A formula on some odd-dimensional Riemannian manifolds related to the Gauss-Bonnet formula

By Shûkichi TANNO (3)

(Received Aug. 20, 1971)

§ 1. Introduction.

Let (N^{2n}, g) be a compact orientable Riemannian manifold of 2n-dimension. The generalised Gauss-Bonnet formula is

$$(1.1) \qquad \frac{(-1)^n}{2^{2n}\pi^n n!} \int_{N} \sum \varepsilon_{i_1\cdots i_{2n}} \Omega'_{i_1i_2} \wedge \cdots \wedge \Omega'_{i_{2n-1}i_{2n}} = \chi(N),$$

where Ω'_{ij} denote the curvature forms and $\chi(N)$ is the Euler-Poincaré characteristic. The left hand side of (1.1) is a differential geometric or Riemannian geometric quantity and the right hand side is a topological quantity. In (1.1), even dimensionality is essential.

For a compact orientable Riemannian manifold (M^{2n+1}, g) of odd dimension, we have $\chi(M)=0$. This shows that $M=M^{2n+1}$ admits a vector field ξ with no singular points. If we try to find some formula on (M^{2n+1}, g) analogous to (1.1), some restriction on this ξ may be necessary and it might be hoped that the right hand side is a linear combination of Betti numbers.

We assume that $\xi = e_0$ is a unit vector field. Let w_0 be the 1-form dual to e_0 with respect to g. Then we have local fields of orthonormal vectors e_0 , e_1 , \cdots , e_{2n} and the dual w_0 , w_1 , \cdots , w_{2n} . We call this frame field a ξ -frame field. By Ω_{AB} $(A, B = 0, 1, \cdots, 2n)$ we denote the curvature forms with respect to the above frame field. By $\beta_r(M)$ we denote the r-th Betti number of M. In this paper we have

THEOREM A. Let (M^{2n+1}, g) be a compact Riemannian manifold admitting a unit Killing vector ξ and let (e_0, e_i) be a ξ -frame field. Assume that

$$\Omega_{0i} = w_i \wedge w_0, \qquad i = 1, \cdots, 2n,$$

and that each trajectory of ξ is of constant length $l(\xi)$. Then

(1.3)
$$\frac{(-1)^n}{l(\xi) 2^{2n} \pi^n n!} \int_M F(\Omega_{ij}, w_0) = \sum_{r=0}^n (n+1-r)(-1)^r \beta_r(M) ,$$

where, putting $dw_0 = \sum \varphi_{AB} w_A \wedge w_B$,

^{*)} The author is partially supported by the Matsunaga Foundation.

$$(1.4) \qquad F(\Omega_{ij}, w_0) = \sum \varepsilon_{i_1 \cdots i_{2n}} (\Omega_{i_1 i_2} - \varphi_{i_1 i_2} dw_0 - \sum \varphi_{i_1 k} w_k \wedge \varphi_{i_2 l} w_l) \wedge \cdots \wedge (\Omega_{i_{2n-1} i_{2n}} - \varphi_{i_{2n-1} i_{2n}} dw_0 - \sum \varphi_{i_{2n-1} k} w_k \wedge \varphi_{i_{2n} l} w_l) \wedge w_0.$$

The condition (1.2) is independent of the choice of ξ -frame fields. In fact, let R be the Riemannian curvature tensor of (M^{2n+1}, g) . Then (1.2) is equivalent to

$$(1.2)' R(X,\xi)Y = g(X,Y)\xi - g(\xi,Y)X$$

for any vector fields X and Y on M. A Riemannian manifold (M^{2n+1}, g) admitting a unit Killing vector ξ satisfying (1.2) or (1.2)' is called a Sasakian manifold (or a normal contact Riemannian manifold). In particular, Sasakian manifolds with constant $l(\xi)$ are canonically related to Hodge manifolds (i. e., Kählerian manifolds whose fundamental 2-form defines an integral cocycle). Contact manifolds are orientable.

A special case is as follows:

THEOREM B. Let (M^3, g) be a compact 3-dimensional Riemannian manifold admitting a unit Killing vector ξ such that

$$(1.5) R(X, \xi)\xi = g(X, \xi)\xi - X.$$

If each trajectory of ξ is of constant length $l(\xi)$, then

(1.6)
$$\frac{1}{l(\xi)2\pi} \left[\int_{M} K(\xi^{\perp}) dM + 3 \operatorname{Vol}(M) \right] = 2 - \beta_{1}(M),$$

where $K(\xi^{\perp})$ means sectional curvature of the 2-plane orthogonal to ξ and Vol(M) denotes the total volume of (M^3, g) .

Two typical examples, Sasakian manifolds and Riemannian product manifolds, show a clear difference between expressions of linear combinations of Betti numbers (see (7.1) and (8.2)).

§ 2. Preliminaries.

For local fields of orthonormal vectors $(e_A, A = 0, 1, \dots, 2n)$ and the dual 1-forms (w_A) on a Riemannian manifold (M^{2n+1}, g) , the structure equations are

(2.1)
$$dw_A = \sum w_B \wedge w_{BA} \qquad (A, B = 0, 1, \dots, 2n),$$

$$(2.2) dw_{AB} = \sum w_{AC} \wedge w_{CB} + \Omega_{AB},$$

where w_{AB} and Ω_{AB} denote the connection forms and curvature forms, respectively; $w_{AB}+w_{BA}=0$ and $\Omega_{AB}+\Omega_{BA}=0$.

Let $(*e_A)$ be another frame field such that

(2.3)
$$*e_A = \sum a_{AB}e_B, \quad a_{AB}(x) \in O(2n+1).$$

Then the curvature forms $*\Omega_{AB}$ with respect to $(*e_A)$ satisfy

$$*\Omega_{AB} = \sum a_{AC} a_{BD} \Omega_{CD}.$$

§ 3. Sasakian structures.

Let (M^{2n+1}, g) be a Riemannian manifold admitting a unit Killing vector ξ satisfying

$$(3.1) R(X,\xi)Y = g(X,Y)\xi - g(Y,\xi)X,$$

where $R(X,Y)Z = V_{[X,Y]}Z - [V_X, V_Y]Z$ and V denotes the Riemannian connection. Since ξ is a Killing vector, it satisfies $V_X(V\xi)Y + R(X,\xi)Y = 0$ (this relation is equivalent to the fact that ξ is an infinitesimal affine transformation). Hence, the left hand side of (3.1) may be replaced by $-V_X(V\xi)Y$. Such a Riemannian manifold is called a Sasakian manifold or normal contact Riemannian manifold (cf. Sasaki-Hatakeyama [8], Hatakeyama-Ogawa-Tanno [6], etc.) and it is denoted by (M^{2n+1}, ξ, g) . For completeness we give a brief summary of relations of structure tensors (see [6], up to constant factors). We define a (1, 1)-tensor field φ by $\varphi = -V\xi$, i. e., $\varphi X = -V_X\xi$. By $V_X(g(\xi, \xi)) = 0$, we have $\varphi \xi = -V_\xi \xi = 0$. Next, by $V_X(\varphi \xi) = 0$, we have $(V_X \varphi)\xi + \varphi V_X\xi = V_X(-V\xi)\xi - \varphi \varphi X = 0$. The last equation and (3.1) give

(3.2)
$$\varphi \varphi X = -X + g(\xi, X)\xi.$$

Considering the inner product of the both sides of (3.2) and Y, and noticing that $\varphi = -V\xi$ is skew-symmetric with respect to g, we have

$$(3.3) g(\varphi X, \varphi Y) + g(\xi, X)g(\xi, Y) = g(X, Y).$$

If w_0 is the 1-form dual to ξ with respect to g, i.e., $w_0(X) = g(\xi, X)$, by $\varphi = -\nabla \xi$ we have

(3.4)
$$dw_0(X, Y) = 2g(X, \varphi Y).$$

 w_0 satisfies $w_0 \wedge (dw_0)^n \neq 0$ and is called a contact form. With respect to local coordinates (x^4) , we have

$$(3.4)' dw_0 = \sum \varphi_{AB} dx^A \wedge dx^B.$$

Sasakian manifolds (more generally contact manifolds) are orientable. Let $(\xi = e_0, e_1, \dots, e_{2n}; w_0, w_1, \dots, w_{2n})$ be a ξ -frame field. Then it is not difficult to see that (3.1) is equivalent to $\Omega_{0i} = w_i \wedge w_0$ $(i = 1, \dots, 2n)$, since

$$\Omega_{AB} = (1/2) \sum R_{ABCD} w_C \wedge w_D$$
,

where we have put $R(e_C, e_D)e_B = \sum R_{ABCD}e_A$.

§ 4. Boothby-Wang's fibering.

Let (M^{2n+1}, ξ, g) be a Sasakian manifold and assume that ξ is regular (cf. Boothby-Wang [1], etc.). Then we have the fibering

$$\pi: M^{2n+1} \longrightarrow M^{2n+1}/\xi = B^{2n}$$

where (B^{2n}, J, G) is a Kählerian manifold (more precisely, Hodge manifold) with (almost) complex structure tensor J and the Kähler metric tensor G (see Hatakeyama [5], p. 181, etc.). w_0 is an infinitesimal connection form on this principal bundle. J and G satisfy

(4.1)
$$g(X, Y) = G(\pi X, \pi Y) \cdot \pi + w_0(X)w_0(Y),$$

$$(4.2) (Ju)^* = \varphi u^*,$$

 u^* denoting the horizontal lift of a vector field u on B^{2n} with respect to w_0 . Conversely, every Hodge manifold (B^{2n}, J, G) gives a Sasakian manifold (M^{2n+1}, ξ, g) with regular ξ . Furthermore, we have

$$dw_0(X, Y) = 2G(\pi X, J\pi Y) \cdot \pi = 2g(X, \varphi Y)$$
.

Let $(f_i, i=1, \dots, 2n)$ be local fields of orthonormal vectors in B^{2n} . Then $(\xi = e_0, e_i = f_i^*)$ is a ξ -frame field and the Riemannian connection forms w_{AB} with respect to (e_A) are given by

$$(4.3)$$
 $w_{00} = 0$,

$$(4.4) w_{0i} = -w_{i0} = -\sum \varphi_{ij} w_{i},$$

(4.5)
$$w_{ii} = \pi^*(w'_{ii}) - \varphi_{ij}w_0$$
,

where $\varphi_{ij} = g(e_i, \varphi e_j)$, and w'_{ji} are the connection forms on (B^{2n}, G) with respect to (f_i) (cf. Kobayashi [7], Proposition 2). The curvature forms Ω_{AB} are given by (cf. [7], Proposition 3)

$$(4.6) \Omega_{00} = 0,$$

$$\Omega_{0i} = -\Omega_{i0} = -\sum \varphi_{ik} \varphi_{kl} w_l \wedge w_0,$$

(4.8)
$$\Omega_{ii} = \pi^*(\Omega'_{ii}) - \sum_{i} (\varphi_{ii}\varphi_{kl} + \varphi_{ik}\varphi_{il}) w_k \wedge w_l,$$

where Ω'_{i} are the curvature forms on (B^{2n}, G) . Hence, we have

(4.9)
$$\pi^*(\Omega_{ij}) = \Omega_{ij} - \varphi_{ij} dw_0 - \sum \varphi_{ik} w_k \wedge \varphi_{jl} w_l.$$

§ 5. The Theorem A.

Let (M^{2n+1}, ξ, g) be a compact Sasakian manifold with regular ξ . In this case regularity is equivalent to the fact that all trajectories of ξ have the common length $l(\xi)$. The Gauss-Bonnet formula (for example, see Chern [2, 3])

for a compact orientable Riemannian manifold (B^{2n}, G) is

$$(5.1) \qquad \frac{(-1)^n}{2^{2n}\pi^n n!} \int_B \sum \varepsilon_{i_1\cdots i_{2n}} \Omega'_{i_1i_2} \wedge \cdots \wedge \Omega'_{i_{2n-1}i_{2n}} = \chi(B),$$

where $\varepsilon_{i_1\cdots i_{2n}}$ is a symbol which is 1 or -1 according as (i_1, \cdots, i_{2n}) is an even or odd permutation of $(1, \cdots, 2n)$, and is zero otherwise. It is not difficult to see that

(5.2)
$$\int_{\mathbf{M}} \pi^*(\boldsymbol{\Theta}) \wedge w_0 = l(\boldsymbol{\xi}) \int_{\mathbf{R}} \boldsymbol{\Theta}$$

for any 2n-form Θ on B^{2n} . Therefore, we get

$$(5.3) \qquad \frac{(-1)^n}{l(\xi)2^{2n}\pi^n n!} \int_{\mathcal{M}} \sum \varepsilon_{i_1\cdots i_{2n}} \pi^*(\Omega'_{i_1i_2}) \wedge \cdots \wedge \pi^*(\Omega'_{i_{2n-1}i_{2n}}) \wedge w_0 = \chi(B).$$

THEOREM A. Let (M^{2n+1}, ξ, g) be a compact Sasakian manifold with regular ξ . Then

(5.4)
$$\frac{(-1)^{n}}{l(\xi)2^{2n}\pi^{n}n!} \int_{M} \sum \varepsilon_{i_{1}\cdots i_{2n}}(\Omega_{i_{1}i_{2}} - \varphi_{i_{1}i_{2}}dw_{0} - \sum \varphi_{i_{1}k}w_{k} \wedge \varphi_{i_{2}l}w_{l}) \wedge \cdots \wedge (\Omega_{i_{2n-1}i_{2n}} - \varphi_{i_{2n-1}i_{2n}}dw_{0} - \sum \varphi_{i_{2n-1k}}w_{k} \wedge \varphi_{i_{2n}l}w_{l}) \wedge w_{0}$$

$$= \sum_{r=0}^{n} (n+1-r)(-1)^{r}\beta_{r}(M),$$

where $\beta_r(M)$ denotes the r-th Betti number of M^{2n+1} .

PROOF. First we notice that the integrand is independent of the choice of ξ -frame fields. By (4.9) and (5.3), it suffices to show

(5.5)
$$\chi(B) = \sum_{r=0}^{n} (n+1-r)(-1)^{r} \beta_{r}(M).$$

The exact sequence of Gysin for $\pi: M^{2n+1} \rightarrow B^{2n}$ is

$$0 \longrightarrow H^{1}(B; \mathbf{R}) \stackrel{\boldsymbol{\pi^{*}}}{\longrightarrow} H^{1}(M; \mathbf{R}) \longrightarrow H^{0}(B; \mathbf{R})$$

$$\stackrel{L_{0}}{\longrightarrow} H^{2}(B; \mathbf{R}) \stackrel{\boldsymbol{\pi^{*}}}{\longrightarrow} H^{2}(M; \mathbf{R}) \longrightarrow H^{1}(B; \mathbf{R}) \longrightarrow \cdots$$

$$\stackrel{L_{p-2}}{\longrightarrow} H^{p}(B; \mathbf{R}) \stackrel{\boldsymbol{\pi^{*}}}{\longrightarrow} H^{p}(M; \mathbf{R}) \longrightarrow H^{p-1}(B; \mathbf{R}) \longrightarrow \cdots,$$

where $H^p(M; \mathbf{R})$ (or $H^p(B; \mathbf{R})$) is the p-th cohomology group of M^{2n+1} (or B^{2n}) with real coefficient \mathbf{R} , and L_p sends $\lambda \in H^p(B; \mathbf{R})$ to $W \wedge \lambda \in H^{p+2}(B; \mathbf{R})$, W being the fundamental 2-form of the Kählerian manifold (B^{2n}, J, G) (cf. Chern-Spanier [4], Serre [9]). Since (B^{2n}, J, G) is Kählerian, L_p is an into isomorphism for $p \leq (2n-2)/2$. Therefore $\beta_1(M) = \beta_1(B)$ and

$$\beta_n(M) = \beta_n(B) - \beta_{n-2}(B), \qquad 2 \le p \le n,$$

(5.7)
$$\beta_{p}(M) = \beta_{p-1}(B) - \beta_{p+1}(B), \quad n+1 \le p \le 2n$$

(see also Tanno [11]). Then we get

$$\begin{split} \chi(B) &= \sum_{i=0}^{2n} (-1)^i \beta_i(B) \\ &= \sum_{p=0}^{n-1} 2(-1)^p \beta_p(B) + (-1)^n \beta_n(B) \\ &= \sum_{p=0}^{n-3} 2(-1)^p \beta_p(B) + 3(-1)^{n-2} \beta_{n-2}(B) \\ &\quad + 2(-1)^{n-1} \beta_{n-1}(B) - (-1)^n \beta_{n-2}(B) + (-1)^n \beta_n(B) \\ &= \sum_{p=0}^{n-3} 2(-1)^p \beta_p(B) + 3(-1)^{n-2} \beta_{n-2}(B) \\ &\quad + 2(-1)^{n-1} \beta_{n-1}(B) + (-1)^n \beta_n(M) \; . \end{split}$$

Continuing this step we have (5.5).

q. e. d.

An orthonormal frame $(\xi = e_0, e_1, \varphi e_1 = e_{n+1}, \cdots, e_n, \varphi e_n = e_{2n})$ is called a φ -frame. With respect to a φ -frame, we have

(5.8)
$$(\varphi_{AB}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -E \\ 0 & E & 0 \end{pmatrix},$$

where E denotes an $n \times n$ unit matrix.

§ 6. The special case where dim M=3.

(4.9) with
$$i = 1$$
 and $j = 2$ is

(6.1)
$$\pi^*(\Omega'_{12}) = \Omega_{12} - \varphi_{12} dw_0 - \sum_{k} \varphi_{1k} w_k \wedge \varphi_{2k} w_k.$$

With respect to a φ -frame field, we have

$$\pi^*(\Omega_{12}') = \Omega_{12} - 2w_1 \wedge w_2 - w_1 \wedge w_2.$$

Therefore

(6.2)
$$l(\xi) \int_{\mathcal{B}} \Omega'_{12} = \int_{\mathcal{M}} \Omega_{12} \wedge w_0 - 3 \int_{\mathcal{M}} w_1 \wedge w_2 \wedge w_3.$$

That is,

(6.3)
$$l(\xi)\chi(B) = (-1/2\pi) \left[\int_{M} \Omega_{12} \wedge w_{0} - 3 \text{ Vol } (M) \right],$$

where Vol(M) denotes the total volume of (M^{2n+1}, g) . By (1.2), we have $R_{A012} = 0$, etc., and hence we have

(6.4)
$$\Omega_{12} = (1/2) \sum_{AB} R_{12AB} w_A \wedge w_B = R_{1212} w_1 \wedge w_2$$

where $-R_{1212} = K(e_1, e_2)$ is the sectional curvature for the (e_1, e_2) -plane. Consequently, we get

THEOREM B. Let (M^3, ξ, g) be a 3-dimensional compact Sasakian manifold with regular ξ . Then

(6.5)
$$\frac{1}{l(\xi) 2\pi} \left[\int_{M} K(e_1, \varphi e_1) dM + 3 \operatorname{Vol}(M) \right] = 2 \beta_0(M) - \beta_1(M).$$

A Riemannian manifold (M^{2n+1}, g) admitting a unit Killing vector ξ satisfying (1.5) is called a K-contact Riemannian manifold. Every K-contact Riemannian manifold of 3-dimension is Sasakian (Tanno [10]), and so Theorem B in the introduction is equivalent to the above one.

EXAMPLE. A unit sphere S^{2n+1} admits the standard Sasakian structure ξ (Sasaki-Hatakeyama [8]). For S^3 , we have $l(\xi) = 2\pi$, $K(e_1, \varphi e_1) = 1$ and $Vol(S^3) = 2\pi^2$. On the other hand, $\beta_1(S^3) = \beta_2(S^3) = 0$ and $\beta_0(S^3) = \beta_3(S^3) = 1$.

§ 7. Special case where dim M=5.

If dim M=5, we have

(7.1)
$$\frac{1}{l(\xi)2^{4}\pi^{2}2} \int_{M} 8 \left[\pi^{*}(\Omega'_{12}) \wedge \pi^{*}(\Omega'_{34}) + \pi^{*}(\Omega'_{13}) \wedge \pi^{*}(\Omega'_{42}) + \pi^{*}(\Omega'_{14}) \wedge \pi^{*}(\Omega'_{23})\right] \wedge w_{0}$$

$$= 3\beta_{0}(M) - 2\beta_{1}(M) + \beta_{2}(M).$$

If we take a φ -frame field, we have $\pi^*(\Omega'_{12}) = \Omega_{12} - w_3 \wedge w_4$, $\pi^*(\Omega'_{14}) = \Omega_{14} - w_2 \wedge w_3$, $\pi^*(\Omega'_{23}) = \Omega_{23} - w_1 \wedge w_4$, $\pi^*(\Omega'_{34}) = \Omega_{34} - w_1 \wedge w_2$, $\pi^*(\Omega'_{13}) = \Omega_{13} - 2w_2 \wedge w_4 - 3w_1 \wedge w_3$, and $\pi^*(\Omega'_{24}) = \Omega_{24} - 2w_1 \wedge w_3 - 3w_2 \wedge w_4$. Hence, we have

(7.2)
$$\frac{1}{4\pi^{2}l(\xi)} \int_{M} [\Omega_{12} \wedge \Omega_{34} + \Omega_{18} \wedge \Omega_{42} + \Omega_{14} \wedge \Omega_{23} + 3w_{1} \wedge w_{3} \wedge \Omega_{24} + 3w_{2} \wedge w_{4} \wedge \Omega_{13} + 15w_{1} \wedge w_{2} \wedge w_{3} \wedge w_{4} - w_{1} \wedge w_{2} \wedge \Omega_{12} + 2w_{1} \wedge w_{3} \wedge \Omega_{13} - w_{1} \wedge w_{4} \wedge \Omega_{14} - w_{2} \wedge w_{3} \wedge \Omega_{23} + 2w_{2} \wedge w_{4} \wedge \Omega_{24} - w_{3} \wedge w_{4} \wedge \Omega_{34}] \wedge w_{0}$$

$$= 3 - 2\beta_{1}(M) + \beta_{2}(M).$$

EXAMPLE. For S^5 , we have $l(\xi) = 2\pi$, $\Omega_{ij} = -w_i \wedge w_j$ $(i, j = 1, \dots, 4)$ and $Vol(S^5) = \pi^3$. On the other hand, $\beta_i(M) = 0$ $(i = 1, \dots, 4)$ and $\beta_0(M) = \beta_5(M) = 1$.

§ 8. Remarks.

(i) If (M, g) is of constant curvature k, we have

(8.1)
$$R(X, Y)Z = k[g(X, Z)Y - g(Y, Z)X].$$

If a Killing vector ξ of non-zero constant length satisfies

$$R(X, \xi)Z = k[g(X, Z)\xi - g(\xi, Z)X], \quad k > 0,$$

then we can assume the length of ξ is 1 and we can change the Riemannian metric g by $g^* = (1/k)g$ and ξ by $\xi^* = \sqrt{k} \xi$, so that (M, ξ^*, g^*) is a Sasakian manifold.

Every complete Riemannian manifold of constant curvature 1 and odd dimension admits a Sasakian structure (Wolf [13], Tanno [12]).

(ii) Let N be a 4-dimensional compact orientable Riemannian manifold with Betti numbers $\beta_p(N)$. Let S be a circle of length l and let $N\times S$ be the Riemannian product of N and S. A unit tangent vector field on S defines a unit Killing vector ξ on $M^5=N\times S$ in the natural way. Its dual 1-form w_0 is parallel. Then

(8.2)
$$\frac{1}{l 2^4 \pi^2 2} \int_{M} \sum \varepsilon_{i_1 \cdots i_4} \Omega_{i_1 i_2} \wedge \Omega_{i_3 i_4} \wedge w_0$$
$$= \chi(N) = 5 \beta_0(M) - 3 \beta_1(M) + \beta_2(M),$$

where $\beta_r(M)$ denotes the r-th Betti number of $M = N \times S$ and we have used $\beta_r(M) = \sum_{p+q=r} \beta_p(N)\beta_q(S)$. One sees the difference between the right hand sides of (7.1) and (8.2).

Mathematical Institute Tôhoku University

References

- [1] W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math., 68 (1958), 721-734.
- [2] S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet theorem for closed Riemannian manifolds, Ann. of Math., 45 (1944), 747-752.
- [3] S. S. Chern, On the curvatura integra in a Riemannian manifold, Ann. of Math., 46 (1945), 674-684.
- [4] S. S. Chern and E. Spanier, The homology structure of sphere bundles, Proc. Nat. Acad. Sci. U. S. A., 36 (1950), 248-255.
- [5] Y. Hatakeyama, Some notes on differentiable manifolds with almost contact structures, Tôhoku Math. J., 15 (1963), 176-181.
- [6] Y. Hatakeyama, Y. Ogawa and S. Tanno, Some properties of manifolds with contact metric structure, Tôhoku Math. J., 15 (1963), 42-48.
- [7] S. Kobayashi, Topology of positively pinched Kähler manifolds, Tôhoku Math. J., 15 (1963), 121-139.
- [8] S. Sasaki and Y. Hatakeyama, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan, 14 (1962), 249-271.
- [9] J. P. Serre, Homologie singulière des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
- [10] S. Tanno, Sur une variété de K-contact métrique de dimension 3, C.R. Acad. Sci. Paris, 263 (1966), 317-319.
- [11] S. Tanno, Harmonic forms and Betti numbers of certain contact Riemannian

- manifolds, J. Math. Soc. Japan, 19 (1967), 308-316.
- [12] S. Tanno, Sasakian manifolds with constant φ -holomorphic sectional curvature, Tôhoku Math. J., 21 (1969), 501-507.
- [13] J. A. Wolf, A contact structure for odd dimensional spherical space forms, Proc. Amer. Math. Soc., 19 (1968), 196.