathfrak{a}_v be the conductor of ψ_v . If M is the characteristic function of the two-sided \mathfrak{D}_v -ideal L_v of norm \mathfrak{a}_v , then $\rho(s)W_M = W_M$ for all $s = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ in $GL_2(\mathfrak{o}_v)$ such that $\gamma \in \mathfrak{p}$.

PROOF. Since K_v is a normal subgroup of \mathcal{K}_v^{\times} and $\mathcal{K}_v^{\wedge}/K_v$ is abelian, π_v must be one-dimensional. Therefore we can write $\pi_v = \chi_v \circ n$. That χ_v is unramified is obvious. Under the assumption of the lemma we get $W_M(s) = r_{\mathbf{g}}(s)M(1)$ with $\Omega = \pi_v$. By definition we have $r_{\mathbf{g}}(s)M = M$ if $s = \begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix}$ is in $GL_2(\mathfrak{o}_v)$. It is well known that the set of all $x \in \mathcal{K}_v$ such that $\operatorname{tr}(xL_v) \subset \mathfrak{a}_v$ is $\mathfrak{a}_v L_v^{-1} \mathfrak{P}^{-1} = L_v \mathfrak{P}^{-1}$, \mathfrak{P} being a prime ideal of \mathfrak{O}_v . Hence the Fourier transform M' of M is a constant multiple of the characteristic function of $L_v \mathfrak{P}^{-1}$. Then $r_{\mathbf{g}}(w)M = M'$ is invariant under $r_{\mathbf{g}}(\begin{pmatrix} 1 & -\gamma \\ 0 & 1 \end{pmatrix})$ for all $\gamma \in \mathfrak{p}$. Since the group of all elements $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ in $GL_2(\mathfrak{o}_v)$ with $\gamma \in \mathfrak{p}$ is generated by the elements of the form $\begin{pmatrix} \alpha & \beta \\ 0 & \delta \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix}$, this proves our assertion.

8. In No. 8-No. 11, v is assumed to be archimedean. In this section we assume that $F_v = \mathbf{R}$ or \mathbf{C} , $\mathcal{K}_v = M_2(F_v)$ and π_v is infinite dimensional and of the form $\pi(\mu_1, \mu_2)$ with quasi-characters μ_1 , μ_2 of F_v^{\times} .

Note that the representation π_v of $\mathcal{H}(\mathcal{K}_v^{\times})$ is induced by a unitary representation (which we again denote by π_v) of \mathcal{K}_v^{\times} in a Hilbert space \mathcal{L}_v . Obviously $\omega_{\mathfrak{b}_v}$ is uniquely determined by the values of

$$\int \omega_{b_v}(g)f(g)dg = \operatorname{tr}\left(E(b_v)\pi_v(f)\right)$$

for $f \in \mathcal{A}(\mathcal{K}_v^{\times})$ so that ω_{bv} depends only on the representation of $\mathcal{A}(\mathcal{K}_v^{\times})$ in the space of K_v^{-1} -finite vectors in \mathcal{L}_v (here K_v^{-1} is $SO_2(\mathbf{R})$ if $F_v = \mathbf{R}$ and $SU_2(\mathbf{C})$ if $F_v = \mathbf{C}$). From this we see that (5.6) is still valid in our case.

Let r_0 be the Weil representation of $SL_2(F_v)$ in $S(F_v \oplus F_v)$ with respect to the character ϕ_v of F_v . As in No. 2, if $M(x) = \exp(-\pi d_v |u_v| \operatorname{tr}(x^t \bar{x})) P(x)$ is in $S_1(\mathcal{K}_v)$, we get

(5.18)
$$W_M(s) = \mu_1(\det s) |\det s|_{F_n^{1/2}}$$

$$\int_{F_n^{\times}} \mu_1 \mu_2^{-1}(\gamma) r_0(s) f(M)(\gamma, \gamma^{-1}) d^{\times} \gamma ,$$

for $s \in GL_2(F_v)$, where

(5.19)
$$f(M)(\alpha_1, \alpha_2) = \exp(-\pi d_v | u_v | (\alpha_1 \bar{\alpha}_1 + \alpha_2 \bar{\alpha}_2)) P_0(\alpha_1, \alpha_2),$$

$$P_0(\alpha_1, \alpha_2) = \int_{F_v} \exp(-\pi d_v |u_v| \xi \bar{\xi}) P\left(\begin{pmatrix} \alpha_1 & \xi \\ 0 & \alpha_2 \end{pmatrix}\right) d\xi.$$

Clearly P_0 is a polynomial of α_1 , α_2 , $\bar{\alpha}_1$, $\bar{\alpha}_2$.

For $m \in \mathcal{S}(F_v \oplus F_v)$, put

$$f'(m)(\alpha_1, \alpha_2) = \int_{F_n} m(\alpha_1, \xi) \psi_v(\alpha_2 \xi) d\xi$$
.

If m is of the form

$$m(\alpha_1, \alpha_2) = \exp(-\pi d_v | u_v | (\alpha_1 \bar{\alpha}_1 + \alpha_2 \bar{\alpha}_2)) Q(\alpha_1, \alpha_2)$$

where Q is a polynomial of α_1 , $\bar{\alpha}_1$, α_2 , $\bar{\alpha}_2$, then f'(m) is written as

$$f'(m)(\alpha_1, \alpha_2) = \exp(-\pi d_v | u_v | (\alpha_1 \bar{\alpha}_1 + \alpha_2 \bar{\alpha}_2)) Q'(\alpha_1, \alpha_2)$$
,

Q' being another polynomial of α_1 , $\bar{\alpha}_1$, α_2 , $\bar{\alpha}_2$. By [5, Prop. 1.6] we have

$$f'(r_0(s)m)(\alpha_1, \alpha_2) = f'(m)((\alpha_1, \alpha_2)s)$$

for $s \in GL_2(F_v)$. From this it follows that f(M) $(M \in \mathcal{S}_1(\mathcal{K}_v))$ is $SO_2(\mathbf{R})$ - or $SU_2(\mathbf{C})$ -finite according as $F_v = \mathbf{R}$ or \mathbf{C} , if each group is made to act on f(M) through r_0 . Hence W_M belongs to the space $W(\mu_1, \mu_2; \psi_v)$, which is the Whittaker space of $\pi(\mu_1, \mu_2)$ (cf. [5, Th. 5.13] for $F_v = \mathbf{R}$ and [5, Th. 6.3] for $F_v = \mathbf{C}$).

LEMMA 11. Let \mathfrak{g}_1 be the Lie algebra of $SL_2(F_v)$. Then, $S_1(\mathcal{K}_v)$ is invariant under r(X) for all $X \in \mathfrak{g}_1$.

PROOF. Since r(s) commutes with $\rho(k_1)$ and $\lambda(k_1)$ $(k_1 \in K_v^1)$, it is sufficient to show that the space \mathcal{M} of all functions of the form $M(x) = \exp\left(-\pi d_v | u_v| \operatorname{tr}(x^t \bar{x}))P(x)$, P being an arbitrary polynomial of ξ_{ij} , $\bar{\xi}_{ij}$, is invariant under r(X). Assume first that $F_v = R$. $g_1 = \mathfrak{SI}_2(R)$ is spanned by $X_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. M being as above, we have

$$\begin{split} r(X_1)M(x) &= \left[(d/d\alpha)r(\exp{\alpha X_1})M(x) \right]_{\alpha=0} \\ &= \left[(d/d\alpha)(e^{\alpha}M(e^{\alpha}x)) \right]_{\alpha=0} \,, \\ r(X_2)M(x) &= \left[(d/d\alpha)r(\exp{\alpha X_2})M(x) \right]_{\alpha=0} \\ &= \left[(d/d\alpha)(\psi_v(\alpha n(x))M(x)) \right]_{\alpha=0} \,. \end{split}$$

A direct calculation shows that $r(X_1)M$ and $r(X_2)M$ are again in \mathcal{M} . Since

Ad $(w)X_2 = -X_3$, we have only to show that \mathcal{M} is invariant under r(w) or that \mathcal{M} is invariant under the Fourier transformation $M \to M'$. This is easy to prove. The proof is the same in case $F_v = C$, q. e. d.

Let g be the Lie algebra of $GL_2(F_v)$. By Lemma 11, (5.4) and (5.5) the space of all W_M $(M \in \mathcal{S}_1(\mathcal{K}_v))$ is invariant under $\rho(X)$ for $X \in \mathfrak{g}$. If $F_v = R$, \mathcal{W}_v^* is spanned by all W_M $(M \in \mathcal{S}_1(\mathcal{K}_v))$ and their right translates by $\varepsilon = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$. It is obviously invariant under $\rho(\varepsilon)$ and $\rho(X)$ for $X \in \mathfrak{g}$. If $F_v = C$, \mathcal{W}_v^* is the space of all W_M $(M \in \mathcal{S}_1(\mathcal{K}_v))$. In either case \mathcal{W}_v^* is invariant under $\rho(f)$ for all $f \in \mathcal{H}(\mathcal{K}_v^*)$ (cf. [5, Lemma 5.4]) so that $\mathcal{W}_v^* = W(\mu_1, \mu_2; \psi_v)$. Hence ρ_v is equivalent to $\pi(\mu_1, \mu_2)$.

- 9. Let the assumptions be the same as in No. 8 except that $\pi_v = \pi(\mu_1, \mu_2)$ is now finite dimensional. Since π_v is induced by a unitary representation, π_v is necessarily one-dimensional. Consequently we may assume that $\mu_1\mu_2^{-1} = ||F_v^{-1}|$, and putting $\chi(\alpha) = \mu_2(\alpha)|\alpha|_{F_v^{-1/2}}$, we get $\pi_v = \chi \circ n$. δ_v is the identity representation and $\omega_{\delta_v}(g) = \chi(n(g))$. We see that (5.18) is still valid for $M \in \mathcal{S}_1(\mathcal{K}_v)$. As in No. 8, we infer that \mathcal{W}_v^* is an invariant subspace of $W(\mu_1, \mu_2; \psi_v)$. Hence ρ_v is admissible.
- 10. We assume that $F_v = R$, $\mathcal{K}_v = M_2(R)$ and $\pi_v = \sigma(\mu_1, \mu_2)$ with quasi-characters μ_1 , μ_2 of \mathbf{R}^\times such that $\mu_1 \mu_2^{-1}(\alpha) = \alpha^p(\operatorname{sgn} \alpha)$ for a positive integer p. In this case $K_v^1 = SO_2(\mathbf{R})$. Write \mathfrak{d}_v as

$$\mathfrak{d}_v \Big(egin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \Big) = e^{in \theta} \,.$$

By [5, Th. 5.11] \mathfrak{d}_v is contained in the restriction of $\sigma(\mu_1, \mu_2)$ if and only if $n \geq p+1$ or $n \leq -p-1$ and $n \equiv p+1 \pmod 2$. If this condition is satisfied, \mathfrak{d}_v is not contained in the restriction to K_v^1 of the representation of $\mathcal{H}(\mathcal{K}_v^{\times})$ in $\mathcal{H}(\mu_1, \mu_2)/\mathcal{H}_s(\mu_1, \mu_2)$. It follows that (5.6) is still valid in this case. Hence we obtain again (5.18).

By [5, Cor. 5.14] W_M is in the Whittaker space $W(\sigma(\mu_1, \mu_2); \psi_v)$ of $\sigma(\mu_1, \mu_2)$ if and only if

(5.20)
$$\int_{-\infty}^{\infty} \alpha_1^{i} \frac{\partial^{j}}{\partial \alpha_2^{j}} f(M)(\alpha_1, 0) d\alpha_1 = 0$$

for all (i, j) such that i+j=p-1, $i \ge 0$, $j \ge 0$.

We now prove (5.20) for $M \in \mathcal{S}_1(\mathcal{K}_v)$. Differentiating (5.19) by α_2 , we get

$$\frac{\partial^{j}}{\partial \alpha_{2}^{j}} f(M)(\alpha_{1}, 0) = \sum_{k=0}^{j} C_{jk} \int_{-\infty}^{\infty} \exp\left(-\pi \left| u_{v} \right| (\alpha_{1}^{2} + \xi^{2})\right) - \frac{\partial^{j-k}}{\partial \xi_{22}^{j-k}} P\left(\begin{pmatrix} \alpha_{1} & \xi \\ 0 & 0 \end{pmatrix}\right) d\xi$$

with

$$C_{jk} = \begin{cases} \binom{j}{k} (-\pi |u_v|)^{k/2} k! / (k/2)! & \text{if } k \equiv 0 \pmod{2}, \\ 0 & \text{if } k \not\equiv 0 \pmod{2} \end{cases}$$

(we write $P(x) = P\left(\begin{pmatrix} \xi_{11} & \xi_{12} \\ \xi_{21} & \xi_{22} \end{pmatrix}\right)$). Since $M \in \mathcal{S}_1(\mathcal{K}_v)$, we have

$$P(x) = 1/2\pi \int_0^{2\pi} P(xk_1)e^{in\theta}d\theta$$

so that

$$\frac{\partial^{j-k}}{\partial \xi_{22}^{j-k}} P(x) = 1/2\pi \int_0^{2\pi} \left(-\sin\theta \frac{\partial}{\partial \xi_{21}} + \cos\theta \frac{\partial}{\partial \xi_{22}} \right)^{j-k} P(xk_1) e^{in\theta} d\theta.$$

Putting $x = \begin{pmatrix} \alpha_1 & \xi \\ 0 & 0 \end{pmatrix}$ and $(\alpha_1, \xi)k_1 = (\alpha, \beta)$, we can write

$$\int_{-\infty}^{\infty} \alpha_1^i \frac{\partial^j}{\partial \alpha_2^j} f(M)(\alpha_1, 0) d\alpha_1$$

$$=1/2\pi\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{0}^{2\pi}\exp\left(-\pi|u_{v}|(\alpha^{2}+\beta^{2})\right)(\alpha\cos\theta+\beta\sin\theta)^{i}$$

$$\sum_{k} C_{jk} \left(-\sin\theta \frac{\partial}{\partial \xi_{21}} + \cos\theta \frac{\partial}{\partial \xi_{22}} \right)^{j-k} P \left(\begin{pmatrix} \alpha & \beta \\ 0 & 0 \end{pmatrix} \right) e^{in\theta} d\theta d\alpha d\beta.$$

This is a linear combination of the integrals of the form

$$\int_0^{2\pi} \cos^l \theta \, \sin^m \theta \, e^{in \, \theta} d\theta$$

with $l \ge 0$, $m \ge 0$, $l+m \le i+j=p-1$. It is easy to see that these integrals all vanish if $|n| \ge p+1$. Hence we get (5.20).

We infer, as in No. 8, that \mathcal{W}_v^* is the Whittaker space of $\sigma(\mu_1, \mu_2)$ and ρ_v is equivalent to $\sigma(\mu_1, \mu_2)$.

11. We assume that $F_v = R$ and \mathcal{K}_v is a division quaternion algebra over R. We use the notation in § 4, No. 4, iv). Let χ be the character of π_v . Since the restriction of π_v to $K_v^1 = \mathcal{K}_v^1$ is irreducible, \mathfrak{d}_v is necessarily this restriction. Hence

(5.21)
$$\omega_{\mathfrak{b}_{v}}(g) = \chi(1) \int_{\mathcal{X}_{v}^{1}} \chi(k_{1}^{-1}) \chi(k_{1}g) dk_{1}.$$

Let ω be a quasi-character of C^{\times} defined by

$$\omega(z) = (z\bar{z})^{r-1/2}z^{n+1}$$

and $\mathcal{S}_{\mathbf{1}}(C)$ the space of all functions m on C of the form

$$m(z) = \exp(-2\pi |u_v|z\bar{z})P(z,\bar{z}),$$

where $P(z, \bar{z})$ is a polynomial of z and \bar{z} such that $P(zu, \bar{z}\bar{u}) = \omega(u^{-1})P(z, \bar{z})$ for all $u \in C$ with $u\bar{u} = 1$. $P(z, \bar{z})$ is then written as $P(z, \bar{z}) = P(z\bar{z})\bar{z}^{n+1}$, P being an arbitrary polynomial.

Let f be a linear mapping of $S_1(\mathcal{K}_v)$ onto $S_1(C)$ defined by

$$f(M)(z) = \exp(-2\pi |u_n| z\bar{z}) P(z\bar{z})\bar{z}^{n+1}$$

for $M(x) = \exp(-2\pi |u_v| n(x)) P(n(x)) \chi_n(x^2)$. The following lemma can be easily proved by using [5, Lemma 5.20.1].

LEMMA 12. Let r_{ω} be the Weil representation of $GL_2(\mathbf{R})_+$ in $S(\mathbf{C}, \omega)$ with respect to the additive character $\psi_v(\operatorname{tr}_{\mathbf{C}/\mathbf{R}}(z))$ of \mathbf{C} . Then we have

$$r_{\omega}(s)f(M) = f(r(s)M)$$

for all $M \in S_1(\mathcal{K}_v)$ and $s \in SL_2(\mathbf{R})$.

Let s be in $GL_2(\mathbf{R})$ and h (resp. a) an element in \mathcal{K}_v^{\times} (resp. \mathbf{C}^{\times}) such that det $s = n(h) = a\bar{a}$. Write $s = \begin{pmatrix} \det s & 0 \\ 0 & 1 \end{pmatrix} s_1$. By (5.21) and Lemma 12 we get

$$\begin{split} W_{M}(s) &= |\det s|_{R} \chi(1) \int_{-v^{-1}} \int_{\mathcal{X}_{v}^{-1}} \chi(k_{1}^{-1}) \chi(k_{1}g_{1}h) r(s_{1}) M(g_{1}h) dk_{1} dg_{1} \\ &= |\det s|_{R}^{1/2} \chi(1) r_{\omega}(s_{1}) f(M)(a) \omega(a) \\ &\qquad \int \int \chi(k_{1}^{-1}) \chi(k_{1}g_{1}h) \chi(h^{-1}g_{1}^{-1}) dk_{1} dg_{1} \\ &= |\det s|_{R}^{1/2} \omega(a) r_{\omega}(s_{1}) f(M)(a) \\ &= r_{\omega}(s) f(M)(1) \,. \end{split}$$

It is proved in [5, Lemma 5.12, Th. 5.13] that the functions $r_{\omega}(s)m(1)$ $(m \in \mathcal{S}_1(C))$ and their right translates by $\varepsilon = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ generate the Whittaker space of $\pi_v^* = \sigma(\mu_1, \mu_2)$ for

$$\mu_1(\alpha) = |\alpha|_R^{r+n+1/2}, \qquad \mu_2(\alpha) = |\alpha|_R^{r-1/2}(\operatorname{sgn} \alpha)^n.$$

It implies that \mathcal{W}_v^* coincides with this Whittaker space and that ρ_v is equivalent to π_v^* .

For a later application we remark the following. Put $M(x) = \exp\left(-2\pi \left| u_v \right| n(x)\right) \chi_n(x')$. Let g be the Lie algebra of $GL_2(\mathbf{R})$ (identified with $M_2(\mathbf{R})$). We regard $U = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $V_+ = \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$, $V_- = \begin{pmatrix} 1 & -i \\ -i & -1 \end{pmatrix}$ as elements in $\mathfrak{g} \otimes_{\mathbf{R}} \mathbf{C}$. For an integer $p \geq 0$, put

$$\begin{split} \varphi_{n+2p+2} &= \left\{ \begin{array}{ll} \rho(V_+)^p W_M & \text{if } u_v > 0 \,, \\ \\ \rho(V_+)^p \rho\Big(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \Big) W_M & \text{if } u_v < 0 \,, \\ \\ \varphi_{-n-2p-2} &= \left\{ \begin{array}{ll} \rho(V_-)^p \rho\Big(\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \Big) W_M & \text{if } u_v > 0 \,, \\ \\ \rho(V_-)^p W_M & \text{if } u_v < 0 \,. \end{array} \right. \end{split}$$

Then, these functions form a basis of W_v^* and

$$\rho(U)\varphi_m = im \varphi_m$$
 for $m = \pm (n+2), \pm (n+4), \cdots$

Thus we have seen that, in all cases, the assertion of Proposition 3 is true. 12. PROPOSITION 4. The notation being the same as in Proposition 3, assume that π is not one-dimensional. Then, π_v is infinite dimensional for all $v \in S$.

PROOF. Assume that π_v is finite dimensional (hence one-dimensional) for a place $v \in S$. We use the notation in No. 3 or No. 9. The only proper invariant subspace of $W(\mu_1, \mu_2; \phi_v)$ is the Whittaker space $W(\sigma(\mu_1, \mu_2); \phi_v)$ of $\sigma(\mu_1, \mu_2)$. We shall show that W_v^* is not contained in this subspace so that $W_v^* = W(\mu_1, \mu_2; \phi_v)$.

Let v be non-archimedean. By (5.8) and [5, Prop. 3.4, Prop. 3.6] W_M ($M \in \mathcal{S}_1(\mathcal{K}_v)$) is in $W(\sigma(\mu_1, \mu_2); \psi_v)$ if and only if

$$(5.22) \qquad \qquad \int f(M)(0,\,\xi)d\xi = \int \int M\left(\begin{pmatrix} 0 & \xi' \\ 0 & \xi \end{pmatrix}\right)d\xi d\xi' = 0.$$

The characteristic function M_v^0 of \mathfrak{O}_v is in $\mathcal{S}_1(\mathcal{K}_v)$, but does not satisfy this condition.

Let v be archimedean. By [5, Cor. 5.14] and its analogue in the case of C, we see that (5.22) is a necessary and sufficient condition for $W_M \in W(\sigma(\mu_1, \mu_2); \phi_v)$. The function $M(x) = \exp(-\pi d_v |u_v| \operatorname{tr}(x^t \bar{x}))$ is contained in $\mathcal{S}_1(\mathcal{K}_v)$, but does not satisfy this condition.

From this it follows that \mathcal{W}_v^* has a one-dimensional constituent. Put $\mathcal{U}_v = W(\sigma(\mu_1, \mu_2); \phi_v)$ and let \mathcal{U} be the restricted tensor product of $\mathcal{W}_{v'}^*$ ($v' \neq v$) and \mathcal{U}_v . $\mathcal{W}^*/\mathcal{U}$ is isomorphic to the restricted tensor product of $\mathcal{W}_{v'}^*$ ($v' \neq v$) and a one-dimensional space $\mathcal{W}_v^*/\mathcal{U}_v$.

On the other hand, by Proposition 2, \mathcal{CV}^* is an invariant subspace of $\mathcal{A}_0(\eta, GL_2(A))$ so that \mathcal{CV}^* is a direct sum of irreducible subspaces. Since the representations of $\mathcal{H}(GL_2(A))$ in \mathcal{W}^* and \mathcal{CV}^* are equivalent, the representation of $\mathcal{H}(GL_2(A))$ in $\mathcal{W}^*/\mathcal{U}$ is a direct sum of irreducible representations, each of which is equivalent to a constituent of $\mathcal{A}_0(\eta, GL_2(A))$. Let $\sigma = \bigotimes \sigma_v$ be any one of them. From what we have seen, σ_v must be one-dimensional. This is impossible (cf. [5, pp. 353-354]).

We resume Proposition 3 and Proposition 4 as follows.

THEOREM 1. Let $\mathcal K$ be a division quaternion algebra over a global field F and S the set of all places in F ramified in $\mathcal K$. Let $\pi=\otimes\pi_v$ be an irreducible constituent of the representation ρ of $\mathcal H(\mathcal K_A^{\times})$ in $\mathcal A(\eta,\mathcal K_A^{\times})$, η being a character of A^{\times}/F^{\times} . For $v\in S$, let π_v^* be as in § 2, No. 2 and define an admissible representation π^* of $\mathcal H(GL_2(A))$ by

$$\pi^* = \bigotimes_{v \in S} \pi_v \bigotimes_{v \in S} \pi_v^*$$
.

In the same notation [as] in §4, No. 1, let V* be the space spanned by all

 $\rho(\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix})\phi_M$ for $M \in \mathcal{S}_1(\mathcal{K}_A)$ and $a \in E$, E being a representative system of $A^{\times}/(A^{\times})^2$.

Assume that π is not one-dimensional. Then CV^* is an invariant subspace of $\mathcal{A}_0(\eta, GL_2(\mathbf{A}))$ and the representation of $\mathcal{A}(GL_2(\mathbf{A}))$ in CV^* is equivalent to π^* .

§ 6. An application to the holomorphic automorphic forms.

1. In this section, F is a totally real algebraic number field. We denote by $\mathfrak p$ non-archimedean places in F and by v (exclusively) archimedean places in F. Also we write A_{∞} (resp. A_f) the archimedean (resp. non-archimedean) part of A.

Let \mathfrak{g}_v be the Lie algebra of $GL_2(F_v)$ and \mathfrak{U}_v the universal enveloping algebra of $\mathfrak{g}_v \underset{\kappa}{\bigotimes} C$. The universal enveloping algebra \mathfrak{U} of $GL_2(A_\infty)$ is identified with \mathfrak{SU}_v . In the notation in § 5, No. 11, regard

$$D = (1/4)(V_{+}V_{-} + V_{-}V_{+}) - (1/2)U^{2}$$

as an element in U_v . Put

$$D_v = \bigotimes_{v'} X_{v'} \qquad ext{with} \ \ X_{v'} = \left\{ egin{array}{ll} D & ext{if} \ \ v' = v \ , \ \ 1 & ext{if} \ \ v'
eq v \ . \end{array}
ight.$$

For an integer m, let σ_m be the representation of $SO_2(\mathbf{R})$ defined by

$$\sigma_m \left(\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \right) = e^{im \theta}$$
.

Let m_v be an integer ≥ 2 and $\mathfrak n$ an integral $\mathfrak o$ -ideal. We denote by $U_{\mathfrak p}(\mathfrak n)^{\mathfrak o}$ the group of all $\binom{\alpha}{\gamma}$ $\binom{\beta}{\delta}$ in $GL_2(\mathfrak o_{\mathfrak p})$ such that $\gamma \equiv 0 \pmod{\mathfrak o_{\mathfrak p}}$. Let $\mathcal A_0(GL_2(A))^{\mathfrak o}$ be the space of all continuous functions φ on $GL_2(F)\backslash GL_2(A)$ satisfying the conditions (3.1), (3.2), (3.4) and (C) in § 3. Consider the space H of all φ in $\mathcal A_0(GL_2(A))$ satisfying the following conditions.

$$\begin{split} &\rho(D_v)\varphi = (1/2)((m_v-1)^2-1)\varphi\;,\\ &\rho(k)\varphi = \prod \sigma_{m_v}(k_v)\varphi \qquad \text{for } k \in \prod U_{\mathfrak{p}}(\mathfrak{n})\prod SO_2(F_v)\;,\\ &\rho(z)\varphi = \prod (\operatorname{sgn} z_v)^{m_v}\varphi \qquad \text{for } z \in A_\infty^\times\;. \end{split}$$

Evidently H is invariant under $\rho(z)$ for $z \in A^{\times}$, and ρ defines a representation ρ_A of A^{\times} in H trivial on $F^{\times}(\prod \mathfrak{o}_{\mathfrak{p}}^{\times})(A_{\infty}^{\times})^{\mathfrak{o}}$, $(A_{\infty}^{\times})^{\mathfrak{o}}$ being the group of all $z \in A_{\infty}^{\times}$ such that $z_v > 0$. Consequently ρ_A is actually a representation of a finite quotient group of A^{\times} so that it is a direct sum of one-dimensional representations. Let Y be the set of all quasi-characters η of A^{\times}/F^{\times} such that $\eta_v(\alpha) = (\operatorname{sgn} \alpha)^{m_v}$ and $\eta_{\mathfrak{p}}$ is unramified. It follows from the above argument

that H is contained in \mathcal{B} , where \mathcal{B} is the sum of the spaces $\mathcal{A}_0(\eta, GL_2(A))$ for $\eta \in Y$.

Let φ be a non-zero element in H. Write $\varphi = \sum \varphi_i$, $\varphi_i \neq 0$, $\varphi_i \in \mathcal{V}_i$, \mathcal{W}_i being a certain irreducible subspace of \mathcal{B} . It is immediate to see that, if $\pi = \bigotimes \pi_{\mathfrak{p}} \bigotimes \pi_{v}$ is the representation of $\mathcal{H}(GL_2(A))$ in any one of \mathcal{V}_i , π has to satisfy the following conditions.

- (6.1) π_v is equivalent to $\sigma(\mu_1, \mu_2)$, where μ_1 and μ_2 are quasi-characters of F_v^{\times} such that $\mu_1(\alpha) = |\alpha|^{(m_v 1)/2}$, $\mu_2(\alpha) = |\alpha|^{-(m_v 1)/2} (\operatorname{sgn} \alpha)^{m_v}$.
- *(6.2) The restriction of $\pi_{\mathfrak{p}}$ to $U_{\mathfrak{p}}(\mathfrak{n})$ contains the identity representation.
- 2. Lemma 13. Let μ_1 , μ_2 be quasi-characters of F_{ν}^{\times} . Assume that π_{ν} is infinite dimensional and of the form $\pi(\mu_1, \mu_2)$ or $\sigma(\mu_1, \mu_2)$. Then, the restriction of π_{ν} to $U_{\nu}(\mathfrak{p})$ contains the identity representation if and only if μ_1 , μ_2 are unramified. Suppose this condition is satisfied. If $\pi_{\nu} = \pi(\mu_1, \mu_2)$, the space of $U_{\nu}(\mathfrak{p})$ -invariant vectors is spanned by two linearly independent vectors φ_1 , φ_2 , where φ_1 is $GL_2(\mathfrak{o}_{\nu})$ -invariant and $\varphi_2 = \pi_{\nu} \begin{pmatrix} 1 & 0 \\ 0 & \varpi \end{pmatrix} \varphi_1$. If $\pi_{\nu} = \sigma(\mu_1, \mu_2)$, the space of $U_{\nu}(\mathfrak{p})$ -invariant vectors is of dimension 1.

PROOF. First consider the case $\pi_{\mathfrak{p}} = \pi(\mu_1, \mu_2)$ and let $\pi_{\mathfrak{p}}$ act on the space $\mathscr{B}(\mu_1, \mu_2)$ (§ 1, No. 3). Let φ be a $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant function in $\mathscr{B}(\mu_1, \mu_2)$. Since $(T \cap GL_2(\mathfrak{o}_{\mathfrak{p}})) \setminus GL_2(\mathfrak{o}_{\mathfrak{p}})/U_{\mathfrak{p}}(\mathfrak{p})$ is represented by two elements $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, φ is determined by its values at these elements. If $\varphi \neq 0$, at least one of these two values is not 0. On the other hand, if $\alpha, \delta \in \mathfrak{o}_{\mathfrak{p}}^{\times}$, we have

$$\varphi\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = \varphi\left(\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}\right) = \mu_{1}(\alpha)\mu_{2}(\delta)\varphi\left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right),$$

$$\varphi\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) = \varphi\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right)\begin{pmatrix} \alpha & 0 \\ 0 & \delta \end{pmatrix}\right) = \mu_{1}(\delta)\mu_{2}(\alpha)\varphi\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right).$$

Therefore μ_1 , μ_2 must be trivial on $\mathfrak{o}_{\mathfrak{p}}^{\times}$. Assuming this is the case, let φ_1 be an element in $\mathcal{B}(\mu_1, \mu_2)$ such that $\varphi_1(u) = 1$ for all $u \in GL_2(\mathfrak{o}_{\mathfrak{p}})$. Then $\varphi_2 = \rho\Big(\begin{pmatrix} 1 & 0 \\ 0 & \varpi \end{pmatrix}\Big)\varphi_1$ is $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant. Since

$$\varphi_2\Bigl(\Bigl(\begin{matrix} 1 & & 0 \\ 0 & & 1 \end{matrix}\Bigr)\Bigr) = \mu_2(\varpi) |\varpi|_{F_{\mathfrak{p}}^{-1/2}}, \qquad \varphi_2\Bigl(\Bigl(\begin{matrix} 0 & & 1 \\ 1 & & 0 \end{matrix}\Bigr)\Bigr) = \mu_1(\varpi) |\varpi|_{F_{\mathfrak{p}}^{1/2}},$$

 φ_1 and φ_2 are linearly independent.

Next assume that $\mu_1\mu_2^{-1}=|\ |_{F_{\mathfrak{p}}}$ and $\pi_{\mathfrak{p}}=\sigma(\mu_1,\,\mu_2)$ acts on the space $\mathscr{B}_s(\mu_1,\,\mu_2)$. As is seen above, if $\mathscr{B}_s(\mu_1,\,\mu_2)$ contains a non-zero $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant vector, μ_1 and μ_2 must be trivial on $\mathfrak{o}_{\mathfrak{p}}^{\times}$. In this case, a function $\varphi\in\mathscr{B}(\mu_1,\,\mu_2)$ is in $\mathscr{B}_s(\mu_1,\,\mu_2)$ if and only if

$$\int_{GL_2(\mathfrak{o}_{\mathfrak{p}})} \varphi(k) dk = 0.$$

If φ is $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant, an easy calculation shows that (6.3) is reduced to

$$\varphi\left(\begin{pmatrix}0&&1\\1&&0\end{pmatrix}\right)+|\varpi|_{F_{\mathfrak{p}}}\varphi\left(\begin{pmatrix}1&&0\\0&&1\end{pmatrix}\right)=0.$$

Hence there is exactly one $U_{\mathfrak{p}}(\mathfrak{p})$ -invariant function φ satisfying (6.3). This proves our assertion.

LEMMA 14. Let $\pi_{\mathfrak{p}}$ be absolutely cuspidal. Then the restriction of $\pi_{\mathfrak{p}}$ to $U_{\mathfrak{p}}(\mathfrak{p}) \cap K_{\mathfrak{p}}^{-1}$ does not contain the identity representation.

PROOF. The notation being the same as in § 5, No. 5, take for Ψ and character of $F_{\mathfrak{p}}$ whose conductor is $\mathfrak{o}_{\mathfrak{p}}$. Let φ be a $(U_{\mathfrak{p}}(\mathfrak{p}) \cap K_{\mathfrak{p}}^{-1})$ -invariant function in $\mathcal{S}(F_{\mathfrak{p}}^{\times})$. Since $\varphi(\xi) = \pi_{\mathfrak{p}} \begin{pmatrix} 1 & \beta \\ 0 & 1 \end{pmatrix} \varphi(\xi) = \Psi(\beta \xi) \varphi(\xi)$ for all $\beta \in \mathfrak{o}_{\mathfrak{p}}$, thesupport of φ is contained in $\mathfrak{o}_{\mathfrak{p}}$. Putting $\pi_{\mathfrak{p}}(w)\varphi = \varphi'$, we get $\pi_{\mathfrak{p}} \begin{pmatrix} 1 & -\gamma \\ 0 & 1 \end{pmatrix} \varphi' = \varphi'$ for all $\gamma \in \mathfrak{p}$, for $w \begin{pmatrix} 1 & 0 \\ \gamma & 1 \end{pmatrix} = \begin{pmatrix} 1 & -\gamma \\ 0 & 1 \end{pmatrix} w$. Consequently, the support of φ' is contained in \mathfrak{p}^{-1} . By (5.12) we have

(6.4)
$$\hat{\varphi}'(\mu) = C(\mu)\hat{\varphi}(\mu^{-1}\eta_{p}^{-1})$$

for all characters μ of $F_{\mathfrak{p}}^{\times}$. Write $\mu(\varepsilon \varpi^n) = \nu(\varepsilon)t^n$, where ν is a character of $\mathfrak{o}_{\mathfrak{p}}^{\times}$ and t is a complex number of absolute value 1. Then we have

$$\begin{split} \hat{\varphi}'(\mu) &= \sum_{n=-1}^{\infty} t^n \int_{\mathfrak{o}_{\mathfrak{p}}^{\times}} \varphi'(\varpi^n \varepsilon) \nu(\varepsilon) d\varepsilon , \\ \hat{\varphi}(\mu^{-1} \eta_{\mathfrak{p}}^{-1}) &= \sum_{n=0}^{\infty} t^{-n} \eta_{\mathfrak{p}}(\varpi)^{-n} \int_{\mathfrak{o}_{\mathfrak{p}}^{\times}} \varphi(\varpi^n \varepsilon) \nu^{-1} \nu_0^{-1}(\varepsilon) d\varepsilon , \\ C(\mu) &= \sum_{n=-\infty}^{-2} t^n C_n(\nu) , \end{split}$$

because $C_n(\nu) = 0$ if $n \ge -1$ by [5, Prop. 2.23]. Putting these expressions in (6.4), we get an equality which holds for all ν and t. This is possible only if $\varphi' = \varphi = 0$. This proves the lemma.

3. From now on we assume that π is square-free. Let U_0 be the sum of all irreducible subspaces $\mathcal V$ in $\mathcal B$ such that the representation π of $\mathcal H(GL_2(A))$ in $\mathcal V$ satisfies (6.1), (6.2) and $\pi_{\mathfrak P}$ is a special representation for all $\mathfrak P$ dividing $\mathfrak R$. Put $H_0=H\cap U_0$. $\mathcal V$ being as above, $\mathcal V\cap H$ is one-dimensional (Lemma 13 and [5, Lemma 3.9]) so that dim H_0 is the number of irreducible subspaces contained in U_0 .

Let us write for a moment $H=H(\mathfrak{n})$, $H_0=H_0(\mathfrak{n})$. Denote by \mathfrak{p}_j $(j=1,2,\ldots,\nu)$ all the prime divisors of \mathfrak{n} and by \mathfrak{w}_j a prime element of \mathfrak{p}_j . For a subset B of $A=\{1,2,\ldots,\nu\}$, we put

$$\mathfrak{n}_B = \prod_{j \in B} \mathfrak{p}_j, \qquad p_B = \prod_{j \in B} \begin{pmatrix} 1 & 0 \\ 0 & \varpi_j \end{pmatrix}.$$

It follows from Lemma 13 that

$$H(\mathfrak{n}) = \sum_{B \subseteq A} \sum_{C \subseteq A = B} \rho(p_C) H_0(\mathfrak{n}_B)$$
,

where the sum is direct. In other words, $H(\mathfrak{n})$ is the direct sum of $H_0(\mathfrak{n})$ and the space spanned by the right translates of elements in $H_0(\mathfrak{m})$, \mathfrak{m} being a proper divisor of \mathfrak{n} . $H_0(\mathfrak{n})$ (to be precise, the intersection of $H_0(\mathfrak{n})$ and $\mathcal{A}_0(\eta, GL_2(A))$) has been introduced in Miyake [6] as the orthogonal complement of the space $\sum_{B \subseteq A} \sum_{C \subset A-B} \rho(p_C)H(\mathfrak{n}_B)$. We call any function in $H_0(\mathfrak{n})$ properly of level \mathfrak{n} .

4. Assuming that $\nu+[F:Q]$ is even, let \mathcal{K} be a definite quaternion algebra of discriminant \mathfrak{n} over F.

Denote by \mathcal{B}' the sum of $\mathcal{A}(\eta, \mathcal{K}_A^{\times})$ for $\eta \in Y$. Let $\mathcal{C}V'$ be an irreducible subspace in \mathcal{B}' and π the representation of $\mathcal{H}(\mathcal{K}_A^{\times})$ in $\mathcal{C}V'$. Let \mathcal{U}' be the sum of all $\mathcal{C}V'$ such that

- (6.5) π_v is equivalent to the representation $g \to n(g)^{-(m_v-2)/2} \rho_{m_v-2}(g)$,
- (6.6) the restriction of $\pi_{\mathfrak{p}}$ to $K_{\mathfrak{p}}$ contains the identity representation.

Then it follows from Lemma 10 that, if \mathfrak{p} divides \mathfrak{n} , we have $\pi_{\mathfrak{p}} = \chi_{\mathfrak{p}} \circ n$ with an unramified character $\chi_{\mathfrak{p}}$ of $F_{\mathfrak{p}}^*$, and hence $\pi_{\mathfrak{p}}$ is trivial on $K_{\mathfrak{p}}$.

Denote by \mathfrak{d} the irreducible representation of K^1 of the form $\otimes \mathfrak{d}_{\mathfrak{p}} \otimes \mathfrak{d}_{\mathfrak{p}}$, where \mathfrak{d}_{v} is equivalent to ρ_{mv-2} (we identify K_{v}^{1} with $SU_{2}(C)$. cf. § 4, No. 4) and $\mathfrak{d}_{\mathfrak{p}}$ is the identity representation. π being as above, \mathfrak{d} is contained in the restriction of π to K^1 with the multiplicity 1.

Set $\mathcal{K}_{\infty}^{\times} = \prod \mathcal{K}_{v}^{\times}$, $\mathcal{K}_{\infty}^{1} = \prod \mathcal{K}_{v}^{1}$ and define the representation Λ of $\mathcal{K}_{\infty}^{\times}$ by

(6.7)
$$\Lambda(g) = \bigotimes_{v} (n(g)^{-(m_v-2)/2} \rho_{m_v-2}(g_v)).$$

Let H' be the space of all φ in \mathcal{U}' invariant under $\rho(k)$ for all $k \in \prod K_{\mathfrak{p}}$. It is easy to see that H' is the space of all functions φ on $\mathcal{K}_{F}^{\times} \backslash \mathcal{K}_{A}^{\times}$ satisfying the following conditions:

- i) $\rho(k)\varphi = \varphi$ for $k \in \prod K_{\mathfrak{p}}$,
- ii) $\varphi \to \rho(k)\varphi$ defines a representation of $\mathcal{K}_{\infty}^{\times}$ equivalent to a direct sum of Λ .

We consider the space U spanned by all matrix coefficients of Λ and the representation λ of $\mathcal{K}_{\infty}^{\times}$ in U defined by left translation. If $l = \dim \Lambda$, λ is a direct sum of l copies of Λ (since Λ is unitary). There is an isomorphism of H' onto the space of all functions φ' on $\mathcal{K}_F^{\times} \backslash \mathcal{K}_A^{\times}$ taking values in U such that

$$\varphi'(hkg) = \lambda(g^{-1})\varphi'(h)$$
 for $g \in \mathcal{K}_{\infty}^{\times}$, $k \in \prod K_{\mathfrak{p}}$, $h \in \mathcal{K}_{A}^{\times}$.

This isomorphism is given by $\varphi \rightarrow \varphi'$, $(\varphi'(h))(g) = \varphi(hg)$.

We fix an arbitrary irreducible subspace V of U and denote by H'' the space of all φ in H' such that φ' takes its values in V.

5. Let $\alpha_{\mathfrak{p}}$ be the conductor of $\psi_{\mathfrak{p}}$. Write $\psi_{\mathfrak{p}}(\alpha) = \exp(2\pi i u_{\mathfrak{p}}\alpha)$. Let $L_{\mathfrak{p}}$ denote a two-sided $\mathfrak{O}_{\mathfrak{p}}$ -ideal of norm $\alpha_{\mathfrak{p}}$ if \mathfrak{p} divides \mathfrak{n} ($\mathfrak{O}_{\mathfrak{p}}$ is the maximal order in $\mathcal{K}_{\mathfrak{p}}$) and $L_{\mathfrak{p}} = \mathfrak{o}_{\mathfrak{p}}e_{11} + \mathfrak{o}_{\mathfrak{p}}e_{12} + \mathfrak{o}_{\mathfrak{p}}e_{21} + \mathfrak{o}_{\mathfrak{p}}e_{22}$ if \mathfrak{p} does not divide \mathfrak{n} . Put

$$M(x) = \prod M_{\mathfrak{p}}(x_{\mathfrak{p}}) \prod M_{\mathfrak{p}}(x_{\mathfrak{p}})$$
 for $x \in \mathcal{K}_A$,

where

$$M_{\mathfrak{p}} = \int_{K_{\mathfrak{p}}} \lambda(k_{\scriptscriptstyle 1}) N_{\mathfrak{p}} dk_{\scriptscriptstyle 1}$$
 ,

 $N_{\mathfrak{p}}$ being the characteristic function of $L_{\mathfrak{p}}$ ($M_{\mathfrak{p}}=N_{\mathfrak{p}}$ if $\mathfrak{a}_{\mathfrak{p}}=\mathfrak{o}_{\mathfrak{p}}$ or if \mathfrak{p} divides \mathfrak{n}) and

$$M_v(x_v) = \exp(-2\pi |u_v| n(x_v)) \chi_{m_{v-2}}(x_v')$$
.

Let e be an element in A^* such that $e_v = -1$ whenever $u_v < 0$ and all other components are 1.

Let φ be in H'' and g in \mathcal{K}_A^{\times} . If s is an element in $GL_2(A)$ such that $\det s = n(h)$ for $h \in \mathcal{K}_A^{\times}$, we denote by $\phi_{\varphi,g}(s)$ the right hand side of (4.10) in § 4, where M is the function defined just above. Extend $\phi_{\varphi,g}$ to a function on $GL_2(A)$, $GL_2(F)$ -invariant on the left.

Put $\theta_{\varphi,g}(s) = \phi_{\varphi,g}\left(s\begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix}\right)$. Let $\{\varphi_i\}_{i=1}^n$ be a basis of H'' and $\{g_i\}_{i=1}^n$ a set of elements in \mathcal{K}_A^{\times} such that $\det\left(\varphi_i(g_j)\right) \neq 0$. Our aim is to prove the following theorem, which may be viewed as a generalization of Eichler [1, 2].

THEOREM 2. If $m_v > 2$ for all v, H_0 is spanned by θ_{φ_i,g_j} $(i, j = 1, \dots, n)$. The proof will be given in No. 6-No. 10.

6. Let $\pi = \otimes \pi_{\mathfrak{p}} \otimes \pi_{\mathfrak{p}}$ be an irreducible constituent of \mathcal{U}' . Then $\pi_{\mathfrak{p}}^*$ is equivalent to $\sigma(\mu_1, \mu_2)$ defined in (6.1), and for all \mathfrak{p} dividing \mathfrak{n} , we have $\pi_{\mathfrak{p}} = \chi_{\mathfrak{p}} \circ n$ so that $\pi_{\mathfrak{p}}^* = \sigma(\chi_{\mathfrak{p}} | |_{F_{\mathfrak{p}}^{1/2}}, \chi_{\mathfrak{p}} | |_{F_{\mathfrak{p}}^{-1/2}})$ (cf. § 2, No. 2). Therefore, by Theorem 1,

$$\pi^* = \bigotimes_{\mathfrak{p},\mathfrak{n}} \pi_{\mathfrak{p}} \bigotimes_{\mathfrak{p},\mathfrak{n}} \pi_{\mathfrak{p}}^* \bigotimes_{v} \pi_{v}^*$$

is an irreducible constituent of \mathcal{U}_0 if π is not one-dimensional. Denote by $\mathcal{C}V^*$ the space of π^* defined in § 4, No. 4.

Let $\mathcal{U}'(\pi)$ be the sum of all irreducible subspaces \mathcal{C}' in \mathcal{U}' such that the representation of $\mathcal{H}(\mathcal{K}_A^*)$ in \mathcal{C}' is equivalent to π . Fix an irreducible subspace \mathcal{C}' in $\mathcal{U}'(\pi)$. Take any non-zero element φ in $\mathcal{C}' \cap H'$ and an element g in \mathcal{K}_A^* such that $\varphi(g) \neq 0$. Obviously φ satisfies

$$\int_{K^1} \chi_b(k_1^{-1}) \rho(k_1) \varphi dk_1 = \varphi.$$

By definition we have $\theta_{\varphi,g} = \varphi(g) \rho \begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix} \phi_M$, ϕ_M being as in (4.10), and

hence $\hat{\theta}_{\varphi,g}(1,s) = \varphi(g)\rho\Big(\begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix}\Big)W_M(s)$ (§ 4, No. 2). It follows from Lemma 7, Lemma 10 and the remark at the end of § 5, No. 10 that $\theta_{\varphi,g}$ is a non-zero element in $\mathcal{CV}^* \cap H_0$ (that W_M is non-zero is clear in view of the argument in § 5). In the same notation, it is easy to see that

$$\hat{\theta}_{\boldsymbol{\varPhi},\mathbf{g}}(1,\,s) = \boldsymbol{\varPhi}(g)\rho\Big(\begin{pmatrix} e & 0 \\ 0 & 1 \end{pmatrix}\Big)W_{\mathbf{M}}(s) \qquad \text{for all } \boldsymbol{\varPhi} \in \mathcal{U}'(\pi) \cap H', \; g \in \mathcal{K}_{\mathbf{A}}^{\times}.$$

Therefore, Theorem 2 follows if we prove that

- (6.8) every irreducible constituent of \mathcal{U}_0 is equivalent to π^* for some irreducible constituent π of \mathcal{U}' , and
- (6.9) π being as in (6.8), we have $U'(\pi) \cap H'' \neq \{0\}$.
- (6.8) will be a special case of [5, Th. 16.1] at the time its proof is completed. For the present we use [8, Prop. 4.1] instead.
- 7. For all p prime to \mathfrak{n} , denote by $\mathcal{H}_{\mathfrak{p}}^0$ the subalgebra of $\mathcal{H}(GL_2(F_{\mathfrak{p}}))$ consisting of all right and left $GL_2(\mathfrak{o}_{\mathfrak{p}})$ -invariant elements, and put

$$\mathscr{H}^0 = \bigotimes_{\mathfrak{l} + \mathfrak{n}} \mathscr{H}_{\mathfrak{p}}^0$$
.

For all $\mathfrak p$ dividing $\mathfrak n$, let $\xi_{\mathfrak p}$ be an elementary idempotent in $\mathcal H(GL_2(F_{\mathfrak p}))$ such that $\xi_{\mathfrak p}*f_{\mathfrak p}=f_{\mathfrak p}$, $f_{\mathfrak p}$ being the characteristic function of $U_{\mathfrak p}(\mathfrak n)$, and let $\xi_{\mathfrak p}$ be the characteristic function of $K_{\mathfrak p}$. Then

$$f \longrightarrow f \otimes (\bigotimes_{\mathfrak{p} \mid \mathfrak{n}} \xi_{\mathfrak{p}} \bigotimes_{v} \bar{\sigma}_{m_{v}})$$

and

$$f \longrightarrow f \otimes (\bigotimes_{\mathfrak{p} \mid \mathfrak{n}} \xi_{\mathfrak{p}'} \otimes \bar{\chi}_{\mathfrak{b}_{\boldsymbol{v}}})$$

define embeddings of \mathcal{H}^0 into $\mathcal{H}(GL_2(A))$ and $\mathcal{H}(\mathcal{K}_A^{\times})$, respectively. We identify \mathcal{H}^0 with the images of these embeddings. In this way \mathcal{H}^0 is made to act on $\mathcal{H}_0(GL_2(A))$ as well as on $\mathcal{H}(\mathcal{K}_A^{\times})$. It is obvious that H, H_0 , H', H'' are invariant under $\rho(f)$ for $f \in \mathcal{H}^0$. Writing T(f) (resp. $T_0(f)$, T'(f), T''(f)) for the restriction of $\rho(f)$ to H (resp. H_0 , H', H''), we obtain representations T, T_0 , T', T'' of \mathcal{H}^0 . We see immediately that T' is equivalent to the direct sum of l copies of T''.

8. H'' is isomorphic to the space $M(1, \{m_v-2\})$ defined in Shimizu [8, $\S 2.2$] (if $\check{\varphi}(g) = \varphi(g^{-1})$, $\varphi \to \check{\varphi}'$ gives the isomorphism). Also T'' is equivalent to the representation $\mathfrak T$ defined in the same place, if $\mathfrak T$ is restricted to $\mathcal H^0$.

On the other hand, H is isomorphic to the space of holomorphic cusp forms introduced in Shimura [9]. Put $U(\mathfrak{n}) = \prod_{\mathfrak{p}} U_{\mathfrak{p}}(\mathfrak{n}) GL_{\mathfrak{p}}(A_{\infty})$ and let s_i $(i=1, \dots, q)$ be the representatives in $GL_{\mathfrak{p}}(A)$ of $GL_{\mathfrak{p}}(F) \setminus GL_{\mathfrak{p}}(A)/U(\mathfrak{n})$. Put $\Gamma_i = GL_{\mathfrak{p}}(F) \cap s_i U(\mathfrak{n}) s_i^{-1}$. Let \mathfrak{F} be the set of all $z = (z_v)$ with $z_v \in C$, Im $z_v \neq 0$.

For $s \in GL_2(A)$ we set

$$s(z) = \begin{pmatrix} \alpha_v z_v + \beta_v \\ \gamma_v z_v + \delta_v \end{pmatrix},$$

$$j(s, z) = \prod_{v} |\det s_v|^{m_{v/2}} (\gamma_v z_v + \delta_v)^{-m_v} \quad \text{if } s_v = \begin{pmatrix} \alpha_v \beta_v \\ \gamma_v \delta_v \end{pmatrix}.$$

Let S_i be the space of all f satisfying the following conditions.

- i) f is holomorphic on \mathfrak{F} .
- ii) $f(\sigma(z)) = f(z)j(\sigma, z)^{-1}$ for $\sigma \in \Gamma_i$.
- iii) $\prod_{v} |\operatorname{Im} z_{v}|^{m_{v}/2} |f(z)|$ is bounded on \mathfrak{F} .

Let S be the direct product of S_1, \dots, S_q . We can assume that $s_i \in GL_2(A_f)$. For $\varphi \in H$, put

$$f_i(z) = j(s, z_0)^{-1} \varphi(s_i s)$$
,

where $z_0 = (\sqrt{-1}, \dots, \sqrt{-1})$ and s is an element in $GL_2(A_\infty)$ such that $s(z_0) = z$. Then $\varphi \to (f_1, \dots, f_q)$ gives an isomorphism of H onto S. Furthermore, the representation T of \mathcal{H}^0 in H is equivalent to the representation \mathfrak{T} defined in \mathfrak{T} , if it is restricted to \mathcal{H}^0 .

9. We assert that T_0 is equivalent to T''. It is sufficient to show that $\operatorname{tr} T_0(f) = \operatorname{tr} T''(f)$ for all $f \in \mathcal{H}^0$ (cf. [8, § 4.4]). In the notation in No. 3, $H_0(\mathfrak{U}_B)$ is invariant under T(f) and $\rho(p_C)$ commutes with T(f). Consequently we have

(6.10)
$$\operatorname{tr}(T(f)|H(\mathfrak{n})) = \sum_{B \subset A} 2^{\#(A-B)} \operatorname{tr}(T(f)|H_0(\mathfrak{n}_B)),$$

where $T(f)|H_0(\mathfrak{n}_B)$ is the restriction of T(f) to $H_0(\mathfrak{n}_B)$ and #(A-B) is the number of elements in A-B. On the other hand, the repeated application of [8, Prop. 4.1] yields

(6.11)
$$\operatorname{tr} T''(f) = \sum_{B = A} (-2)^{*(A-B)} \operatorname{tr} (T(f)|H(\mathfrak{n}_B)).$$

Substituting (6.10) in (6.11), we see that tr $T''(f) = \text{tr}(T(f)|H_0(\mathfrak{n}))$, as asserted.

10. LEMMA 15. Let μ_1 , μ_2 be unramified quasi-characters of $F_{\mathfrak{p}}^{\times}$ and let φ be a $GL_2(\mathfrak{o}_{\mathfrak{p}})$ -invariant element in the representation space of $\pi(\mu_1, \mu_2)$. Then φ is an eigenfunction of $\rho(f)$ for all $f \in \mathcal{H}_{\mathfrak{p}}^0$. Let f_1 (resp. f_2) be the characteristic function of

$$GL_{\mathbf{2}}(\mathfrak{o}_{\mathfrak{p}}){\widetilde{\mathbf{w}}} \quad {0 \atop 0} GL_{\mathbf{2}}(\mathfrak{o}_{\mathfrak{p}}) \quad \left(resp. \ {\widetilde{\mathbf{w}}} \quad {0 \atop 0} \mathcal{G}L_{\mathbf{2}}(\mathfrak{o}_{\mathfrak{p}}) \right).$$

If $\rho(f_i)\varphi = c_i\varphi$ (i = 1, 2), then

$$\mu_1(\varpi) + \mu_2(\varpi) = |\varpi|_{F_{\mathfrak{p}}}^{1/2} c_1,$$
 $\mu_1(\varpi) \mu_2(\varpi) = c_2.$

The proof is straightforward if we let $\pi(\mu_1, \mu_2)$ act on the space $\mathcal{B}(\mu_1, \mu_2)$.

Take an irreducible subspace \mathscr{W} of \mathscr{U}_0 and let $\sigma = \otimes \sigma_{\mathfrak{p}} \otimes \sigma_{\mathfrak{v}}$ be the representation of $\mathscr{H}(GL_2(A))$ in \mathscr{W} . If $\varphi \in \mathscr{W} \cap H_0$, φ is an eigenfunction of $\rho(f)^{\mathfrak{p}}$ for all $f \in \mathscr{H}^0$. Write $\rho(f)\varphi = c_f\varphi$ for $f \in \mathscr{H}^0$. Since T_0 is equivalent to T'', there exists a non-zero function φ'' in H'' such that $\rho(f)\varphi'' = c_f\varphi''$ for all $f \in \mathscr{H}^0$. It follows from Lemma 15 that there exists an irreducible representation $\pi = \otimes \pi_{\mathfrak{p}} \otimes \pi_{\mathfrak{p}}$ of $\mathscr{H}(\mathscr{K}_A^{\mathsf{x}})$ contained in \mathscr{U}' such that $\pi_{\mathfrak{p}}$ is equivalent to $\sigma_{\mathfrak{p}}$ for all \mathfrak{p} prime to \mathfrak{n} . Note that $\pi_{\mathfrak{p}}^*$ is equivalent to $\sigma_{\mathfrak{p}}$. By [6, Corollary of Th. 1]*), π^* is necessarily equivalent to σ . Also it is clear that φ'' is contained in $\mathscr{U}'(\pi) \cap H''$. This proves (6.8) and (6.9), and completes the proof of Theorem 2.

- 11. We discuss a case where the situation seems the simplest. Assume: that
 - i) $[F: \mathbf{Q}]$ is even,
 - ii) the class number of F is 1,
- iii) every totally positive unit in F is a square of a unit in F. Furthermore, we make a particular choice of ϕ . Let $\phi_{\mathbf{Q}}$ be an additive character of the adele of \mathbf{Q} trivial on \mathbf{Q} such that $\phi_{\mathbf{Q},\infty}(\alpha) = e^{2\pi i \alpha}$ and the conductor of $\phi_{\mathbf{Q},p}$ is \mathbf{Z}_p for all rational primes p. Put $\phi(x) = \phi_{\mathbf{Q}}(\operatorname{tr}_{F/\mathbf{Q}}(x))$. It implies that $u_v = 1$ and $\mathfrak{a}_p \supset \mathfrak{o}_p$.

Put $\Gamma_1 = GL_2(\mathfrak{o})$ and let S_1 be as in No. 8. Let \mathcal{K} be a definite quaternion algebra of discriminant \mathfrak{o} over F. Fix a maximal order \mathfrak{O} in \mathcal{K} and define the isomorphisms $\theta_{\mathfrak{p}}$ of $\mathcal{K}_{\mathfrak{p}}$ onto $M_2(F_{\mathfrak{p}})$ as in § 1, No. 8 (so that $K_{\mathfrak{p}} = \mathfrak{O}_{\mathfrak{p}}^{\times}$). It can be shown that if p is the class number of \mathfrak{O} , $\mathcal{K}_F^{\times} \setminus \mathcal{K}_A^{\times} / \prod K_{\mathfrak{p}} \mathcal{K}_{\infty}^{\times}$ is represented by the elements x_1, \dots, x_p in \mathcal{K}_A^1 .

Let V be as in No. 4 and $\{\omega_1, \dots, \omega_l\}$ a basis of V. Take elements g_1 , \dots , g_l in \mathcal{K}^1_{∞} such that $\det(\omega_{\lambda}(g_{\mu})) \neq 0$. Put $M'(x) = \prod_i M_{\mathfrak{p}}(x_{\mathfrak{p}})$.

By Theorem 2 we see that, if $m_v>2$ for all v, S_1 is spanned by $f_{ij\lambda\mu}$: $(i,j=1,\cdots,p;\lambda,\mu=1,\cdots,l)$ whose restrictions to $\mathfrak{F}^0=\{z\in\mathfrak{F}\,|\, \mathrm{Im}\,z_v>0\}$ are given by

$$\begin{split} f_{ij\lambda\mu}(z) = & \sum_{\xi \in \mathcal{K}_F} \omega_{\lambda}(\xi^i g_{\mu}) M'(x_j^{-1} \xi x_i) \\ & \prod_v \left[n(\xi_v)^{(m_v - 2)/2} \exp\left(2\pi i n(\xi_v) z_v\right) \right]. \end{split}$$

If \mathfrak{X}_i is the right \mathbb{O} -ideal such that $\mathfrak{X}_{i\mathfrak{p}} = x_{i\mathfrak{p}} \mathbb{O}_{\mathfrak{p}}$ and if $\mathfrak{a} = \prod \mathfrak{a}_{\mathfrak{p}}$, then the support of $M'(x_j^{-1}\xi x_i)$ is contained in $\mathfrak{a}\mathfrak{X}_j\mathfrak{X}_i^{-1}$, and its value depends only on $\xi \mod \mathfrak{X}_j\mathfrak{X}_i^{-1}$.

REMARK. Let F be an algebraic number field of finite degree and b the

^{*)} It asserts that, if σ_i (i=1,2) are irreducible constituents of $\mathcal{A}_0(\eta_i, GL_2(A))$, respectively and if $\sigma_{1\boldsymbol{v}}$ is equivalent to $\sigma_{2\boldsymbol{v}}$ for almost all \boldsymbol{v} including all archimedean valuations, then σ_1 is equivalent to σ_2 .

different of F. It is proved in Hecke, Vorlesungen über die Theorie der algebraischen Zahlen, Satz 176 (as to a generalization to the function field case, see J. V. Armitage, On a theorem of Hecke in number fields and function fields, Inventiones Math., 2(1967), 238-246) that there exists a $\gamma \in F^{\times}$ such that by is a square of an ideal in F. $\psi_{\mathbf{Q}}$ being the same as in § 6, No. 11, define a character ψ of A/F by

$$\phi(x) = \phi_{\mathbf{Q}}(\operatorname{tr}_{F/\mathbf{Q}}(\gamma x)).$$

Then the conductor $\mathfrak{a}_{\mathfrak{p}}$ of $\psi_{\mathfrak{p}}$ is $\mathfrak{d}_{\mathfrak{p}}^{-1}\gamma_{\mathfrak{p}}^{-1}$ and hence it is a square of an ideal in $F_{\mathfrak{p}}$. In the discussions in § 6, No. 5, we can start with this particular character ψ . In this case, however, there is an alternative and simpler way of defining $\theta_{\varphi,g}$ or of defining M (cf. § 6, No. 5). Namely, for every \mathfrak{p} , we may take $M_{\mathfrak{p}}$ to be the characteristic function of the two-sided $\mathfrak{O}_{\mathfrak{p}}$ -ideal $L_{\mathfrak{p}}$ of norm $\mathfrak{a}_{\mathfrak{p}}$ (if $\mathfrak{a}_{\mathfrak{p}} = \mathfrak{b}_{\mathfrak{p}}^2$, then $L_{\mathfrak{p}} = \mathfrak{b}_{\mathfrak{p}} \mathfrak{O}_{\mathfrak{p}}$). The statement in § 6, No. 11 can be modified accordingly. The space S_1 can be spanned by $f_{ij\lambda\mu}$ $(i, j = 1, \dots, p; \lambda, \mu = 1, \dots, l)$ whose restrictions to $\{z \in \mathfrak{F} | \gamma_v \operatorname{Im} z_v > 0\}$ are given by

$$\begin{split} f_{ij\lambda\mu}(z) &= \sum_{\xi = x_j L x_i = 1} \omega_{\lambda}(\xi' g_{\mu}) \\ &\times \prod_{v} \left[n(\xi_v)^{(m_v - 2)/2} \exp\left(2\pi i \gamma_v n(\xi_v) z_v\right) \right]. \end{split}$$

Here L is a two-sided \mathbb{O} -ideal of norm \mathfrak{a} .

College of General Education, University of Tokyo

References

- [1] M. Eichler, Über die Darstellbarkeit von Modulformen durch Thetareihen, J. Reine Angew. Math., 195 (1955), 156-171.
- [2] M. Eichler, Quadratische Formen und Modulfunctionen, Acta Arith., 4 (1958), 217-239.
- [3] R. Godement, A theory of spherical functions, I, Trans. Amer. Math. Soc., 73 (1952), 496-556.
- [4] R. Godement, Notes on Jacquet-Langlands' theory, Lecture note, Institute for Advanced Study, Princeton, 1970.
- [5] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2), Lecture note in Mathematics No. 114, Springer, 1970.
- [6] T. Miyake, On automorphic forms on GL_2 and Hecke operators, Ann. of Math., 94 (1971), 174-189.
- [7] J. A. Shalika and S. Tanaka, On an explicit construction of a certain class of automorphic forms, Amer. J. Math., 91 (1969), 1049-1076.
- [8] H. Shimizu, On zeta functions of quaternion algebras, Ann. of Math., 81 (1965), 166-193.

- [9] G. Shimura, On Dirichlet series and abelian varieties attached to automorphic forms, Ann. of Math., 76 (1962), 237-294.
- [10] S. Tanaka, On irreducible unitary representations of some special linear groups of the second order, I, Osaka J. Math., 3 (1966), 217-227.
- [11] A. Weil, Sur certaines groupes d'opérateurs unitaires, Acta Math., 111 (1964). 143-211.