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\S 0. Introduction.

Generalizing the natural correspondence between affine algebraic groups
over an algebraically closed field $k$ and their coordinate rings, we have an
anti-equivalent correspondence between the category of pro-affine algebraic
groups over $k$ and the category of commutative reduced Hopf algebras $(i$ . $e$ .
which have no nilpotent elements other than $0$) over $k$ . (See [1], [2], [3].)

The purpose of the paper is to discuss relations between the properties
of these two objects and especially to obtain certain properties of groups
from those of their Hopf algebras.

In the first two sections, we reproduce some known relations between the
properties of commutative reduced Hopf algebras and pro-affine (or affine)

algebraic groups (cf. [3]), and in \S 3 give a certain property of the co-radical
of a Hopf algebra. Sections \S 4 and \S 5 are devoted to discuss general com-
mutative Hopf algebras over an arbitrary field. In \S 4, we give the definition
of semi-direct product of Hopf algebras which is the dual of smash product
in the sense of Sweedler [3]. In \S 5, we give a decomposition theorem for
Hopf algebras. In \S 6, we give definitions and properties of exact sequences
of reduced Hopf algebras which are dual of those of groups. When the
sequence splits, we may apply to it the decomposition theorem given in \S 5.
It is well known that a connected affine algebraic group over an algebraically
closed field of characteristic zero is the semi-direct product of the unipotent
radical and a linearly reductive subgroup. Applying the decomposition
theorem for Hopf algebras, the decomposition theorem for pro-affine (or affine)
algebraic groups can be described in terms of Hopf-algebra theory.

Throughout the paper, all Hopf algebras are commutative over a field $k$ .

\S 1. Preliminaries.

(1.1) Let $V$ be a vector space over a fixed ground field $k$ , and let
$V^{*}=Hom_{k}(V, k)$ be the linear dual space. For $f\in V^{*},$ $v\in V$ , we will usually
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write $\langle f, v\rangle$ for $f(v)$ . For a subset $S$ of $V$ , we denote by $S^{\perp}$ the subset
$\{f\in V^{*}|\langle f, S\rangle=0\}$ of $V^{*}$ , and also for a subset $T$ of $V^{*}$ , we denote by $\tau\perp$

the subset $\{v\in V|\langle T, v\rangle=0\}$ of $V$ . We use the same notations and definitions
as in [3].

(1.2) LEMMA. Let $C$ be a coalgebra over $k$ .
(1) If $D\subseteqq C$ is a sub-coalgebra, then $D^{\perp}\subseteqq c*$ is a two-sided ideal of $c*$

and $c*/D^{\perp}\cong D^{*}$ as algebras.
(2) $1fD\subseteqq C$ is a coideal, then $D^{\perp}\subseteqq c*$ is a subalgebra of $c*$ and

$D^{\perp}\cong(C/D)^{*}$ as algebras.
PROOF. See [3], Chap. I.
(1.3) PROPOSITION. Let $\mathfrak{M}$ be the set of all simple sub-coalgebras (resp. all

minimal right coideals, or all minimal left coideals) of $C,$ $\mathfrak{J}$ the set of all
maximal two-sided ideals (resp. all maximal right ideals, or all maximal left
ideals) I of $c*$ such that $I^{\perp}\neq(O)$ . Then the sets $\mathfrak{M}$ and $\Im$ are in one-to-one
correspondence by the following mappings:

$\mathfrak{M}\ni M\leftrightarrow M^{\perp}\in \mathfrak{J}$

$\mathfrak{J}\ni I-1^{\perp}\in \mathfrak{M}$ .
PROOF. If $M\in \mathfrak{M}$ , then $\dim M<\infty$ . Since $c*/M^{\perp}\cong M^{*}$ and $M^{*}$ is a

simple k-algebra, $M^{\perp}$ is a maximal ideal of $c*$ and $(M^{\perp})^{\perp}=M\neq(O)$ . Con-
versely if $I\in \mathfrak{J}$ , let $M$ be a simple sub-coalgebra of $C$ contained in $I-\llcorner\neq(0)$

Then we have $1\subseteqq I^{\perp\perp}\subseteqq M^{\perp}\frac{\prime}{\neq}C^{*}$ . Hence $I=I^{\perp\perp}=M^{\perp}$ , because $I$ is a maximal
ideal. Thus we have $I^{\perp}=(M^{\perp})^{\perp}=M$. This completes the proof of (1.3).

(1.4) DEFINITIONS. Let $C$ be a coalgebra over a field $k$ . We denote by
$R(C)$ the sum of all simple sub-coalgebras, and we call it the co-radical of $C$.
$C$ is called co-semi-simple if $C=R(C)$ . $C$ is called irreducible if it contains a
unique simple sub-coalgebra. $C$ is called pointed if all simple $sub\sim coalgebras$

of $C$ are l-dimensional. We denote by $G(C)$ the subset $\{c\in C|c\neq 0,$ $\Delta(c)=$

$c\otimes c\}$ of $C$ .
Now suppose $C$ is a coalgebra so that $c*$ has a natural algebra structure.

If $N$ is a left $c*$ -module and there is a map $\psi:N\rightarrow N\otimes C$ such that

$c^{*}\cdot n=(1\otimes c^{*})\psi(n)$ for all $c^{*}\in c*,$ $n\in N$ ,

then $N$ is called a rational left $c*$ -module. The category of rational left
$c*$ -modules is naturally equivalent to the category of right C-comodules. A
subalgebra $A$ of $c*$ is called dense if $A^{\perp}=(O)$ . In this case, we can also define
rational A-modules to which the right C-comodules correspond bijectively
(see [3], sec. 2.1, chap. II).

(1.5) PROPOSITION. Let $C$ be a coalgebra over a field $k$ . Then
(1) The followings are equivalent:
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(a) Every rational $c*$-module is completely reducible.
(b) $C$ is co-semi-simple.

(2) The followings are equivalent:
(a) All simple rational left $c*$ -modules are l-dimensional.
(b) All minimal right coideals of $C$ are l-dimensional.
(c) $C$ is pointed.

PROOF. (1) (Cf. [3], Lemma 14.0.1.)
(2) $(a)\Rightarrow(b)$ : Regard a right coideal of $C$ as a right C-comodule via $\Delta_{c}$ .
$(b)\Rightarrow(c)$ : Let $M$ be any simple sub-coalgebra of $C$. Let $I$ be a minimal

right coideal such that $I\subseteqq M$. By the assumption, we have $\dim I=1$ , and
hence every element of $I$ can be written in the form $\lambda\cdot m$ , with $\lambda\in k$ , where
$m$ is some fixed non-zero element in $I$. If we write $\Delta(m)$ for $m\otimes c$ , we have
then $m=\epsilon(m)c$ . Thus $I$ is a subcoalgebra, and hence we must have $M=I$.
This means that $\dim M=1$ .

$(c)\Rightarrow(a)$ : Let $M$ be a simple rational left $c*$ -module. If $m_{0}$ is a non-zero
element of $M$, then $M=\{zm_{0}|z\in C^{*}\}$ . We know that ann $M$ is a maximal
two-sided ideal of $c*$ , where ann $M$ is the annihilator of $M$ in $c*$ . Then we
claim that $($ann $M)^{\perp}\neq(O)$ . Since $M$ is rational, there exists a map $\psi:M\rightarrow M\otimes C$

such that
$c^{*}\cdot m=(1\otimes c^{*})\psi(m)$ for all $c^{*}\in C^{*},$ $m\in M$ .

We write $\sum_{i=1}^{n}m_{i}\otimes c_{i}$ for $\psi(m_{0})$ , where $\{m_{i}\}$ are linearly independent. Then,

$a\in annM\Leftrightarrow a(zm_{0})=0$ for all $z\in c*$

$\Leftrightarrow\sum_{i=1}^{n}\langle az, c_{i}\rangle m_{i}=0$ for all $z\in C^{*}$

$\Leftrightarrow\langle az, c_{i}\rangle=0$ for all $i$ and $z\in c*$ .
Now, let $V$ be the subspace of $C$ spanned by $\{c_{i}\}_{i=1,\cdots,n}$ . Then $V$ is obviously
finite dimensional and $\neq(0)$ . Thus, we have

$a\in annM\Leftrightarrow az\in V^{\perp}$ for all $z\in C^{*}$ .
Therefore ann $ M\subseteqq V\perp$ and $($ann $M)^{\perp}\supseteqq V\perp\perp=V\neq(O)$ , which shows that
$($ann $M)^{\perp}\neq 0$.

From (1.3), $($ann $M)^{\perp}$ is a simple sub-coalgebra of $C$ and $($ann $M)^{\perp\perp}=annM$.
Therefore,

$M\cong c*/annM=C^{*}/(annM)^{\perp\perp}\cong((annM)^{\perp})^{*}$ .
Hence we have $\dim M=1$ , since $($ann $M)^{\perp}$ is l-dimensional by assumption.

(1.6) REMARK. We can show that any simple right C-comodule $M$ is
isomorphic to a minimal right coideal of $C$, as follows. For any $\gamma\in M^{*}$ , the
map $m$ }$\rightarrow(\gamma\otimes 1)\psi(m)$ is a module map of $M$ into $C$, where $\psi:M\rightarrow M\otimes C$ is
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the comodule structure map of $C$. If $M\neq(O)$ , there exists an element $\gamma\in M^{*}$

such that the map $m$ }$\rightarrow(\gamma\otimes 1)\psi(m)$ is not a zero-map. Since $M$ is simple, this
map is monic.

(1.7) Let $C$ be a coalgebra over $k$ and let $M$ be a right C-comodule with
the structure map $\psi:M\rightarrow M\otimes C$. Let $C(M)$ denote the subspace of $C$ spanned
by

{ $c_{i}\in C|\psi(m)=\sum m_{i}\otimes c_{i}$ for all $m\in M$ }

where $\{m_{i}\}$ are linearly independent over $k$ . Since $(\psi\otimes 1)\psi=(1\otimes\Delta)\psi$ , we
have that $C(M)$ is a subcoalgebra of $C$. One verifies immediately that if $M$

is finite dimensional then $C(M)$ is so and if $M_{1}\subseteqq M_{2}$ then $C(M_{1})\subseteqq C(M_{2})$ .
(1.8) PROPOSITION. (1) If $M$ is a simple righ $f$ C-comodule then $C(M)$ is

a simple subcoalgebra of $C$.
(2) Conversely, if $K$ is any simple subcoalgebra of $C$, there exists a simple

right C-comodule $M$ such that $C(M)=K$.
PROOF. (1) Regard $M$ as the left rational $c*$-module in natural way,

we claim that $($ann $M)^{\perp}\supseteqq C(M)$ . As we have seen in Proposition (1.5), (2),
$($ann $M)^{\perp}$ is a simple sub-coalgebra of $C$. Hence we have $($ann $M)^{\perp}=C(M)$

and so $C(M)$ is simple.
Let $\{m_{i}\}_{i=1,\ldots,n}$ be a basis for $M$ and denote $\psi(m_{i})=\sum_{j=1}^{n}m_{j}\otimes c_{fi}$ . Then

$C(M)$ coincides with the space spanned by $\{c_{ji}\}$ . If $f$ is in $annM$, then
$ 0=f\cdot m_{i}=\sum m_{j}\langle f, c_{ji}\rangle$ , for all $i$. This implies that $\langle f, c_{ji}\rangle=0$, for all $i,$ $j$,
which proves what we claimed above.

(2) LetMbea minimal right coideal contained in K. Since $\Delta(M)\subseteqq M\otimes K$,
we have $C(M)\subseteqq K$. Thus we conclude that we must have $C(M)=K$.

(1.9) COROLLARY. Let $C$ be a coalgebra. Then
(1) $C$ is the sum of $C(M)$ for all finite dimensional right C-comodules $M$.
(2) The coradical $R(C)$ of $C$ is the sum of $C(M)$ for all simple right

C-comodules $M$.
PROOF. (1) Let $h$ be in $C$ and write $\Delta(h)=\sum_{i=1}^{n}h_{i}\otimes g_{i}$ , where $\{h_{i}\}$ are linearly

independent over $k$ . The subspace $M$ spanned by $\{h_{i}\}$ is a finite dimensional
right C-comodule with $\psi=\Delta|M:M\rightarrow M\otimes C$. Then $C(M)$ contains the sub-
space spanned by $\{g_{i}\}$ . We have $h=(\epsilon\otimes 1)\Delta(h)=\sum\epsilon(h_{i})g_{i}\in C(M)$ , and this
shows (1). (2) follows immediately from (1) and Proposition (1.8).

\S 2. Pro-affine algebraic groups and Hopf algebras.

Throughout this section, we assume that the base field $k$ is algebraically
closed.

(2.1) Let $H$ be a Hopf algebra over $k$ , and let $H^{0}$ denote the dual Hopf



Decomposition theorem for Hopf algebras 437

algebra of $H$. We recall that its elements are those k-linear map $f;H\rightarrow k$

which annihilate some cofinite two-sided ideal in $H$. We say that the Hopf
algebra $H$ is reduced if it has no nilpotent elements other than $0$. If the
base field $k$ is of characteristic $0$, any (commutative) Hopf algebra is reduced
(cf. [3], Th. 13.1.2). It is important to note the fact that the category of
reduced Hopf algebras over $k$ is naturally anti-equivalent to the category
of pro-affine algebraic groups over $k$ (see [1]). Further, if $H$ is a reduced
Hopf algebra over $k$ , we have that the group algebra $kG(H^{0})$ is dense in $H^{*}$ ,
that is, $(kG(H^{0}))^{\perp}=(0)$ in $H$. Therefore (1.5) and a remark in (1.4) imply the
following:

PROPOSITION. Let $H$ be a reduced Hopf algebra over $k$ .
(1) $H$ is co-semi-simple if and only if every $ra$tional $kG(H^{0})$ -module is

completely reducible.
(2) $H$ is pointed if and only if all simple rational $kG(H^{0})$ -modules are

l-dimensional.
(2.2) REMARK. When $H$ is finitely generated as an algebra, $G(H^{0})$ is an

affine algebraic group. In this case the term “ a rational $kG(H^{0})- module$
’

coincides with the term “ a rational $G(H^{0})$ -module” for the affine algebraic
group $G(H^{0})$ .

(2.3) Let $G$ be a connected affine algebraic group, and $H$ its coordinate
ring. One sees immediately from Lie-Kolchin theorem that (1) $G$ is solvable
if and only if all simple representations of $G$ are l-dimensional; (2) $G$ is
unipotent if and only if all simple representations of $G$ are trivial; (3) $G$ is
a torus if and only if $H$ is co-semi-simple and pointed. Therefore, proposition
(2.1) leads to the following.

PROPOSITION. Let $G$ be a connected affine algebraic group and $H$ its co-
ordinate ring. Then in each cases (1), (2) and (3), the following three conditions
(a), (b) and (c) are equivalent each other.

(1) (a) $G$ is a torus, (b) $H$ is co-semi-simple and pointed, (c) $H=kG(H)$
(2) (a) $G$ is unipotent, (b) $H$ is irreducible, (c) $R(H)=k\cdot 1$ .
(3) (a) $G$ is solvable, (b) $H$ is pointed, (c) $R(H)$ is co-commutative.
PROOF. (3) If $H$ is pointed, then $R(H)=kG(H)$ . Hence $R(H)$ is co-

commutative. Conversely if $R(H)$ is co-commutative, then $R(H)$ is pointed
since $k$ is algebraically closed ([3], Lemma 8.0.1. $(c)$). Hence $H$ is pointed.

(2.4) DEFINITIONS. Let $H$ be $a$ reduced Hopf algebra over $k$ . We say
that the pro-affine algebraic group $G(H^{0})$ is linearly reductive if $H$ is co-semi-
simple, and connected if $H$ is an integral domain. Further $a$ connected pro-
affine algebraic group $G(H^{0})$ is called a torus (resp. to be unipotent) if $H$ is
co-semi-simple and pointed (resp. irreducible).
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\S 3. Coradical of a Hopf algebra.

(3.1) PROPOSITION. Let $H$ be a Hopf algebra over an algebraically closed
field of characteristic $0$. Then the coradical $R(H)$ is a sub-Hopf algebra of $H$.

PROOF. Let $K_{i}(i=1,2)$ be simple sub-coalgebras. From (1.8) there exist
simple right H-comodules $M_{i}(i=1,2)$ such that $C(M_{i})=K_{i}(i=1,2)$ , where
$C(M_{i})$ is in the sense of (1.7). Note that right H-comodule $M$ is simple if
and only if $M$ is simple as a $G(H^{0})$ -module, for $G(H^{0})$ is dense in $H^{*}$ . Since
the base field $k$ is of characteristic $0,$ $M_{1}\otimes M_{2}$ is semi-simple as a $G(H^{0})-$

module (see, [1], Th. 12.2). Therefore we have

$K_{1}\cdot K_{2}=C(M_{1})C(M_{2})=C(M_{1}\otimes M_{2})\subseteqq R(H)$ .
This means that $R(H)$ is a subalgebra of $H$. Now let $K$ be any simple sub-
coalgebra of $H$. Since the antipode $S$ of $H$ is anti-coalgebra map and involu-
tive $(S\circ S=1)$ , we have that $S(K)$ is simple. This implies that $S(R(H))\subseteqq R(H)$ .

(3.2) REMARK. It is not true in general that the coradical is a sub-Hopf
algebra. For instance, let $k$ be of characteristic $p(\neq 0)$ and consider the linear
algebraic group $SL_{2}(k)$ . Let $H$ be the coordinate ring of $SL_{2}(k)$ , then we can
denote it by

$H=k[x_{11}, x_{12}, x_{21}, x_{22}]/(\det x_{ij}-1)=k[\overline{x}_{11},\overline{x}_{12},\overline{x}_{21},\overline{x}_{22}]$

where $\overline{x}_{ij}$ is the class of $x_{if}$ modulo $(\det x_{ij}-1)$ . Let $C$ be the subspace
spanned by $\{\overline{x}_{11},\overline{x}_{12},\overline{x}_{21},\overline{x}_{22}\}$ . Then one verifies immediately that $C$ is a sub-
coalgebra of $H$ and $c*$ is isomorphic to the algebra $M_{2}(k)$ of the $2\times 2$ matrices
with coefficients in $k$ .

Thus $C$ is simple and hence $C\subset R(H)$ . Therefore $R(H)$ contains a
generator system of the algebra. If $R(H)$ is a subalgebra of $H$, we must
have $R(H)=H$, and hence $H$ is co-semi simple. This is a contradiction, for
$SL_{2}(k)$ is not completely reducible as an algebraic group.

(3.3) REMARK. Let $H$ be a Hopf algebra over a field $k$ and assume that
the coradical $R(H)$ is $a$ sub-Hopf algebra of $H$. We have not been able to
verify that under what condition, there is $a$ Hopf algebra map $q:H\rightarrow R(H)$

such that $q|_{R(H)}=id_{R(H)}$ . Recently, M.-H. Takeuchi [4] has proved the above
for a (commutative) Hopf algebra over a field of characteristic $0$ . His proof
is based on Hopf algebra theory and this gives a semi-direct decomposition
of affine algebraic groups over a field of characteristic $0$ into its unipotent
radical and $a$ linearly reductive subgroup. We shall show in the following
sections the corresponding theory in Hopf algebras.
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\S 4. Semi-direct products of Hopf algebras.

(4.1) Let $K,$ $L$ be Hopf algebras over a field $k$ (where $k$ is not necessarily
algebraically closed), $\sigma;L\rightarrow K\otimes L$ an algebra map. Then $(\sigma, K)$ is called a
Hopf action on $L$ if the following diagrams commute:

(HA1)

$L\underline{\sigma}K\otimes L$ $K\otimes L$

$K\otimes^{\sigma}LK\otimes K^{\sigma}\otimes L|\underline{\Delta\otimes 1}|$
$k\otimes^{\epsilon\bigotimes_{L}1}1_{//^{\sigma}}^{\backslash _{L}}$

(HA2)

$L^{\ovalbox{\tt\small REJECT}}\sigma K\otimes L$

$L\otimes^{\Delta}LK\otimes L\otimes K\otimes LK\otimes K\otimes L\otimes L|\underline{\sigma\otimes\sigma}\cdot\underline{1\otimes T\otimes 1}\rightarrow^{M\otimes 1\otimes 1}K\otimes L\otimes L1^{1\otimes\Delta}$

$L\underline{\sigma}K\otimes L$

$k=k\otimes kK\otimes k1^{\epsilon}\underline{u\otimes 1}1^{1\otimes\epsilon}$

where the tensor product $\otimes is$ always understood to be ‘ over $k$ ‘, and $T$ is
the twist map $a\otimes b\vdash\Rightarrow b\otimes a$ .

$(L, \sigma)$ is a left K-comodule by the condition (HA1). As for the structure
of K-comodule of $L$ , the condition (HA2) is equivalent to say that $\Delta:L\rightarrow L\otimes L$

and $\epsilon:L\rightarrow k$ are K-comodule maps.
(4.2) Let $(\sigma, K)$ be a Hopf action on $L$ . The semi-direct (co-smash) product

of $L$ with $K$, written $LbK$, is a Hopf algebra defined as follows:
(1) As an algebra $L_{U}^{I}K$ is $L\otimes K$. We shall often denote $l\otimes k$ by $lbk$

$(l\in L, k\in K)$ .
(2) The coalgebra structure is defined by

$\Delta_{LK}$ :
$L\otimes K\rightarrow L\otimes L\otimes K\otimes K\rightarrow L\otimes K\otimes L\otimes K\otimes K\underline{\Delta\otimes\Delta}\underline{1\otimes\sigma\otimes 1\otimes}1$

$1\otimes 1\otimes T\otimes 1$ $1\otimes M\otimes 1\otimes 1$

$-\rightarrow L\otimes K\otimes K\otimes L\otimes K-L\otimes K\otimes L\otimes K$ ,
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$\epsilon\otimes\epsilon$

$\epsilon_{LK}$ : $L\otimes K-k\otimes k=k$ .
(3) The antipode is defined by

$S_{L\}K}$ : $L\otimes K\rightarrow^{S_{L}\otimes S_{K}}L\otimes KK\otimes L\otimes K\underline{\sigma\otimes 1}$

$T\otimes 1$ $1\otimes S_{K}\otimes 1$ $1\otimes M_{K}$

$\rightarrow L\otimes K\otimes K-L\otimes K\otimes K\rightarrow L\otimes K$ .
Note that for Hopf algebras which are the coordinate rings of Iaffine

algebraic groups, the above Hopf algebra $LbK$ is the coordinate ring of the
semi-direct product of two affine algebraic groups whose coordinate rings are
respectively $L$ and $K$ under the action corresponding to $(\sigma, K)$ .

(4.3) We prove that $LbK$ is a Hopf algebra.
Since $\Delta_{L’ K}$ is an algebra map and $L\otimes K$ is generated by $\{l\otimes 1,1\otimes k|$

$l\in L,$ $k\in K$ }, to show the co-associativity of $\Delta_{L’ K}$ , it suffices to show the
following two equalities:

(a) $(1\otimes 1\otimes\Delta_{L’ K})\Delta_{L\downarrow K}(1\otimes k)=(\Delta_{L’ K}\otimes 1\otimes 1)\Delta_{L\downarrow K}(1\otimes k)$ for all $k\in K$ ,

(b) $(1\otimes 1\otimes\Delta_{L’ K})\Delta_{L’ K}(l\otimes 1)=(\Delta_{LbK}\otimes 1\otimes 1)\Delta_{L’ K}(l\otimes 1)$ for all $l\in L$ .
(a) is immediate.

To verify (b), we use the notation
$\sigma(l)=\sum l_{(k)}\otimes l_{(t)}\in K\otimes L$ .

From (HA2),

$(1\otimes\Delta)\sigma=(M\otimes 1\otimes 1)(1\otimes T\otimes 1)(\sigma\otimes\sigma)\Delta$ .
Hence we have

$(1\otimes 1\otimes\Delta)(1\otimes\sigma)\Delta(l)=(1\otimes M\otimes 1\otimes 1)(1\otimes 1\otimes T\otimes 1)(1\otimes\sigma\otimes\sigma)(1\otimes\Delta)\Delta(l)$

and
$\Sigma l_{(1)}\otimes l_{(2)(k)}\otimes\iota(2)(l)(1)\otimes\iota(2)(l)(2)=\Sigma l_{(1)}\otimes l_{(2)(k)}l_{(\theta)(k)}\otimes l_{(2)(\iota)}\otimes l_{(3)(\iota)}$ .

Applying $ 1\otimes 1\otimes 1\otimes\sigma$ to both sides of the above equation, we have

$\sum l_{(1)}\otimes l_{(2)(k)}\otimes\iota(2)(t)(1)\otimes\iota(2)(\downarrow)(2)(k)\otimes l_{(2)(l)(2)(t)}$

$=\Sigma l_{(1)}\otimes l_{(2)(k)}l_{\underline{(\$)(k)}}\otimes l_{(2)(l)}\otimes l_{(\$)(t)(k)}\otimes l_{\underline{(s)(t)(l)}}$

$=\Sigma l_{(1)}\otimes l_{(2)(k)}l_{(3)(k)(1)}\otimes l_{(2)(l)}\otimes l_{\underline{(S)(k)(2)}}\otimes l_{\underline{(3)(l)}}$ (by (HA1)).

This shows that the equation (b) holds.
We can also prove the property of the antipode, as follows.
(4.4) LEMMA. $(1\otimes S_{L})\sigma=\sigma S_{L}$

$i$. $e$ . $\sum l_{(k)}\otimes S(l_{(l)})=\sum S(l)_{(k)}\otimes S(l)_{(\downarrow)}$ , for all $l\in L$ .
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PROOF. We note that $\sigma$ is an element of Alg $(L, K\otimes L)$ . For $f,$ $ g\in$

Alg $(L, K\otimes L)$ , we define the convolution product $f*g=M_{K\otimes L}(f\otimes g)\Delta_{L}$ . Thus
Alg $(L, K\otimes L)$ has a group structure under this product. The unit of
Alg $(L, K\otimes L)$ is $u_{K\emptyset L}\epsilon_{L}$ , and for $f\in Alg(L, K\otimes L)$ , the inverse of $f$ is $fS_{t}$

(see [3], Th. 4.0.5). Then our task is to show $(1\otimes S_{L})\sigma*\sigma=u_{K\otimes L}\epsilon_{L}$ . Now
$(1\otimes S_{L})\sigma*\sigma=(M_{K}\otimes M_{L})(1\otimes T\otimes 1)(1\otimes S_{L}\otimes 1\otimes 1)(\sigma\otimes\sigma)\Delta_{L}$

$=(M_{K}\otimes M_{L})(1\otimes 1\otimes S_{L}\otimes 1)(1\otimes T\otimes 1)(\sigma\otimes\sigma)\Delta_{L}$

$=(M_{K}\otimes M_{L}(S_{L}\otimes 1))(1\otimes T\otimes 1)(\sigma\otimes\sigma)\Delta_{L}$

$=(1\otimes M_{L}(S_{L}\otimes 1))(M_{K}\otimes 1\otimes 1)(1\otimes T\otimes 1)(\sigma\otimes\sigma)\Delta_{L}$

$=(1\otimes M_{L}(S_{L}\otimes 1))(1\otimes\Delta_{L})\sigma$ by (HA2)

$=(1\otimes u_{L}\epsilon_{L})\sigma$ $S_{L}$ an antipode

$=(1\otimes u_{L})(u_{K}\otimes 1)\epsilon_{L}$ by (HA2)

$=u_{KeL}\epsilon_{L}$ .
Thus the Lemma is proved.
(4.5) LEMMA. For $l\in L$ ,

$S(l_{(1)(l)})l_{(2)(l)}\otimes S(l_{(1)(k)})S(l_{(2)(k)})=\epsilon(l)(1\otimes 1)$ .
PROOF. By (HA2),

$\Sigma l_{(k)}\otimes l_{(k)(1)}\otimes l_{(l)(2)}=\Sigma l_{(1)(k)}l_{(2)(k)}\otimes l_{(1)(l)}\otimes l_{(2)(l)}$ .
To both sides of the above equation, apply $(1\otimes M_{L})(S_{K}\otimes S_{L}\otimes 1)$ and get

$\Sigma S(l_{(k)})\otimes S(l_{(l)(1)})l_{(l)(2)}=\Sigma S(l_{(1)(k)})S(l_{(2)(k)})\otimes S(l_{(1)(\downarrow)})l_{(2)(l)}$ .
Now, we have

$\sum S(l_{(k)})\otimes S(l_{(\iota)(1)})l_{(l)(2)}=\Sigma S(l_{(k)})\otimes\epsilon(l_{(l)})1=\epsilon(l)(1\otimes 1)$ .
(4.6) PROPOSITION.

$M_{LK}(S_{LK}\otimes 1_{L\downarrow K})\Delta_{LK}=u_{L\}K}\epsilon_{L\downarrow K}$ .
PROOF. For $l\in L,$ $k\in K$,

$M_{L\downarrow K}(S_{L\}K}\otimes 1_{LK})\Delta_{LK}(tbk)$

$=\Sigma S(l_{(1)(l)})l_{(2)(l)}bS(l_{(1)(k)})S(l_{(2)(k)})S(k_{(1)})k_{(2)}$ by (4.4)

$=\epsilon_{LK}(lbk)\cdot 1_{LK}$ by (4.5).

This means that $S_{L\}K}$ is the antipode of the bialgebra $LbK$.
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\S 5. Decomposition theorem for Hopf algebras.

Let $H,$ $K$ be Hopf algebras over $a$ field $k,$ $i:K\rightarrow H$ be an injective Hopf
algebra map, and $p;H\rightarrow K$ be a Hopf algebra map such that $p\circ i=1_{K}$ . Then
we shall prove that $H$ is isomorphic to $LbK$ as Hopf algebras for a Hopf
algebra $L$ and a Hopf action $(\sigma, K)$ on $L$ which will be defined in (5.7) and
(5.8).

(5.1) Let $\rho:H\rightarrow H\otimes K$ be the composite $(1\otimes p)\Delta$ . Then $(H, \rho)$ is a right
K-comodule.

PROOF. It is obvious since $p$ is a coalgebra map.
(5.2) Let $\omega:H\otimes K\rightarrow H$ be the composite $M(1\otimes i)$ . Then $(H, \omega)$ is a right

K-module.
(5.3) $(H;\omega, \rho)$ is a right K-Hopf module.
PROOF. We must show that $(\omega\otimes M)(1\otimes T\otimes 1)(\rho\otimes\Delta)=\rho\omega$ .

$(\omega\otimes M)(1\otimes T\otimes 1)(\rho\otimes\Delta)(h\otimes k)$

$=\sum(\omega\otimes M)(h_{(1)}\otimes k_{(1)}\otimes p(h_{(2)})\otimes k_{(2)})$

$=\sum h_{(1)}i(k_{(1)})\otimes p(h_{(2)})k_{(2)}$

$=\rho\omega(h\otimes k)$ for all $h\in H,$ $k\in K$ .
(5.4) Let $L=\{h\in H|\rho(h)=h\otimes 1\}$ , then $L$ is $a$ subalgebra of $H$. Further,

the map $\varphi:L\otimes K\rightarrow H(l\otimes k\vdash\rightarrow l\cdot i(k))$ is an algebra isomorphism.
PROOF. Immediately from the structure theorem of Hopf modules ([3],

Theorem 4.1.1).

(5.5) $L$ is a left coideal of $H$. That is, $\Delta(L)\subseteqq H\otimes L$ .
PROOF. See [3], Lemma 16.1.1.
(5.6) REMARKS. (a) If $M$ is any left coideal of $H$ and $p|M=\epsilon|M$, then

$M\subseteqq L$ .
(b) The inverse map $\psi$ of $\varphi$ is given by the composite $(P\otimes 1)\rho$ , where

$P$ is the map defined by the composite $\omega(1\otimes S)\rho$ , which maps $H$ onto $L$ . It
follows immediately from the definition of $P$ that $P|L=1_{L}$ and $P(i(k))=\epsilon(k)1_{H}$

for all $k\in K$.
(c) If $H$ is co-commutative, then $S(L)\subseteqq L$ . Hence $L$ is a sub-Hopf algebra

of $H$ and so $\varphi$ is a Hopf algebra isomorphism.
PROOF of (c). Let $l$ be in $L$ . Then

$(S\otimes 1)(1\otimes p)\Delta(l)=S(l)\otimes 1$ .
On the other hand,

$(S\otimes 1)(1\otimes p)\Delta(l)=(S\otimes P)\Delta(l)$

$=(S\otimes pSS)\Delta(l)$ ($SS=1$ by commutativity of $H$)
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$=(1\otimes pS)\Delta(S(l))$ ( $S$ is a coalgebra map)

$=(1\otimes S_{K}l)\Delta(S(l))$ ( $p$ is a Hopf algebra map).

Hence we have $(1\otimes S_{K}p)\Delta(S(l))=S(l)\otimes 1$ . Applying $1\otimes S_{K}$ to the both sides
of the equation,

$(1\otimes p)\Delta(S(l))=S(l)\otimes 1$ .
Hence we have $S(l)\in L$ .

(5.7) Let $\Delta_{L},$
$\epsilon_{L}$ and $S_{L}$ be the maps $(P\otimes 1)\Delta_{H},$ $\epsilon|L$ and $P\circ S_{H}$ respectively.

Then $(L;\Delta_{L}, \epsilon_{L}, S_{L})$ is a Hopf algebra and it is isomorphic to $H/Hi(K^{+})$ as
Hopf algebras, where $K^{+}=Ker\epsilon_{K}$ .

PROOF. By (b) of (5.6), we have $KerP=Hi(K^{+})$ . Hence $L\cong H/Hi(K^{+})$

as algebras. Moreover, the Hopf algebra structure of $L$ coincides with the
natural quotient Hopf algebra structure of $H/Hi(K^{+})$ .

(5.8) Let $\sigma:L\rightarrow K\otimes L$ be the composite $(p\otimes 1)\Delta_{H}$ . Then $(\sigma, K)$ is $a$ Hopf
action on $L$ .

PROOF. (HA1) is obvious. We now prove (HA2).

$(M\otimes 1\otimes 1)(1\otimes T\otimes 1)(\sigma\otimes\sigma)\Delta_{L}(l)$

$=\sum(M\otimes 1\otimes 1)(1\otimes T\otimes L)(a\otimes a)(l_{(1)}iSp(l_{(2)})\otimes l_{(3)})$

$=\Sigma(M\otimes 1\otimes 1)(1\otimes T\otimes 1)(p(l_{(1)})piSp(l_{(4)})\otimes l_{(2)}iSp(l_{(3)})\otimes P(l_{(6)})\otimes l_{(6)})$

$=\Sigma p(l_{(1)})Sp(l_{(4)})p(l_{(5)})\otimes l_{(2)}iSp(l_{(8)})\otimes l_{(6)}$

$=\Sigma p(l_{(1)})\epsilon(l_{(4)})\otimes l_{(2)}iSp(l_{(8)})\otimes l_{(6)}$

$=\Sigma p(l_{(1)})\otimes l_{(2)}iSp(l_{(\$)})\otimes l_{(4)}$

$=\sum p(l_{(1)})\otimes\Delta_{L}(l_{(2)})$

$=(1\otimes\Delta_{L})\sigma(l)$ for all $l\in L$ .
Further

$(1\otimes\epsilon)\sigma(l)=\sum p(l_{(1)})\epsilon(l_{(2)})=p(l)=\epsilon(l)1_{K}$ .
(5.9) THEOREM. Under the above situation, the algebra isomorphism $\varphi$ of

$L\otimes K$ onto $H$ is a Hopf algebra isomorphism of $LbK$ onto $H$.
PROOF. It remains to show that $\varphi$ is a coalgebra map.

$(\varphi\otimes\varphi)\Delta_{LK}(lbk)=\Sigma(\varphi\otimes\varphi)(l_{(1)}iSp(l_{(2)})bp(l_{(3)})k_{(1)}\otimes l_{(4)}bk_{(2)})$

$=\Sigma l_{(1)}iSp(l_{(2)})iS(l_{(\S)})i(k_{(1)})\otimes l_{(4)}i(k_{(2)})$

$=\Sigma l_{(1)}\epsilon(l_{(2)})i(k_{(1)})\otimes l_{(\S)}i(k_{(2)})$

$=\sum l_{(1)}i(k_{(1)})\otimes l_{(2)}i(k_{(2)})$

$=\Delta_{H}\varphi(lbk)$ .
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(5.10) EXAMPLE. Let $X,$ $Y$ be indeterminates over a field $k$ . Let $H=$

$k[X, X^{-1}, Y]$ . $H$ has a Hopf algebra structure determined by $\Delta(X)=X\otimes X$,
$\Delta(Y)=X\otimes Y+Y\otimes X^{-1},$ $\epsilon(X)=1,$ $\epsilon(Y)=0,$ $S(X)=X^{-1},$ $S(Y)=-Y$. Then $K=$

$k[X, X^{-1}]$ is a sub-Hopf algebra of $H$. Let $p;H\rightarrow K$ be a Hopf algebra map
defined by $p(x)=X,$ $p(Y)=0$. Clearly we have $p\circ i=1_{K}$ .

By easy computations, $L=k[Z]$ where $Z=XY$. Here the Hopf algebra
structure of $L$ is given by $\Delta_{L}(Z)=1\otimes Z+Z\otimes 1,$ $\epsilon_{L}(Z)=0,$ $S_{L}(Z)=-Z$. And
the Hopf action $(\sigma, K)$ on $L$ is given by $\sigma(Z)=X^{2}\otimes Z$.

We know that the Hopf algebra $H$ is the coordinate ring of affine algebraic

group $G=\{$( $0x$ $y_{-1}x$ ) $|x\in k-\{0\},$ $y\in k\}$ . Further, $K$ is the coordinate ring

of the multiplicative group $G_{m},$ $L$ is that of the additive group $G_{a}$ and $G$ is
a semi-direct product of $G_{m}$ and $G_{a}$ .

(5.11) THEOREM. Let $H$ be a Hopf algebra over an algebraically closed
field $k$ of characteristic $0$ , then there is an irreducible Hopf algebra $L$ such that
$H$ is the co-smash product of $L$ with $R(H)$ .

PROOF. In view of remark (3.3) and theorem (5.9), it remains to show
that $L=H/Hi(K^{+})$ is irreducible where $K=R(H)$ . Let $q:H\rightarrow R(H)$ (resp.
$\gamma:L\rightarrow R(L))$ be a Hopf algebra projection of $H$ (resp. $L$) onto $R(H)$ (resp.
$R(L))$ . Let $p$ be the natural quotient map from $H$ onto $L$ . It follows that
there is a surjective Hopf algebra map $s:R(H)\rightarrow R(L)$ such that $\gamma\circ p=s\circ q$ .
Since $K=k\cdot 1+K^{i}$ and $Kerp=Hi(K^{+}),$ $R(L)$ must coincide with $k\cdot 1$ . This
means that $L$ is irreducible.

\S 6. Exact sequences of reduced Hopf algebras.

In this section we consider the relations between algebraic subgroups
(or quotient groups) of a pro-affine algebraic group and their Hopf algebras.
Throughout this section we assume that the base field $k$ is algebraically closed.

(6.1) Let $H$ be a reduced Hopf algebra and $K$ be a sub-Hopf algebra.
Let $i:K\rightarrow H$ be the injective Hopf algebra map. We put $L=H/Hi(K^{+})$ , which
is a Hopf algebra since $Hi(K^{+})$ is a Hopf ideal of $H$. Here, $L$ is not neces-
sarily reduced in general. We say that $K$ is admissible if $L$ is reduced. In
this case $L$ is called the cokernel of $i$ , and the sequence

$0\rightarrow K\rightarrow^{i}H\rightarrow^{p}L\rightarrow 0$

is called an exact sequence of reduced Hopf algebras, where $p$ is the quotient
map. Then we have an exact sequence of pro-affine algebraic groups;

$p^{0}$ $i^{0}$

$1\rightarrow G(L^{0})\rightarrow G(H^{0})\rightarrow G(K^{0})\rightarrow 1$ .
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(As for affine case, see, for example [1] Th. 6.4.)
(6.2) Let $H,$ $L$ be reduced Hopf algebras and $p;H\rightarrow L$ , be a surjective

Hopf algebra map. We shall identify $G(L^{0})$ with the subgroup of $G(H^{0})$ by
$p^{0}$ . Let $\rho$ (resp. $\sigma$) be the composite $(1\otimes p)\Delta_{H}$ (resp. $(p\otimes 1)\Delta_{H}$). Then $(H, \rho)$

(resp. $(H,$ $\sigma)$) is a right (resp. left) L-comodule. The rational $G(L^{0})$-module
structure determined by $\rho$ , resp. $\sigma$ , is given by

$\langle y, xf\rangle=\langle yx, f\rangle$ , resp. $\langle y, fx\rangle=\langle xy, f\rangle$

for all $x\in G(L^{0})$ , $f\in H$ and $y\in G(H^{0})$ .
Now we put $H^{L}=\{h\in H|\rho(h)=h\otimes 1\}$ and $LH=\{h\in H|\sigma(h)=1\otimes h\}$ . Then,
it is easy to see that $H^{L}=$ { $f\in H|xf=f$ for all $x\in G(L^{0})$ } and $LH=\{f\in H|$

$fx=f$ for all $x\in G(L^{0})$ }.
(6.3) PROPOSITION. The followings are equivalent;
(a) $G(L^{0})$ is normal in $G(H^{0})$ ,
(b) $H^{L}=^{L}H$.
PROOF. $(a)\Rightarrow(b)$ : If $x\in G(L^{0})$ and $y\in G(H^{0})$ we have yxy $=x^{\prime}\in G(L^{0})$ .

Therefore,
$\langle y, xf\rangle=\langle yx, f\rangle=\langle x^{\prime}y, f\rangle=\langle y, fx^{\prime}\rangle$ .

Hence $f\in LH\Leftrightarrow f\in H^{L}$ .
$(b)\Rightarrow(a)$ : We first show that $H^{L}(=^{L}H)$ is a sub-Hopf algebra of $H$.

Since the antipode $S$ of $H$ is an anti-coalgebra map from $H$ onto itself, we
know from the proof of (5.6), (c) that $S(H^{L})=^{L}H$. Further, $H^{L}(=^{L}H)$ is a
sub-coalgebra, for from (5.5), $H^{L}$ is a left coideal and $LH$ is a right coideal.
Thus we have that $H^{L}$ is a sub-Hopf algebra of $H$.

Since $H$ is the union of the family of its finitely generated sub-Hopf
algebras, we may assume without loss of generalities that $H$ is finitely gener-
ated. Then we have $H^{L}$ is finitely generated, because of the known fact that
every sub-Hopf algebra of any finitely generated reduced Hopf algebra is
finitely generated (see for example [1], Th. 6.4). Thus the set of right cosets
$G(H^{0})/G(L^{0})$ is an affine variety, with $H^{L}$ as its coordinate ring. If $x\in G(L^{0})$ ,
$y\in G(H^{0})$ and $f\in H^{L}=LH$, we have $\langle y, f\rangle=\langle xy, f\rangle=\langle yx, f\rangle$ . Since $H^{L}$

separates the elements of $G(H^{0})/G(L^{0})$ , we have $yx\in G(L^{0})xy=G(L^{0})y$, so
$(b)\Rightarrow(a)$ is proved.

We say that $L$ is a co-normal quotient if it satisfies (a) or (b) of the above
Proposition.

(6.4) PROPOSITION. (1) Let
$0\rightarrow K\rightarrow^{i}H\rightarrow^{p}L\rightarrow 0$

be an exact
sequence of reduced Hopf algebras. Then

$K\cong LH=H^{L}$ .
(2) Let $H$ and $L$ be reduced Hopf algebras, and $p;H\rightarrow L$ be a co-normal
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$quo$ tient. We put $LH=K$. Then
$i$ $p$

$0\rightarrow K\rightarrow H\rightarrow L\rightarrow 0$

is an exact sequence of reduced Hopf algebras, where $i;K\rightarrow H$ is the inclusion
map.

PROOF. (1) Let $f$ be an element of $K$. Then we have
$(p\otimes 1)\Delta_{H}i(f)=(p\otimes 1)(i\otimes i)\Delta_{K}(f)=(1\otimes i)(\epsilon_{K}\otimes 1)\Delta_{K}(f)=1\otimes i(f)$ ,

hence $i(f)\in LH$. This means that $i(K)\subseteqq LH$. Similarly we have $i(K)\subseteqq H^{L}$ .
Conversely, let $f$ be an element of $LH$. This means that $(p\otimes 1)\Delta(f)=1\otimes f$.

Applying $ 1\otimes\epsilon$ to the both sides of the equation, we have $\epsilon(f)=p(f)$ , and it
follows that $(LH)^{+}\subseteqq Kerp$ . Hence we have that $H(LH)^{+}=Hi(K^{+})$ and $G((LH)^{0})$

$=G(K^{0})$ . This means that $i(K)=^{L}H$

(2) If $f\in(LH)^{+}=K^{+}$ , then we have $f\in Kerp$ , and also $Hi(K)\subseteqq Kerp$ .
Thus the map $p$ induces a natural epimorphism $\varphi$ of $L^{\prime}=H/Hi(K^{+})$ into $L$ .
Further it induces a monomorphism of $G(L^{0})$ into $G(L^{\prime 0})$ . On the other hand,
it follows from (1) that $L’ H=K=^{L}H$. Hence we have $G(L^{0})=G(L^{J0})$ . Since
$L$ is reduced, it follows that $L=L^{\prime}$ .

The proposition shows that any exact sequence of pro-affine algebraic
groups arises from that of reduced Hopf-algebras defined in (6.1).

$i$ $p$

(6.5) Let $0\rightarrow K\rightarrow H-L\rightarrow 0$ be an exact sequence of reduced
Hopf algebras. The sequence is said to be split if there exists a Hopf algebra
map $q:H\rightarrow K$ such that $q\circ i=id_{K}$ . In this case, the corresponding exact
sequence of pro-affine algebraic groups splits, $i.e$ .

$p^{0}$ $i^{0}$

$1\rightarrow G(L^{0})\rightarrow G(H^{0})\leftarrow\rightarrow G(K^{0})q^{0}\rightarrow 1$
.

(6.6) Let
$0\rightarrow K\leftarrow\rightarrow Hi\rightarrow^{p}L\rightarrow 0$

be a split exact sequence of reduced
$q$

Hopf-algebras. Then, from (5.4) and (6.4), by means of the K-comodule
structure on $H$ defined by $q,$ $L$ is isomorphic as algebras to $H^{K}$ and $H$ is
isomorphic as algebras to $H^{K}\otimes^{L}H$. Further, from (5.9), we can define canon-
ically a Hopf-action of $K$ on $L$ so that $H$ is isomorphic to $LbK$ as Hopf
algebras.

(6.7) REMARK. M.-H. Takeuchi [5] has also discussed the correspondence
between sub-Hopf algebras of a commutative (not necessarily reduced) Hopf
algebras over a field and its normal Hopf ideals.
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