J. Math. Soc. Japan
WVol. 24, No. 4, 1972

A relative Hodge-Kodaira decomposition
By Daisuke FUJIWARA

(Received Jan. 13, 1972)

§1. Introduction.

Let X be an m-+n dimensional oriented compact C* Riemannian manifold
and £27(X) be the space of smooth p-forms on X. Celebrated Hodge theorem
says that every cohomology class H?(X) of de Rham is canonically represented
by a harmonic p-form (cf. [2] and [5]). The aim of this note is to prove an
analogy of this theorem of Hodge also for the cohomology group H?(X, Y)
relative to m-dimensional submanifold Y X. More precisely, let Y be an m-
dimensional compact oriented submanifold of X and 27(Y) be the space of
smooth p-forms of Y. The relative cohomology group H*(X, Y) is the coho-
mology group of the complex £*(X, Y) defined by the exact sequence of

complexes
¢
(1.1) 00— O¥X,Y) —> 2*(X) — %Y ) —> 0

where ¢ is the restriction mapping. Kodaira proved that every cohomo-
logy class of H?(X, V) can be represented by a square summable harmonic
bH-forms on open submanifold X—Y of X (cf.[2]). However, this is not con-
venient when one wants to deal with the long exact sequence

(1.2) 00— HYX,Y)— H(X) — H(Y) —

—> H\(X, Y) —> H{(X) —> H'(Y) —>

..............................

In this note we prove the following facts:
(i) Every cohomology class of H?(X, Y) can be represented by a current

« on X which satisfies the equation
(1.3) A1+ ’a=0 on X—Y

and aly =0, where a is the integral part of »n/2.
(ii) Every cohomology class of H?(X, Y) can be represented by a cur-
rent 8 on X which is harmonic in X—Y and has singularity on Y.
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(iii) Representations (i) and (ii) of the cohomology class of H?(X, Y) are
compatible with the long exact sequence (1.2).

In proving (iii), we make use of a slight variation of Hodge-Kodaira de--
composition of forms on Y.

Our results are obtained through the following standard steps:

(@) We make a Hilbert space W2(X) in which 27(X, Y) is everywhere:
dense. This is done in § 3.

(b) We consider the adjoint operator d* of d in W2(X). This is treated
in §4 and §5.

(c) We introduce the generalized Laplacian dd*+d*d and apply the:
classical method of Weyl-Kodaira, i.e.,, make use of the orthogonal decom-
position of W2(X) into the sum of the image and the kernel of the self-adjoint
operator dd*+d*d. We prove that the kernel of dd*+d*d is isomorphic to:
the cohomology group H*(X, Y). These are proved in §6 and §8.

(d) Interpretation of the long exact sequence (1.2) is given in §7 and §8..

Crucial point lies in only one point how the space WZ(X) should be-
chosen. This space coincides with the space of square integrable currents.
on X—Y if n=1. In this case, steps (a), (b) and the first part of step (c)

were done by several authors. One may consult with, for example, and
[6]. See their bibliographies for further references. However, the space:

W2(X) is strictly smaller than the space of square integrable currents on
X—Y if n=2. The operator d* is no longer a local operator in this case.

One may feel that the equation (1.3) is not sufficiently natural. We:
slightly modify discussions to get more natural representative of the coho-
mology class of HP(X, Y). It is shown in §9 that every cohomology class in.
H?(X, Y) is uniquely represented by a current a satisfying

(1.4) 4*F'a=0 on X—Y
and

aly=0. (cf. 9.7 and Remark 9.8)..

One can easily see that suitable modification makes similar discussion:
possible for non compact X. However this is left to the reader.

§2. Some lemmas from analysis.

Let R™™ be the Euclidean m-+n space. We shall denote an arbitrary"
point in R™" by x=(x/, x”) with x'=(x,, -+, x) and X" = (Xp41, *** , X;mtn)e
Let S(R™") and S’(R™*") be the space of rapidly decreasing C* functions on

R™™ and its dual space (cf. [7]). For any function #(x) in S(R™") and any"
a, b in R, we define the norm
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2.1) llep=[f 8@ a1 1 +1gr1ra+1e1ras]

‘where & =(&’, £”) runs over R™™" and #(&) is the Fourier transform of u,
X m+

‘that is, ﬁ($)=j‘m+ u(x)e"**¢dx, with x-& = Enxiéi. The completion of S(R™")
n =1

by the norm | |4, can be identified with
Weo(R™™) = {T « S/(R™")| The Fourier transform T is a function of &

satisfying fIT(E)Iz(l—F [&7 12+ 1&7 151+ &7|?)dE < oo} .
“The space W, ,(R™™) is a Hilbert space with scalar product

[SOTEA+ 1815+ 1871990+ | & |?0de

for any S and T in W,,,(R™"). We shall denote W,(R™") instead of
Wa, o R™™) for the sake of brevity. We know that W, ,(R™") and W_,,_,(R™™")

:are mutually dual by the sesquilinear form (S, T)—»meMg(S)TTSSdE.
Let 0gm be the distribution defined by

@, dam) =[x, 0)dx’

for any ¢ in Cy(R™™). For any multi-index v = (Y41, **, Yman) and any dis-
sribution T in 9’(R™) we define a distribution T® 6%, by

(o, TRt>=( 9", 0), T ).
PROPOSITION 2.1.
€)) Wop(R™™C W o p(R™™)  if @/ =a and b’ <b.
(ii) W o o(R™ ™) C W oqp(R™T) if b=0,
W ars(R™™) C W,y (R™™) if b=0.

In the following, we shall denote |v|=v,ei+ -+ +VYne, for multi-index v.

PROPOSITION 2.2. A distribution T in D'(R™) belongs to W (R™) if and
only if TQogh belongs to Wiya-p-ivi-n:(R™™) for some b<—|y|—n/2. The
mapping T—T R, has closed range as a wmapping from W (R™) to
Wb,a—b-lvl—n/z(m+n)-

PrROOF. T belongs to W (R™) if and only if

(2.2) J o TEA+1E17de < oo

On the other hand T ®ogn belongs to W, . (R™™) if and only if
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@3) [ ITEE 1A 1€ 11871 (L | €17 dg g < oo

This is finite if and only if both

(24) REN = 1671+ 1812 87 19 dg”

and

(2.5) J Al TP+ 16717 (E e

are finite. k(§’) is finite if and only if 2(|v|+a’) < —n. If this holds,
(26) k(s/) — (1+ |E, [ 2)a'+lv|+n/2j'nn l 6//» l 2(1+ [ 6// |2)a'defr .

The integral is finite if and only if
2.7 j[ T(EY |21 | &7 |2)a e ivtebrenie e

is finite. This proves our proposition.

COROLLARY 2.2. The restriction mapping S(R™"™) = ¢(x!, x”)— Ds.(x’, Oy
e S(R™) can be extended as a continuous open mapping from W, ,(R™™") to
W oasb-to-ne(R™) if a>n/2+|v|. This is surjective if v=0.

The following lemma is of fundamental importance in this note.

LEMMA 2.3 (cf. [8]). Let T,, v being multi-indices with |v|< N for some
integer N, be in W,(R™) with some be R. Let T be the sum T=I”IZS)NT,,®5}§?".

Assume that T belongs to Wg (R™™) for some b'. Then T,=0 for all v
satisfying |v|= —a—n/2.

PROOF. Set T),:mZ;}MT,,@B%. Then the fact that T € W, (R™™) means
that the integral

J o T ENIFAF1E 1P 1671914 1671 dg dg”
is finite. Therefore, for almost all &,
(1T, enia+1¢e 1+ 1&7 *)dg
is finite. That is,
(28) J1 2 Tu&, ENFQ+18 1P +1671%0dg" < co.

Since Ty(&’, &)= I.IZ-_?»,T”@')E”D' (2.8) means that T4(&’, £”)=0 if 2M+2a = —n.

Hence we have T, =0 for any v; |v|= —a—n/2.
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§3. Hilbert spaces.

We denote the Hilbert space of square integrable p-currents by Wg(X).
The scalar product in it is denoted by

3.1) (a, )=f anxB,

for any a and B in W#(X). We denote the exterior and interior differentia-
tion in the sense of current by d, and d, respectively. Let 4, be the Lapla-
cian operator d,0,+0,d,, Then it is well known that (1+4,)~! exists and
that (1+4,)"*Wg(X) is dense in WZ#X). The operator 4, restricted to
(14+4,)*Weg(X) is a non-negative self-adjoint operator which is denoted by
4. We denote its domain by W2(X). We can define (14+4)° for any real
number s. Its domain is denoted by WZ(X). It is very easy to check that
every section a in W(X) can be written by coordinates (x;, X3 =, Xm4n) @S
(3.2) 44 :1§i1<~~§pgm+n ailiz'"ip(x)dxu A A dxip
and coefficients a;,...,(x) are locally identified with functions in W, (R™*") in
§ 2. Similarly we may consider W&(Y) and Laplacian 4’ on the submanifold
Y. Let B be a tubular neighbourhood of Y. Let ¢, and ¢, be a C§ parti-
tion of unity subordinate to the open covering B\UX—Y. Any p-current a
can be decomposed into two parts; a=a;+a,, a,=¢,a, a,=@,a. We shall
denote by W2,(X) the space of those currents that satisfy the following
conditions; (i) a, belongs to WZ,(X). (ii) Every coefficient ay.;, in the
coordinate expression of a; coincides with a distribution in W, ,(R™™)
introduced in the previous section. The following Theorem holds.

THEOREM 3.1. (1+4,) is an isomorphism from WZ,(X) onto W2 44(X).

All results in § 2 apply to our spaces W2(X) and WZ,(X) with obvious
modification. In particular, we have

PROPOSITION 3.2.

@) W2y (X)CWey(X) if a/<a, b'<Db.
Injection is completely continuous if a’ <a and a’+b’ < a+b.
(ii) WE(X)TWE(X) 1if b=0.
W2 (X)T W2 (X) if b=0.

PROOF. Assertion (i) follows from Proposition 2.1 and the fact that X is

compact.
The space W2(X) has Hilbert space structure of which scalar product is

given by
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(33) (a, Bla=(1+4d0)**a, 1+4)"*f), acR.

The parenthesis in the right is the scalar product 3.1).
In the following we fix a=[n/2]. The scalar product in the space W 2(X),
a being odd, is equivalent to

(3.4) (a’ ﬁ)a — ((1-—1—40)["'/2]&, (1+ AO‘)[a/zjﬁ)
+(do(1+40) "B e, dy(1+4,)**B)
+(8o(1+ o) M, 0,(1+4o)**B).

The following theorem is interesting.

THEOREM 3.3. The space WEX) contains 27(X). Furthermore, the space
Q¥ X—Y) of smooth p-forms with support contained in X—Y is everywhere
dense in W2(X).

PrROOF. We have only to prove that 28(X—Y) is dense in W 2(X). Assume
that @ e W2(X) is orthogonal to Q¥X—Y), ie, (a B).=0 for any B in
2p(X—Y). Then the current a on X satisfies (1+4,)*a=0 in X—Y. The
support of (1+4,)*«a is contained in Y. For any C= function ¢ with support
contained in a small coordinate patch in X, ¢(1+4,)*a has coordinate expres-

sion [3.2), where we may assume that dx, ---, dx, are cotangent to Y and
dXmey, **+ , AXpen are co-normal to Y if support of ¢ intersects Y. By Schwartz’
Theorem, we have for any iy, -+, ip,

Uiy p(X) = 20 @i (X)) Q0
14

where af}’, (x’) are scalar valued distributions on Y (cf. [7]).

0 is transversal derivative of the d-function in the (Xp4y, ==+, Xmsn) Space
as is introduced in the previous section. Since a belongs to W&(X), (1+4,)%«a
must belong to W2,(X). We can apply Lemma 23 and obtain that af,(x")
=0. This implies that ¢(1+4,)%«=0. Since ¢ is arbitrary, (1+4,)%a=0.
The operator (1+4,)® being invertible, this proves the theorem.

REMARK 3.4. Theorem 3.3 enables us to identify any a in WZ2(X) with
a current y over X—Y. In fact, we identify a with y by the formula

(3.5) (a, B)a= j JTA*B,  forany §in QpX-Y).
Considering or [3.4), we have
(3.6) y =144y« restricted on X—Y .

§ 4. Coordinate expression.

Let B be the tubular neighbourhood of Y which consists of points of X
with distance less than ¢ from Y. We fix decomposition of cotangent bundle
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T*B);

(4.1) T*B)=T*Y)+N*Y)

where N*(Y) is the conormal bundle of Y. We have isomorphism A?(B)
= A H(Y)@A*NX(Y), where A*(B) and A(Y) are exterior p-products of

‘T*(B) and T*(Y) respectively. Any p-form or current of degree p on X has
«decomposition

a= i Ap_k,k y Ap-r € AP HY)QA*N*Y),
k=0

in the neighbourhood B of Y. We shall call «,, the tangential component
of a and ﬁ ap-r,x the normal component of it. A p-form a in £27°(X) belongs
k=1

to 27(X, Y) if and only if its tangential part vanishes on Y.

Let d’ and d” denote the exterior differential operator restricted on tan-
gential and normal components respectively. These are well defined in B.
In other words, dya —=d’a’+d”a” if a =a’-+a” be the decomposition of « into
the sum of its tangential and normal components. d’a’ is again tangential.

We shall denote by * and #' the “ star-operations” in £2*(X) and 2*(Y)
respectively. Here *’ is defined in £2*(Y) with respect to the induced Rie-
‘mannian metric in Y. Interior differential operators d, and ¢’ are defined on
X and Y respectively (cf. [2]). If ae 2?(X) is tangential to Y, then we
may consider both (J,a)|ly and 0’(a]y). As to these two operations we can
‘prove

PROPOSITION 4.1. If ac 2?(X) is tangential to Y, then d,a is also tan-
gential to Y at every point y in Y and is equal to o'(a|y).

PrROOF. We choose a coordinate system in an open set of X around a
point ¥, in Y as follows. Let ¥, be an arbitrary point of Y. Let 3!, ..., ym+?
‘be a normal coordinate of X at y,. The metric tensor of X is of the form

“4.2) gi(y)=(dy’, dy)=0"+0(|y|*), 1, j=1, -+, m+n

where 0% is Kronecker index. We may assume that the local equations of
‘the submanifold Y are

4.3) Y—¢"(¥, -,y =0, r=m+l -, m+n
and that Taylor expansion of ¢” are

1 m
¢ e =g 2 Ay O ]) .

Indices 1, j, &, -+ run from 1 to m-+n, 4, ¢, », -+ run from 1 to m and 7, s, ¢, -+
Tun from m-+1 to m+n in the following. The quadratic form
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(44) (ylv Tty m) —_—> % Aiﬂyxy#

is the second fundamental form of YV at x,., We make the following change
of coordinates:

x4 = y*
(4.5)

xr:yr_SDT(yl’ e, m) .

Now the equation”of Y are x"=0 in the new coordinates. We have

(4.6) dx"=dy"— ;3 Ay, y*dy*+0(]1y1?)
u
and
(dx™, dx*)=6""+0(| x|?
4.7 [
(dy”, dx") = — %3 A y*+0(| x| .
Setting
o =dy'+ 3 (dy’, dx")dx"
(4.8) l T
" =dx",

we have

(zt, ©f)=0"+0(| x|%
4.9 {

(=7, 7¥)=0.
Hence we can choose functions a}(x) and b;(x) such that
(4.10) o' =n*+ 3 akn”

7

o' ="+ 3 b;nt
satisfy
4.11) (', @) =0".

In fact, we can choose a}, b7 as ak(x)=0(]x|?), b5=0(|x|?) because of
Let {X;}7" be the orthonormal frame of 7(X) which is dual to the frame
{@}7" in T*X). {X;}3, is tangent to Y. We have

(4.12) dw* = — ‘zj ALo* A 0" +0( x))
do™ = O(| x|)

and ¥1=0'A -+ Ao™, and *1 =w@' A -+ A @™",
Let us prove [Proposition 4.1. We may assume that

a=a(x)w' N\ -+ \N@P, pP=m,

where a(x) is a function.
We have



Relative Hodge-Kodaira decomposition 61%

xa=a(X)WP N - AW A @™ 0 A @™

and
dxa=da N\ @P* N -+ N@™ A @™ N oo A @™
+ad(@P A - AD™) A @™ e A™F"
F+ (=™ PawP A -+ A @™ A d@™NA e A 0™
= ZZ) (X2@)W* N @PFHEA oo A™ENA e A @™m0 x]) .
Therefore

* dxa(x,) = ; Xa(x,) * (a)'l A @PTLN oo A @™F)

=(—=1™r-D 22) (Xaa)(x0) #' (0* N\ @PFEN - A @™ .

On the other hand

aly=aly@' N’ A - No?,

(aly) =aly@™ N - No™,

and
d/*/(alY>:;(X,zaly)wz/\a)p’“ A e A @™
+XZalypd(@P A - AN ™) |y
=X Xalw* A A - No™+0(Iy]).
Hence

K d" (aly) () = T Xal ) (@ Ao A s Ao

Since dya = (— 1)+ D@P-D+Py dx @ and 0’ = (—1)™+VP-D+P 4/ d/x/(|y), We have

proved d,a(x,) = (8’ ay)(x,).

§5. Closed operator d and its adjoint d*.

The exterior differential operator d, restricted to 27?(X, V) is a closable
operator in the Hilbert space W2Z(X). Let us denote its smallest extension
and its adjoint by d and d* respectively. In order to obtain informations.
about the domain D(d) and D(d*) of d and d*, we shall make some prepara-

tion.
Let T be any p-current on Y, then we denote by T ®dy the following
p-current on X:

(5.1) fXaA*(T@)aY):jymyA*fT

for any « in 2°(X). If T=1 on Y, we shall denote 1®dy by dy briefly.
We have the following formulae:
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{5.2) d(T®0y)=(d'T)RQ 0y +(—1)’T @ dyoy
(5.3) I(T®y)=(0'T)Q 0y,

where T is any p-current on Y. Equality is a consequence of Proposi-
tion 4.1 and the fact that the tangential component of d,J0y vanishes.

Now we come back to the discussion of D(d*).

THEOREM 5.1. A current a in W2™NX) belongs to D(d*) if and only if
there are v in WEX) and T in W2, _14,,(Y) such that

{5.4) 50a—72(1+do)~a(T®5Y) .

If this holds, d*a is equal to y and o’'T belongs to W2, _14.,(Y).
PROOF. a < W2 X) belongs to D(d*) if and only if there is an element
7 in W2(X) such that

(5.5) (7, Be=(a, dB)a  for any B in £27(X,Y).

And y =d*a if (5.5) holds. Assume that a belongs to D(d*). Then (5.5) holds
for any B in 8(X—Y). This means that

(5.6) (1+4dy)*(0sa—7)=0 in X—Y.

Let x, be an arbitrary point of Y. Take a small open set U of X containing
X,. We assume that U is so small that we have coordinate expression intro-
duced in §4. We take a C=-function ¢ with support in U. Then o=
(14 4dy)*(0,a—17) has expression

(5.7) o(14+4)oa—7) =3 ﬁ{l!::;;kwil AN ANoPQ X, - X, 0p.

The summation ranges over all indices 1<, < - <i,<m+n, m+1<r, < -
< r.,<m-n, where £ runs over all non-negative integers. The coeflicients
Bili7k are scalar distributions on Y. The equality (5.7) is a consequence of
(5.6) and Schwartz’ theorem. (cf. page 102.)
Since « is an element of W2*Y(X), ¢ must belong to W2,_,(X). Thus for
any fixed index i, --- 1,, the O-current
> Ekﬁ{g.:g;kX,l - X, 0y

kry-r

belongs to W_,_,(X). Applying we have
Birie=0, if k=1,
“Therefore
P(1+d) o —7) = 3 Biyi @ A -+ AN 0'PR 0y .
ll“-lp

Each of the scalar distributions B;,.;, is defined only on Y. However, we
may assume that U is diffeomorphic to the direct product (Y N\U) X V, where
V is an open set in R® If we denote by 1, the function on V which is con-
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stantly one, then 8;,..;,&@1, is a distribution on U. Thus we see that
B= 3 B, QLy@t A - Ao'?
i1 1p
is a p-current on U. We have

o(1+4)*(Goax—7) =0r -8,

where 0y is a product of current dy and 3. Operating J, to both sides of
this, we have (cf. [2]

(5.8) _(doaY)Jﬂ“f‘aY'(ao‘B) = ‘90(1+A0>a507~(d050)J(1+Ao>a(5oa_r> .

Since the right side of belongs to W2;1,(X) and (d,8)dy belongs to
WE (X)), —(d,0y) 18 must belong to W4 _, o(X). The coordinate expres-
sion of (d,dy).18 is equal to

mtn a . o — a
7:%+1(ﬁr il"‘.ip—1®lV)va§:_5Y_,,.:%,H‘Bril'"ip'l ayr 5Y .

By we know that B,i,..., =0 if r=m+1. This is equivalent to the
fact that = 8"®1y, where B’ is a current on Y (i.e. 3/ is tangential to Y).
Since d,0y 18=0, 0y(0,8) € W2,L,(Y). This again implies that J,3’ belongs
to W2zl...(Y). Collecting this result by partition of unity, we have proved
that

(5.9) (144" —7) =T Q by,

and T€ W2, 1,..(Y) and 0’T belongs to W21, ,.(¥).
Conversely, if holds with a current 7 on Y, then for any 3 in 27(X)
we have

(5.10) [ Adora nx(1+d0*2dsf
= Aty Axprf TRarnxp

= [ Q+dyr AxQ+d)28+ [ TA+Bly .
X Y

Since B|y =0 for any B in £27(X, Y), we have (a, d,8), =(r, B).. This proved
our theorem.

REMARK 5.2. The currents y € W2(X) and T & W2, 1,,.(Y) are uniquely
determined by a. In fact implies that T=0 if (1+4,)" 4T & dy)
belongs to WE(X).

We know that WZii(X) is contained in D(d*). But WZH(X) is strictly
smaller than D(d*). In fact, we have

PROPOSITION 53. [f T W2, 1., (Y) with 0'T € W2 ,x(Y), then

(5.11) B=dy(1+4o)""*(T ®0y)
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belongs to D(d*) and
@* B= —(1+do) > (T Q) —do(1+40) "> TR y) .
PROOF. We have
008 =00dy(14+4,)"* (TR dy)

=1+40)" (T Q0y)—(1-+dode) " (T R dy) .
Hence
0oB—7=14+4dy)" (T Rdy),
‘where

r=—1+40)* (T & 0y)—do(1+40)*(6'T @ dy)

belongs to Wi .piea s o X)+Whisirao1i(X)C WEX). This proves proposi-
tion.

Furthermore we can prove

PROPOSITION 5.4. Any a € D(d*) can be written as

a=p+o,

where B is as in (5.11) and o € W2 X) with dyo € W2 X) and d,o = d,a.
PROOF. If a belongs to D(d*), we have

doa = d*a+(1+40)" (T Q oy)

with T in W2, 1,.,0(Y)and 6'T € W2.L,,4(Y). Setting f=d,(1+4,)"*(TRdy),
we have 0,8 =d*B-+(1-+4,)" T ®dy). Thus ¢ =a—f belongs to W2 (X) and
satisfies

o =d*a—d*Be Wi X) and dyo=d,a.

Little is known about the domain of d. A trivial fact is

PROPOSITION 5.5. If a< D(d), then ac WEX) and da=d,a W 2*(X).

In order to characterize D(d) "\ D(d*), we begin with the following

LEMMA 5.6. If a p-current a belongs to D(d) N D(d*), then the p-current
o in Proposition 54 belongs to W2, (X).

PROOF. If a € D(d) N D(d*), then dya = da belongs to W2t (X). Therefore
Jdo,0 belongs to WZ2'(X) and d,o is contained in WZ2*(X). Hence ¢ belongs
to W2,,(X) by well known fact.

LEMMA 5.7. Let B=d(1+4)*(TQRJdy) with T in W2l ,(Y). Then
the tangential component B,, of B coincides with a current belonging to
W ioro—ab-oX), b< —n/2, in a neighbourhood of Y. Furthermore, if d'T is
in W2, _11,.(Y), the tangential component B, coincides with a current belonging
20 W& . pro-as-1(X) in a neighbourhood of Y.

PROOF. We have

(5.12) B=Q1+4) " H{{@'T Qo) +(—DP (T Qddy)} .
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The tangential component of 7 ®d,(dy) vanishes in a neighbourhood of Y.
Let & be a cotangent vector € T*(X). Then the principal symbol of (14 4,)~%"!
is |£]°%*"?2 and the second symbol is of degree —2a—4, where |&| is the
length of the vector &  This implies that the tangential component of
A+4)"* (TR d,0y) belongs to W2 pis-a-s-1(X) in a neighbourhood of ¥. On
the other hand, (14+4,)"*%(d'T®dy) belongs to W& si0_as-ofX). Thus we
have proved the first part of the Lemma. If d'Te W2, ;.,.,(Y), then
(14+4) Y (d'T®dy) belongs to W2 .pi0-ap1(X). This completes the proof.
Here we used the fact that (14+4,)"%* is a pseudo-differential operator (cf.
[3] or [4).

The next lemma plays an important role in the following. (cf. [9].)

LEMMA 58. Let A >0 and P, be the transformation of currents on Y
defined by

(5.13) P;: T—[(A4+40)7'A+4) (T &0y .

Then P, is an elliptic pseudo-differential operator of order —2a—2-+n. Further-
more P; is an invertible non-negative essentially self-adjoint operator in Wg(Y).

PROOF. Let x,&€Y, § be in T#(Y) and » be in N¥(Y). The principal
symbol of (A+4,)*(A+4,)"* is (|€]*+]7n]|?)~*'. Hence the principal symbol
of P; is

1 _dy — /| ~2a-24n
(5.14) @y o (e ey = Cal €]
where
1 g
(5.15) Co= Gy | T [y

Thus P; is an elliptic operator of order —2a—2-+#n. Let ¢ and ¢ be p-currents
belonging to W#(X). Then

(5.16) D, =(A+4d) " (1+4o) (¢ & dy)
U, =A+dy) A+ 4d,)" (¢ Q dy)
belong to W2,p14,nnso(X) T WP(X). And we have

(5.17) J P nws =] [Qt+d A+ (0 @n)]Ix A
=[ Q+4)A+4) (9 @r) AP 3r)
=j. (p,z /\*w',z .
X

Here we applied equality [5.1). Thus,

(5.18) { JPap n¥p = { D AxD;3 20
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and equality holds if and only if @;=0. This is_equivalent to saying that
¢=0.

By the way we have proved

COROLLARY 5.9. For any ¢ and ¢ in WY),

(5.19) [ PoAvg=[ o, 14T,
Y X
where
(5.20) @, =A+do) V¥ (1+4do)"** (¢ Q 0y)

Vi=QA+d) "1+ 40) (¢ Qdy) -

Similar discussion proves

PROPOSITION 5.10. Let 2>0 and Q,; denote the transformation of currents
on Y defined by

(5.21) Q:: T — [(A+do) (1440 (T Q dody)]ly -

Then Q; is an pseudo-differential operator of order —2a—3-+n.

We denote by V? the space of (1+4,) * (T ®oy), where T satisfies con-
ditions in [Proposition 5.3

Now we can prove

THEOREM 5.11. D(d) N\ D(d*) is contained in W& ipir.—aslX). A current «
in We. (X)+dV P! belongs to D(d) N\ D(d*) if and only if the tangential part
a,,, vanishes on Y.

PROOF. Let a p-current a be in D(d) N D(d*). We have the decomposi-
tion a = f+o

o€ W2(X), B=d(1+4) " (T®8y) and T e W2ili,(Y)

with /T € W222,,,,(Y). Thus, we have the restriction a|y by [Lemma 5.7
This al|y belongs to W2_,.(X). Letus prove that «|y =0. Take an arbitrary
¢ in 27(Y) and set

(5.22) v=dy(1+do)" " (1 Qdy) .
Then v belongs to D(d*) by [Proposition 5.3l So we have

(5.23) (da, v)o = (a, d*v), .

On the other hand, we can prove the identity

(5.24) (@, d*v)e=(dat, V)u— | aly A% pt.
Y

Once we admit this, we have

‘Laly/\*’;z:O for any ¢ in £27(Y).
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Hence a|y=0.

Now we prove [5.24). We can find a sequence {¢;}s: of C~-functions on
X satisfying the following conditions;

(i) Support of ¢, is contained in the tubular neighbourhood B of Y.

(i1) }sl_’rg ¢ =0y in WY X) with some b < —n/2.

(iii) doi(x) e N*(Y) if xe V.
Set vy =do(1+4,)"* (£ Q¢s), then v, € D(d*) and converges to v in WZH(X).
{d*v,} does not converge to d*v. However, d*v,—(1+4,) (¢ Q¢:) converges
to d*v. In fact, dovp=d*v, and Syw,—1+4) (@ ¢r) = —1+4) > (R ¢r)
—do(1+40)™* 10(t @ @) = —(1+40) (@ @) —do(1+4o) >0’ p @ 1), because
dor € N*(Y) implies that do, Jp,=0. pQ¢: and 0'pxQ¢; converges to
@0y and '@y in WP(X) and WP I(X) respectively. Hence {dwv;—
(1+4) (@ ¢r)} converges to dov—(1+4,) %@ dy) =d*v in W2(X). Now we
have

(@, v —(14+40)" (1t Q @1))a

= [ U0 a A (U440 0o~ 40) (2 @ i)

:f A+ 42 dyax N\ *(1+AO)‘”2vk—f aN*(uQeg) .
X X

Letting £ go to infinity, we have [5.24).

Now we make use of the fact a|y=0. This implies that Bly=—0]|y
belongs to W2, ,,(Y). On the other hand we have |y =d’P,T. Thus,
P,d'T = B|y—T[d’, P,JT belongs to W2, _,,(Y), because the commutator [d’, P,]
=d'P,—P,d’ of d’ and P, is of order —2a—2+n. We know from
that d’T belongs to W2, 1.,.(Y). Thus, combining this with the fact that
o'T e Wr2,,..(Y), we have proved that T is contained by W23,,.(Y). This
implies that B belongs to W& 4:1,-a_s(X).

Conversely, if we assume and al|y=0, then we can prove
TeWerh,(Y) as above. The fact that a belongs to D(d*) is clear. We
have only to prove that « belongs to D(d). Let B8 be in D(d*). Set 0,8=
d*B+14+4,)"(S®Rby), S€ Wrt .. and 6’'Se W2, _11,0. Then

(«, d*B), :J.X(l—]—do)a/za A *(l_l‘do)a/zd*ﬂ

= [ Qrdoma A x (14 4028,5— aly A#'S
X Y

= (doat, Ba ,

because a|y =0. This completes proof of the theorem.
Summing up, we have
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THEOREM 5.12. The following sequence of vector spaces is exact;
¢ e’
(5.25) 0 — D(@)ND(d*) —> W2 (X)+d VP! —> Wi, (YY) —0,
where ¢’ is the restriction mapping and ¢ is inclusion.

PROOF. We have only to prove that ¢’ is an onto mapping. This is clear
because ¢’ maps W2,,(X) onto W2, _,sp.

§ 6. Relative Hodge-Kodaira decomposition.

We introduce generalized Laplacian operator
(6.1 L =dd*+d*d .

The operator L is a non-negative self-adjoint operator in WZ2(X). Thus
(A+L)? exists if A>0. Theorem 5.11 implies that (A+L)! is a completely
continuous operator. As a consequence (cf. and [5)),

THEOREM 6.1. The spectrum of L consists of eigenvalues of finite multi-
plicity. The range of L is a closed subspace of WEX), p=0,1,2, ---, m+n.

We have commutative relations

PROPOSITION 6.2. Ld=dL, d*L = Ld*, dQA+L)"*DA+L)d, d*(A+L)"*'D
(A+L)*d*, where AD B means that A is defined and coincides with B on the
domain of B.

PROPOSITION 6.3. A p-current a belongs to ker(L) if and only if ac
D(d) N\ D(d*) and da=0 and d*a=0. Moreover a is orthogonal to the image
of d.

Proof is ommitted here.

Let H be the orthogonal projection onto the kernel of L. H is given by
the formula

N L)y
(6.2) H=—) _G—D7d,

where ¢ is so small that all positive eigenvalues of L lie outside the circle
|1]=¢ of the complex plane. We define the Green operator of L as
(6.3) =——-[ 1G-Lydz,
r
where I” is a contour enclosing all positive eigenvalues.
PROPOSITION 6.4. G is a bounded linear mapping which satisfies
(6.4) GH=HG =0, LG=I-HDOGL,

where I is the identity.
THEOREM 6.5. We have the following decomposition ;

(6.5) I=(dd*+d*d)G+H,
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«6.6) I =dGd*+-d*Gd+H on D(d) N D(d*).

So far are formal consequences of preceding sections.

Our main aim in this section is to prove

THEOREM 6.6. The kernel of L is canonically isomorphic to the relative de-
LRham cohomology group H*(X, V).

In order to prove this, we define following graded vector spaces:

m+n
Uk = OUg, U? = D(d) N D(d*)+d(D(d) N D(@*®)),
p=
m+n
(6.7) U= U, Up=Wg(X)+d, V7 '+d,W 2:4(X),
=0

m+n
Us @0 ug, U2=W2ino(Y)+d' Wil (V).
=

LF¥ and U¥ are complexes with the exterior differentiation d, and d’. U¥ is
also a complex with operation d. We have following sequence of complexes;

¢ ¢/

(6.8) 0 Uy Ut Us 0.

PROPOSITION 6.7. The above sequence (6.8) is exact.
PROOF. We have only to prove that Im¢—=Kker¢. Assume that

(6.9) a=o-+B+doyy,
oe W2 (X), Bed,V? ! and y € Wgii(X). The fact /a=0 means that
+(6.10) gly+Bly+d(rly)=0.

Let G’ and H' be the Green operator of d’d6’+d’d’ and the projection onto
the space of harmonic forms on Y respectively. We have

{6.11) rly=Hy|y+d'8Gy|y+6'G'd'y|y.

Since o]y and B|y belong to W27l ,.(Y), equality (6.10) implies that 6'G’'d’r |y
belongs to the space W2ii_,.(Y). Setting

(6.12) A=P'(H'y|ly+0'G'd’y|ly) and B=Pi'0'G'yrly,

‘'we have that

{6.13) AeWerl,(Y) and Be W22, (Y).

“Therefore, if we define

(6.14) p=>0+4)" " (ARQdy)
v=(1+4)"""(BR?Jy),

then we have equalities
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(6.15) ply=Hyly+0'Gdyly, viy=0'G'r|ly and
7’|Y=#[Y+(dov)|Y .

Note that

(6.16) pe Wil oo X)CTWENX), ve Wity o o(X)C WEHX).

Since Ae Wergl, (Y), we have dypu € D(d*). Similarly d,v € D(d*). Set
(6.17) r—p——dop —

Then pe W2il(X)+d,V?* and p|ly=0. Hence p belongs to D(d) N D(d*) by
Theorem 5.9. Replacing 7 in by p+dyw+p, we have a = o+ S-+d,u+d,p..
We know that p e D(d) N D(d*) and o+ 8+doypr s WE,(X)+d,V?"'. Moreover
we have o+ p+dop|y =aly =0, because p|y=0. This implies that o+ B-+d,u
e D(d) ~n D(d*). Proof is now complete.

PROPOSITION 6.8. The cohomology group of complexes U¥ and U¥ are:
canonically isomorphic to de Rham cohomology groups H*(X) and H*Y).
respectively.

PROOF. A cochain a=0+p+d,y, o W2, (X), B=d, VP!, y € WIii(X),is.
a cocycle if and only if dy6=0. On the other hand « is a coboundary if
and only if there is a v W2i(X) such that a =d,v. This is equivalent to.
the fact that o+pB+d(y—v)=0. As B=d(1+4d,)*(TQJdy) with some.
TeW?rl (YY), we have (1+4,) (T ® dr) €W izhsi0, a0 X)CTWEH(X). Thus.
we have proved that a is a coboundary if and only if ¢=d,r with some 7
in W2ii(X). Therefore the cohomology group of the complex U¥ is isomor--
phic to A*(X). Similar argument proves that H*U¥) = H*(Y).

PROPOSITION 6.8. The kernel of L is canonically isomorphic to the cohomo--
logy of complex U¥.

PROOF. Let a=p,+dpB,, Bi, B.= D) D(*). This is a cocycle if and.
only if dB,=0. If we apply Theorem 6.6 to 3;,, we have a = Hp,+d(Gd*B,
+8,). Thus a and HB, are cohomologous. On the other hand if S Ker L
then B< D(d) D(d*) and df=0 by Proposition 6.3. Hence 8 is a cocycle in
U¥. If B is a coboundary, 8 must be zero by virtue of Proposition 6.3. This.
completes proof.

Now we can prove Theorem 6.6.

Set Ker?L the space of p-currents in the kernel of L. Then it follows.
from Propositions 6.7, 6.8 and 6.9 that the following sequence is exact;.
0—Ker’L - H(X)—-H(Y)— -+ - H?"(Y)—Ker?L— H?(X)— H?(Y)— ---. This.
and the five lemma prove our theorem.

REMARK. Another more natural proof of Theorem 6.6 will be given.
in §8.
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§7. Boundary conditions.
We shall treat the equation
{7.1) A+Lya=a, with 4=0 and o W2X).

We shall first treat the case 2>0. a < D(d) N\ D(d*) means that there
exists S= W2gh, (YY) such that

«(7.2) dpa—d*a=1+4,)" SR dy)
:and
'(73) a l y = 0.

"The condition da € D(d*) N\ D(d) is equivalent to the fact that there exists
TeWZ2,...Y) such that

«(7.4) O0gdia—d*doa = (14-4,) (T R 0y) .
From (7.2) and (7.4) we have
doa—La = dy(1+4,)"(SQ 0y)+(1+40)" (T K dy) .
Using (7.1) we have

«(7.5) A+d)a=0c+d(1+4d))"(SQ0y)+1A+4do) (TR dy) -
“Therefore, a is given by
«(7.6) ax = (2"}“4’0)_10'“*‘40(2"*“‘40)*1(1+A0)—a(s® aY)

+QQ4+4)'A+4)" 4T R oy) .
“The condition (7.3) is

«(7.7) (A+4dy) o |y+d P;S+P,T=0.

‘We must check the condition d*a € D(d) N D(d*). d*a = D(d*) is automatically
-satisfied. From (7.2) and (7.6) we have

d*a = 0,a—(1-+4,)" (SR dy)
=00(A+40) 0 —A(A+40)" (1440)"(S® dy)
—d(2+40)'A44,)" %0’ SR dy)
+@A+4)7 A +40)" (' T R dy) .
“This belongs to D(d) if and only if d*a|y =0, that is,
(7.8) (0,(A2+4dy)0) |y —AP;S—d' P;0'S+P;0'T=0.
"Since P, is invertible, we can define

«7.9) 5= P, Py.
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Thus we have proved
THEOREM 7.1. Equation (A+La=0c, >0 and 6 =« W2 X), is equivalent tc
the system of equations

(7.10) a=Q+4) o +dy(A+ o) (14 40) (SR by)
+(A+40)7 1+ 40" (T R dy),

(7.11) (A+do) o |y+d' P;S+P,T=0,

(7.12) (6e(A+do) o)y —AP;S—d'6 P,S+6P,T =0,

ac WiX), SeWri,(Y), TeWiinY).

Before going further, we give an interpretation of the meaning of the:
operator 6. Let {,)>, be the scalar product in £27(Y) defined by

(713) Lo pn=] PiloA¥p=[ o A¥PT'¢,  for ¢, ¢ in QAY).

Then 27(Y) is a pre-Hilbert space by virtue of The operators d”
and § are mutually adjoint with respect to this scalar product. In fact, we:
have

(7.14) g, =] Pi'd'p A+
=( a'P,P7ip A¥ P39
Y

= [ Pro Ax P P7'¢
Y

:<€01 3¢>l~

This implies that the operator L,=d’6+6d’ is a non-negative self-adjoint
operator with respect to the Hilbert space structure {,>;. L; is an elliptic
pseudo-differential operator of order 2.

We come back to equations and [(7.12).

PROPOSITION 7.2. The system of equation (7.11) and (7.12) is equivalent to
the system of equations

(7.15) (d'6+406d")P;S+AP;S= —8((A+4de)'0)| y +(8o(A+40) o) | ¥
(7.16) d’'P;S+ P;T = —((A+4y) o)y .

If o= W2g(X) is given, we can find S by and T by Hence o
is given by (7.10).

As a consequence

THEOREM 7.3. Assume that (A+L)a =0, with some 2> 0 and ¢ in W 2,,(X),
r=0. Then S and T must belong to W2, 1,,Y) and W24, 1. (Y) respec-
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tively. And a belongs to W2 i1, —avrrs1(X), where b is an arbitrary real number
< —n/2.

PROOF. The fact that o< W2, (X) implies that (d,(A+4,)'o)|y and
6((A+4d,) o) |y belong to W2 11 0e(Y). Hence S&€ W2y iri1ine(Y). Similarly
Te W-eiirinY). This proves theorem.

COROLLARY 7.4. The domain D(L) of L=dd*+d*d is contained in
W Sasot1,—a-p41(X).

Now we treat the case A=0. Equation (7.5) holds also in this case. Let
us recall classical Hodge-Kodaira decomposition of currents on X. We shall
denote by G, the Green operator of the Laplacian 4,=d,0,+0d,d, and by H,
the projection operator onto the space of harmonic forms on X (cf. [2]).
Then the equation (7.5) with 4=0 is equivalent to

(7.17) Hyo+H(TXdy)=0
and
(7.18) (1—Hp)a = Gyo+dyGo(1+do)"(SQ y)+Go(1+40) (T K dy) .

We introduce the following operator P, which will play a similar role
as P; in the case of 2> 0.

DEFINITION 7.5. P is an operator which operates on currents on Y as
follows:

(7.19) P: T— G(1+4) ™ (TQ0y)r.

Just as Lemma 5.8, we have

PROPOSITION 7.6. P is an elliptic pseudo-differential operator of order
—2a—2+n. P is an isomorphism from WPY) onto W& e n(Y).

PROOF. If ¢, ¢ = 2°(Y), there holds

(7.20) { Ponwg= { T A0,
where ¥ = G{*(144,)"**(¢ @ Jdy) and
D =GP (1+4dy) " (P R dy) -

In particular,
(7.21) [ Ponvwo=[ ¥ AT 0.
Y X

Here equality holds if and only if ¥ =0, that is, A+4,) (¢ & dy) is har-
monic on X. However this occurs only when ¢=0.

We need one more operator Q.

DEFINITION 7.7. We define operator @ which operates on currents on Y
as follows:
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(7.22) Q:S—> H(SQdy)|y.
Let h,, ---, h; be the orthonormal basis of harmonic forms on X. Then
k
(7.23) QS=3 ({ hy AHS®6p))h;l v
j=1 X

k
:]gl(fyhjly/\* S)h.jly.
Just as the case 4> 0, the fact a € D(d) " D(d*) means that

(7.24) (Hya+Gy0)|y+d’"PS+PT=0.

Since
0ot = 0yG 0 —dGo(1+4,)"0’'SQ 0y) — Hy(1+ )" (SR dy)

+Go(1+40)"0'T @ oy)+(1+4,)" (SR dy) ,
we have

(7.25) d*a = 0,Go0—dGo(1+4,)"%0'SR dy)
—H(1+4,)"(SQ r)+Go(1+ o) *0'T Q dy) .

This belongs to D(d) if and only if d*a|y =0, i.e.,

(7.26) (0Go0) |y —d’Po’'S—QS+Po’'T =0.

Just as we did in the case 1> 0, we define

(7.27) 0y=P§'P'.

Then we have
THEOREM 7.8. FEquation La =0 is equivalent to system of equations con-

cerning ac WA X), SeWe, (YY) and Te Wr,,,(Y):

(7.28) dva=0+d(1+40)"(SQ dy)+(1+40) (T Qdy) ,
(7.29) d'PS+PT+(Hya+Go0) |y =0,
(7.30) d'6{PS—8{PT+xPS—(6,Gs0) |y =0,

where the operator m is defined by
(7.31) T=QPFP".

PrOOF. Equality (7.28) implies (7.17) and (7.18). Thus (7.29) means that
a < D(d)\D(d*). We have

(7.32) da = dyG,0+d,G(1+4,)" (TR dy)
and (7.25). Equality (7.32) means that da € D(d) D(d*) and
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(7.33) d*da = 0,dGy0—dy0,Go(1+4,) (T R dy)

—H(1+4)" (T &®dy),
because
Ooda = 0,dyGo0—d0,Go(1+40) T @ 0y)

—Hy(1+40) (T Q0y)+1+4do) " (T R dy) .
On the other hand means that d*a € D(d) N D(d*) and
(7.34) dd*a = dy0,Goo+d,G(1+4d,)"*(0'T R dy) .
This and (7.33) give that
La=(1—Hy)o—H(T ®0dy)
=0
by virtue of (7.17).
In the case 0 =0, we have stronger version of this theorem.

THEOREM 7.9. The equation La =0 1is equivalent to the system of equations
concerning e = W X) and S W2, (Y) given by

(7.35) doa = doy(1+45) (SR y)
(7.36) d’PS+H,a|y =0,
(7.37) d'5\PS=0,

(7.38) aPS=0.

PrOOF. If equality (7.35)~(7.38) hold, then (7.28), (7.29) and (7.30) hold
with T=0, 0 =0. Hence La=0. Conversely if La=0, then da=d*a=0.
Equality da=0 implies that T=0 because of (7.4). The fact that d*a =0
implies that Hy(14+-4,)"*(SQ®dy) =0 by virtue of (7.25). Hence we have wPS=0.
If we apply these to Theorem 7.8, we prove Theorem 7.9.

§ 8. Boundary conditions and the long exact sequence.

Let us define a new scalar product in 27(Y), by

(8.1) <o, 8>={ Pronvp,

where P is the operator defined by [7.19) Making use of [Proposition 7.6,
we know that the scalar product can be extended to W2, ,»(Y) continuously
and WZ., ,.(Y) becomes a Hilbert space with this scalar product. We always
consider this Hilbert space structure when we refer to the space W2, ., .(Y).
The exterior differential operator d’ restricted to £27(Y) is closable in this
space. We shall denote its smallest closed extension by the same symbol d’.
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PROPOSITION 8.1. The operator 01 is the adjoint of d’ in the space
We,. ..(Y). The operator = defined by (7.31) is a symmetric operator of finite
rank.

PROOF. We have only to prove that 7 is symmetric.

From (7.23), we have

(82) wS= 3 (f ilr A¥PIS)h,ly

K
=j§<5, hilyhsly .

This shows that 7 is symmetric.

Making use of operator d’ and d;, we can prove an analogue of Hodge-
Kodaira theory in the space W2, ,_,,(Y).

PROPOSITION 8.2. The operator L' = d’d{+01d’ is a non-negative self-adjoint
elliptic pseudo-differential operator with only point spectrum of finite multiplicity.

PROPOSITION 8.3.

Ker L’ ={T in DILN|d'T =0 and 6;T =0}.

THEOREM 84.

(8.3) I = H' +(d’0{+0id")G’
= H'+d'G’oi+d1G’d’

where H’ is the orthogonal projection onto the Ker L’ and G’ is the Greem
operator of L’.

THEOREM 8.5. Ker L’ is isomorphic to the de Rham cohomology group
H*(Y).

Now we give an interpretation of the boundary conditions in §7 and
give a new proof of Let us denote by Ker?4,, Ker?L’ and
Ker?L the space of p-currents belonging to kernels of 4,, L’ and L respec-

tively.
First we define a mapping p by

Ker?4, —p> Ker?L’
(8.4) w w
a —> H(aly).
Secondly p’ by

14
Ker?L —p—> Ker?d4,
(8.5) w w
a —> Hua,
And finally p” by
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”
Ker?L/ — Ker?*+![L
(8.6) W w
T —>diG(1+4dy)" (P T Q@dy),

where J is the orthogonal projection onto Ker?L’©H’ Im =, the orthogonal
complement of H' Im=x in the space Ker?L’. We must prove that image
of p” is contained in Ker?*'L. If T is in H' Imw=, this is trivial because
JT=0. Assume that T belongs to Ker’L’©H’ Imx. Then 0=<(T, H Im =)
={(HT,Imzn)>=(T,Imn). This implies that T belongs to Ker n because =
is symmetric. Hence (7.35), (7.36), (7.37) and (7.38) are satisfied if we set
a=d,G(1+4,) (P *JT Q®dy) and S=P'T. Therefore d,G,(1+4) (P T R dy)
belongs to Ker?*'L,
Now we have defined a sequence of homomorphisms

/ ”

8.7) 0 — Ker’L L Ker®4, ——f—> Ker’L/ —>

” 4 p p/l
—> Ker!L — Ker'4, — Ker'L’ —>

.................................

” l4 ”

— Ker?L —p—> Ker?4, —€> Ker?L’ —>

THEOREM 8.6. The sequence (8.7) is exact.
PrROOF. We start by proving

(8.8) Im p’=Kerp.

Assume that « is in Ker?L, then Theorem 7.9 implies that

8.9 a=p'a+d,Gy(1+4,)" (SR dy)
and
(8.10) p'aly+d’ PS=0.

Hence pp’a=H'(p'aly)=—H'(d’PS)=0. Conversely, if a € Ker?4, and pea
=H(a|y)=0, then al|y=d'0’G'(a|y), because d’aly=0. We define S by
S=—P19/G'(aly). We have

d/PS+alY: 0
and
d’oiPS=0.

Further 7 PS=0 because 7d{=0. Setting 8= a-+d,G,(1+4,)"*S® dy), we have
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o'B=a. This proves [8.8).
Next we prove

(8.11) Im p=Ker p”.

The fact that p”p=0 is trivial. Assume that a € Ker?L’ and p”’a =0, i.e.,
do(P7'JSQ@Jy) is harmonic. This is possible if and only if P"'JS=0, that is,
S belongs to H' Im = =image of p. (8.11) is proved.

Finally we prove

{8.12) Im po” =Ker p’.

We have only to prove Ker o’ CIm p”. Assume that a« = Ker p’. Then H,a=0
and a = Ker?L. Hence

(8.13) a=d,G(1+4¢) (S oy)
with

(8.14) d’PS=0,

(8.15) d'éiPS=0,

and

(8.16) PS=0.

Equalities [(8.14) and [8.15) imply that PS< Ker?L’. This proves There-
fore is proved.

REMARK 8.7. Since Ker?L’ is isomorphic to H?(Y) and Ker?4, is isomor-
phic to H?(X), means that Ker?L is isomorphic to H?(X, Y) by
virtue of five lemma.

Summing up the above results, we have

THEOREM 8.8. Every cohomology class in HP(X,Y) is represented by a
current a in W2(X) such that there is an S WrL,(Y) satisfving

(8.17) doa=d(14+4)"(SQdy),
(8.18) d’PS+H,a|y =0,
(8.19) d'éiPS=0

and

(8.20) nPS=0.

REMARK 8.9. It should be noted that a|y=0.

THEOREM 8.10. Every cohomology class H?(X, Y) is represented by a cur-
rent vy in X—Y which is harmonic in X—Y and may have singularity at Y
muajorized as
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(8.21) (0= G Dy =0r"")

for any xe X—Y. Here r=geodesic distance from the point x to Y and n=
codimension of Y.

PROOF. As we noted in Remark 3.4, the current « in Theorem 8.8 can
be identified with a current 7y in X—Y by the formula (3.6). On the other
hand (8.17) gives that

(8.22) 4(1+4dp)*a =d(SQ dy) .

This means that y is harmonic in X—Y because support of d,(S®dy) is con-
tained in Y. Applying the Green operator G, to both sides of (8.22), we have
(8.23) (1+4d)%a = Hya+Gyd (SR dy) .

Since H,a is smooth, (14+4,)%a has the same singularity as G,d,(SQdy)=
d,Go(S&R dy). This proves our theorem.

§9. Addenda.

The aim of this section is to get new representatives of cohomology
classes of H?(X, Y) that is more natural than the one given in the previous
sections. In order to do this we introduce a new Hilbert space structure of
W2(X) by the following inner product:

O.D [a, B1=(48"a, 48" B)-+(H,a, H,p).

Since the topologies of WZ2(X) are the same, the closed operator d is un-
changed. However, the adjoint which we denote again by d* is different
from the one treated in §5. We have

THEOREM 9.1. A current a in WE*Y(X) belongs to D(d*) if and only if
there are y in W2 X) and T in W2, ;.,,Y) such that

9.2) doa—7 = GH(T Q 0y)+Ho(T' Q dy) .

If this holds, d*a =7 and 0'T belongs to W24 11mn(Y).
Proof is similar to that of Theorem 5.1.
Introducing the space

9.3) V2 ={GE(TRO)IT E W2y 142e(Y) and 0'T € W2l n(Y)},

we have
THEOREM 9.2. The following sequence of vector spaces are exact

9.4 0 —> D(d) N\ D(@*) —> WEA(X)+do V7P —> Whiynp(Y) —> 0.

Let Ker? L be the space of all p-currents belonging to the kernel of the
operator

(9.5) L =dd*+d*d .
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‘Then just as we can prove
THEOREM 9.3. HP(X, Y) is isomorphic to the space Ker? L.
Now we define the operator P’ operating on currents of Y given by

(9.6) P:T— G (TRoy)|y -

PROPOSITION 9.4. P’ is a non-negative self adjoint invertible elliptic pseudo-
differential operator of order —2a—2-+n.
We define the following operators:

9.7) 0;=P o P,
{9.8) T’ =QFP .

THEOREM 9.5. FEquation La=(dd*+d*d)a=/f is equivalent to system of
equations concerning ac WaX), Se W2, oY) and T in W2ann(Y):

f=4,a—d,GHS& 0y)—GHT Q dy)— H(T & dy)
9.9) (G ly=—Ha)|y—d"P’'S—P'T
(0:Gof) |y =a"P'S+d'0;P’S—0: P'T .
In particular,

THEOREM 9.6. FEquation (dd*4+d*d)a=0 1is equivalent to the system of
equations:

{9.10) doa=d,GHSQ dy)
(Hoa)|p+d’P'S=0

d’o;P’'S=0

7’P’'S=0

Sor a in WBX) and S in WP, (Y).
THEOREM 9.7. Every cohomology class of H?(X, Y) is uniquely represented
by a current a such that there exists a current S in W2k, ,(Y) satisfying (9.10).
REMARK 9.8. The current a in Theorem 9.6 satisfies equation

{9.11) 43 =0 in X-Y.

That is a is poly-harmonic in X—Y.
REMARK 9.9. We can identify an arbitrary current @ in W2(X) with a

current y on X—Y by the formula
9.12) r=(dsa+H,a)| x_y.

{cf. Remark 3.4.)
Then

(9.13) 4oy =0 on X—Y



Relative Hodge-Kodaira decomposition 637

9.14) lr(x)|=0@* ™).
{cf. Theorem 8.100)

Since the operator P’ enjoys the same properties as P, we can define an
inner product

(9.15) Ca, BY = j Pla AP

for currents « and 8 on Y. (cf. §8.)

The operators d’ and 63 are mutually adjoint with respect to this Hilbert
space structure. We can make Hodge-Kodaira decomposition of currents on
Y using this inner product.

THEOREM 9.10. H?(Y) is isomorphic to the space of all p-currents T on Y
satisfying equation

(9.16) (d’'03403d")T =0.

Thus we can give interpretation of the long exact sequence (1.2) from
our new stand point. Discussion is completely parallel to that of §8 and the
detail is ommitted here.

The University of Tokyo
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