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§1. Introduction.

Let (N®", g) be a compact orientable Riemannian manifold of 2n-dimension.
The generalised Gauss-Bonnet formula is

_1 i 4 ’
(11) 7(2ﬁn)n‘rflvz €iyriznseiziz A\ 0 A -QiZn—u'zn = X(N) ’

where £;; denote the curvature forms and X(N) is the Euler-Poincaré charac-
teristic. The left hand side of is a differential geometric or Riemannian
geometric quantity and the right hand side is a topological quantity. In [(1.1),
even dimensionality is essential.

For a compact orientable Riemannian manifold (M?***!, g) of odd dimension,
we have X(M)=0. This shows that M = M?"+! admits a vector field & with
no singular points. If we try to find some formula on (M?***!, g) analogous
to [(1.1), some restriction on this £ may be necessary and it might be hoped
that the right hand side is a linear combination of Betti numbers.

We assume that £=e¢, is a unit vector field. Let w, be the l-form dual
to e, with respect to g. Then we have local fields of orthonormal vectors
€y, €1, , €, and the dual w,, w,, -, W,,. We call this frame field a &-frame
field. By 2.5 (A, B=0,1,---,2n) we denote the curvature forms with respect
to the above frame field. By j,(M) we denote the r-th Betti number of M.
In this paper we have

THEOREM A. Let (M***, g) be a compact Riemannian manifold admitting
a unit Killing vector £ and let (e,, e;) be a &-frame field. Assume that

1.2) yi=w; Aw,, i=1,.-,2n,
and that each trajectory of & is of constant length 1(§). Then

1.3) T gt | F @i wd = 3 (et 1= 17 B.(M),

where, putting dw,= QW4 N\ Wp,

*) The author is partially supported by the Matsunaga Foundation.
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(1.4 F('Qij; Wo) =2, Su-uizy,,(gniz"_90i1i2dwo‘—Z i xWx N QW) N\
< A (Rignyion— Pizn-11208Wo— 2 Pign1:Wi N\ PigriWi) N\ W, .

The condition [(1.2) is independent of the choice of &-frame fields. In fact,
let R be the Riemannian curvature tensor of (M***!, g). Then is equi-
valent to

1.2y R(X, ©)Y=g(X, Y)E—g(§ Y)X

for any vector fields X and Y on M. A Riemannian manifold (M?2"*, g)
admitting a unit Killing vector & satisfying [(1.2) or (1.2} is called a Sasakian
manifold (or a normal contact Riemannian manifold). In particular, Sasakian
manifolds with constant /(&) are canonically related to Hodge manifolds (i. e,
Kihlerian manifolds whose fundamental 2-form defines an integral cocycle).
Contact manifolds are orientable.

A special case is as follows:

THEOREM B. Let (M3, g) be a compact 3-dimensional Riemannian manifold
admitting a unit Killing vector & such that

(L.5) R(X, £)§=g(X, §)§—X.
If each trajectory of & is of constant length 1(€), then

(1.6) T@ 7 LJ KEM+3 Vol (] =2—p.M),

where K(£*) means sectional curvature of the 2-plane orthogonal to & and
Vol (M) denotes the total volume of (M8, g).
Two typical examples, Sasakian manifolds and Riemannian product mani-

folds, show a clear difference between expressions of linear combinations of
Betti numbers (see (7.1) and [8.2).

§ 2. Preliminaries.

For local fields of orthonormal vectors (¢4, A=0,1,---,2n) and the dual
1-forms (w,) on a Riemannian manifold (M?"*!, g), the structure equations are
2.1 dw,=wp A\ Wgy (4, B=0,1, -, 2n),

2.2) dw,p=2W4ec NWep+845,

where w,p and £2,p denote the connection forms and curvature forms, re-
spectively ; w z+wg, =0 and Q2,5+ 25,=0.
Let (*e4) be another frame field such that

(2.3) ~ *¢,=>la,pep, asp(x) e 0@2n+1).

Then the curvature forms *@,p with respect to (*e,) satisfy
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2.4) *Q48 =22 a4caBp2cp .

§ 3. Sasakian structures.

Let (M g) be a Riemannian manifold admitting a unit Killing vector
£ satisfying

3.1 R(X, O)Y=g(X, Y)é—g(Y, )X,

where R(X, Y)Z=V xy1Z—[Vx, Vy]1Z and V denotes the Riemannian con-
nection. Since £ is a Killing vector, it satisfies V ;F &)Y+ R(X, §)Y=0 (this
relation is equivalent to the fact that & is an infinitesimal affine transfor-
mation). Hence, the left hand side of may be replaced by —V x(F&)Y.
Such a Riemannian manifold is called a Sasakian manifold or normal contact
Riemannian manifold (cf. Sasaki-Hatakeyama [8], Hatakeyama-Ogawa-Tanno
[6], etc.) and it is denoted by (M?*"*!, & g). For completeness we give a brief
summary of relations of structure tensors (see [6], up to constant factors).
We define a (1, 1)-tensor field ¢ by ¢ =—FV§¢, i.e., oX=—Vx& By Vx(g(&, &)
=0, we have o6 =—F:£=0. Next, by Vx(p€) =0, we have (Vxp)s+oV x&
=V y(—V&E&—¢ppX=0. The last equation and give

(3.2 ppX =—X+g(&, X)¢.

Considering the inner product of the both sides of and Y, and noticing
that ¢ = —FV¢ is skew-symmetric with respect to g, we have

3.3) glpX, pY)+g(§, X)g(§, Y)=g(X, Y).

If w, is the 1-form dual to & with respect to g, i.e., wy(X)=g(, X), by o=
—V & we have

(CXY) dwy(X, Y)=2g(X, ¢Y).

w, satisfies w, A (dw,)* # 0 and is called a contact form. With respect to local
coordinates (x4), we have

B4y dw, =X pdx4Ndx®.

Sasakian manifolds (more generally contact manifolds) are orientable. Let
E=e, €, , €3, ; W, Wy, -+, Wy,) be a &-frame field. Then it is not difficult
to see that is equivalent to 2,;=w; Aw, (=1, -+, 2n), since

Q4=QA/2)Z R pcpWec A Wp,

where we have put R(ec, ep)es = Ripcpea.
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§4. Boothby-Wang’s fibering.

Let (M?"*+!, & g) be a Sasakian manifold and assume that & is regular (cf.
Boothby-Wang [1], etc.). Then we have the fibering
T : M2n+1 N MZn—l—l/E — an s

where (B®*, J,G) is a Kéhlerian manifold (more precisely, Hodge manifold)
with (almost) complex structure tensor / and the Kdhler metric tensor G (see
Hatakeyama [5], p. 181, etc.). w, is an infinitesimal connection form on this
principal bundle. J and G satisfy

4.1) g(X, Y)=GxX, 1Y) -n+w(X)w(Y),
(4.2) (Ju)* = pu*,

u* denoting the horizontal lift of a vector field u on B?" with respect to w,.
Conversely, every Hodge manifold (B**, J,G) gives a Sasakian manifold
(M2 £ g) with regular & Furthermore, we have

dwy(X, Y)=2G(xzX, JrY) n=2g(X, ¢Y).

Let (f;, i=1,---,2n) be local fields of orthonormal vectors in B?*". Then
{(E=¢e, ¢;=f¥) is a &-frame field and the Riemannian connection forms w,p
with respect to (e,) are given by

{4.3) Weo =0,
{4.4) Woi = — Wy = —2¢;;W;,
(4.5) Wy = ¥ W};)— ;W ,

‘where ¢;; =g(e;, pe;), and wj; are the connection forms on (B**, G) with
respect to (f;) (cf. Kobayashi [7], Proposition 2). The curvature forms 2,5
are given by (cf. [7]), Proposition 3)

(4.6) 20,=0,

(4.7) Qo= —2i0=—2Z QixPraWi A\ Wy,

(4.8) Qi =125 — 2 (@i ;0 Qi) Wi N Wy,

where 2; are the curvature forms on (B®**, G). Hence, we have
(4.9 ¥ = 25— @i ;dWe— 2 QWi N Q1W;

§5. The Theorem A.

Let (M®*+1 £ o) be a compact Sasakian manifold with regular £ In this
«<ase regularity is equivalent to the fact that all trajectories of & have the
<common length /(£). The Gauss-Bonnet formula (for example, see Chern [2, 37])
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for a compact orientable Riemannian manifold (B?**, G) is

_‘1 " ’ /
(5-1) 'Zgh%nzi’!"fstil"'izn T RATA Qian—liZn = X(B) ’
where ¢;,..;;, is a symbol which is 1 or —1 according as (i, -+, 1,,) iS an even
or odd permutation of (1,---,2n), and is zero otherwise. It is not difficult to
see that
(52) J @ nw=1&] 6

M B
for any 2n-form @ on B®*". Therefore, we get
—1)

G e g ] Do ) A e AT Dy _sian) A Wy =1(B).

THEOREM A. Let (M?*"*!, & g) be a compact Sasakian manifold with regular
& Then

—1)"
5.4 _l”(“eg‘zzn%'n’n ! fMZ €irion(8i1i0— Pir12AWo— 2 Qi1 Wi N QW) A

< N (2455 1120 Pizn-10218Wo— 2 Pizn_1xWi N PisriWi) A\ Wo

Ms

(n+1—n(—=1)B(M),

r=0

where B.(M) denotes the r-th Betti number of M?"+',
PrOOF. First we notice that the integrand is independent of the choice
of &-frame fields. By (4.9) and (5.3), it suffices to show

(655) UBY= 3 (n+1—r(—1YB,(M).

The exact sequence of Gysin for = : M?"+'— B?" ig
n*
0— H(B;R)— H'M; R)—> H(B; R)
L, *
—> H*¥B; R)— H*M; R)— H'(B; R) —> ---
L,_, *
—> H?(B; R) —> H*(M; R) — H*"'(B; R) —> ---,
where H?(M ; R) (or H?(B; R)) is the p-th cohomology group of M?*+! (or B*"»
with real coefficient R, and L, sends A€ H?(B; R) to WA H?***B; R), W
being the fundamental 2-form of the Kédhlerian manifold (B®**, J, G) (cf. Chern-
Spanier [4], Serre [9)). Since (B®**, J,G) is Kéhlerian, L, is an into iso-
morphism for p <(2n—2)/2. Therefore 3,(M)=,(B) and
(5.6) Bp(M) = B,(B)—Bp-(B), 2=p=n,

6.7 BoM)=Bp-A(B)—Bps(B), ntls=p=s2n
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(see also Tanno [11]). Then we get

2n

X(B)= 2 (—1)'8(B)

=0

=3 A= 17 BB+~ 17 Bu(B)

=3 A= 1B, (B)+3(— 16 o(B)
+ 21" B s (B)— (1) - o BH(— 1" Bu(B)
= 5 A= 1PB(B)+H— 1" Bn-o(B)

+2(—=1)" Ba-i(B)+(—1)"Ba(M) .

Continuing this step we have q.e.d.
An orthonormal frame (§=e,, ¢;, Y&, ==eusy, *** , €y, Pe,=8,,) is called a

-frame. With respect to a ¢-frame, we have

0 0 0
5.8) (pap) = ( 0 0 ~E) ,
o E 0

where E denotes an nX#n unit matrix.

§ 6. The special case where dim M =3.
(4.9) with i=1 and j=2 is

{6.1) TH*(R2},) = le*(Pmdwo—“E CixWi N\ QWy
With respect to a ¢-frame field, we have
{6.1) TH(2) = Q1,— 2w, AWwy—w; AW,
Therefore
(6.2) 1®f 2= Quu Awy—3 [ w, Aw, Aw,.
B M M
That is,
(6.3) 1©UB)=(—1/20)[ | 21 Awy—3 Vol (M) ],
M

where Vol(M) denotes the total volume of (M?*"*, g). By we have
R 4012 =0, etc., and hence we have

6.4 Ru=0/2)Z Rypws N wg= lez Wy N\ W,

where —R,,,, = K(e,, ¢,) is the sectional curvature for the (e, ¢,)-plane. Con-
sequently, we get
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THEOREM B. Let (M3 &, g) be a 3-dimensional compact Sasakian manifold
with regular &. Then

6.5 [f, Kew penydM+3 Vol (M) [ =28,M)—B.(M).

1
1(§)2r
A Riemannian manifold (M?**!, g) admitting a unit Killing vector §
satisfying is called a2 K-contact Riemannian manifold. Every K-contact
Riemannian manifold of 3-dimension is Sasakian (Tanno [10]), and so Theorem

B in the introduction is equivalent to the above one.
EXAMPLE. A unit sphere S**' admits the standard Sasakian structure &

(Sasaki-Hatakeyama [8]). For S°® we have [(§)=2r, K(e, pe;)=1 and
Vol(S?)=2z% On the other hand, B,(S®) = B,(S*)=0 and B,(S®%) = B«(S*)=1.

§ 7. Special case where dim M =5.

If dim M =5, we have

@D gy ) SO AT
+a*(21e) A T¥(2) +7H(21) A w¥(25)] A\ w,
= 3Bu(M)—28,(M)+BuM) .

If we take a o-frame field, we have n*(2},;) = 2,,—wsAw,, 7*(R1,) = 21— WA\ W,
T*(L55) = Log— w1 A Wy, T*(24) = R3i—wy N\ Wy, T4(Q1s) = 23— 2w, N w—3W; A\ Wy,
and n*(824) = 2,,— 2w, N w,—3w, A w,. Hence, we have

(7.2) Hﬁl@ fM[Qm A 25+ 8215 N\ 242+ 214 N\ Lo +3w; Aws A 2,

+3w, Awy A 213 +15w, Aw, Awg Aw,—wy; Aw, A 824,
+2w, AWy A 25— Wy AWy A 21— Wy AWy N 25
2wy AWy A 2oy—wWs AWy A 25,7 A W,

=3—2B,(M)+ B.M) .

EXAMPLE. For S°% we have [(§)=2r, Q;,j=—w;ANw; (1,j=1,--,4) and
Vol (S®)==z*% On the other hand, 3;(M)=0(G=1,:--,4) and B,(M)=B,(M)=1.
§ 8. Remarks.

(i) If (M, g) is of constant curvature k2, we have
6.1 R(X,Y)Z=PRk[g(X, 2)Y—g(Y, 2)X].

If a Killing vector & of non-zero constant length satisfies
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then we can assume the length of £ is 1 and we can change the Riemannian
metric g by g*=(1/k)g and & by &* =~k &, so that (M, &% g*) is a Sasakian
manifold.

Every complete Riemannian manifold of constant curvature 1 and;odd
dimension admits a Sasakian structure (Wolf [13], Tanno [12).

(ii) Let N be a 4-dimensional compact orientable Riemannian manifold
with Betti numbers S,(N). Let S be a circle of length [ and let NXS be the
Riemannian product of N and S. A unit tangent vector field on S defines a
unit Killing vector & on M°®= NXS in the natural way. Its dual 1l-form w,
is parallel. Then

1
(82) TZTW jME 61;1...,;4.91-”'2 /N Qis“ N\ Wy

= XN) =5 Bo(M)—3 B:(M)+ (M),

where B,(M) denotes the r-th Betti number of M= NXS and we have used
B(M)= +§] Bo(N)B(S). One sees the difference between the right hand sides
ptg=r

of (7.1) and
Mathematical Institute
To6hoku University
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