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§0. Introduction.

Fix a compact Lie group G and a family & of subgroups of G. We con-
sider all (¢, M) where M is a closed oriented smooth manifold, and ¢: GXM—M
is an orientation preserving smooth G-action so that for x = M the isotropy
subgroup

G.=1{geG, ¢(g, x)=1x}
is conjugate to a member of ¥. Then a bordism group O,(G; F) of F-free
oriented G-manifolds is defined.

Let S! be the unit circle in the field of complex numbers and regard it a
compact Lie group. Let Z,={t=S?, t™=1} be the cyclic subgroup of order m.

Given an oriented Z,-manifold (¢, M), consider a cartesian product S*XM

and let Z,, act on S*XM by
t-(z, x)= (2t ¢(t, X))

for te Z,, z€S* and x M. Denote by S'X,M the orbit manifold and by
{z, x] the point of S'X ;,M represented by (z, x) of S*xM. Then there is a
circle action @ on S*'X z,M given by
(1, [z, x])=[1z, x].
If (p, M) is an oriented F-free Z,-manifold, then (@, S*X 5, M) is F-free S'-
manifold and this induces an extension homomorphism
E: 0.Zn; F)—> OnsiS*; F).

On the other hand, let & be a family of subgroups of S!, denote by %,
the family of subgroups of Z, given by
Let (¢, M) be an oriented F-free S'-manifold, then the restriction (¢}Z,, M)

is an oriented Z,-free Z,-manifold and this restriction induces a homo-
morphism
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R: On(sl; g’)_—’On(Zm; gm)'
In this paper we consider these homomorphisms for some family ¥. And
our main results are the following:
THEOREM 5.2. Let m be an odd integer, then the restriction homomorphism

R: 04S*; {Zn, {1}}) —> Ou(Zn; {Zn, {1}})
1s a null homomorphism.
THEOREM 5.4. Let m be an odd integer, then the extension homomorphism
E: 0,Zn; {Zn {1}}) —> 0nsi(S; {Zn, {1}})
is injective.
THEOREM 6.1. Let m be an odd integer, then the restriction homomorphism
R: 0/S*; {S}, {1}}) — 0x(Zn; {Zn, {1}
s injective.

First of all we recall some well known elementary property of the bordism
group of G-manifolds (§ 1) and the bordism group of G-vector bundles (§ 2).
Next we study vector bundles with particular circle actions (§4). Then we
can prove the main theorems (§5—§6) and £2-module structure of O«(S*;
{Zn, {1}I]).

Finally we consider principal circle actions on a product of spheres (§ 7>
and we have the following:

THEOREM 7.3. Let m, n be positive integers, then any principal smooth circle
action on S*™+1x S bords as a principal smooth circle action.

§1. The bordism of G-manifolds.

Fix a compact Lie group G, a compact oriented G-manifold (¢, M) consists
of a compact oriented smooth manifold M and an orientation preserving
smooth G-action ¢: GXM—M on M.

1.1. Given families & D 9’ of subgroups of G, a compact oriented G-
manifold (¢, M) is (F, F’)-free if the following conditions are satisfied :

(1) if x= M, then the isotropy subgroup

G:.=1{g8€G, (g, x)= x}
is conjugate to a member of &,

(2) if x=0M, then G, is conjugate to a member of .

If &’ is the empty family, then necessarily dM is empty and M is closed.
In this case we call (¢, M) F-free.

Given (¢, M), define —(p, M)=(¢p, —M), with the structure precisely the
same as (¢, M) except for orientation. Also define d(p, M)= (¢, dM). Note
that if (¢, M) is (F, F')-free, then (¢, 0M) is F’-free. Define (¢, M) and
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(¢’, M") to be isomorphic if there exists an equivariant orientation preserving
diffeomorphism of M onto M’.

An (g, F')-free compact oriented n-dimensional G-manifold (¢, M) will be
said to bord if there exists an (F, F/)-free compact oriented (n-1)-dimensional
G-manifold (¢, W) together with a regularly embedded compact n-manifold
M, in 0W with M, invariant under the G-action ¢, such that (¢, M;) is iso-
morphic to (¢, M), and such that G, is conjugate to a member of &’ for
xe0W—M, Also M, is required to have orientation induced by that of W.

Also (¢;, M,) is bordant to (¢,, M,) if the disjoint union (¢;, M;)+ (., —M,)
bords. The bordism is an equivalence relation on the class of (&, F')-free
compact oriented n-dimensional G-manifolds (cf.[2], §21; [3], p. 139). Denote
by [¢, M] the equivalence class represented by (¢, M).

The bordism classes constitute an abelian group 0,(G; &, ) under the
operation of disjoint union. If &’ is empty, denote the above group by
O.(G; F). The direct sum

ox(G; F, EZ”)Z@O,L(G; g, F')
is naturally an £2-module where 2 is the oriented Thom cobordism ring.
1.2. Suppose now that ¥ DO F’ are fixed families of subgroups of G.
Every %’-free G-manifold is also <%-free, this inclusion induces a homo-
morphism
a: OG; F)—0/(G; F).

Similarly every <%-free G-manifold is also (Z, ¥’)-free, inducing a homo-
morphism

B: 0.G; F)—>0(G; F, F).
Finally there is a homomorphism
0: OG; F, F')—>0,4(G; F)

given by o[o, M1=[¢, 0M]. Then the following sequence is exact (cf. [3],
p. 140):

e 0uG F) S 0GB L G 1 F, FYr 0rn(Gs T
1.3. In particular, set
2,6)=0,G; {11,
SFAG)=04(G; G, {1}})

and call the bordism group of principal oriented G-manifolds (2], p. 50) and
of semi-free oriented G-manifolds respectively.
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§2. The bordism of G-vector bundles.

An oriented G-vector bundle (¢, £) over a compact manifold consists of
a smooth vector bundle &: E(£)— B(§) over a compact smooth manifold B(&)
whose total space E(£) is oriented and an orientation preserving smooth
G-action ¢:GXE(E)—E(§) as a group of bundle maps. Such an oriented
G-vector bundle (¢, &) is called to be of dimension (n, k) if the dimension of
B(&) is n and the fiber dimension of & is 4.

2.1. Let H be a closed normal subgroup of G and & a family of subgroups
of G satisfying the following condition:

(*) if Ke &, then HN K is a proper subgroup of H.

An oriented G-vector bundle (¢, &) is of type (H, &) if the following con-
ditions are satisfied :

(1) if xe E(&) is a zero vector, then the isotropy subgroup G,=H,

(2) if x< E(&) is not a zero vector, then the isotropy subgroup G, is
conjugate to a member of &.

Given (¢, &), define —(p, §)=(p, —§), with the structure precisely the
same as (@, &) except for orientation of E(§). Also define d(¢, &) =(p, £|0B(&).
Define (¢, &) and (¢’, &) to be isomorphic if there exists an equivariant
orientation preserving diffeomorphism of E(§) onto E(¢’) as a bundle map.

An oriented (n, k)-dimensional G-vector bundle (¢, £) over a closed mani-
fold of type (H, ¥) will be said to bord if there exists an oriented (n-+1, k)-
dimensional G-vector bundle (¢, 7) over a compact manifold of type (H, &),
such that d(¢, ») is isomorphic to (¢, &).

Also (¢y, &) is bordant to (¢, &,) if the disjoint union (¢;, §)+(ps, —&2)
bords. The bordism is an equivalence relation on the class of oriented (n, k)-
dimensional G-vector bundles over a closed manifold of type (H, &). Denote
by [¢, &] the bordism class represented by (¢, &).

The bordism classes constitute an abelian group BXG ; H, #F) under the
operation of disjoint union. Set

(G H, )= D BXG; H, F).

=8

The direct sum
B¥G; H, $)=®BXG ; H, F)

n

and
M(G ; H, F)=D MG ; H, F)

are naturally £2-modules.
2.2. Let (¢, M) be a compact oriented G-manifold which is (F\J {H}, F)-

free. Then each connected component of the set of all point x= M, whose
isotropy subgroup is H, is a regularly embedded G-invariant submanifold
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without boundary in M—odM. Let v(M) be a normal bundle of this sub-
manifold in M, then v(M) is an oriented G-vector bundle of type (H, &)
with respect to the induced G-action. This correspondence induces a homo-

morphism
v: 0.G; FIY{H}, F)—> M(G; H, F).

LEMMA 2.2. Let H be a closed normal subgroup of G and F a family of
subgroups of G satisfying (x). Then the above homomorphism v is an iso-
morphism of graded 2-modules.

The proof is easy (cf. [3], Lemma 5.2).

§3. Periodic maps and circle actions.

We now begin the study of relation of periodic maps and circle actions.
Let S* be the unit circle in the field of complex numbers and regard it a
compact Lie group. Let Z,={t< S*|t™=1} be the cyclic subgroup of order m.

3.1. Let & be a family of subgroups of S, denote by &, the family of
subgroups of Z, given by

Fn={Z.N"NH|Hes F}.

Let (¢, M) be an oriented (&, F’)-free S'-manifold, then the restriction
(o| Zn, M) is an oriented (F,, Fn)-free Z,-manifold and this restriction induces
a homomorphism

R: On(sl;gy g,)_%on(zm;g;m; g;n)-

Then the following diagram is commutative :

a 0
OS*; F) —> 0,(S*; &F) _/8,0”(51; F, F') —>0,4(5; F)
e : ; | R 5 B
On(Zm: gin) E—— On(Zm; me) I On(Zm; F oy gqfn) E—— On-—l(Zm; EZ‘;n,) .

3.2. Given an oriented Z,,-manifold (¢, M), consider a cartesian product
S!xM and let Z, act on S*XM by

t-(z, x) = (2t o(t, x)) for te Z,.

Denote by S'X z,M the orbit manifold and by [z, x] the point of S'X,, M
represented by (z, x) of S'XM. There is a circle action ¢ on S*X ;,M given
by

(A, [z, xD =T[4z x].

If (p, M) is (F, F’)-free Z,-manifold, then (@, S'X 5, M) is (&F, F')-free S'-
manifold and this induces an extension homomorphism
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E: 0.Zn; &, F')—> O0nsi(S'; &, F').
Then the following diagram is commutative:

a B 0
On(Zm; Q”) - On(Zm; F) —> On(Zm; Z, EF’) > On—1(Zm; 9”)

e, |F 8 | 3 |
Onti(SY; F) —> 0ni(S*; F) —> 0p0i(SY; F, F') —> 0,(S*; F9).

3.3. Set QF,(m)=0,(S*; {Zn, {1}}), and call the bordism group of quasi-
free circle actions of type (m). Then for example the following sequences are
exact:

a B 7] a
—> S —> QF,(m) —> HMAS*; Zn, {{1}}) —> 2,.(SH) —,

a B 0 a
—> Q,(S) —> SF(SY) —> M(S*; S, {{1}}) —> 2,_(S") —

a B 0 a ’
— ‘Qn(Zm) —— SFn<Zm) —> gﬂ'tn(Zm; Zmy {{1} }) — -Qn-l(Zm.) —
by (1.2) and

§4. Vector bundles with circle action.

Throughout the rest of this paper, let m =2k+1 be a fixed odd integer,
{ =exp (2nv/ —1/m) and P(k) be the set of all positive integers mutually prime
to 2k-+1 and smaller than or equal to k.

4.1. First we consider oriented S'-vector bundles of type (Z,, {{1}}).
Let &: E(&)—X be a smooth vector bundle with smooth circle action
¢: S'}XE(&)— E(§) as group of bundle maps such that

(1) if ve E(§) is a zero vector, then the isotropy subgroup at v is Z,,

(2) if ve E(§) is not a zero vector, then the isotropy subgroup at v is
{1}, the identity subgroup.

Let T: E(&)— E(&) be a diffeomorphism given by

TW) =g, v).
Then,
LEMMA 4.1. There is a unique complex vector bundle structure J on & and
there are linear subbundles &;: E(&5)— X of & for s P(k) such that
(@) JEENCTEED,
(b) T()= cos( 2;: >v+sin( 275: )J(v) for ve E(&)),

(c) & is the Whitney sum of &,,
(d) J is compatible with the circle action ¢, i.e.

o(z, J@) =J(p(z, v)) for z€ S* and ve E(§).
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PROOF. By Theorems (38.3) and (38.4) of [2] and by Lemma 1.6.4 of [1],
there is a unique complex vector bundle structure J on & and there are linear
subbundles &;: E(&,)— X of & for 1<s=<k satisfying the above conditions
(a), (b) and (c). If s« P(k), then & is a zero vector bundle by the above
property (2). Finally, let J,(0)=o¢(z7!, J(p(z, v))) for z S, then J, is a
complex vector bundle structure on & satisfying (a), (b) and (c). Thus J,=J
by the uniqueness of a complex vector bundle structure and the condition (d)

is satisfied. q.e.d.
By this lemma, the base manifold X is canonically oriented so that the

orientation of the total space E(£) is given by the complex vector bundle

structure of & and the orientation of X.
4.2. Let 0: S'XE(&)— E(&) be a smooth circle action given by

alexp v/ —1 6, v) =(cos s@)v-+(sin s8)J ()

for v E(&,). Then the circle actions ¢ and ¢ are commutative, and let
¥:.S'XE(E)—E(&) be a smooth map given by :

T(exp v/ —186, v)=o(exp (—v —10/m), plexp (v —16/m), v))

for 0<60<2r and ve E(&). Then ¥ is a principal circle action on E(§) by
definition of ¢ and 7.

¥ is compatible with the complex vector bundle structure J on § and
U(S*XEENC E(&). Moreover ¥ induces a principal circle action ¢ on the
base space X. Considering ¥ -orbit space of E(§), we have a complex vector
bundle & over ¢-orbit space X of X. Consequently we have the following
result by the usual way (cf. [2], §38; [3], 7.4).

LEMMA 4.2,

(@) BMS'; Zn, {{}1N =D 2, (BS*XBU(r)XBU(r;)X -+ XBU(ry),
where the sum is taken over all sequences (ry, 7y, =+, 7y) With sum t and r;=0
if s& P(k), :

(b) B%(S'; Zn, {{1}})=0,

©) BHZn; Zn, {({1}) =D 2.(BU@) X BU(13) X --- X BU(1)),
where the sum is taken over all sequences (ry, 7y, *+ , vy) With sum t and r;=0
if s P(k),

(@) BYZn; Zn {{1}1)=0.

4.3. By the isomorphisms of Lemma 2.2l and Lemma 4.2, we have iso-
morphisms of £2-modules

6: 2:{BSHQg(D 2:(BUIr)X -+ X BU(ri)) 2 0«(S; {Zm, {1}}, {{1}}),
6: D 2«BUrYX -+ XBUT) = 0(Zn; {Zn {1}}, {{1}D),

where the sums are taken over all sequences (7, 75, ==+, ¥x) With ;=0 if
s e P(k).
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We now interpret these isomorphisms for the later use. Let ¢: S'XM-M
be a principal smooth circle action on an oriented closed manifold M and
&: E(®)—X be a smooth complex vector bundle over an oriented closed
manifold X. For s P(k) let &: E(§;)— X be a complex vector subbundle of
& and assume £=P¢&,. Let D(§) be a total space of associated disk bundle
of £ and ¢: S'XD(&)— D(§) be a smooth circle action given by

Pz, v)=2 for ze S! and ve E&)NDE).
Now we obtain a smooth circle action @ on M X D(§) given by
D(z, (x, v)) = (p(2™, x), J(z, V) for z€S', xeM and ve D(§).

Then the first isomorphism @ takes [, MJX[&] into [P, M X D(£)] and the
second isomorphism 6 takes [£] into [¢|Z,, D(&)].
4.4. Next we consider the following diagram:

/)
D 2:(BU(r)X - XBU(ry)) —> O0x(Zn; {Zn, {1}}, {{1}})
|2
2:«(BS) QgD 2+(BU(r))X --- X BU(ry))) —> 0«(S*; {Zn, {1}}, {{1}D
|

D 2+(BU(r)X -+ XBU(ro)) —> Ox(Zn; {Zm, {1}}, {{1}}).

By definition of the restriction homomorphism R, and the extension homo-
morphism E, and by the interpretation of 6,

0 'R0, MIQL[ED =[M]-[£],
0 E 6D =[p, STIQLE]
where [M] is the oriented bordism class in £ represented by M and [y, S'] is
the bordism class in 24(BS*) represented by the left translation g: S'XxXS!'—S™.
Since M admits a principal circle action ¢, [M]=0 in £ and therefore
R, is a null-homomorphism. On the other hand, 2,(BS!) is a free 2-module

and [y, S'] is a member of standard 2-basis of £2,(BS"), thus E, is a mono-
morphism.

§ 5. Periodic maps and quasi-free circle actions.

Let £.(Z,) be a subgroup of 2,(Z,) generated by the all bordism classes
of principal Z,-action (¢, M) such that [M]=0 in £,, then

Qn(Zm) = Qn'[#r Zm] @ﬁn(zm)

where p: Z,XZ,—Z, is a left translation (cf. [2], p. 90).
Let p: S'xS?%*+! S+ he a principal circle action given by
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/,e(l, (z(n 21yt Zn)>:(220y 221: AR /227,)

in complex coordinates. Then {[g, S***'], n=0,1, 2, ---} is an £2-base of the
free 2-module 24(S") and {[¢| Z,, S**'], n=0,1, 2, ---} generates the £2-module
5.1. By the same argument as in (2], § 34), we have the following result.

LEMMA 5.1. Let m be an odd integer, then
(1) the abelian group £.(Z,) is 0 for n even, and of order m® for n odd

where t=rank 2,4+ --- +rank 2,
(2) the sequence

XLy, Zm]

n

SF(Zn) —> On(Zn; {Zny {13}, {{1}) —> 20-i(Zp) —> 0

1s exact.
5.2. We now consider the restriction homomorphism

LEMMA. Let (o, M] e QF,(m), then
(1) [M]eTor 2,, the torsion subgroup of £2,,

2 Rlp, MD=[M]-[et, Znl.
PROOF. Let p>m be any odd prime, then the restriction ¢|Z, gives a

principal Z,-action on M. Therefore [M]e& p-£2, by Theorem 19.4 [2]. Con-
sequently [M] e Tor 2,. On the other hand the image of R is contained in

the kernel of 8 in the following diagram:
QFp(m) ————— 0a(S*; {Zm, {1}}, {{1}D)

R lRl
XLty Zn] J‘ :
thom, SF(Zn ——IB————* On(Zm; {Zm, {1}}, {{1}D),

n
since R, is a null-homomorphism by 4.4. Thus there exists an element
[M,]e 2, such that

M 1-Cy, Znl= R, M]).
Forgetting the Z,-actions, we have
m-[M,]=[M]e Tor £2,.

Therefore [M,]=[M7], since m is odd and each element of Tor £, is of

order 2, q.e.d.

THEOREM 5.2. Let m be an odd integer, then the restriction homomorphism
R: QFn(m) —> SFn(Zm)

is a null-homomorphism.
PrOOF. This follows from the above lemma (2) and the fact that if a
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closed oriented smooth manifold M admits a stationary point free circle action
with no isotropy subgroups of even order then [M]=0 in 2 (5], p. 48).

q.e.d.
5.3. We now consider the forgetting homomorphism

a: 2,5 —> QF(m).
LEMMA 5.3. Let m be an odd integer, then the forgetting homomorphism
al Qn<s 1) —— QFn<m)

is injective and its image is a direct summand as $2-module.
PROOF. On his notation (5], Lemma 2), there is a commutative diagram:

2.(5Y

QF ,(m) — O,(m)

where 1 is injective and its image is a direct summand as £2-module. This
assures the result. q.e.d.

COROLLARY. Let m=2k-+1 be an odd integer, then there is an isomorphism
of 2-modules

QF(m) = Q24x(BSHY D (D 2+(BS* X BU(r) X BU(r;) X -+ X BU(rv)),

where the sum is taken over all sequences (ry, 7s, =+ , 7y) With ri=0 if se& P(k).
5.4. Next we consider the extension homomorphism

E: SFn(Zm) —_— QFn+1(m) .
THEOREM 5.4. Let m be an odd integer, then the extension homomorphism
E: SFn(Zm) —— QFn+1(m)

is injective.

PROOF. In the following commutative diagram:

XLy Znm]
lX[#, 5] lE lEl
a

2,41(SY) — QFppy(m) ————> 0,4.(S?; {Zn, {1}}, {{1}D),

the homomorphisms X[y, Z,] and X[y, S'] are injective and E, is injective
by 4.4 and « is injective by Moreover the horizontal lines are
exact. Therefore E is injective. q.e.d.

COROLLARY. E: SF(Z,)—QF,.,(m) is an isomorphism if and only if
n=0,1,3 and 5.
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PRrROOF. If E is an isomorphism, then X[y, S'] is an isomorphism in the
above diagram. Therefore 2,_,;,=0 for any 7> 0, from the &-module struc-
ture of £24(SY), and this is only the case for n=0,1,3 and 5. On the other
hand E is an isomorphism for n=0,1,3 and 5 by direct calculation. We
leave it to the reader. | g.e.d.

§ 6. Periodic maps and semi-free circle actions.

We have considered the bordism group of semi-free circle actions in
and obtained the following result.
LEMMA. The sequence

0
0 — SF,(SH) i OS5 {S?, {11}, {{1}}) —> 2,-i(SH — 0
is exact and there is an isomorphism of £-modules
0: D 2x(BUM) —> 0,(S*; {S*, {1}}, {{1}1H

which takes [&] into [¢, D(E)] the bordism class of scalar multiplication on the
associated disk bundle. ;
THEOREM 6.1. Let m be an odd integer, then the restriction homomorphism
R: SF,(SY — SF(Z,)
is injective.
PROOF. In the following commutative diagram:

B ]
SF,(SY) — 0,(5*; {S, {1}}, ({11} <~ D 2+(BU())

J«R 8 iRl ;

SF(Zy) —> On(Zn; {Zm, {1}}, ({1})) <— @ 2uBU(r)X -+ XBU(r)

where m = 2k--1, the composition " *R,f is injective by the interpretations
of @ and R,. In fact 6'R,0 is the induced homomorphism by the inclusion
of BU(?») into the first factor of BU(r)X -~ X BU(r). So BR=R,B is injec-
tive by the above lemma. Therefore R is injective. g.e.d.

§7. Principal circle action on a product of spheres.
Let p: S'x Sl S2nl , §2ml i 2l he 3 gmooth circle action on S*™+
X S*+1 given by
/4‘(27 (um Tty um); (vo, Tty vn)) =((2au07 AR Zaum), (21)1)0; Sty van))

in complex coordinates where a, b are integers. In particular, if ¢ is prime
to b, then this is a principal circle action. And this represents a null class
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in 24(S") by (5], Lemma 2).
In this section we will state more general result.
LEMMA 7.1. Let m, n be positive integers and let

r: St Sl > M
be a principal S*-bundle over a closed smooth manifold M. Then

HXM ; Z,) = \ () ® Z,Lc]/(c**)

as a ring over Z,, where ¢ is a modulo 2 reduction of the first Chern class ot
the principal S*-bundle n, k=m or k=n, deg x=2(m+-n—k)+1 and S;c=0.
PROOF. This follows, by direct calculation, from Poincaré duality of M and
Thom-Gysin sequence ([4], Theorem 21). We leave it to the reader. q.e.d.
LEMMA 7.2. Let M be the same as in Lemma 7.1. Then each odd dimen-
sional Stiefel-Whitney class of M vanishes.
PROOF. Let V,€ HY(M; Z,) be a class characterized by equation

Sta=V,Ua for all aes H4mM-i(M. Z)),

and let V=V, +V,+ - +V;4 .-, then S, V= W(M), the total Stiefel-Whitney
class of M by Wu’s formula ([4], Theorem 17).

Since Sjc=0, we have SZ*(c™*"~*)=0 by the property of Steenrod opera-
tions ([6], Lemma 2.5 of Ch.I). Therefore

Vasar =0, Vy=a,' (a,=0 or a,=1)
by the ring structure of H*(M ; Z,). Consequently,
W(M)= 3 a,S{c*)
3,L

= Eta,Sg‘(c‘)
== %}a,( ? )c‘*‘ .

This shows that W,,..,(M)=0 for any s. q.e.d.

THEOREM 7.3. Let m,n be positive integers, then any principal smooth
circle action on S*™+t1x S*™* pords in £2+(S?).

PROOF. The orbit manifold M is odd dimensional and each odd di-
mensional Stiefel-Whitney class of M vanishes by Lemma 7.2. Hence all
bordism Stiefel-Whitney numbers of this principal circle action vanish.
And all bordism Pontrjagin numbers also vanish. Therefore this principal
circle action bords by Theorem 17.5 of [2]. q.e.d.
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Osaka University
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