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§0. Introduction.

In this paper we will be primarily concerned with the most general
processes with stationary independent increments on the real line R. All the
results are valid for the higher dimensional such processes without change.
It is only for saving the notation that we restrict ourselves to the one-
dimensional processes.

We will summarize the contents of the paper with the main results being
picked up in (A) to (D).

§ 1 through § 3 are of quite analytic character. Let (¢;):;z, be a convolution
semi-group of probability measures on R. Let (P,);z, be the semi-group of

Markov kernels defined by P,f =jf(x+y)yt(dy) and (U));>,, the resolvent of

(Py). C, stands for the space of continuous functions vanishing at infinity and
(9%p), 1=<p=<o0, the spaces of distributions introduced by L. Schwartz [10;
Chap. VI, §&]. It has been known that, for every feci={fsC,; 1/, "< C,},
the uniform limit of ¢[P,f—f] as t—0 is given by

2

0D Af@:=af D+ G +]  [FaAn)—f@ 5l ()] v@),
where a€ R, 62=0 and v is the so-called Lévy measure. L. Schwartz’s basic
results on the spaces (97») make it possible to extend the operators P;, U,
and A to those on the space of “bounded distributions” (9%~). Hence, for
example, if f is a bounded function, Af is well-defined and belongs to (D}«).
We see that Af is of the form le"*f by means of an element f~1°e(g)},l),
where “*” means the convolution. It should be noted that C.S. Herz [5]
called this distribution A° a generalized Laplacian and studied its structure in
a little different context from ours. |

The following theorem is fundamental throughout the paper and it is
proved in § 2.

(A) Forevery >0 and fe(D,=), u=U,f is the unique solution in (D)
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of U1—Au=1.

It is well known that (P,) defines a strongly continuous, contraction semi-
group over the Banach space C,. The next theorem in §3 is an immediate
consequence of (A).

(B) The infinitesimal generator of (P,) over C, is exactly the operator A
with the domain D(A: Cyp)={fsCy; Af<C,}.

Similar results are valid also for L? for every 1<p<oo and even for
the topological vector spaces (9,»), 1 <p<oco. This theorem has been known
for some special cases (see K. It for Brownian motion and S. Watanabe
for stable process), but it is new in the general form in the circle of
my knowledge.

8§84 and 5 are devoted to potential theory of the Markov process (X(¥)):zo
having (P;) as its transition function. Let (#,),z, be the convolution semi-
group obtained from () by the reflection at the origin and (ﬁ,),;o, its
associated semi-group of Markov kernels. & Vi>0 stands for the resolvent of
(13,) and (X'(t)),;o, the Markov process having (f",) as its transition function.
The semi-groups (P,) and (fN’,) are in duality relative to the Lebesgue measure
dx in the sense that

0.2) (P.f,8)=(f, Pig), [ g=z0,
where (f, 8)= [ f(x)g(x)dx.

Combining (A) and some general results on the dual processes, we prove
the following theorem in § 4.

(C) Let u be a bounded, 4-excessive function (4> 0) and let pg:=Q—A)u.
Then g is a positive measure and u-dx is the U ;-potential of p#. Moreover,
for every open set G,

(0.3) Hju-dx= pH30,,

where Hi[resp. H4] is the kernel of A-order hitting measure of G with respect
to the process (X(t))[resp. Xn1.

Let G be an open subset of R. A finite, A-excessive function u is said
to be A-harmonic on G, if

0.4) u=He u

for every compact subset K of G, where GK =R\ K. Obviously this definition
makes sense for every standard process. A typical such function is the 2-
order hitting probability function Hé‘Bl of the set GB for every B such that
the interior of B contains G. For the present case we can characterize a
bounded, A-harmonic function by means of the operator A as follows.

(D) Suppose that (U;);>, is absolutely continuous with respect to dx.
Then, except for simultaneously 4=0 and A =0, a bounded, A(= 0)-excessive
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function u is A(=0)-harmonic on an open set G if and only if
0.5 (A—A)u=0 on G (in the sense of distribution).

The proof of (D) is given in §5. This theorem or its variant has been known
for various special processes and it was applied to study the properties of
hitting probabilities. (The Brownian motion case is classical. See S. Wata-

nabe for stable process and H. Cramér [3], the author [13] for compound
Poisson process.)

GENERAL NOTATION. @B(R) is the o-algebra of all Borel sets in R=
(—co, +0c0). Every function is supposed to be Borel measurable and real-
valued (allowing®o0). Otherwise stated, a measure stands for a nonnegative,

completely additive set function from $B(R) into R, =[0, +o]. A kernel

K(x, E) is a function from RX$B(R) into R, such that, for each x€ R, K(x, -)
is a measure and, for each E = B(R), K(-, E) is a Borel measurable function.
&, denotes the unit measure at x. The unit measure ¢, at the origin is also
denoted by d. For a nonnegative function f, write f-dx for the measure

pE)= j‘Ef(x)dx. Iz, E = B3(R), denotes the indicator of the set E.

The inner product (, ), convolution * and Fourier transform %(-) are
defined for various objects. Let f, g[resp. ¢, v] be functions [resp. measures].
Let T, S be Schwartz distributions and ¢, a test function. Let K be a kernel.
One defines

f, ©)=[F@Dedx, (2, &)= mdne,
(T, 9 =T(9),
Kf(x)=[ K@ d)f(3),  pKE)=[pdK, E).

Note that (f, g) may be written as (f-dx, g). One also can write ¢,K for
K(x, -). Let us define

f(X) =f(—‘.7C) ’ ﬂ(d.X) = l"(_ dX) ’ (T! ()D) = (Ty ¢) .

Furthermore one defines

Frg@ =[fx—ngndy,  prf) = md)fx—1),

pxu(B) = [ [Ip(e+y)p(dnuds),
Tx@@) =(Ty, p(x—3),  (T*S, p)=(T, Sx9).

Finally the Fourier transform of f etc. is defined by
F(HE = fﬂe“"ef (x)dx  etc.

Of course, (, ), * and F(-) are defined only for reasonable objects.
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§1. Preliminaries.

Let (¢):zo be a convolution semi-group of probability measures on R=
(—o0, +0);
1.1 Lo¥ pts= gy (£, 5=20), po=0.

It is known that p, converges weakly* to y¢,=0 as t—0. Let (P;),z, be the
semi-group of Markov kernels defined by

1.2) Pi(x, B)=¢e,*p(B), Be 3(R) .

Note that

(1.3) P f(x) = (P, [)=(ex* e, [)=(6a, e*xf)=flrx f(x).

The resolvent of (P,) is denoted by (U )s>o;

4 Ux, By: = e*Px, Byt =e,x (| e *uiB)dr)
=& xUYB), B e 3(R),

where

(1.5) UyB):=| :Oe‘“yt(B)dt — e,UB)= U0, B).

It is clear that (#,),z, defines also a convolution semi-group of probability
measures. (P, and ([ respectively denote the semi-group of Markov kernels
and the resolvent associated with (#&;). It follows that

(1.6) (0Y(B)=UY—B)=UY(B).

As in one sees that U f(x)=U0%f(x). It is easy to see that (P, [resp.
(U] is the co-semi-group of (P,) [resp. the co-resolvent of (U;)] with respect
to the Lebesgue measure dx; for f, g=0,

(1-7) (Ptfrg):(ﬁt*f’g):(fv #t*g):<f; ﬁtg>r
(1.8 Waf, 8)=(f, U:8).

The Fourier transform (= characteristic function) of g, is of the Lévy-
Khintchine canonical form;

19 Fe®=[ e puldn)
_ ; 0% ., i 18y
=exp [t{za&—hz«ef —I—jm(o}(e ”—1—~1¥§2~ u(dy)}]
— o~ t® ,
ey O g ey Y
(110) $@)=—iat+- G+ (1= 42 )ud),
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where a= R, 0 =0, and the so-called “Lévy measure” v is a measure on
R\ {0} such that '

2
S T <.
It then follows that
oo N o . 1
0y — ~at N 7 — A=t gp— L
Q1D FUY jo e F(p,)dt jo et WDl = s, 2> 0.

For a bounded function f with a second continuous derivative, define the
operators A and A by

W12) A= af D+ G @+ [ [ fatn) =D P [u@y).

(W13)  Af()i=—af 0+ +] [ Fem) = @ e 0] dy)

Since ¢(&)ws p(—8), (a, d?, v)wo (—a, 0%, P) as p, is transformed into g, A
corresponds to (#;) as well as A does to (g;). Note that A is the formal
adjoint (= co-operator) of A;

(1.14) (Af, g)=(f, Ag).

§ 2. The equation (A—A)u=71.

In this section we will extend the domain of A to the space (Di=) of
bounded distributions and then solve the equation (A—A)u=f for every
fe(Di-) and 1> 0.

We start with a review of the theory of distributions. The definition of
spaces L? (1= p<o0), (D), (D), (&), (&) is quite familiar and so it is omitted.
The LP-norm is denoted by |-|l,. B° stands for the space of bounded measur-
able functions®, C, [resp.C,] for the space of continuous functions with
f(£o0)=0 [resp. the space of bounded, uniformly continuous functions] and
M, for the space of bounded signed measures. (Dr»), 1=p = oo, denotes the
space of C=-functions ¢ such that the n-th derivative ¢ is in L? for every
n=0. A sequence (¢,);=z, converges to ¢ in (D.») if [|@f®—¢™|,—0 for every
n=0. (Dr~) is also denoted by B. Space B is defined by the subset of @
consisting of those functions ¢ such that ¢ C, for every n=0. One now
defines the spaces of distributions (27») by
@D (D) : = (D) with pi,=1—»—p—» for 1<p=oo,

:=(8)  for p=1.

1) B°=L* as the space of distributions. We prefer to write $B° rather than L*
in most cases.
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See Chap. VI, § 8 of for the basic topological properties of (9,»5) and
(D).

We collect those results borrowed from the book of L. Schwartz [10],
mostly, Chap. VI, §8.

LEMMA 21. (@) If Se€@.»), Te(@L) and r*=p*+q'—1=0, then
S*xT (D). The mapping (S, T)—S*T is continuous from (Dip)X(DLd) to
@ir). In particular, if S (D) and T € (D=), then SxT € (D).

() If Te(@is), e (Dra) and r*=p-'+q'—120, then Txpe (Dy,).
The mappings T—Tx¢ and ¢ —Tx¢ are continuous from (Dip) and (Drq) to
(Dyr), respectively.

() If S€(Dip), T (D) with 1=p,q=2, then F(SxT) is a function
and it is the product of the two functions F(S) and F(T); F(S*xT)=F(S) - F(T).

(@ For 1=p=<g=oo,

2.2) (D1a) D(Dp) DLP\J M\ J (7).

For the proofs of (a), (b) and (c), see p. 203, p. 204 and p. 270 of [10].
The proof of (d) is quite easy.
Based on one defines

2.3) (Af, ©):=(f, Ap) for fe(Dj=) and ¢ (D).

It follows that Af e (9i»). In fact it is not difficult to see that the relation
“@p;j—¢ in (P11)” implies that ﬁgo;—»ﬁgo in (9;1). However we will give an
alternative justification which is more convenient for the present situation.
Define the distributions A° and A° by

2.4) (A% @):=Ap0), (A° @):=Ap0).
Note that (A)° = (A%™.

LEMMA 22. (a) A°is a sum of Al (&) and A}s My:
(2.5) A= A+ AJ.

A} can be chosen as the restriction of v over the set {x; |x|=1}. In particular,
A’ = (DLy).
(b) For every ¢ (D),

(2.6) Ap(x)=A* p(x) € (D11)
(¢) For every < (D),
@7 Af=Afe (D).
(d)
2.8) FA)=—P&), F(A)=—g(—8).

PROOF. (a) The first two assertions are immediate from definition and
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then the third is obvious from (d).
(b) By virtue of (b), A’xp(x)= (D). For a fixed x, set
L) =¢@(x—y). Since {’'(0)= —¢’(x) and {”(0)=¢”(x), one has

A5 p(x) = (A3, p(x—) = AL(O)

— / i ” y /
=—alO+5O+[ [0+ T [ud)

=g+ 50 @D+ [ el —pto— e/ @ ]u(dy)

=Ap(x) .
(¢) By virtue of (a) and Lemma 2.1 (a), A°+f & (D}«) whenever f < (Dy).
For ¢ = (9.1) one has
(Af, @ =(f, Ap)=(f, A*p) by (b)

= (A1, ¢).
(d)
(FA°, ¢):=(A°, Fo)= A(F)O)

— a(g¢)/(0)+%i(g¢),/(0)
+ gy o LEOD—(FDO— 1 5(F )@ ] ()
= a(ix, ¢)+§((ix)2, ®)

L 9= =135 G ) [v(d)

y2
=(—¢), ¢).

In the same way as in A, one can extend the domain of P; and U, to
(Di=) because of (1.7) and [(1.8). One gets
(2.9) Pf=fxfe (@), Uf=Ufe (@) for fe(Dix).

REMARK 2.3. By virtue of Lemma 21, formulas [2.7) and [2.9), each of
A, P, and U; makes invariant each of the spaces (D;»), 1 =<p < oo, (.é) and
(Dip), 1< p<oo. Moreover, every P, and U, makes invariant every L?,
1=p=c0 and C, (see [[heorem 3.2).

The following theorem is fundamental throughout the paper.
THEOREM 2.4. Let f=(Di»). Then the equation

(2.10) QA—-Au=7f, A>0

has the unique solution u=U,f in (D).
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PROOF. (a) Suppose first that f<(9.1). One claims that (2.10) has the
unique solution u=U;f in (9.1). By the above remark, U,f= ﬁﬁ*fe(_CDLl).
By virtue of Lemma 2.1 (c), formulas (1.11) and (2.8) one gets

F(A— AU, f) = F(A5— A%« U4 f)
=P8 11 4 gy FN=FUN),

so that A—AU,f=f. If A—Au=0 for ues (D),
F(A—Aw) =A+(—ENF(u)=0.

Since A+¢(—&)#0 (1> 0, Re ¢(—£&)=0) it follows that F(x)=0 and, a fortiori,
u=20.

(b) Consider now the general case f € (9%=). By Remark 2.3, U,f= O%x f
€ (95=). Let o =(Dr1). Applying the result of part (a) to the “~ " system,
one has

(A= AU, f, o) =(f, U:02—Ayp)=(1, ),

so that (A—A)U,f=/f. Suppose that (A—A)u=0 for ue(Pi~). For any
0 = (D), set o=1U,;0 = (D.1). Then, (1—A)p =6 by (a). Hence one has

(u, 0) = (u, A— A)p) = ((A— A)u, ¢) =0 by assumption,

which proves that ©u=0.

§3. The infinitesimal generators.

Before giving the precise description of the infinitesimal generator of (P;)
we will prove a theorem of K. It6 [7]® showing that the operator A is the
generator in a rough sense.

THEOREM 3.1. If f is a bounded function with a second continuous deriva-
tive, then

(3.1 Pt—];;]i converges uniformly on every compact sets to Af as t—0.

In particular, if feC={fsC,; [’ €C,, " €C,}, then the convergence in (3.1)
is uniform on the whole space R.

PrOOF. In Remark 3.3 we will give an operator-theoretical proof, making
use of Theorem 3.2. We here present a proof based on those results in
Feller’s book [4; Chap. XVII] which are summarized below.

(a) When t—0, t"'y*u,(dy) converges properly to a canonical measure

2) See also G. Hunt [6], P. Courrége [2]. K. Yosida had earlier proved the
L,-version of this theorem.
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M(dy). In other words, there is a Radon measure M such that j_ ]\1/1%3%})— < oo,

and one has

(32) lim ¢ { £(9)y*uddy) = [ F(5)M(d)
t—0
for every continuous function f such that »*/(3) is bounded. This implies that

-1 2
(3.3) SN IZCOMN I CR)
is bounded in ¢ >0, and
3 -1 —_
(3.4) lim ¢ o >N;1t(dy) =0

t—0
N—oo

(b) If btzj'T_%Fyt(dy), then ¢'b, converges to some constant b as {—0.
(¢) The relation with the Lévy-Khintchine canonical form is the following;
b=a, o= M({0}),
[ v(dy) = y*M(dy) for y=+#0.

Let f be a bounded function such that f/ and f” are continuous. For
each fixed x, set

g y)= {f(x—i—y) —f(0—7 2f’(x)}><y‘2 for y+#0

(3.5)

:—z—f'/(x) for y=0.

It then follows that
3.6) PSR —F 1=t [ L) —f(DIpldy)

=b./@D+ [ 2.(3)r*uddn]

—afD+[ g HMdy) as t—0.

We have to show that the above convergence is uniform on any compact set
K. Take any ¢>0 and choose N>0 and J,>0 so that

@7 ef | MO

Since the family of vector-valued y-functions (3°g.()), (), x< K, is uni-
formly bounded and equicontinuous on |y|=< N, it is totally bounded in
uniform norm over the set {|y|< N}. Therefore one can choose a finite
subset {x;} C K such that, for each x € K, there is some}x; satisfying '

<e for every t<9,.

3.8 sup | 92200 —%25,()) | + sup | g N—gz (NI <e.
vl =N : vl sN



222 T. WATANABE

Choose 4, > 0 such that, whenever t < d,,

3.9

t"jyzgzi(y)m(dy)—fgzi(y)M(dy)’<e for every i.

Then, by virtue of (3.7), (3.8), (3.9) and the fact that

sup ¥°g,(y) < oo,
zeK

YER

there is some constant C> 0 (depending only on K) such that, whenever xe K
and 0< ¢ < 0=min(d,, 6,),

[ e Duldn)— [ g.(HM@R| < Cs,

which proves that the convergence in is uniform on K.

If f=C% the above argument is valid for the whole line R instead of K,
proving that the convergence in is uniform on R.

We now come to the precise description of the infinitesimal generator
for (P,).

THEOREM 3.2. Let L be either of thé Banach spaces L?, 1< p<oo, Cy or
Cy. Then, (P;),z, defines a strongly continuous, contraction semi-group over
every L. The infinitesimal generator of (P,) over L is the operator A restricted
to

(3.10) DA:D={feL: AfeL},
that is,
(3.11) lim f%——f=A fin L if and only if fe D(A; L).

PROOF. The first assertion is well known. Let us verify only the case
of L=1L1":

1Psig=[ " |§ 7 reetsudanax
<[ T 1P pidnde =171,

pdx

1PS—Flg= [ |7 (Pl —FCaas)

= [~ (J 1fG+n—f@)17dx) pids) .

Since g(y)=f°° | f(x+y)—f(x)|?dx is bounded, continuous and g(0)=0, the
last side of the above display converges to 0 as ¢—0.

The assertion on generator is obtained from Theorem 2.4 by a routine
argument. Let A be the generator of (P.) over L. By the Hille-Yosida
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theorem, every u < D(/i) is written as u=U,f, f= L with

(3.12) QA—Ayu=f.
‘On the other hand, by one has
{3.13) QA—Au=f,

so that Au=Aue L. Therefore, D(A)C D(A; L) and A is an extension of A.
‘To show that D(A; L)c D(A), take ue D(A; L) and let A—Au=sfcL.
“Therefore u=U,f (Theorem 2.4) and hence ue D(A) (the Hille-Yosida
theorem).

REMARK 3.3. As usual, C, denotes the space of continuous functions with
compact supports. It is easy to see that D(A; L)DC={feC.; [, [’ =C.}
for every L in [Theorem 3.2, D(A;C)DCiD3 and D(A; LP)D(Din)=
{fel?; f, f" € L?}) D(Dr») for 1=<p <oo. Therefore, implies
the latter half of and its L?-variant.

We now show that still implies the former half of Theorem
3.1. Let K be compact. For any >0, there is a function ge C, such that

0=<g=1, g=0 around K, g=1 near the infinity and Ag(x)= jg(x-f—y)v(dy) <e

for every x= K. Then, by t7'P,g(x)<e for every x= K if t is
.small enough. Let f be a bounded function with a second continuous deriva-
tive. Without loss of generality one can assume that 0<f=<1. Choosing
Jf1€C? such that 0= f—f, < g, one has for every re K,

LR =10 — A S [P f1— 11— Afi() |+t P g(x)+ Ag(x) .

“The right hand side is uniformly small on K if ¢ is small enough.
COROLLARY 3.4. (a) Let ¢ € (Do), 1<p < oo [resp. B]. Then

(3.14) lim £E=2 = 4p in (Dy5) [resp. G].

t—0
(b) Let f=(Drp), 1<p=oco [resp. (P1)]. Then
G15) tim LL=L — Af in (@, Duw), L= 1—-L[resp. o( @, B)].
t—0 t ;b p
PROOF. (a) By Remark 3.3, if ¢ €(9.»), then ¢™ = D(A; L?). Hence

_ o ny__ (0
(Ptset gD) )=_P_‘S€(_>t_g_0(_i — Agp("):(AgD)(m in L?.

(b) For ¢ & (Dr»),
(BL=L, )= (1, £8=2) ~ (f, Ap)=(Af, o).

One can prove that the convergence in (3.15) is valid for the (strong)
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topology of (D75). In fact we have the following theorem.
THEOREM 3.5. Let M be either of the (complete) topological vector spaces

(a) (Drp), 1=<p<oco, B or
(b) (Do), 1Zp=co.

Then (P,) defines an equicontinuous semi-group of class (C,) on each M¥®. In
this case the infinitesimal generator of (P,)) over M is the operator A which
turns out to be a bounded operator on each M.

Case (a) is obvious from the above corollary (a). The proof of (b) is due
to S. Sugitani (private communication) and it is omitted here.

§4. Some results on the dual processes.

Let
(4-1) X: (Qr gv gt’ X(t), PI)
be a standard realization of (P;) defined by [1.2). For each Be< 8(R), define
4.2) Tp:=inf {t>0; X() e B} (hitting time)
4.3) Wg:=inf {t >0; rIBo X(s)ds > 0} (penetration time),

0

4.9 4f(x):=E*(e"*8fo X(Tp)), 4120,
(4.5) HAf(x):=E*(e™sfo X(Wp)), A=0.

We often omit 4 when 1=0.

We omit the well-known definition of¥41 (= 0)-excessive function for (F;)
or X [1; p. 70]. A 2 (=0)-excessive measure v for (P,) is a o-finite measure
such that
4.6) vy =vP2 for every =0 (PA=e*P),

@.n v=Ilim { v P2.
t—0

But since (F;) is a standard semi-group, condition [(4.7) is superfluous; it is a
consequence of condition (see [1; p. 257]). Eventually it follows that a

o-finite measure v is 2-excessive for (P,) if and only if it is A-supermedian
for the resolvent (U),), i.e.,

4.8 v = (AU 420 for every A’>0,
and that implies
4.9 y= /lzlm T v’ U zap) .

3) For the definition of such semi-group, see K. Yosida [15; p. 234].
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Let v be a o-finite measure dominated by a measure which is A-super-
median for (Uy). For B < B(R), the balayage operator L} for v is defined by

{4.10) vL%:=inf {v/; [v'=v]p, v’/ is A-supermedian},

where [v/ =y means that v’ dominates v over B. The balayée vL% is
A-supermedian for (U;) and hence A-excessive for (P;). A measure p is said
to belong to the domain of U, if pU, is a o-finite measure. In this case, pU,
is said to be the Uj-potential of p. Every U;-potential is A-excessive for ().
We need a general lemma which is valid for every standard process.
LEMMA 4.1. Suppose that p belongs to the domain of U, For every
B e 3(R),

{4.11) (UL = pHAU, .
In particular, if B=G 1is open, Hi=H{. Hence
(4.12) (pUDLE = pHAU; .

For the proof see Theorem 16 of [127].

All objects with respect to (f’t)@o are denoted with “~ " over the asso-
ciated letters. The processes X and X (=the standard realization of (ﬁt)) are
in duality relative to the Lebesgue measure dx in the sense that the relations
(1.7) and hold. Note, however, that our definition of duality is weaker
than that of Blumenthal and Getoor [1; p. 253], for we will not impose the
hypothesis of absolute continuity for the resolvents (U,) and ({7,) in general.
In the present situation the hypothesis of absolute continuity for the resol-
vents (U, and () reduces to the simple condition that

(4.13) 9 is absolutely continuous with respect

to the Lebesgue measure dx.

‘We sometimes assume this condition to obtain stronger results. When (4.13)
is being assumed to hold we will explicitly say so.

The next lemma is valid for every pair (X, X ) of standard processes
which is in duality (in our sense) relative to some measure.

LEMMA 4.2. (@) If u is a ZA-excessive function for (P;) such that 5(dx)
=u-dx 1s a o-finite measure. Then, ¥ is a A-excessive measure for (ﬁt). If
{4.13) holds, the converse is true. More precisely, for every A-excessive measure
¥ for (ﬁt), there is a unique A-excessive function u for (P,) such that P=u-dx.

(b) Let G be open and 2=0. For every f,g=0,

(414 (HUf, ) =1, H3U,8).
() If u is a A-excessive function such that u-dx is o-finite, then

(4.15) (u-dx)L3= Hju-dx .



226 T. WATANABE

PrOOF. (a) It is enough to show when A>0. If u=U;f, f=0, then
D=u-dx=(f-d»)ll;. Hence ¥ is a U,-potential and, a fortiori, 2-excessive for
(Py). Then the general case is easily proved by the approximation of ex-

cessive functions by potentials.
If (4.13) holds, there exists the A-Green function u(x, y) of (U, U)) relative
to dx [1; p. 254]. If ¥=pul0;, then

5(dx) = (faldyuslx, 3))-dx.

But u:f,u(dy)ux(x, y) is a A-excessive function for (P,). For the general case,

let §=lim 1 g0, =lim  up-dx, Where u.(x)= [pt.(d9)us(x, . Since dx is a
n n

reference measure for the process X with (4.13) being satisfied [1; p. 259],
the relation “u, =< u,., dx-almost surely ” implies that u, < u,., everywhere.
Hence u:=1im | u, is A-excessive and P=u-dx.

(b) It is enough to show when 4> 0 and f, g are bounded. Recall that,
if f, g are functions and g is a measure, then

(f, )= [f(Dedx, (1, 8)=[gx)pdx),

so that (f, g) can be written as (f-dx, g).
Since [U,f=H4U,f1s and so [U,f-dx=(HU,f) -dx]s it follows by
definition that

(4.16) (Urf+-dx)Lh < (HAU, f)-dx.
Therefore one sees that
417 (f, H O, 2)=(f-dy]1H} U, 2)

=({(f-d»0]L4 g) by 4.12)
=(U,f-dx1L4 g)
<(CHU,f]-dx, &)

= (H3U. S, ).

By the symmetry of the argument, (H4U,f, g) < (f, H  2).

(c) The proof of (b) implies that equality holds in (4.16), which proves.
(4.15) in case of u=U;,;f. For the general case, use the approximation by
potentials.

Under hypothesis (4.13) one can refine (b) and (c) of the preceding lemma.
(This is not used in the rest of the paper.)

LEMMA 4.3. Suppose that (4.13) holds. For every Be B(R), f,g=0 and
every A-excessive function u such that u-dx is o-finite,
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(4.18) (HAU.f, &)=(f, HiU &),
(4.19) (HAU.f, g)=(f, HiO:g),
(4.20) (u-dx)Li= Hpu-dx.

PrROOF. Equation (4.18) follows from (4.14) by virtue of the argument of
[1; p. 262].

Theorem 9 and 16 of [12] tell us that there exists a set N of potential
zero such that [U,f=HAU,f g n. Since dx is a reference measure under
hypothesis (4.13) by virtue of Remark (1.13) of [1; p. 259], one sees that

[sz'dx:EAUxf'dx]B .

Then the rest of the proof is the same as in (b) of the preceding lemma.
THEOREM 4.4. Let >0 and u, a bounded A-excessive function. Then

4.21) p=0A—Au c (Di=)

is a positive measure and u-dx is the Uj-potential of J7
(4.22) u-dx=pl;.

Moreover, for every open set G,

(4.23) Hu-dx= pHiU,,

or equivalently,

(4.24) (A—A)Hju = pfj .

Note that the theorem breaks down for A=0. Take u=1. Then since
dx is invariant for (P;), it is impossible that dx is a 0 1-potential.
ProoOF. Choose g, € #% such that u=1imt U,g,. By
”

QA—AU;8,=8,=0.

By the next lemma, g,— ¢ in (9/). Hence g is a positive measure. But, by
Theorem 2.4
u=U,p¢ in the distribution sense,

which is identical (in the usual notation) with

(4.25) u-dx=U,p=0*p=puxU=ul,.
If G is open,
(4.26) Héu-dx=(u-do)Lé=(u0)Lé=pHE O;,

using [(4.15), (4.22) and [(4.12).

LEMMA 45. Let u, be a sequence in B° such that sup |[U,lle < o0 and u,—u
n

pointwise. Then
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(4.27) Au,—Au in o(Di>, Dp1).

PROOF. Let ¢ &=(9.1). Since ﬁgozA"*ng(.CDLl), it follows from the
Lebesgue dominated convergence theorem that

(Aum go)z(u,,, ;190) — (u, ﬁSD) =(Au, gD) .

§5. The characterization of harmonic functions on an open set in terms
of the infinitesimal generator.

Let X be the process defined by [(4.1), Let G be an open subset of R.
A finite, A(= 0)-excessive function u is said to be A-harmonic on G (harmonic
on G if 2=0), if, for every B € 3(R) which is relatively compact in G,

(GRY) u(x) = H{ u(x), xe R,

where CB= R\B. If holds dx-almost surely® for each B as above, we
say that u is almost A-harmonic on G. If (4.13) is satisfied, the almost
A-harmonicity is equivalent to the A-harmonicity.

ExAMPLES. (a) Let B B(R). Let u be a finite, 4A-excessive function.
Then the functions

(5.2) Hiu and Hiu

are A-harmonic on int B (=the interior of B).
(b) Let fe 8% be supported in GB. Then

53 u=U,f

is A-harmonic on int B.
Suppose that holds for fixed x and B. Let T be a stopping time
such that T_S_Tc]9 P*-almost surely. Since u is supposed to be A-excessive,

G4 u(x) = Ppu(x):= E*(e *Tuo X(T)),

for u(x)gP;‘u(x);HéBu(x)zu(x). Hence one has

LEMMA 5.1. Let u be 2-excessive. Let A, B< B(R) and ACB. If quéBu
everywhere (resp. dx-almost surely), then quéAu everywhere (resp. dx-almost
surely).

THEOREM 5.2. Let u be a bounded, 2(= 0)-excessive function and G, an open
set. Then the following three conditions are equivalent with each other, except
if simultaneously Az=0 and A is the zero operator.”’

@) wu is almost A-harmonic on G.

(b) Let C be a subfamily of B(R) such that each Ce< C is relatively compact

4) Exceptional sets may depend on B.
5) A=0 if and only if (P;) is the trivial semi-group: g,=4 for every ¢t=0.
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in G and G = Ugec (int C). For every C<C, u=HéCu dx-almost surely.
©
(5.5) (A—Au=0 on G (in the distribution sense).

PROOF. (a)=(b). Obvious.

(b)=(c). By the preceding lemma one can assume that C contains a sub-
family K of compact sets KC G such that the family {int K}xex covers G.
If K= K and 4>0, by Theorem 4.4,

pr=Q—Au=Q—ADHp u=pH§ .
Since [pAf, =0Jinex, (=0 for every K& K. Hence [p= 0.
If 2=0, define u;::Hé‘Ku (A>0) for K= K. Since u; is A-harmonic on
int K (Example (a)), it follows from the above result that
(5.6) (A—Au,; =0 on intK.
Letting 2—0 and applying Lemma 4.5, one sees that
A—Au, —> ——A(chu): —Au in (9.

By (5.6), —Au=0 on int K for every K< K and hence on G.

()= (a). By Lemma 4.5 it is enough to show that, for every compact
KcCagG, u:Hé‘Ku dx-almost surely.

Let 2>0 and pg:=((A—A)u. Since [p¢=0]x by the assumption, it is easy
to see that p= pﬁé‘x. By Theorem 4.4,

u-dx=;zl?z:yﬁéx-ﬁz:HéKu-dx,
so that u=H{ u dx-almost surely.

Next consider the case A=0. Let g=—Au. Since (A—A)u=p+Au and
p=pHE, for 2>0, it follows that

u-dxz(y—l—]u-dy)ﬁz ,
Hi u-dx=(u+Au-d)H - 0,= p0:+Qu-d)H - U,
so that, for ¢ =Cf,
(&7 ([u—HéKu]-dx, ) =([2u-dy—(2u-dz)ﬁé‘le71, ).
The left hand side converges to ([u—HcKu]-dx, ©) as A—0.
On the other hand, one has for /=0,
(5.8) (Au-dx—Qu-d) AL, )= Au, [—H§ 1)
= u, f-Ix)
= (Aulg-dx, f).
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Therefore
0 = ([Au-dy—QAu-d2)H 10, ¢)

< ([aulk-dy1Us, @)
=@Uulg), ¢) —0, 2—>0,
by virtue of a result of K. Sato [9].® Hence
(Cu—Hg ul-dx, 9)=0, @7,

which proves that u= Hg u dx-almost surely.

THEOREM 5.3. Let u be a bounded, almost 2-harmonic function on R.

(@ If 2>0, u=0 dx-almost surely.

(b) If 2=0, there is a constant C=0 such that u=C dx-almost surely
except for the following case: the Lévy measure v is arithmetic (i.e. v is sup-
ported in an arithmetic progression containing the origin) and

— Yy —
ot=a j.,,\m 1432 ¥(dy)=0.

PROOF. (a) u-dx=pulf,=0.

(b) Since A—Au=2Au, u-dx=QAu-dy)0;=AU,u-dx. Hence, for each
o Cf, v=ux¢p is a bounded, continuous solution of the convolution equation
v=Uw=Q0Y*v. It is easy to see that the probability measure A0/} is
nonarithmetic except for the above-described case. Therefore v must be a
constant by virtue of a result of Choquet-Deny (see Feller [4; p. 351] for
an elementary proof). Since ¢ € Cf is arbitrary, u is a constant dx-almost
surely.
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