Periodic maps and circle actions

Dedicated to Professor Shigeo Sasaki on his 60th birthday

By Fuichi UCHIDA

(Received Sept. 4, 1971)

§ 0. Introduction.

Fix a compact Lie group G and a family \mathcal{F} of subgroups of G. We consider all (φ, M) where M is a closed oriented smooth manifold, and $\varphi \colon G \times M \to M$ is an orientation preserving smooth G-action so that for $x \in M$ the isotropy subgroup

$$G_x = \{g \in G, \ \varphi(g, x) = x\}$$

is conjugate to a member of \mathcal{F} . Then a bordism group $\mathcal{O}_n(G; \mathcal{F})$ of \mathcal{F} -free oriented G-manifolds is defined.

Let S^1 be the unit circle in the field of complex numbers and regard it a compact Lie group. Let $Z_m = \{t \in S^1, t^m = 1\}$ be the cyclic subgroup of order m.

Given an oriented Z_m -manifold (φ, M) , consider a cartesian product $S^1 \times M$ and let Z_m act on $S^1 \times M$ by

$$t \cdot (z, x) = (zt^{-1}, \varphi(t, x))$$

for $t \in Z_m$, $z \in S^1$ and $x \in M$. Denote by $S^1 \times_{Z_m} M$ the orbit manifold and by [z, x] the point of $S^1 \times_{Z_m} M$ represented by (z, x) of $S^1 \times M$. Then there is a circle action $\bar{\varphi}$ on $S^1 \times_{Z_m} M$ given by

$$\bar{\varphi}(\lambda, [z, x]) = [\lambda z, x].$$

If (φ, M) is an oriented \mathcal{F} -free Z_m -manifold, then $(\bar{\varphi}, S^1 \times_{Z_m} M)$ is \mathcal{F} -free S^1 -manifold and this induces an extension homomorphism

$$E: \mathcal{O}_n(Z_m; \mathcal{F}) \longrightarrow \mathcal{O}_{n+1}(S^1; \mathcal{F}).$$

On the other hand, let \mathcal{F} be a family of subgroups of S^1 , denote by \mathcal{F}_m the family of subgroups of Z_m given by

$$\mathcal{F}_m = \{Z_m \cap H, H \in \mathcal{F}\}.$$

Let (φ, M) be an oriented \mathcal{F} -free S^1 -manifold, then the restriction $(\varphi \mid Z_m, M)$ is an oriented \mathcal{F}_m -free Z_m -manifold and this restriction induces a homomorphism

$$R: \mathcal{O}_n(S^1; \mathcal{F}) \longrightarrow \mathcal{O}_n(Z_m; \mathcal{F}_m).$$

In this paper we consider these homomorphisms for some family \mathcal{F} . And our main results are the following:

THEOREM 5.2. Let m be an odd integer, then the restriction homomorphism

$$R: \mathcal{O}_n(S^1; \{Z_m, \{1\}\}) \longrightarrow \mathcal{O}_n(Z_m; \{Z_m, \{1\}\})$$

is a null homomorphism.

THEOREM 5.4. Let m be an odd integer, then the extension homomorphism

$$E: \mathcal{O}_n(Z_m; \{Z_m, \{1\}\}) \longrightarrow \mathcal{O}_{n+1}(S^1; \{Z_m, \{1\}\})$$

is injective.

THEOREM 6.1. Let m be an odd integer, then the restriction homomorphism

$$R: \mathcal{O}_n(S^1; \{S^1, \{1\}\}) \longrightarrow \mathcal{O}_n(Z_m; \{Z_m, \{1\}\})$$

is injective.

First of all we recall some well known elementary property of the bordism group of G-manifolds (§ 1) and the bordism group of G-vector bundles (§ 2). Next we study vector bundles with particular circle actions (§ 4). Then we can prove the main theorems (§ 5—§ 6) and Ω -module structure of $\mathcal{O}_*(S^1; \{Z_m, \{1\}\})$.

Finally we consider principal circle actions on a product of spheres (§ 7) and we have the following:

THEOREM 7.3. Let m, n be positive integers, then any principal smooth circle action on $S^{2m+1} \times S^{2n+1}$ bords as a principal smooth circle action.

$\S 1$. The bordism of G-manifolds.

Fix a compact Lie group G, a compact oriented G-manifold (φ, M) consists of a compact oriented smooth manifold M and an orientation preserving smooth G-action $\varphi: G \times M \to M$ on M.

- 1.1. Given families $\mathcal{F} \supset \mathcal{F}'$ of subgroups of G, a compact oriented G-manifold (φ, M) is $(\mathcal{F}, \mathcal{F}')$ -free if the following conditions are satisfied:
 - (1) if $x \in M$, then the isotropy subgroup

$$G_x = \{g \in G, \varphi(g, x) = x\}$$

is conjugate to a member of \mathcal{F} ,

(2) if $x \in \partial M$, then G_x is conjugate to a member of \mathcal{F}' .

If \mathcal{F}' is the empty family, then necessarily ∂M is empty and M is closed. In this case we call (φ, M) \mathcal{F} -free.

Given (φ, M) , define $-(\varphi, M) = (\varphi, -M)$, with the structure precisely the same as (φ, M) except for orientation. Also define $\partial(\varphi, M) = (\varphi, \partial M)$. Note that if (φ, M) is $(\mathcal{F}, \mathcal{F}')$ -free, then $(\varphi, \partial M)$ is \mathcal{F}' -free. Define (φ, M) and

 (φ', M') to be isomorphic if there exists an equivariant orientation preserving diffeomorphism of M onto M'.

An $(\mathcal{F}, \mathcal{F}')$ -free compact oriented n-dimensional G-manifold (φ, M) will be said to bord if there exists an $(\mathcal{F}, \mathcal{F}')$ -free compact oriented (n+1)-dimensional G-manifold (ψ, W) together with a regularly embedded compact n-manifold M_1 in ∂W with M_1 invariant under the G-action ψ , such that (ψ, M_1) is isomorphic to (φ, M) , and such that G_x is conjugate to a member of \mathcal{F}' for $x \in \partial W - M_1$. Also M_1 is required to have orientation induced by that of W.

Also (φ_1, M_1) is bordant to (φ_2, M_2) if the disjoint union $(\varphi_1, M_1) + (\varphi_2, -M_2)$ bords. The bordism is an equivalence relation on the class of $(\mathcal{F}, \mathcal{F}')$ -free compact oriented n-dimensional G-manifolds (cf. [2], § 21; [3], p. 139). Denote by $[\varphi, M]$ the equivalence class represented by (φ, M) .

The bordism classes constitute an abelian group $\mathcal{O}_n(G; \mathcal{F}, \mathcal{F}')$ under the operation of disjoint union. If \mathcal{F}' is empty, denote the above group by $\mathcal{O}_n(G; \mathcal{F})$. The direct sum

$$\mathcal{O}_*(G; \mathcal{F}, \mathcal{F}') = \bigoplus_n \mathcal{O}_n(G; \mathcal{F}, \mathcal{F}')$$

is naturally an Ω -module where Ω is the oriented Thom cobordism ring.

1.2. Suppose now that $\mathcal{F} \supset \mathcal{F}'$ are fixed families of subgroups of G. Every \mathcal{F}' -free G-manifold is also \mathcal{F} -free, this inclusion induces a homomorphism

$$\alpha: \mathcal{O}_n(G; \mathcal{F}') \longrightarrow \mathcal{O}_n(G; \mathcal{F}).$$

Similarly every \mathcal{F} -free G-manifold is also $(\mathcal{F}, \mathcal{F}')$ -free, inducing a homomorphism

$$\beta: \mathcal{O}_n(G: \mathcal{F}) \longrightarrow \mathcal{O}_n(G: \mathcal{F}, \mathcal{F}')$$
.

Finally there is a homomorphism

$$\partial: \mathcal{O}_n(G; \mathcal{F}, \mathcal{F}') \longrightarrow \mathcal{O}_{n-1}(G; \mathcal{F}')$$

given by $\partial [\varphi, M] = [\varphi, \partial M]$. Then the following sequence is exact (cf. [3], p. 140):

$$\longrightarrow \mathcal{O}_n(G; \mathcal{F}') \xrightarrow{\alpha} \mathcal{O}_n(G; \mathcal{F}) \xrightarrow{\beta} \mathcal{O}_n(G; \mathcal{F}, \mathcal{F}') \xrightarrow{\partial} \mathcal{O}_{n-1}(G; \mathcal{F}') \xrightarrow{\alpha}.$$

1.3. In particular, set

$$\Omega_n(G) = \mathcal{O}_n(G; \{\{1\}\}),$$

$$SF_n(G) = \mathcal{O}_n(G; \{G, \{1\}\})$$

and call the bordism group of principal oriented G-manifolds ([2], p. 50) and of semi-free oriented G-manifolds [7] respectively.

§ 2. The bordism of G-vector bundles.

An oriented G-vector bundle (φ, ξ) over a compact manifold consists of a smooth vector bundle $\xi: E(\xi) \to B(\xi)$ over a compact smooth manifold $B(\xi)$ whose total space $E(\xi)$ is oriented and an orientation preserving smooth G-action $\varphi: G \times E(\xi) \to E(\xi)$ as a group of bundle maps. Such an oriented G-vector bundle (φ, ξ) is called to be of dimension (n, k) if the dimension of $B(\xi)$ is n and the fiber dimension of ξ is k.

- **2.1.** Let H be a closed normal subgroup of G and \mathcal{F} a family of subgroups of G satisfying the following condition:
 - (*) if $K \in \mathcal{G}$, then $H \cap K$ is a proper subgroup of H.

An oriented G-vector bundle (φ, ξ) is of type (H, \mathcal{F}) if the following conditions are satisfied:

- (1) if $x \in E(\xi)$ is a zero vector, then the isotropy subgroup $G_x = H$,
- (2) if $x \in E(\xi)$ is not a zero vector, then the isotropy subgroup G_x is conjugate to a member of \mathcal{F} .

Given (φ, ξ) , define $-(\varphi, \xi) = (\varphi, -\xi)$, with the structure precisely the same as (φ, ξ) except for orientation of $E(\xi)$. Also define $\partial(\varphi, \xi) = (\varphi, \xi | \partial B(\xi))$. Define (φ, ξ) and (φ', ξ') to be isomorphic if there exists an equivariant orientation preserving diffeomorphism of $E(\xi)$ onto $E(\xi')$ as a bundle map.

An oriented (n, k)-dimensional G-vector bundle (φ, ξ) over a closed manifold of type (H, \mathcal{F}) will be said to bord if there exists an oriented (n+1, k)-dimensional G-vector bundle (φ, η) over a compact manifold of type (H, \mathcal{F}) , such that $\partial(\psi, \eta)$ is isomorphic to (φ, ξ) .

Also (φ_1, ξ_1) is bordant to (φ_2, ξ_2) if the disjoint union $(\varphi_1, \xi_1) + (\varphi_2, -\xi_2)$ bords. The bordism is an equivalence relation on the class of oriented (n, k)-dimensional G-vector bundles over a closed manifold of type (H, \mathcal{F}) . Denote by $[\varphi, \xi]$ the bordism class represented by (φ, ξ) .

The bordism classes constitute an abelian group $B_n^k(G; H, \mathcal{F})$ under the operation of disjoint union. Set

$$\mathcal{M}_s(G; H, \mathcal{F}) = \bigoplus_{k+n=s} B_n^k(G; H, \mathcal{F}).$$

The direct sum

$$B^{k}(G; H, \mathcal{F}) = \bigoplus_{n} B_{n}^{k}(G; H, \mathcal{F})$$

and

$$\mathcal{M}_*(G; H, \mathcal{F}) = \bigoplus_s \mathcal{M}_s(G; H, \mathcal{F})$$

are naturally Ω -modules.

2.2. Let (φ, M) be a compact oriented G-manifold which is $(\mathcal{F} \cup \{H\}, \mathcal{F})$ -free. Then each connected component of the set of all point $x \in M$, whose isotropy subgroup is H, is a regularly embedded G-invariant submanifold

without boundary in $M-\partial M$. Let $\nu(M)$ be a normal bundle of this submanifold in M, then $\nu(M)$ is an oriented G-vector bundle of type (H, \mathcal{F}) with respect to the induced G-action. This correspondence induces a homomorphism

$$\nu: \mathcal{O}_n(G: \mathcal{F} \cup \{H\}, \mathcal{F}) \longrightarrow \mathcal{M}_n(G: H, \mathcal{F}).$$

LEMMA 2.2. Let H be a closed normal subgroup of G and \mathcal{F} a family of subgroups of G satisfying (*). Then the above homomorphism ν is an isomorphism of graded Ω -modules.

The proof is easy (cf. [3], Lemma 5.2).

§ 3. Periodic maps and circle actions.

We now begin the study of relation of periodic maps and circle actions. Let S^1 be the unit circle in the field of complex numbers and regard it a compact Lie group. Let $Z_m = \{t \in S^1 | t^m = 1\}$ be the cyclic subgroup of order m.

3.1. Let \mathcal{F} be a family of subgroups of S^1 , denote by \mathcal{F}_m the family of subgroups of Z_m given by

$$\mathcal{F}_m = \{Z_m \cap H \mid H \in \mathcal{F}\}$$
.

Let (φ, M) be an oriented $(\mathcal{F}, \mathcal{F}')$ -free S^1 -manifold, then the restriction $(\varphi | Z_m, M)$ is an oriented $(\mathcal{F}_m, \mathcal{F}'_m)$ -free Z_m -manifold and this restriction induces a homomorphism

$$R: \mathcal{O}_n(S^1; \mathcal{F}, \mathcal{F}') \longrightarrow \mathcal{O}_n(Z_m; \mathcal{F}_m, \mathcal{F}'_m).$$

Then the following diagram is commutative:

$$\mathcal{O}_{n}(S^{1}; \mathcal{F}') \xrightarrow{\alpha} \mathcal{O}_{n}(S^{1}; \mathcal{F}) \xrightarrow{\beta} \mathcal{O}_{n}(S^{1}; \mathcal{F}, \mathcal{F}') \xrightarrow{\partial} \mathcal{O}_{n-1}(S^{1}; \mathcal{F}')$$

$$\downarrow \mathbf{R} \qquad \qquad \downarrow \mathbf{R} \qquad \qquad \downarrow \mathbf{R} \qquad \qquad \downarrow \mathbf{R}$$

$$\mathcal{O}_{n}(Z_{m}; \mathcal{F}'_{m}) \xrightarrow{\alpha} \mathcal{O}_{n}(Z_{m}; \mathcal{F}_{m}) \xrightarrow{\beta} \mathcal{O}_{n}(Z_{m}; \mathcal{F}_{m}, \mathcal{F}'_{m}) \xrightarrow{\partial} \mathcal{O}_{n-1}(Z_{m}; \mathcal{F}'_{m}).$$

3.2. Given an oriented Z_m -manifold (φ, M) , consider a cartesian product $S^1 \times M$ and let Z_m act on $S^1 \times M$ by

$$t \cdot (z, x) = (zt^{-1}, \varphi(t, x))$$
 for $t \in \mathbb{Z}_m$.

Denote by $S^1 \times_{z_m} M$ the orbit manifold and by [z, x] the point of $S^1 \times_{z_m} M$ represented by (z, x) of $S^1 \times M$. There is a circle action $\bar{\varphi}$ on $S^1 \times_{z_m} M$ given by

$$\bar{\varphi}(\lambda, \lceil z, x \rceil) = \lceil \lambda z, x \rceil$$
.

If (φ, M) is $(\mathcal{F}, \mathcal{F}')$ -free Z_m -manifold, then $(\bar{\varphi}, S^1 \times_{Z_m} M)$ is $(\mathcal{F}, \mathcal{F}')$ -free S^1 -manifold and this induces an extension homomorphism

$$E: \mathcal{O}_n(Z_m; \mathcal{G}, \mathcal{G}') \longrightarrow \mathcal{O}_{n+1}(S^1; \mathcal{G}, \mathcal{G}').$$

Then the following diagram is commutative:

$$\mathcal{O}_{n}(Z_{m}; \mathcal{F}') \xrightarrow{\alpha} \mathcal{O}_{n}(Z_{m}; \mathcal{F}) \xrightarrow{\beta} \mathcal{O}_{n}(Z_{m}; \mathcal{F}, \mathcal{F}') \xrightarrow{\partial} \mathcal{O}_{n-1}(Z_{m}; \mathcal{F}')$$

$$\downarrow \mathbf{E} \qquad \qquad \downarrow \mathbf{E} \qquad \qquad$$

3.3. Set $QF_n(m) = \mathcal{O}_n(S^1; \{Z_m, \{1\}\})$, and call the bordism group of quasifree circle actions of type (m). Then for example the following sequences are exact:

by (1.2) and Lemma 2.2.

§ 4. Vector bundles with circle action.

Throughout the rest of this paper, let m=2k+1 be a fixed odd integer, $\zeta = \exp(2\pi\sqrt{-1}/m)$ and P(k) be the set of all positive integers mutually prime to 2k+1 and smaller than or equal to k.

- **4.1.** First we consider oriented S^1 -vector bundles of type $(Z_m, \{\{1\}\})$. Let $\xi: E(\xi) \to X$ be a smooth vector bundle with smooth circle action $\varphi: S^1 \times E(\xi) \to E(\xi)$ as group of bundle maps such that
 - (1) if $v \in E(\xi)$ is a zero vector, then the isotropy subgroup at v is Z_m ,
- (2) if $v \in E(\xi)$ is not a zero vector, then the isotropy subgroup at v is $\{1\}$, the identity subgroup.

Let $T: E(\xi) \to E(\xi)$ be a diffeomorphism given by

$$T(v) = \varphi(\zeta, v)$$
.

Then,

LEMMA 4.1. There is a unique complex vector bundle structure \mathbf{J} on ξ and there are linear subbundles $\xi_s : E(\xi_s) \to X$ of ξ for $s \in P(k)$ such that

- (a) $J(E(\xi_s)) \subset E(\xi_s)$,
- (b) $T(v) = \cos\left(\frac{2s\pi}{m}\right)v + \sin\left(\frac{2s\pi}{m}\right)J(v)$ for $v \in E(\xi_s)$,
- (c) ξ is the Whitney sum of ξ_s ,
- (d) J is compatible with the circle action φ , i.e.

$$\varphi(z, \mathbf{J}(v)) = \mathbf{J}(\varphi(z, v))$$
 for $z \in S^1$ and $v \in E(\xi)$.

PROOF. By Theorems (38.3) and (38.4) of [2] and by Lemma 1.6.4 of [1], there is a unique complex vector bundle structure J on ξ and there are linear subbundles $\xi_s: E(\xi_s) \to X$ of ξ for $1 \le s \le k$ satisfying the above conditions (a), (b) and (c). If $s \in P(k)$, then ξ_s is a zero vector bundle by the above property (2). Finally, let $J_z(v) = \varphi(z^{-1}, J(\varphi(z, v)))$ for $z \in S^1$, then J_z is a complex vector bundle structure on ξ satisfying (a), (b) and (c). Thus $J_z = J$ by the uniqueness of a complex vector bundle structure and the condition (d) is satisfied.

By this lemma, the base manifold X is canonically oriented so that the orientation of the total space $E(\xi)$ is given by the complex vector bundle structure of ξ and the orientation of X.

4.2. Let $\sigma: S^1 \times E(\xi) \to E(\xi)$ be a smooth circle action given by

$$\sigma(\exp\sqrt{-1}\theta, v) = (\cos s\theta)v + (\sin s\theta)J(v)$$

for $v \in E(\xi_s)$. Then the circle actions φ and σ are commutative, and let $\Psi: S^1 \times E(\xi) \to E(\xi)$ be a smooth map given by

$$\Psi(\exp\sqrt{-1}\,\theta,\,v) = \sigma(\exp(-\sqrt{-1}\,\theta/m),\,\varphi(\exp(\sqrt{-1}\,\theta/m),\,v))$$

for $0 \le \theta \le 2\pi$ and $v \in E(\xi)$. Then Ψ is a principal circle action on $E(\xi)$ by definition of σ and Ψ .

 Ψ is compatible with the complex vector bundle structure J on ξ and $\Psi(S^1 \times E(\xi_s)) \subset E(\xi_s)$. Moreover Ψ induces a principal circle action ψ on the base space X. Considering Ψ -orbit space of $E(\xi)$, we have a complex vector bundle $\bar{\xi}$ over ψ -orbit space \bar{X} of X. Consequently we have the following result by the usual way (cf. [2], § 38; [3], 7.4).

LEMMA 4.2.

- (a) $B_n^{2t}(S^1; Z_m, \{\{1\}\}) \cong \bigoplus \Omega_{n-1}(BS^1 \times BU(r_1) \times BU(r_2) \times \cdots \times BU(r_k))$, where the sum is taken over all sequences (r_1, r_2, \cdots, r_k) with sum t and $r_s = 0$ if $s \notin P(k)$,
 - (b) $B_n^{2t+1}(S^1; Z_m, \{\{1\}\}) = 0$,
- (c) $B_n^{2t}(Z_m; Z_m, \{\{1\}\}) \cong \bigoplus \Omega_n(BU(r_1) \times BU(r_2) \times \cdots \times BU(r_k))$, where the sum is taken over all sequences (r_1, r_2, \cdots, r_k) with sum t and $r_s = 0$ if $s \notin P(k)$,
 - (d) $B_n^{2t+1}(Z_m; Z_m, \{\{1\}\}) = 0$.
- **4.3.** By the isomorphisms of Lemma 2.2 and Lemma 4.2, we have isomorphisms of Ω -modules

$$\theta: \Omega_*(BS^1) \otimes_{\mathbf{Q}} (\oplus \Omega_*(BU(r_1) \times \cdots \times BU(r_k))) \cong \mathcal{O}_*(S^1; \{Z_m, \{1\}\}, \{\{1\}\}),$$

$$\theta: \bigoplus \Omega_*(BU(r_1) \times \cdots \times BU(r_k)) \cong \mathcal{O}_*(Z_m; \{Z_m, \{1\}\}, \{\{1\}\})$$
,

where the sums are taken over all sequences (r_1, r_2, \dots, r_k) with $r_s = 0$ if $s \in P(k)$.

We now interpret these isomorphisms for the later use. Let $\varphi: S^1 \times M \to M$ be a principal smooth circle action on an oriented closed manifold M and $\xi: E(\xi) \to X$ be a smooth complex vector bundle over an oriented closed manifold X. For $s \in P(k)$ let $\xi_s: E(\xi_s) \to X$ be a complex vector subbundle of ξ and assume $\xi = \bigoplus \xi_s$. Let $D(\xi)$ be a total space of associated disk bundle of ξ and $\phi: S^1 \times D(\xi) \to D(\xi)$ be a smooth circle action given by

$$\psi(z, v) = z^s v$$
 for $z \in S^1$ and $v \in E(\xi_s) \cap D(\xi)$.

Now we obtain a smooth circle action Φ on $M \times D(\xi)$ given by

$$\Phi(z, (x, v)) = (\varphi(z^m, x), \psi(z, v))$$
 for $z \in S^1$, $x \in M$ and $v \in D(\xi)$.

Then the first isomorphism θ takes $[\varphi, M] \otimes [\xi]$ into $[\Phi, M \times D(\xi)]$ and the second isomorphism θ takes $[\xi]$ into $[\psi | Z_m, D(\xi)]$.

4.4. Next we consider the following diagram:

$$\bigoplus \Omega_{*}(BU(r_{1}) \times \cdots \times BU(r_{k})) \xrightarrow{\theta} \mathcal{O}_{*}(Z_{m}; \{Z_{m}, \{1\}\}, \{\{1\}\}))$$

$$\downarrow E_{1}$$

$$\Omega_{*}(BS^{1}) \otimes_{g} (\bigoplus \Omega_{*}(BU(r_{1}) \times \cdots \times BU(r_{k}))) \xrightarrow{\theta} \mathcal{O}_{*}(S^{1}; \{Z_{m}, \{1\}\}, \{\{1\}\}))$$

$$\downarrow R_{1}$$

$$\bigoplus \Omega_{*}(BU(r_{1}) \times \cdots \times BU(r_{k})) \xrightarrow{\theta} \mathcal{O}_{*}(Z_{m}; \{Z_{m}, \{1\}\}, \{\{1\}\}).$$

By definition of the restriction homomorphism R_1 and the extension homomorphism E_1 and by the interpretation of θ ,

$$\theta^{-1}\mathbf{R}_1\theta(\llbracket\varphi,M\rrbracket\otimes\llbracket\xi\rrbracket)=\llbracketM\rrbracket\cdot\llbracket\xi\rrbracket,$$

$$\theta^{-1}\mathbf{E}_1\theta(\llbracket\xi\rrbracket)=\llbracket\mu,S^1\rrbracket\otimes\llbracket\xi\rrbracket$$

where [M] is the oriented bordism class in Ω represented by M and $[\mu, S^1]$ is the bordism class in $\Omega_*(BS^1)$ represented by the left translation $\mu: S^1 \times S^1 \to S^1$.

Since M admits a principal circle action φ , [M] = 0 in Ω and therefore \mathbf{R}_1 is a null-homomorphism. On the other hand, $\Omega_*(\mathbf{B}S^1)$ is a free Ω -module and $[\mu, S^1]$ is a member of standard Ω -basis of $\Omega_*(\mathbf{B}S^1)$, thus \mathbf{E}_1 is a monomorphism.

§ 5. Periodic maps and quasi-free circle actions.

Let $\tilde{\Omega}_n(Z_m)$ be a subgroup of $\Omega_n(Z_m)$ generated by the all bordism classes of principal Z_m -action (φ, M) such that [M] = 0 in Ω_n , then

$$\Omega_n(Z_m) = \Omega_n \cdot [\mu, Z_m] \oplus \tilde{\Omega}_n(Z_m)$$

where $\mu: Z_m \times Z_m \to Z_m$ is a left translation (cf. [2], p. 90). Let $\mu: S^1 \times S^{2n+1} \to S^{2n+1}$ be a principal circle action given by

$$\mu(\lambda, (z_0, z_1, \dots, z_n)) = (\lambda z_0, \lambda z_1, \dots, \lambda z_n)$$

in complex coordinates. Then $\{ [\mu, S^{2n+1}], n=0, 1, 2, \cdots \}$ is an Ω -base of the free Ω -module $\Omega_*(S^1)$ and $\{ [\mu | Z_m, S^{2n+1}], n=0, 1, 2, \cdots \}$ generates the Ω -module $\tilde{\Omega}_*(Z_m)$.

- **5.1.** By the same argument as in ([2], \S 34), we have the following result. LEMMA 5.1. Let m be an odd integer, then
- (1) the abelian group $\tilde{\Omega}_n(Z_m)$ is 0 for n even, and of order m^t for n odd where $t = \operatorname{rank} \Omega_0 + \cdots + \operatorname{rank} \Omega_n$,
 - (2) the sequence

$$0 \longrightarrow \mathcal{Q}_n \xrightarrow{\times [\mu, Z_m]} SF_n(Z_m) \longrightarrow \mathcal{O}_n(Z_m; \{Z_m, \{1\}\}, \{\{1\}\}) \longrightarrow \tilde{\mathcal{Q}}_{n-1}(Z_m) \longrightarrow 0$$
 is exact.

5.2. We now consider the restriction homomorphism

$$R: QF_n(m) \longrightarrow SF_n(Z_m)$$
.

LEMMA. Let $[\varphi, M] \in QF_n(m)$, then

- (1) $[M] \in \text{Tor } \Omega_n$, the torsion subgroup of Ω_n ,
- (2) $R(\llbracket \varphi, M \rrbracket) = \llbracket M \rrbracket \cdot \llbracket \mu, Z_m \rrbracket$.

PROOF. Let p>m be any odd prime, then the restriction $\varphi|Z_p$ gives a principal Z_p -action on M. Therefore $[M] \in p \cdot \Omega_n$ by Theorem 19.4 [2]. Consequently $[M] \in \text{Tor } \Omega_n$. On the other hand the image of R is contained in the kernel of β in the following diagram:

$$QF_{n}(m) \xrightarrow{\qquad} \mathcal{O}_{n}(S^{1}; \{Z_{m}, \{1\}\}, \{\{1\}\})$$

$$\downarrow \mathbf{R} \qquad \qquad \downarrow \mathbf{R}_{1}$$

$$Q_{n} \xrightarrow{\qquad} SF_{n}(Z_{m}) \xrightarrow{\qquad} \mathcal{O}_{n}(Z_{m}; \{Z_{m}, \{1\}\}, \{\{1\}\}),$$

since R_1 is a null-homomorphism by 4.4. Thus there exists an element $[M_1] \in \Omega_n$ such that

$$[M_1] \cdot [\mu, Z_m] = R([\varphi, M]).$$

Forgetting the Z_m -actions, we have

$$m \cdot [M_1] = [M] \in \text{Tor } \Omega_n$$
.

Therefore $[M_1] = [M]$, since m is odd and each element of Tor Ω_n is of order 2.

THEOREM 5.2. Let m be an odd integer, then the restriction homomorphism

$$R: QF_n(m) \longrightarrow SF_n(Z_m)$$

is a null-homomorphism.

PROOF. This follows from the above lemma (2) and the fact that if a

closed oriented smooth manifold M admits a stationary point free circle action with no isotropy subgroups of even order then [M] = 0 in Ω ([5], p. 48). q. e. d.

5.3. We now consider the forgetting homomorphism

$$\alpha: \Omega_n(S^1) \longrightarrow QF_n(m)$$
.

LEMMA 5.3. Let m be an odd integer, then the forgetting homomorphism

$$\alpha: \ \Omega_n(S^1) \longrightarrow QF_n(m)$$

is injective and its image is a direct summand as Ω -module.

PROOF. On his notation ([5], Lemma 2), there is a commutative diagram:

where i is injective and its image is a direct summand as Ω -module. This assures the result. q.e.d.

COROLLARY. Let m=2k+1 be an odd integer, then there is an isomorphism of Ω -modules

$$QF_*(m) \cong \Omega_*(BS^1) \oplus (\oplus \Omega_*(BS^1 \times BU(r_1) \times BU(r_2) \times \cdots \times BU(r_k)),$$

where the sum is taken over all sequences (r_1, r_2, \dots, r_k) with $r_s = 0$ if $s \in P(k)$.

5.4. Next we consider the extension homomorphism

$$E: SF_n(Z_m) \longrightarrow QF_{n+1}(m)$$
.

THEOREM 5.4. Let m be an odd integer, then the extension homomorphism

$$E: SF_n(Z_m) \longrightarrow QF_{n+1}(m)$$

is injective.

PROOF. In the following commutative diagram:

$$\begin{array}{cccc}
\Omega_{n} & \xrightarrow{\times \lceil \mu, \ Z_{m} \rceil} & SF_{n}(Z_{m}) & \longrightarrow & \mathcal{O}_{n}(Z_{m}; \{Z_{m}, \{1\}\}, \{\{1\}\})) \\
\downarrow & \times \lceil \mu, \ S^{1} \rceil & \downarrow \mathbf{E} & \downarrow \mathbf{E}_{1} \\
\Omega_{n+1}(S^{1}) & \longrightarrow & QF_{n+1}(m) & \longrightarrow & \mathcal{O}_{n+1}(S^{1}; \{Z_{m}, \{1\}\}, \{\{1\}\}),
\end{array}$$

the homomorphisms $\times [\mu, Z_m]$ and $\times [\mu, S^1]$ are injective and E_1 is injective by 4.4 and α is injective by Lemma 5.3. Moreover the horizontal lines are exact. Therefore E is injective.

COROLLARY. $E: SF_n(Z_m) \to QF_{n+1}(m)$ is an isomorphism if and only if n=0, 1, 3 and 5.

PROOF. If E is an isomorphism, then $\times [\mu, S^1]$ is an isomorphism in the above diagram. Therefore $\Omega_{n-2i}=0$ for any i>0, from the Ω -module structure of $\Omega_*(S^1)$, and this is only the case for n=0,1,3 and 5. On the other hand E is an isomorphism for n=0,1,3 and 5 by direct calculation. We leave it to the reader.

§ 6. Periodic maps and semi-free circle actions.

We have considered the bordism group of semi-free circle actions in [7] and obtained the following result.

LEMMA. The sequence

$$0 \longrightarrow SF_n(S^1) \stackrel{\beta}{\longrightarrow} \mathcal{O}_n(S^1\,;\,\{S^1,\,\{1\}\},\,\{\{1\}\}) \stackrel{\partial}{\longrightarrow} \Omega_{n-1}(S^1) \longrightarrow 0$$

is exact and there is an isomorphism of Ω -modules

$$\theta: \bigoplus_{r} \Omega_*(BU(r)) \longrightarrow \mathcal{O}_n(S^1; \{S^1, \{1\}\}, \{\{1\}\})$$

which takes $[\xi]$ into $[\phi, D(\xi)]$ the bordism class of scalar multiplication on the associated disk bundle.

THEOREM 6.1. Let m be an odd integer, then the restriction homomorphism

$$R: SF_n(S^1) \longrightarrow SF_n(Z_m)$$

is injective.

PROOF. In the following commutative diagram:

$$SF_{n}(S^{1}) \xrightarrow{\beta} \mathcal{O}_{n}(S^{1}; \{S^{1}, \{1\}\}, \{\{1\}\}) \xleftarrow{\theta} \bigoplus \Omega_{*}(BU(r))$$

$$\downarrow \mathbf{R} \qquad \downarrow \mathbf{R}_{1}$$

$$SF_{n}(Z_{m}) \xrightarrow{\beta} \mathcal{O}_{n}(Z_{m}; \{Z_{m}, \{1\}\}, \{\{1\}\}) \xleftarrow{\theta} \bigoplus \Omega_{*}(BU(r_{1}) \times \cdots \times BU(r_{k}))$$

$$\cong \bigoplus \Omega_{*}(BU(r_{1}) \times \cdots \times BU(r_{k}))$$

where m=2k+1, the composition $\theta^{-1}R_1\theta$ is injective by the interpretations of θ and R_1 . In fact $\theta^{-1}R_1\theta$ is the induced homomorphism by the inclusion of BU(r) into the first factor of $BU(r_1)\times \cdots \times BU(r_k)$. So $\beta R=R_1\beta$ is injective by the above lemma. Therefore R is injective.

§ 7. Principal circle action on a product of spheres.

Let $\mu: S^1 \times S^{2m+1} \times S^{2n+1} \to S^{2m+1} \times S^{2n+1}$ be a smooth circle action on $S^{2m+1} \times S^{2n+1}$ given by

$$\mu(\lambda, (u_0, \dots, u_m), (v_0, \dots, v_n)) = ((\lambda^a u_0, \dots, \lambda^a u_m), (\lambda^b v_0, \dots, \lambda^b v_n))$$

in complex coordinates where a, b are integers. In particular, if a is prime to b, then this is a principal circle action. And this represents a null class

in $\Omega_*(S^1)$ by ([5], Lemma 2).

In this section we will state more general result.

LEMMA 7.1. Let m, n be positive integers and let

$$\pi: S^{2m+1} \times S^{2n+1} \longrightarrow M$$

be a principal S1-bundle over a closed smooth manifold M. Then

$$H^*(M; \mathbb{Z}_2) \cong \bigwedge (x) \otimes \mathbb{Z}_2[c]/(c^{k+1})$$

as a ring over \mathbb{Z}_2 , where c is a modulo 2 reduction of the first Chern class of the principal S^1 -bundle π , k=m or k=n, $\deg x=2(m+n-k)+1$ and $S_q^1c=0$.

PROOF. This follows, by direct calculation, from Poincaré duality of M and Thom-Gysin sequence ([4], Theorem 21). We leave it to the reader. q. e. d.

LEMMA 7.2. Let M be the same as in Lemma 7.1. Then each odd dimensional Stiefel-Whitney class of M vanishes.

PROOF. Let $V_i \in H^i(M; \mathbb{Z}_2)$ be a class characterized by equation

$$S_a^i \alpha = V_i \cup \alpha$$
 for all $\alpha \in H^{\dim M-i}(M; \mathbb{Z}_2)$,

and let $V = V_0 + V_1 + \cdots + V_i + \cdots$, then $S_q V = W(M)$, the total Stiefel-Whitney class of M by Wu's formula ([4], Theorem 17).

Since $S_q^1 c = 0$, we have $S_q^{2s+1}(c^{m+n-s}) = 0$ by the property of Steenrod operations ([6], Lemma 2.5 of Ch. I). Therefore

$$V_{2s+1} = 0$$
, $V_{2s} = a_s c^s$ $(a_s = 0 \text{ or } a_s = 1)$

by the ring structure of $H^*(M; \mathbb{Z}_2)$. Consequently,

$$W(M) = \sum_{s,t} a_s S_q^t(c^s)$$

$$= \sum_{s,t} a_s S_q^{2t}(c^s)$$

$$= \sum_{s,t} a_s {s \choose t} c^{s+t}.$$

This shows that $W_{2s+1}(M) = 0$ for any s.

q. e. d.

THEOREM 7.3. Let m, n be positive integers, then any principal smooth circle action on $S^{2m+1} \times S^{2n+1}$ bords in $\Omega_*(S^1)$.

PROOF. The orbit manifold M is odd dimensional and each odd dimensional Stiefel-Whitney class of M vanishes by Lemma 7.2. Hence all bordism Stiefel-Whitney numbers of this principal circle action vanish. And all bordism Pontrjagin numbers also vanish. Therefore this principal circle action bords by Theorem 17.5 of [2].

Department of Mathematics
Osaka University

References

- [1] M. F. Atiyah, K-theory, Benjamin, 1967.
- [2] P.E. Conner and E.E. Floyd, Differentiable Periodic Maps, Springer-Verlag, 1964.
- [3] P.E. Conner and E.E. Floyd, Maps of odd period, Ann. of Math., 84 (1966), 132-156.
- [4] J. Milnor, Lectures on Characteristic Classes, 1957.
- $[5_{\bullet}^{"}]$ E. Ossa, Fixpunktfreie S¹-Aktionen, Math. Ann., 186 (1970), 45-52.
- [6] N.E. Steenrod, Cohomology Operations, Princeton, 1962.
- [7] F. Uchida, Cobordism groups of semi-free S^1 and S^3 -actions, Osaka J. Math., 7 (1970), 345-351.