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\S 1. Introduction.

In this paper we shall compute some explicit formulas for the characters
and infinitesimal characters of general continuous series representations. We
then apply these results to deduce some facts concerning equivalence and
disjointness among representations from various series.

In more detail, let $G$ be a connected semisimple Lie group and $P$ a cuspidal
parabolic subgroup of $G$ . Then $P$ has a Langland’s decomposition $P=MAN$,

where $N$ is the “ unipotent radical ‘’ of $P,$ $A$ is a maximal “ split torus “ and
$M$ is a reductive Lie group, not connected in general. Let $\lambda$ be a unitary
representation of $P$ such that $\lambda(man)=\nu(a)\sigma(m),$ $m\in M,$ $a\in A,$ $n\in N$, where
$\nu$ is a character of $A$ and $\sigma$ is a square-integrable irreducible representation
of $M$. Such representations exist whenever $P$ is cuspidal. The non-degenerate
continuous series representations of $G$ (corresponding tc $P$ ) are obtained by
inducing these “ cuspidal “ representations $\lambda$ from $P$ to $G$ .

Let $\pi=Ind_{P}^{G}\lambda$ . It is known that for $f\in C_{0}^{\infty}(G),$ $\pi(f)=\int_{G}f(g)\pi(g)dg$ is a

trace class operator. Moreover, there exists a locally integrable function $\theta_{\pi}$

on $G$ such that Tr $\pi(f)=\int_{G}f(g)\theta_{\ulcorner}(g)dg,$ $f\in C_{0}^{\infty}(G)$ . We are going to compute
$\theta_{\pi}$ explicitly on an open subset $G_{P}^{\prime}$ of $G$ . Specifically, let $H$ be any Cartan
subgroup of $G$ such that $H\subseteqq P,$ $H_{\cap}AN=A$ and $H_{\cap}M$ is a compact Cartan
subgroup of $M$. Then $G_{P}^{\prime}=\{g\in G:g$ is regular (see \S 2 for the definition)

and $g_{1}^{-1}gg_{1}\in H$ for some $g_{1}\in G$ }. The main steps in the computation are as
follows: (i) extend Harish-Chandra’s results on the discrete series of connected
semisimple Lie groups to connected reductive Lie groups (\S 3); (ii) employ
Mackey’s theory in order to compute the discrete series of the disconnected
group $M$ (\S 4); (iii) develop an analog of the Weyl-Harish-Chandra integration
formula for the group $M$ (\S 7); (iv) define an appropriate class function on
$G$ (\S 8); and (v) combine various integral formulas to get the desired character
formula (see 9.1). Although we do not evaluate $\theta_{\pi}$ on all of $G$ , we shall
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compute its support (Lemma 10.5). In addition, we compute the infinitesimal
characters for the discrete series of $M$ (at the end of \S 4) and the continuous
series of $G$ (see Theorem 11.1).

Utilizing our character formula, we can deduce the following results (\S 10)

on equivalence;
1) Let $P_{1},$ $P_{2}$ be two cuspidal parabolics ( $P_{2}=G$ is allowed if $G$ has a

discrete series). Let $\pi_{1},$ $\pi_{2}$ be any representations in the series corresponding
to $P_{1},$ $P_{2}$ , respectively. Suppose $P_{1}$ and $P_{2}$ are not associate (see \S 10 for the
definition). Then $\pi_{1}$ and $\pi_{2}$ are not unitarily equivalent.

2) Let $P$ be a proper cuspidal parabolic, $\pi_{f}=Ind_{P}^{G}\lambda_{j},$ $j=1,2$ . Then
$\pi_{1}\cong\pi_{2}$ if and only if $\lambda_{1}$ and $\lambda_{2}$ are conjugate under the Weyl group
$W_{H}=[Norm(H)\cap G]/Cent(H)$ .

By an examination of the infinitesimal characters, we get the following
additional result (\S 11):

3) Let $P_{1},$ $P_{2}$ be non-associate cuspidal parabolics ($P_{2}=G$ possible).

Suppose $\dim A_{1}\neq\dim A_{2}^{1)}$ Let $\pi_{1},$ $\pi_{2}$ be any representations in the corre-
sponding series. Then $\pi_{1}$ and $\pi_{2}$ are disjoint, $i$ . $e$ . no irreducible constituent
of $\pi_{1}$ is equivalent to any irreducible constituent of $\pi_{2}$ .

We remark finally that our work generalizes [la, the case of a minimal
parabolic] and [3]. Both of these papers assume $M=M^{0}$ . Cent $(M)$ , where
$M^{0}$ denotes the connected component of the identity in $M$. We do not make
that restrictive assumption here.

NOTATION. Let $G$ be a Lie group. Set $G^{0}=the$ connected component of
the identity in $G,$ $Z_{G}=Cent(G)$ , and $\hat{G}=the$ space of unitary equivalence

classes of irreducible unitary representations of $G$ . Quite often, we blur the
distinction between a given irreducible unitary representation $\pi$ of $G$ and its
class $[\pi]\in\hat{G}$ . Denote $G_{s}=$ { $[\pi]\in\hat{G}$ : $\pi$ is square-integrable}.

Let $\mathfrak{g}=LA(G)$ be the Lie algebra of $G$ . Suppose $S\subseteqq G$ , @\subseteqq g are subsets
and $x\in G$ . We denote $S^{x}=\{x^{-1}yx:y\in S\},$ $g^{x}=$ { $Ad_{G}x^{-1}(Y)$ :Y\in @}, $S^{G}=\bigcup_{x\in G}S^{x}$ ,

$@^{G}=\bigcup_{x\in G}@^{x}$ . We always use $N(\cdot),$ $Z(\cdot)$ to denote normalizers and centralizers,

respectively. Finally, if $V$ is a vector space, $\mathfrak{g}_{V}^{*}$ will denote the linear maps
from $\mathfrak{g}$ to $V$ .

\S 2. Semisimple groups and parabolic subgroups.

Let $G$ be a connected semisimple Lie group with finite center. Let $\mathfrak{g}$ be
its Lie algebra and let $\mathfrak{g}_{c}$ be the complexification. Suppose $\mathfrak{g}=f+\mathfrak{p}$ is a Cartan
decomposition. Let $\theta$ denote the corresponding Cartan involution of $\mathfrak{g}(orG)$ ,

1) This restriction has been removed. See footnote 4).
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and set $K=the$ maximal compact subgroup of $G$ having $f$ as Lie algebra.
Next let $P$ be a parabolic subgroup of $G$ . This means: $P$ is a closed

subgroup of $G$ such that (i) if $\mathfrak{P}=LA(P)$ , then $P=N(\mathfrak{P})$ and (ii) $\mathfrak{P}_{c}$ contains
a maximal solvable subalgebra of $\mathfrak{g}_{c}$ . Let $N=the$ maximal normal subgroup
of $P$ such that $Ad(n)$ is unipotent for every $n\in N$. Set $\Xi=P\cap\theta P,$ $A=the$

maximal connected split ( $i$ . $e$ . $Ad(a)$ diagonizable over $R$) abelian subgroup
$\subseteqq Z-\cdot-$ . Then $\Xi=Z(A)\cap G$ . Let $X(\Xi)=\{\chi;\Xi\rightarrow R^{*},$ $\chi$ a continuous homo-
morphism}. Set $M=\bigcap_{\chi\in X(\Xi)}ker|\chi|$ . Then $M$ is reductive ( $i$ . $e$ . $\mathfrak{m}=LA(M)$ is
reductive), but not connected in general. Moreover $\Xi=MA$ is a direct
product, and the map $(m, a, n)\rightarrow man$ is an analytic diffeomorphism of $M\times A\times N$

onto $P$.
Suppose $P$ is cuspidal. By this we shall mean: there exists $\mathfrak{h}$ , a $\theta$ -stable

Cartan subalgebra of $\mathfrak{g}$ , such that $\mathfrak{h}\cap \mathfrak{p}=\mathfrak{a}=LA(A)$ . Let $H=Z(\mathfrak{h})\cap G$ , a
Cartan subgroup of $G$ . We call any such $H$ compatible with $P$. Set $B=H\cap K$.
Then $H=BA$ is a direct product [le, p. 481]. (Note : $H$ and $B$ are not neces-
sarily connected or abelian [ld, p. 556].)

DEFINITION. A Cartan subgroup of $M$ is the centralizer of a Cartan sub-
algebra of $\mathfrak{m}$ .

LEMMA 2.1. $B$ is a compact Cartan subgroup of $M$.
PROOF. $B$ is clearly a compact group. Set $b=\mathfrak{h}\cap f$ , so that $\mathfrak{h}=b\oplus \mathfrak{a}$ .

Let $b\in B$ . Then $ b\in\Xi$ ; but the map $b\rightarrow|\chi(b)|,$ $\chi\in X(\Xi)$ , is a continuous
homomorphism of $B$ into $R_{+}^{*}$ . Hence $B\subseteqq M$, and so $b\subseteqq \mathfrak{m}$ . Moreover, it is
clear that $b$ is a Cartan subalgebra of $\mathfrak{m}$ . Next let $\beta\in Z(\mathfrak{b})\cap M$. Then $\beta\in H$,
$\beta=ba,$ $b\in B,$ $a\in A$ . If $a\neq 1$ , choose $\chi\in X(\Xi)$ so that $|\chi(a)|\neq 1$ . Then since
$\beta\in M,$ $b\in B\subseteqq M$, we have $1=|\chi(\beta)|=|\chi(b)||\chi(a)|\neq 1$ . Therefore $\beta=b\in B$ ;
that is $B=Z(b)\cap M$.

REMARK. It is clear that if $B_{1}$ is any $\theta$-stable compact Cartan subgroup
of $M$, then $H_{1}=B_{1}A$ is a Cartan subgroup of $G$ which is compatible with $P$.

Now let $\mathfrak{z}=LA(\Xi)=Z(\mathfrak{a})\cap \mathfrak{g}=\mathfrak{m}\oplus \mathfrak{a}$ (in fact $\mathfrak{m}$ is the orthogonal comple-
ment of $\mathfrak{a}$ in 3 with respect to the Killing form). $\mathfrak{z}$ is of course reductive.
By [le, p. 481], $\Xi=\Xi_{K}\Xi_{\mathfrak{p}}$ where $\Xi_{K}=\Xi\cap K$ and $\Xi_{\mathfrak{p}}=\exp(\partial\cap \mathfrak{p})$ . But $\Xi_{K}$

$=M\cap K$, since for $\chi\in X(\Xi),$ $\xi\rightarrow|\chi(\xi)|$ is a continuous homomorphism of $\Xi_{K}$

into $R_{+}^{*}$ . Also $\exp(\mathfrak{z}\cap \mathfrak{p})=\exp[(\mathfrak{m}+\mathfrak{a})\cap \mathfrak{p}]=\exp[(\mathfrak{m}\cap \mathfrak{p})+\mathfrak{a}]=\exp(\mathfrak{m}\cap \mathfrak{p})A$ .
It follows easily that $M=M_{K}M_{\mathfrak{p}}$ , where $M_{K}=M_{\cap}K,$ $M_{\mathfrak{p}}=\exp(\mathfrak{m}\cap P)$ . It is
well-known that $G=PK=MANK$. Since $P\cap K=M_{K}$ , it is readily proven
that $(m, a, n, k)\rightarrow mank$ is an analytic diffeomorphism of $M_{\mathfrak{p}}\times A\times N\times K$ onto

$G_{u}^{v}$ [$1c$ , Lemma 11]. Finally let $\rho_{P}\in \mathfrak{a}_{R}^{*}$ be defined by $\rho_{P}(Y)=-2$-trace $(adY)_{\mathfrak{n}}$ ,1

$Y\in \mathfrak{a},$ $\mathfrak{n}=LA(N)$ .
Let $\psi$ denote the involution of $\mathfrak{g}_{c}$ corresponding to $\mathfrak{g}$ . Fix $i\in \mathfrak{g}_{c}$ such that

$\psi(i)=-i$ . We regard $\mathfrak{g}\subseteqq \mathfrak{g}_{c}=\mathfrak{g}+i\mathfrak{g}$ and so naturally $ad\mathfrak{g}\subseteqq ad\mathfrak{g}_{c}$ . Let 1nt $(\mathfrak{g}_{c})$
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be the adjoint group of $\mathfrak{g}_{c}$ . We may identify Int $(\mathfrak{g})=the$ adjoint group of $\mathfrak{g}$

with the (closed) analytic subgroup of Int $(\mathfrak{g}_{c})$ whose Lie algebra is $ad\mathfrak{g}[2$ ,
p. 155].

We denote the adjoint representation of $G$ by $Ad_{G}$ : $G\rightarrow Int(\mathfrak{g})$ . Define
$\Gamma=Ad_{G}^{-1}(Ad_{G}(K)\cap\exp i\mathfrak{a})$ .

THEOREM 2.2. (i) $\Gamma$ is a finite subgroup of $B$ that commutes with $M^{0}$ .
(ii) $\Gamma$ is normal in $M$.
(iii) $ H=H^{0}\Gamma$ .
PROOF. (i) Since $kerAd_{G}=Z_{G}$ is a finite group, it is easily seen that $\Gamma$

is a finite subgroup of $B$ . But $[\mathfrak{a}, \mathfrak{m}]=0$ and so $\Gamma$ and $M^{0}$ commute.
(ii) Since $M\subseteqq Z(\mathfrak{a})$ , we must have $Ad_{G}(M)$ commutes with $Ad_{G}(K)\cap\exp i\mathfrak{a}$ .

But $\Gamma$ is the complete inverse image (under $Ad_{G}$) of $Ad_{G}(K)\cap\exp i\mathfrak{a}$ . It
follows that $M$ normalizes $\Gamma$ .

(iii) The proof that follows strengthens the argument of [le, Lemma 50]
(see [6, p. 93] in this connection). Since $A\subseteqq H^{0}$ , it is enough to prove $ B=B^{0}\Gamma$ .
First assume $G\cong Int(\mathfrak{g})$ , that is $Z_{G}=\{e\}$ . Let $H_{c}$ be the Cartan subgroup of
1nt $(\mathfrak{g}_{c})$ corresponding to $\mathfrak{h}_{c}=the$ complexification of $\mathfrak{h}$ . Let $u=f+ip$ and
$U=the$ analytic subgroup of $G_{c}=Int(\mathfrak{g}_{c})$ having 11 as Lie algebra. $U$ is a
maximal compact subgroup of G.. But $U\cap H_{c}=U\cap Z(\mathfrak{h}_{c})$ and $\mathfrak{h}_{c}$ is invariant
under the Cartan involution of $\mathfrak{g}_{c}$ determined by $1t$ . By [le, Lemma 27],
$U\cap H_{c}$ is a connected compact Lie subgroup of $G_{c}$ having Lie algebra $=\mathfrak{u}\cap \mathfrak{h}_{c}$ .
Therefore $\exp(n\cap \mathfrak{h}_{c})=U\cap H_{c}$ . But $tt\cap \mathfrak{h}_{c}=(\mathfrak{h}\cap f)+i(\mathfrak{h}\cap \mathfrak{p})=b+i\mathfrak{a}$ . Let $b\in B$

$\subseteqq U\cap H_{c}$ . Then $b=b_{1},$ $b_{2}$ , where $b_{1}\in\exp b=B^{0}$ and $ b_{2}=b_{1}^{-1}b\in\exp i\mathfrak{a}\cap K=\Gamma$ .
Now drop the assumption $Z_{G}=\{e\}$ . Consider the adjoint representation

$Ad_{G}:G\rightarrow Int(\mathfrak{g})$ . Clearly $Ad_{G}(Z(\mathfrak{h})\cap G)=Z(\mathfrak{h})\cap Int(\mathfrak{g})$ . Also $Ad_{G}(Z(\mathfrak{h})\cap G)^{0}$

$\subseteqq[Z(\mathfrak{h})\cap Int(\mathfrak{g})]^{0}$ . But these are both connected Lie subgroups of Int $(\mathfrak{g})$

having Lie algebra $\mathfrak{h}$ . Therefore they are equal. Part (iii) is thus a con-
sequence of the following general

LEMMA 2.3. Let $\tau;G_{1}\rightarrow G_{2}$ be a continuous homomorphism onto. Suppose
$H_{j},$ $\Gamma_{j}$ are subgroups of $G_{j},$ $j=1,2$ with the properties: $G_{2}=H_{2}\Gamma_{2},$ $\tau(H_{1})=H_{2}$ ,

and $\Gamma_{1}=\tau^{-1}(\Gamma_{2})$ . Then $G_{1}=H_{1}\Gamma_{1}$ .
PROOF. If $x\in G_{1}$ , then $\tau(x)\in G_{2}=>\tau(x)=h_{2}\gamma_{2}$ for some $h_{2}\in H_{2},$ $\gamma_{2}\in\Gamma_{2}$ .

Then there are $h_{1}\in H_{1},$ $\gamma_{1}\in\Gamma_{1}$ such that $\tau(h_{1})=h_{2},$ $\tau(\gamma_{1})=\gamma_{2}$ . So $\tau(x)=\tau(h_{1}\gamma_{1})$

$\Rightarrow(h_{1}\gamma_{1})^{-1}x\in ker\tau\subseteqq\Gamma_{1}$ . Therefore $x\in H_{1}\Gamma_{1}$ .
REMARK. When $P$ is a minimal parabolic, then (a) $M$ is compact and (b)

$ M=M^{0}\Gamma$ (see [4, Lemma 3.1]). Neither (a) nor (b) is true in general.
Let $n=\dim \mathfrak{g},$ $\mathfrak{h}\subseteqq \mathfrak{g}$ a $\theta$-stable Cartan subalgebra, $l=\dim \mathfrak{h}$ . For an inde-

terminate $t$, consider $\det(t+1-Ad_{G}(x))=D_{0}(x)+\cdots+D_{n}(x)t^{n},$ $x\in G$ . The first
non-zero coefficient will be $D_{\iota}(x)$ . Set $D(x)=D_{\iota}(x)$ . The regular elements are
$G^{\gamma}=\{x\in G:D(x)\neq 0\}$ , a dense open submanifold. The following are obvious:
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$D(xz)=D(x),$ $Z\in Z_{G}$ , and $D(gxg^{-1})=D(x),$ $g,$ $x\in G$ . For any subset $S\subseteqq G$ , we
denote S‘ $=S\cap G^{\prime}$ . $\ln particular,$ $ifHisaCar\tan subgroupofG,$ $1etH^{J}=H\cap G^{\prime}$ .
Consider the map

$\varphi_{H}$ : $Z_{H}\backslash G\times H^{J}\rightarrow G^{J}$

defined by $\varphi_{H}(g^{*}, h)=g^{-1}hg$. The image $G_{H}^{\prime}=(H^{\prime})^{G}$ is an open submanifold
of $G$ and the map

$\varphi_{H}$ : $Z_{H}\backslash G\times H^{\prime}\rightarrow G_{H}^{\prime}$

is proper ( $i$ . $e$ . the inverse image of a compact set is compact). More precisely,
let $W_{H}=N(H)/Z_{H}$ . Then $W_{H}$ acts effectively on $(Z_{H}\backslash G\times H^{J})$ and $G_{H}^{\prime}$ is dif-
feomorphic to $(Z_{H}\backslash G\times H^{\prime})/W_{H}$ (see [le, p. 488]).

Next consider the roots of $(\mathfrak{g}, \mathfrak{h})$ . By definition these are the linear forms
$\alpha\in \mathfrak{h}_{c}^{*}$ such that $\mathfrak{g}_{c}^{a}=$ { $X\in \mathfrak{g}:[Y,$ $X]=\alpha(Y)X$ for all $Y\in \mathfrak{h}_{c}$ } is non-empty.
Choose an ordering on the roots. Set $W(\mathfrak{g}, \mathfrak{h})=the$ group of automorphisms
of $\mathfrak{h}_{c}$ generated by the reflections corresponding to a simple root system.
Then $W_{H}$ may be identified with a subgroup of $W(\mathfrak{g}, \mathfrak{h})$ .

Suppose $\lambda$ is a linear form on $\mathfrak{h}$ . Then there exists at most one homo-
morphism $\xi_{\grave{\lambda}}$ : $H\rightarrow C$ such that

$\xi_{\lambda}(\exp Y)=e^{\lambda(Y)}$ , $Y\in \mathfrak{h}$ .
If $\alpha$ is a root of $(\mathfrak{g}, \mathfrak{h})$ then $\xi_{\sigma}$ always exists. Let $Q$ denote a choice of positive

1roots and set $\rho=\rho_{\mathfrak{h}}=2\sum_{\alpha\in Q}\alpha$ . We assume henceforth that $G$ is acceptable,

that is $\xi_{\rho}$ exists. (This is independent of the choice of $\mathfrak{h}$–see [le, p. 484].)
Let $Q_{-}=\{\alpha\in Q:\alpha|_{\mathfrak{h}\eta \mathfrak{p}}\equiv 0\},$ $Q_{+}=Q-Q_{-}$ . We can now define several $C^{\infty}-$

functions: For $h\in H$, let

$\Delta(h)=\Delta_{H}(h)=\xi_{\rho}(h)\prod_{\alpha\in Q}(1-\xi_{a}(h^{-1}))$ ,

$\Delta_{-}(h)=\xi_{\rho}(h_{-})\prod_{\alpha\in Q-}(1-\xi_{\alpha}(h^{-1}))$ ,

$\Delta_{+}(h)=\Delta(h)/\Delta_{-}(h)=\xi_{\rho}(h_{+})_{\alpha}\prod_{\subset,\sim Q_{+}}(1-\xi_{\alpha}(h^{-1}))$ ,

where $h=h_{-}h_{+},$ $h_{-}\in H\cap K,$ $h_{+}\in\exp(\mathfrak{h}\cap \mathfrak{p})$ . It is well-known [le, p. 504] that
$D(h)=(-1)^{P}\Delta(h)^{2},$ $h\in H,$ $p=\#(Q)$ ; and so $H^{1}=\{h\in H:\Delta_{H}(h)\neq 0\}$ . It also
follows that (up to sign) $\Delta$ is independent of the choice of ordering on the
roots.

Suppose $\pi\in\hat{G}$ . Then for every $f\in C_{0}^{\infty}(G),$ $\pi(f)=\int_{G}.[(g)\pi(g)dg$ is trace

class and there exists a locally integrable function $\theta_{f}$ such that $\theta\overline{.}|_{G^{\prime}}$ is real
analytic and

Tr $\pi(f)=\int_{G}f(g)\theta_{\pi}(g)dg$ , $f\in C_{0}^{\infty}(G)$ . (2.1)
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$\theta_{\pi}$ is called the character of $\pi$ . One of our goals is to make some fairly
explicit computations on $\theta_{\pi}$ for certain “ continuous series “ representations $\pi$ .

We also wish to consider infinitesimal characters. Let $\mathfrak{U}=the$ universal
enveloping algebra of $g_{c},$ $\mathfrak{Z}=the$ center of U. $\mathfrak{Z}$ may be identified with the
commutative algebra of left and right invariant differential operators on $G$ .
We recall how to construct characters of $\mathfrak{Z}$ . Let $\mathfrak{h}\subseteqq \mathfrak{g}$ be any Cartan sub-
algebra, $\mathfrak{h}_{c}$ its complexification. Denote by $I(\mathfrak{h}_{c})$ the $W(\mathfrak{g}, \mathfrak{h})$ -invariant poly-
nomial functions on $\mathfrak{h}_{c}^{*}$ . Then there is a natural isomorphism $\gamma_{\mathfrak{h}}$ : $\mathfrak{Z}\rightarrow I(\mathfrak{h}_{c})$

[$1b$ , Lemma 19]. If $\lambda\in \mathfrak{h}_{c}^{*}$ , define $x_{\lambda}^{\mathfrak{h}}$ : $\mathfrak{Z}\rightarrow C$ by $\chi_{\lambda}^{\mathfrak{y}}(z)=\gamma_{\mathfrak{h}}(z)(\lambda),$
$z\in \mathfrak{Z}$ . We

obtain all homomorphisms of $\mathfrak{Z}$ into $C$ this way, and $x_{\lambda}^{\mathfrak{h}}=x_{\lambda^{\prime}}^{\mathfrak{h}}$ if and only if
$\lambda=s\lambda^{\prime}$ for some $s\in W(\mathfrak{g}, \mathfrak{h})$ . Now it is well-known (and easy to see) that for
$\pi\in\hat{G},$ $\theta_{\pi}$ is an eigendistribution of $\mathfrak{Z}$ . Thus there exists $\chi_{\pi}$ ; $\mathfrak{Z}\rightarrow C$ such that

$z\theta_{\pi}=\chi_{\pi}(z)\theta_{\pi}$ , $z\in \mathfrak{Z}$ . (2.2)

(2.2) may be understood in the sense of distribution theory or as a differential
equation on the manifold $c/$ . $\chi_{\pi}$ is called the infinitesimal character of $\pi$ .

\S 3. Discrete series for connected reductive groups.

Let $G$ be as before, a connected semisimple Lie group with finite center
and acceptable. Suppose there is $b\subseteqq f$, a Cartan subalgebra of $\mathfrak{g}$ . Then
$B=Z(b)$ is a compact Cartan subgroup–moreover, it is abelian and connected.
Let $\hat{B}=the$ character group. Every $\hat{b}\in\hat{B}$ determines $\lambda\in b_{iR}^{*}$ by $\hat{b}(\exp Y)$

$=e^{\lambda(Y)},$ $Y\in b$ . The collection $\mathcal{L}\subseteqq b_{iR}^{*}$ thus obtained is a lattice; in fact,

$\mathcal{L}=$ { $\lambda\in b_{iR}^{*}$ : $\lambda(Y)\in 2\pi iZ$ whenever $\exp Y=e,$ $Y\in b$ }.

Let $\omega$ be the polynomial function on $b_{c}$ defined by $\omega=\prod_{\alpha\in Q}\alpha,$
$Q$ a system

of positive roots for $(\mathfrak{g}, b)$ . Identifying $b_{c}$ and $b_{c}^{*}$ via the Killing form, we
single out the regular elements $\mathcal{L}^{\prime}=\{\lambda\in \mathcal{L};\omega(\lambda)\neq 0\}$ . For $s\in W(\mathfrak{g}, b)$ , set
$\omega^{s}=\epsilon(s)\omega$ . Note finally that $W_{B}$ leaves $\mathcal{L}^{\prime}$ invariant. The following theorem
is due to Harish-Chandra [lh, Theorem 16].

THEOREM 3.1. Let $\sigma\in\hat{G}_{s}$ . Then there exists $\lambda\in \mathcal{L}^{\prime}$ such that

$\theta_{\sigma}(b)=\frac{c}{\Delta_{B}(b)}\sum_{W_{B}}\epsilon(s)e^{s\lambda(Y)}$ , $\exp Y=b\in B^{\prime}$ , ( $ 3.1\rangle$

$c=c(\sigma)=(-1)^{q}$ sgn $\omega(\lambda),$ $q=\frac{1}{2}\dim G/K$. Moreover $\lambda$ is uniquely determined

up to an element of $W_{B}$ and the infinitesimal character of $\sigma$ is $\chi_{\wedge}^{\mathfrak{y}}$ . Conversely

if $\lambda\in \mathcal{L}^{\prime}$ , then there exists $\sigma(\lambda)\in\hat{G}_{s}$ such that $\theta_{\sigma(\lambda)}$ is given by (3.1) on $B^{\prime}$ and
the infinitesimal character $\chi_{\sigma(\lambda)}$ is precisely $\chi_{\lambda}^{\mathfrak{y}}$ .

$CoROLLARY$ . Let $\sigma\in\hat{G}_{s}$ and let $\lambda\in \mathcal{L}^{\prime}$ be a corresponding linear form.
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Then
$\sigma(z)=\hat{b}(z)\xi_{\rho}(z^{-1})1_{\dim\sigma}$ , $z\in Z_{\sigma}$ , (3.2)

$\hat{b}(\exp Y)=e^{\lambda(Y)},$ $Y\in b$ .
PROOF. Since $\sigma$ is irreducible, there is some character $\chi\in\hat{Z}_{G}$ such that

$\sigma(z)=x(z)I_{\dim\sigma},$ $z\in Z=Z_{G}$ . It follows from a simple calculation that $\theta_{\sigma}(zg)$

$=x(z)\theta_{\sigma}(g),$ $g\in G^{\prime},$ $z\in Z$. But for $b\in B^{\prime}$ ,

$\theta_{\sigma}(bz)=-\frac{c}{B(bz}\sum_{W_{B}}\epsilon(s)(s\cdot\hat{b})(bz)\Delta)^{-}$

$=-\frac{z)}{bz)}\sum\epsilon(s)(s\cdot\hat{b})(b)\Delta_{B(}^{c\underline{\hat{b}}(}$

since $W_{B}$ leaves $Z$ pointwise fixed. But $\Delta_{B}(bz)=\xi_{\rho}(z)\Delta_{B}(b)$ [ $1f$ , p. 299]. This
proves the corollary (once we choose $b\in B^{\prime}$ such that $\theta_{\sigma}(b)\neq 0$).

REMARK. It follows from $D(b)=(-1)^{p}\Delta_{B}(b)^{2}$ , $D(bz)=D(b)$ , and $\Delta_{B}(bz)$

$=\xi_{\rho}(z)\Delta_{B}(z)$ that $\xi_{\rho}(z)^{2}=1$ . Hence $\xi_{\rho}(z)=\pm 1,$ $z\in Z$.
We wish to extend Theorem 3.1 to the reductive case. So let $G$ be a

connected reductive Lie group, $\mathfrak{g}=LA(G)$ . Let $\mathfrak{g}_{1}=[\mathfrak{g}, \mathfrak{g}]$ be the semisimple
part, and $c=Cent\mathfrak{g}$ . Then $\mathfrak{g}=\mathfrak{g}_{1}+c$ . Let $\mathfrak{g}_{1}=f_{1}+\mathfrak{p}$ be a Cartan decomposition
of $\mathfrak{g}_{1}$ . Set $f=f_{1}+c$ so that $\mathfrak{g}=f+\mathfrak{p}$ is a Cartan decomposition of $\mathfrak{g}$ . Suppose
$\mathfrak{h}_{1}\subseteqq \mathfrak{g}_{1}$ is a Cartan subalgebra. Then $\mathfrak{h}=\mathfrak{h}_{1}+c$ is a Cartan subalgebra of $\mathfrak{g}$ .
Let $G_{1}$ and $C$ be the analytic subgroups of $G$ corresponding to $\mathfrak{g}_{1}$ and $c$ . Then
$G=G_{1}C$, and $G_{1}$ (resp. $C$) is closed in $G$ since it is the commutator subgroup
of $G$ (resp. $Z_{G}^{0}$).

Once again, consider $\det(t+1-Ad_{G}(x)),$ $x\in G$ . The lowest non-vanishing
coefficient of $t^{f}$ will be the l-th, where $l=\dim \mathfrak{h}$ . Set $D_{G}(x)=the$ coefficient
of $t^{\iota}$ . The regular elements are $G^{\prime}=\{x\in G:D(x)\neq 0\}$ , again an open dense
submanifold such that $D(g^{-1}xg)=D(x)$ . More importantly, $D(x\zeta)=D(x),$ $x\in G$ ,
$\zeta\in Z_{G}$ . In fact, it is easy to see that $D_{G}(g_{1}\zeta)=D_{Gl}(g_{1}),$ $g_{1}\in G_{1},$ $\zeta\in C$ . So
$ g=g_{1}\zeta$ is regular in $Ge\Rightarrow g_{1}$ is regular in $G_{1}$ .

Let $H=Z(\mathfrak{h})$ . Then $H=H_{1}C$ where $H_{1}=H\cap G_{1}=Z(\mathfrak{h}_{1})\cap G_{1}$ . It is im-
mediate that

$G_{H}^{\prime}=(G_{1})_{H_{1}}^{\prime}\cdot C$ , (3.3)

where $G_{H}^{\prime}$ is as usual the set of elements in $G$ conjugate to $H^{\prime}=G^{\prime}\cap H$.
Equation (3.3) will be useful later.

Now let $\alpha$ be a root of $(\mathfrak{g}_{1}, \mathfrak{h}_{1})$ . Extend $\alpha$ to $\mathfrak{h}_{c}$ by setting it equal to $z$ero
on $c_{c}$ . The resulting forms are the roots of $(\mathfrak{g}, \mathfrak{h})$ . Furthermore $W(\mathfrak{g}, \mathfrak{h})$ is the
group of automorphisms of $\mathfrak{h}_{c}$ obtained from $W(\mathfrak{g}_{1}, \mathfrak{h}_{1})$ by letting each
$s\in W(\mathfrak{g}_{1}, \mathfrak{h}_{1})$ fix the elements of $c_{c}$ .

Next assume $G_{1}\cap C$ is finite (as is the case for example if $C$ is compact).

Then $\xi_{\alpha}$ can be defined as usual for any root $\alpha$ [le, p. 483]. Assume in
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addition that $G$ is acceptable; that is $\xi_{\rho}$ can be defined. In particular, since
the roots vanish on $c$ ,

$\xi_{\rho}|_{G_{1}\cap C}\equiv 1$ . (3.4)

Defining $\Delta$ as in the semisimple case, it is easily verified that

$\Delta_{H}(h_{1}\zeta)=\Delta_{H_{1}}(h_{1})$ , $h_{1}\in H_{1}$ , $\zeta\in C$ . (3.5)

Now suppose there exists a Cartan subalgebra $b_{1}\subseteqq f_{1}$ of $\mathfrak{g}_{1}$ . Set $b=b_{1}+c$

.and $B=Z(b)\cap G$ . Suppose $B$ is compact. Then $C$ is compact and $Z_{G_{1}}$ must
be finite. Also $B=B_{1}C$, where $B_{1}=B\cap G_{1}=Z(b_{1})\cap G_{1}$ is a torus. Therefore
$B$ itself is a torus. Moreover $N(B)\cap G=[N(B_{1})\cap G_{1}]\cdot C$ and $N(B_{1})\cap G_{1}\cap C$

$=B_{1}\cap C$. Therefore $W_{B}\cong W_{B_{1}}$ .
Let $\hat{B}$ be the character group of $B$ . Then $\hat{b}\in\hat{B}$ determines $\lambda\in b_{iR}^{*}$ by

$b(\exp Y)=e^{\lambda(Y)},$ $Y\in b$ . The collection so obtained is the lattice
$\mathcal{L}=$ { $\lambda\in b_{iR}^{*}$ : $\lambda(Y)\in 2\pi iZ$ whenever $\exp Y=e,$ $Y\in b$}.

For $\hat{b}\in\hat{B}$, set $\hat{b}_{1}=\hat{b}|_{B_{1}}$ and $\chi=\hat{b}|_{C}$ . Let $\lambda_{1}\in(b_{1})_{iR}^{*},$ $\chi\in c_{tR}^{*}$ be defined by

$\hat{b}_{1}(\exp Y)=e^{\lambda_{1}(Y)}$ , $Y\in b_{1}$ ; $\chi(\exp Y)=e^{\chi_{(Y)}}$ , $Y\in c$ .
Note we use $\chi$ both for the element of $\hat{C}$ as well as its differential $\in c_{iR}^{*}$ . In
any event $\lambda=\lambda_{1}+\chi$ and we also have

$\mathcal{L}=\{\lambda_{1}+\chi$ ; $\lambda_{1}(Y_{1})-\chi(Y_{2})\in 2\pi iZ$

whenever $\exp Y_{1}=\exp Y_{2},$ $Y_{1}\in b_{1},$ $Y_{2}\in c$ }. (3.6)

Defining $\omega$ (or $\omega_{1}$) as the product of the positive roots of $(\mathfrak{g}, b)$ (or $(\mathfrak{g}_{1},$ $b_{1})$), we
check easily that $\omega(\lambda)=\omega_{1}(\lambda_{1}),$ $\lambda=\lambda_{1}+\chi$ . Letting $\mathcal{L}^{\prime}=\{\lambda\in \mathcal{L};\omega(\lambda)\neq 0\}$ , we
see that $\lambda=\lambda_{1}+\chi$ is regular if and only if $\lambda_{1}$ is regular.

We obtain the irreducible unitary representations of $G$ as follows. Let
$\sigma_{1}\in\hat{G}_{1},$ $\chi\in\hat{C}$ be such that

$\sigma_{1}(g)=x(g)I_{\dim\sigma_{1}}$ , $g\in G_{1}\cap C$ . (3.7)

Define $\sigma=\sigma_{1}\otimes x\in\hat{G}$ . More precisely, the space of $\sigma$ is the space of $\sigma_{1}$ and
$o(g_{1}\zeta)=\sigma_{1}(g_{1})\chi(\zeta),$ $g_{1}\in G_{1},$ $\zeta\in C$. $\sigma$ is well-defined because of (3.7), and is
easily seen to be in $\hat{G}$ . Moreover changing the class of either $\sigma_{1}$ or $\chi$ changes
the class of $\sigma$. Conversely, every representation of $\hat{G}$ is obtained in this way.
Finally, since $C$ is compact, $\sigma$ is square-integrable if and only if $\sigma_{1}$ is square-
integrable.

Suppose $\theta_{\sigma_{1}}$ is the character of $\sigma_{1}$ . Then a simple computation shows that:
for every $f\in C_{0}^{\infty}(G)$ , Tr $\sigma(f)$ exists and

Tr $\sigma(f)=\int_{G}f(g)\theta_{\sigma}(g)dg$ , where

$\theta_{\sigma}(g_{1}\zeta)=\theta_{\sigma_{1}}(g_{1})\chi(\zeta)$ , $g_{1}\in G_{1}^{\prime}$ , $\zeta\in C$ . (3.8)
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Now let $\sigma\in\hat{G}_{s},$ $\sigma=\sigma_{1}\otimes\chi$ . Let $\lambda_{1}\in \mathcal{L}_{1}^{\prime}$ be a linear form in $(b_{J})_{iR}^{*}$ deter-
mined by $\sigma_{1}$ (according to Theorem 3.1). Set $\lambda=\lambda_{1}+\chi\in \mathcal{L}^{\prime}$ . It follows from
(3.5), (3.8) and Theorem 3.1 that

$\theta_{\sigma}(b)=\theta_{\sigma}(b_{1}\zeta)=\Delta_{B_{1}}^{-\sum_{W_{B1}}\epsilon(s)\chi(\zeta)}c_{(b_{1})}e^{s\lambda\iota^{(Y_{1})}}\cdot$ , $Y_{1}\in b_{1},$ $\exp Y_{1}=b_{1}\in B_{1}^{\prime},$ $\zeta\in C$

$=\Delta_{B}(b)^{-\sum_{W_{B}}\epsilon(s)e^{\epsilon\lambda(Y)}}c$
$Y\in b,$ $\exp Y=b\in B^{1}$ .

Clearly $\lambda\in \mathcal{L}^{\prime}$ is uniquely determined up to an element of $W_{B}$ . Also $c=c(\sigma)$

1 1 1
$=c(\sigma_{1})$ because $\omega(\lambda)=\omega_{1}(\lambda_{1})$ and $-2^{-}\dim \mathfrak{g}/f=-2\dim \mathfrak{g}_{1}/f_{1}=2^{-\dim \mathfrak{p}}$

Conversely, let $\lambda\in \mathcal{L}^{\prime},$ $\lambda=\lambda_{1}+\chi,$ $\lambda_{1}\in \mathcal{L}\{,$
$\chi\in\hat{C}$ . By Theorem 3.1, there

exists $\sigma_{1}\in(G_{1})_{s^{\wedge}}$ such that

$\theta_{\sigma_{1}}(b_{1})=\Delta_{B_{1}}(b_{1})^{\sum_{W_{B_{1}}}\epsilon(s)e^{s\lambda_{1^{(}}Y_{1)}}}c$
$Y_{1}\in b_{1}$ , $\exp Y_{1}=b_{1}\in B_{1}^{\prime}$ .

Claim: $\sigma_{1}$ and $\chi$ satisfy (3.7). In fact, by the Corollary to Theorem 3.1 and
formulas (3.4) and (3.6)

$\sigma_{1}(g)=b_{1}(g)\xi_{\rho}(g)^{-1}1_{\dim\sigma_{1}}$ , $\hat{b}_{1}=e^{\lambda_{1}}$

$=b_{1}(g)I_{\dim\sigma_{1}}$

$=x(g)I_{\dim\sigma_{1}}$ , if $g\in G_{1}\cap C$ .

Here we used the fact that the $\rho$ function is the same for $(\mathfrak{g}, b)$ and $(\mathfrak{g}_{1}, b_{1})$ .
Therefore $\sigma=\sigma_{1}\otimes\chi$ is a member of $\hat{G}_{s}$ whose character satisfies

$\theta_{\sigma}(b)=\Delta_{B}(b)c\sum_{W_{B}}\epsilon(s)\ell^{s\lambda(Y)}$ , $Y\in \mathfrak{b}$ , $\exp Y=b\in B^{\prime}$ .

Finally we compute the infinitesimal character of $\sigma=\sigma_{1}\otimes\chi$ . Let $\mathfrak{U}=the$

universal enveloping algebra of $\mathfrak{g}_{c},$
$\mathfrak{Z}$ its center. Set $\mathfrak{U}_{1},$ $\mathfrak{C}=the$ subalgebras

of $\mathfrak{U}$ generated by $(1, (\mathfrak{g}_{1})_{C})$ and $(1, c_{c})$ respectively. Then $\mathfrak{U}=\mathfrak{U}_{1}\mathfrak{Z}$ and $\mathfrak{Z}=\mathfrak{Z}_{1}\mathfrak{C}$ ,

direct products, where $\mathfrak{Z}_{1}$ is the center of $\mathfrak{U}_{1}$ . $\mathfrak{U}_{1}$ is isomorphic to the
enveloping algebra of $(\mathfrak{g}_{1})_{C}$ and $\mathfrak{C}$ is isomorphic to the enveloping ( $i$ . $e$ . sym-
metric) algebra $S(c_{c})$ . Once again, if $\mathfrak{h}\subseteqq \mathfrak{g}$ is a Cartan subalgebra, there is a
natural isomorphism $\gamma_{\mathfrak{h}}$ : $\mathfrak{Z}\rightarrow I(\mathfrak{h}_{c})=theW(\mathfrak{g}, \mathfrak{h})$ -invariant polynomials in $S(\mathfrak{h}_{c}^{*})$ .
We obtain all characters of $\mathfrak{Z}$ by $x_{\lambda}\mathfrak{h}(z)=\gamma_{\mathfrak{h}}(z)(\lambda),$ $z\in \mathfrak{Z}$ and

$\chi_{\lambda}\mathfrak{h}=x_{\lambda^{\prime}}^{\mathfrak{h}}\Leftarrow$
$s\lambda=\lambda^{\prime}$ , some $s\in W(\mathfrak{g}, \mathfrak{h})$ (3.9)

(see [lb, Lemma 9] and [le, \S 12]). Let $I_{1},$ $I_{2}$ be the subalgebras of $I(\mathfrak{h}_{c})$

generated by $(1, (\mathfrak{h}_{1})_{C})$ and $(1, c_{c})$ , respectively. These are isomorphic to $I((\mathfrak{h}_{1})_{c})$

and $S(c_{c})$ . Moreover $\gamma_{\mathfrak{h}}|_{3_{1}}$ : $\mathfrak{Z}_{1}\rightarrow I_{1}$ , and $\gamma_{\mathfrak{h}}|_{\mathfrak{C}}$ : $\mathfrak{C}\rightarrow I_{2}$ . With these observations
it is easy to check that for
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$\sigma=\sigma_{1}\otimes^{\chi}$ , $\lambda=\lambda_{1}+\chi$ , $z\theta_{\sigma}=\chi_{\lambda}^{\mathfrak{y}}(z)\theta_{\sigma}$ , $z\in \mathfrak{Z}$ .
So we have proven Harish-Chandra’s theorem for reductive groups. More

precisely, we have
THEOREM 3.2. Let $G$ be a connected reductive Lie group. Suppose $G$ has

a compact Cartan subgroup $B$ and that $G$ is acceptable. Let $\sigma\in\hat{G}_{s}$ . Then
there is $\lambda\in \mathcal{L}^{\prime}$ such that

$\theta_{\sigma}(b)=\frac{c}{\Delta_{B}(b)}\sum_{W_{B}}\epsilon(s)e^{s\lambda(Y)}$ , $Y\in b$ , $\exp Y=b\in B^{\prime}$ (3.10)

and $\lambda$ is uniquely determined up to an element of $W_{B}$ . Conversely, if $\lambda\in \mathcal{L}^{\prime}$ ,
there exists $\sigma(\lambda)\in\hat{G}_{s}$ such that $\theta_{\sigma(\lambda)}$ is a locally integrable function on $G$ ,

analytic on $G^{\prime}$ , and given by (3.10) on $B^{\prime}$ ; $c=c(\sigma)=(-1)^{q}$ sgn $\omega(\lambda),$ $q=\frac{1}{2}\dim \mathfrak{p}$ .
Moreover, the infinitesimal character of $\sigma=\sigma(\lambda)$ is precisely $\chi_{\lambda}^{\mathfrak{y}}$ .

REMARK. We shall have occasion in the sequel to use the following fact:
all compact Cartan subgroups of $G$ are conjugate under $G$ . This is proven
easily by using: (a) the corresponding fact which is known for compact $G$ ,
and (b) the conjugacy of all maximal compact subgroups.

\S 4. Discrete series for $M$.
We begin with a word on Weyl groups. Let $\mathfrak{g}$ be a reductive Lie algebra

with Cartan subalgebra $\mathfrak{h}$ . $W(\mathfrak{g}, \mathfrak{h})$ is the group of automorphisms of $\mathfrak{h}_{c}$

generated by the reflections corresponding to a simple root system. Let
$G_{c}^{1}=1nt(\mathfrak{g}_{c})$ . Then every $s\in W(\mathfrak{g}, \mathfrak{h})$ may be realized by an element of $G_{c}^{1}$ ,
$i$ . $e$ . there is $y\in G_{c}^{1}$ such that $y|_{\mathfrak{h}_{\epsilon}}=s$ . Conversely, if $y\in G_{c}$ leaves $\mathfrak{h}_{c}$ invariant,
then $y|_{\mathfrak{h}_{c}}\in W(\mathfrak{g}, \mathfrak{h})$ . More generally, let $G_{c}$ be any connected Lie group with
$\mathfrak{g}_{c}$ as Lie algebra ( $G_{c}^{1}$ has Lie algebra equal to the semisimple part of $\mathfrak{g}_{c}$ , but
that is immaterial). Then

$W(\mathfrak{g}, \mathfrak{h})\cong[N(\mathfrak{h}_{c})\cap G_{c}]/[Z(\mathfrak{h}_{c})\cap G_{c}]$ .
Now let $G$ be a connected semisimple Lie group, with finite center and

acceptable. Return to the notation of \S 2: $P=MAN,$ $H=BA$ a Cartan, etc.
Let $B_{1}=B\cap M^{0}=Z(b)\cap M^{0}$ , a compact connected Cartan subgroup of the
connected reductive group $M^{0}$ . But then $B_{1}$ and $B^{0}$ are both connected Lie
subgroups of $M^{0}$ having $b$ as Lie algebra. Therefore $B^{0}=B\cap M^{0}$ . By [le,

Lemma 30] $M^{0}$ is acceptable; and so Theorem 3.2 holds for $M^{0}$ . We wish,
however, to compute the discrete series for $M$. We accomplish this by ap-
plying Mackey’s theory of normal subgroups.

Let $\sigma\in(M^{0})_{s^{\wedge}}$ and $\xi\in\Xi$ . Define $\sigma^{\xi}\in(M^{0})_{\epsilon^{\wedge}}$ by

$\sigma^{\xi}(m)=\sigma(\xi^{-1}m\xi)$ , $m\in M^{0}$ .
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THEOREM 4.1. (1) $\sigma^{\hat{\sigma}}$ is unitarily equivalent to $\sigma$ if and only if $\xi\in\Xi^{0}\Gamma$.
(2) $\sigma^{\xi}$ has the same infinitesimal character as $\sigma$ for every $\xi\in\Xi$ .
PROOF. First let $\xi\in\Xi^{0}\Gamma$ . Then $\xi=m^{0}a\gamma$ , $m^{0}\in M^{0},$ $a\in A,$ $\gamma\in\Gamma$ and

$\sigma^{=}\backslash =\sigma^{m0a\gamma}=\sigma^{m0}\cong\sigma$ . Here, we are using the properties of $\Gamma$ derived in
Theorem 2.2.

Next, we wish to compute the character and infinitesimal character of
$\sigma^{\overline{\sigma}},$ $\sigma\in(M^{0})_{s^{\wedge}},$ $\xi\in\Xi$ . Before proceeding, we establish the following notation:
$G^{\prime}=the$ regular elements of $G,$ $(M^{0})^{\prime\prime}=the$ regular elements of $M^{0}$ . Now let
$\lambda\in \mathcal{L}^{\prime}$ ($=the$ regular forms on b) be such that

$\theta_{\sigma}(b)=\Delta_{B0}(b)^{\sum_{W_{B^{0}}}\epsilon(s)e^{s\lambda(Y)}}c$
$Y\in b$ , $\exp Y=b\in(B^{0})^{\prime\prime}$

and $x_{\lambda}^{b}$ is the infinitesimal character. As usual, $\lambda$ is unique up to an element
of $W_{B^{0}}$ . It is trivial to check that the character $\theta_{\sigma^{\xi}}$ of $\sigma^{\xi}$ is given by

$\theta_{\sigma^{\xi}}(m)=\theta_{\sigma}(\xi^{-1}m\xi)$ , $m\in M^{0}$ .
Now the compact Cartan subgroups of $M^{0}$ are all conjugate under $M^{0}$ .
Hence (modifying $\xi$ by an element of $M^{0}$ if necessary), we may assume that
$\xi$ leaves $B^{0}$ (and b) invariant. Then

$\theta_{\sigma^{\xi}}(b)=\Delta_{B^{0}}(\xi b\xi)^{\sum_{W_{B}0}\epsilon(s)e^{s\lambda^{\xi_{(Y)}}}}c_{- 1}$
$Y\in b$ , $\exp Y=b\in(B^{0})^{\prime\prime}$ ($ 4.1\rangle$

where $\lambda^{\xi}(Y)=\lambda(Ad\xi^{-1}(Y)),$ $Y\in b$ .
Now consider the adjoint representation of $G,$ $Ad_{G}$ : $G\rightarrow 1nt(\mathfrak{g})\subseteqq lnt(\mathfrak{g}_{c})$ .

Then $Ad_{G}(\Xi)\subseteqq Z(\mathfrak{a}_{c})\cap G_{c},$ $G_{c}=Int(\mathfrak{g}_{c})$ . But $\mathfrak{a}_{c}$ is invariant under the involution
of $\mathfrak{g}_{c}$ determined by the compact real form $\mathfrak{u}=f+i\mathfrak{p}$ . Hence $Z(\mathfrak{a}_{c})\cap G_{c}$ is the
connected Lie subgroup of $G_{c}$ having $Z(\mathfrak{a}_{c})\cap \mathfrak{g}_{c}$ as Lie algebra [le, Lemma 27].

One checks easily that $Z(\mathfrak{a}_{c})\cap \mathfrak{g}_{c}=(Z(\mathfrak{a})\cap \mathfrak{g})_{c}=\mathfrak{z}_{c}$ . That is, the Lie algebra of
$Z(\mathfrak{a}_{c})$ is $\mathfrak{z}_{c}=\mathfrak{m}_{c}+\mathfrak{a}_{c}$ . Let $M_{c}^{1}$ be the analytic subgroup of $G_{c}$ having $\mathfrak{m}_{c}$ as Lie
algebra and set $A_{c}=\exp \mathfrak{a}_{c}$ . Then $Z(\mathfrak{a}_{c})=M_{c}^{1}A_{c}$ . Consider $Ad_{G}(\xi)=m_{1}a_{1}$ ,
$m_{1}\in M_{c}^{1},$ $a_{1}\in A_{c}$ . Since $[b, \mathfrak{a}]=0$ , it is clear that the action of $\xi$ on $\mathfrak{b}$ under
$Ad_{G}$ coincides with that of $m_{1}$ . But the discussion at the beginning of this
section shows that $m_{1}$ determines an element $s_{\xi}\in W(\mathfrak{m}, b)$ . Therefore in ($ 4.1\rangle$

we have: $\Delta_{B^{0}}(\xi^{-1}b\xi)=\epsilon(s_{\xi})\Delta_{B^{0}}(b),$ $c(\mathscr{E})=(-1)^{q}sgn\omega(s_{\xi}\lambda)=\epsilon(s_{\xi})c(\sigma)$ , and $\lambda^{\xi}=$

$s_{\overline{\sigma}}\lambda\in \mathcal{L}^{\prime}$ . Thus the regular form on $b$ determined (up to $W_{B^{0}}$) by $\sigma^{\xi}$ is precisely
$\lambda^{\overline{\backslash ^{\prime}}}=s_{\xi}\lambda\in \mathcal{L}^{\prime}$ . It follows immediately from (3.9) that $\sigma$ and $\sigma^{\xi}$ have the same
infinitesimal character. This proves (2).

It remains to prove (1), i. e. that $\sigma^{\xi}\cong\sigma$ if and only if $\xi\in\Xi^{0}\Gamma$ . We have
already observed that $\xi\in\Xi^{0}\Gamma\Rightarrow\sigma^{\xi}\cong\sigma$ . Conversely, suppose $\sigma^{\xi}\cong\sigma$ . Then
$\theta_{\sigma^{\underline{\prime}}},=\theta_{\sigma}$ , and by (4.1), there must exist $s_{1}\in W_{B0}$ such that $\lambda^{\xi}=s_{1}\lambda$ . But
$W_{B^{0}}=(N(B^{0})\cap M^{0})/B^{0}$ ; and so (modifying $\xi$ by an element of $M^{0}$ if necessary)

we may assume that $\lambda^{\xi}=\lambda$ . But $\lambda^{\xi}=s_{\xi}\lambda,$ $s_{\xi}\in W(\mathfrak{m}, b)$ . The regularity of $\lambda$
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therefore implies that $s_{\xi}=1$ . That is, in $Ad_{G}(\xi)=m_{1}a_{1}$ , we must have
$m_{1}\in Z(\mathfrak{b}_{c})$ . But then $\xi\in Z(\mathfrak{h})\cap\Xi=H_{\cap}\Xi=H^{0}\Gamma\subseteqq\Xi^{0}\Gamma$ . $q$ . $e$ . $d$ .

We are ready to compute the discrete series of $M$. First consider the
subgroup $ M^{0}\Gamma$ . Since $M^{0}$ and $\Gamma$ commute, the irreducible unitary represen-
tations of $ M^{0}\Gamma$ are obtained as follows: take $\sigma\in(M^{0})^{\wedge},$

$\omega\in\hat{\Gamma}$ such that
$\sigma|_{M^{0}\cap\Gamma},$ $\omega|_{M^{0}\cap\Gamma}$ act via the same scalar (in different dimensions, of course).
Then $\sigma\otimes\omega\in(M^{0}\Gamma)^{\wedge}$ and we get all representations of $ M^{0}\Gamma$ this way. If
$\sigma\neq\sigma_{1}\sim$ or $\omega\neq\omega_{1}\sim$ , then $\sigma\otimes\omega\neq\sigma_{1}\sim\otimes\omega_{1}$ . It is trivial to verify that $\sigma$ is square-
integrable if and only if $\sigma\otimes\omega$ is square-integrable. The character is easily
computed:

$\theta_{\sigma\otimes\omega}(m^{0}\gamma)=\theta_{\sigma}(m^{0})\theta_{\omega}(\gamma)$ , $m^{0}\in M^{0}$ , $\gamma\in\Gamma$ ,

where $\theta_{\sigma},$ $\theta_{\omega}$ are the characters of $\sigma,$
$\omega$ respectively. Finally, since $\Gamma$ is finite,

we have
$z\theta_{\sigma\otimes\omega}=x_{\sigma}(z)\theta_{\sigma\otimes\omega}$ , $z\in \mathfrak{Z}(\mathfrak{M})$ ,

where $\mathfrak{Z}(\mathfrak{M})=the$ center of the universal enveloping algebra $\mathfrak{M}$ of $\mathfrak{m}_{c}$ , and $\chi_{\sigma}$

is the infinitesimal character of $\sigma$ . That is, the infinitesimal character of
$\sigma\otimes\omega$ is the same as that for $\sigma$ .

Now $ M^{0}\Gamma$ is a normal subgroup of $M$. Let $\sigma\in(M^{0}\Gamma)_{s^{\wedge}},$ $m\in M$. Consider
the representation $\sigma^{m}\in(M^{0}\Gamma)_{s^{\wedge}}$ defined by $\sigma^{m}(m_{1})=\sigma(m^{-1}m_{1}m),$ $ m_{1}\in M^{0}\Gamma$ . It
follows from Theorem 4.1 that $\sigma^{m}\cong\sigma$ if and only if $ m\in M^{0}\Gamma$ . Applying
Mackey’s theory [5, Theorem 8.1], we conclude: $Ind_{M\Gamma}^{M_{0}}\sigma\in\hat{M}$ and $Ind_{M\Gamma}^{M_{0}}\sigma$

$\cong 1nd_{M\Gamma}^{M_{0}}\sigma^{\prime}$ if and only if there exists $m\in M$ such that $\sigma^{\prime}\cong\sigma^{m}$ . Moreover,
$Ind_{M^{0}\Gamma}\sigma$ is square-integrable; and since $[M:M^{0}\Gamma]<\infty$ , we certainly obtain
all of $\hat{M}_{s}$ in this way.2)

Next we compute the character and infinitesimal character of a represen-
tation in $\hat{M}_{s}$ . To do that we need the following

THEOREM 4.2. Let $G$ be a unimoduldr Lie group, $H\subseteqq G$ an open normal
subgroup of finite index. Let $\pi$ be a unitary representation of $H$ in a separable

Hilbert space. Suppose that for every $f\in C_{0}^{\infty}(H),$ $\pi(f)=\int_{H}f(h)\pi(h)dh$ is trace

class and that there is a locally integrable function $\theta_{\pi}$ on $H$ such that Tr $\pi(f)$

$=\int_{H}f(h)\theta_{\pi}(h)dh,$ $f\in C_{0}^{\infty}(H)$ . Let $ T^{\pi}=1nd_{H}^{G}\pi$ . Then $T^{\pi}(f)$ is trace class for
every $f\in C_{0}^{\infty}(G)$ and Tr $T^{\tau}(f)=\int_{G}f(x)\Theta_{\pi}(x)dx$ where

$\Theta_{\pi}(x)=\left\{\begin{array}{llll} & & & \sum_{H\backslash G}\theta_{\pi}(gxg^{-1}) x\in H\\ & & & 0 x\not\in H.\end{array}\right.$

2) This is a consequence of the fact that for finite (indeed compact) extensions,
the normal subgroup is always ‘ regularly embedded.”
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This result is perhaps known, but we have not been able to locate it in
the literature. The basic idea of the following proof is due to A. Kleppner.

Suppose $\pi$ acts in the separable space $\mathcal{V}$ . Let $\mathcal{H}(\pi)$ be the space of
functions $f:G\rightarrow \mathcal{V}$ such that $f(hx)=\pi(h)f(x)$ . $\mathcal{H}(\pi)$ is a Hilbert space under
the inner product $(f, f^{\prime})=_{H}a_{c}^{\langle f(g),f^{J}(g)}\rangle$ , where $\langle \cdot, \rangle$ is the inner product

on $\mathcal{V}$ . The induced representation $T^{\pi}$ acts on $\mathcal{H}(\pi)$ via $T^{f}(g)f(x)=f(xg)$ .
Let $g\in G,$ $v\in \mathcal{V}$ and deflne

$f_{g,v}(x)=\left\{\begin{array}{l}\pi(h)v if x=hg,h\in H\\0 otherwise.\end{array}\right.$

It is clear that $f_{g,v}\in \mathcal{H}(\pi)$ .
LEMMA 4.3.

$(f_{g,v}, f_{g^{\prime},v^{\prime}})=\{0\langle\pi(g^{\prime}g^{-1})v, v^{\prime}\rangle$

if $g^{\prime}g^{-1}\in H$

otherwise.
PROOF.

$(f_{g,v}, f_{g^{\prime},v^{\prime}})=\sum_{x\in H\backslash G}\langle f_{g,v}(x), f_{g,v^{\prime}}(x)\rangle=0$ ,

if $g$ and $g^{J}$ are not in the same right coset. If on the other hand $g=hg^{\prime}$ ,

then
$(f_{p,v}, f_{g^{\prime},v^{\prime}})=\langle f_{hg^{\prime},v}(g^{\prime}), f_{g^{\prime},v^{\prime}}(g^{\prime})\rangle$

$=\langle\pi(h^{-1})v, v^{\prime}\rangle$

$=\langle\pi(g^{J}g^{-1})v, v^{J}\rangle$ .
LEMMA 4.4. Let $g_{1},$ $\cdots,$ $g_{r}$ denote a choice of representatives for $H\backslash G$ and

$\{v_{j}\}$ an orthonormal basis for $\mathcal{V}$ . Then $\{f_{g_{i},v_{j}}\}$ forms an orthonormal basis
of $\mathcal{H}(\pi)$ .

PROOF. It follows from Lemma 4.3 that the system is orthonormal. In
fact, it is also complete. For suppose $(f, f_{g_{i},v_{j}})=0,1\leqq i\leqq r,$ $j\geqq 1$ . Then

$ 0=(f, f_{g_{i},v_{j}})=\sum_{x\subset H\backslash G}\langle f(x), f_{g_{i},v_{j}}(x)\rangle$

$=\langle f(g_{i}), f_{g_{i},v_{j}}(g_{t})\rangle=\langle f(g_{i}), v_{j}\rangle$ , $1\leqq i\leqq r$ , $j\geqq 1$ .

Since $\{v_{j}\}$ is complete in $\mathcal{V},$ $f(g_{i})=0,1\leqq i\leqq r$. But $f$ is completely deter-
mined by its values on $g_{i},$ $1\leqq i\leqq r$ ; and so $f\equiv 0$ .

The next result is almost obvious and we omit the proof.
LEMMA 4.5.

$T^{\pi}(x)f_{g,v}=f_{gx^{-1},v}$ , $x,$ $g\in G$ , $v\in \mathcal{V}$ .

Now let $\varphi\in C_{0}^{\infty}(G),$ $T^{\overline{I}}\cdot(\varphi)=\int_{G}\varphi(x)T^{f}(x)dx$ . Then
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$(T^{\pi}(\varphi)f_{g,v}, f_{g.v})=\sum_{y\in A\backslash G}\langle\int_{G}\varphi(x)T^{\pi}(x)f_{g,v}(y)dx,$ $ f_{g,v}(y)\rangle$

$=\sum_{y\in 12\backslash G}\{\int_{G}v$

$=\int_{(0}\sum_{B\backslash G}\langle f_{gx^{-1},v}(y), f_{g,v}(y)\rangle\varphi(x)dx$

$=\int_{G}(f_{gx^{-1},v}, f_{g,v})\varphi(x)dx$ .
But

$(f_{gx^{-1},v}, f_{g,v})=\{0\langle\pi(gxg^{-1})v, v\rangle$

if gxg $\in H$

otherwise

$=\{0\langle\pi(h)v, v\rangle$

if $x=g^{-1}hg$

otherwise.

Now if $dg$ denotes a:choice of Haar measure on $G$ , then $dg|_{H}$ is a Haar
measure on $H$. Therefore

$(T^{\pi}(\varphi)f_{g,v}, f_{g,v})=\int_{H}\langle\pi(h)v, v\rangle\varphi(g^{-1}hg)dh$

$=\langle\pi(\varphi^{g})v, v\rangle$ ,

where $\varphi^{g}\in C_{0}^{\infty}(H)$ is defined by $\varphi^{g}(h)=\varphi(g^{-1}hg)$ . Hence, for $g\in G$ fix-,d

$\sum_{J\geqq 1}(T^{\pi}(\varphi)f_{g,v_{j}}, f_{g,v_{j}})=\sum_{j\geqq 1}\langle\pi(\varphi^{g})v_{j}, v_{j}\rangle$

$=\int_{H}\varphi(g^{-1}hg)\theta_{\pi}(h)dh$ .
Finally

$1_{\Rightarrow i\leqq\gamma}<\sum_{J\geqq 1}(T^{\pi}(\varphi)f_{g_{i},v_{j}}, f_{g_{i},v_{j}})=\sum_{y\in A\backslash c_{x}}\int_{H}\varphi(y^{-1}hy)\theta_{\pi}(h)dh$

$=\sum_{H\backslash G}\int_{H}\varphi(h)\theta_{\pi}(yhy^{-1})dh$

$=\int_{G}\varphi(x)\Theta_{\pi}(x)dx$ .

We now apply Theorem 4.2 to the case $M^{0}\Gamma\subseteqq M$.
THEOREM 4.6. Let $\sigma\in\hat{M}_{s},$ $\sigma=Ind_{M^{0}}^{M}\tau\sigma_{1},$ $\sigma_{1}\in(M^{0}\Gamma)_{s^{\wedge}}$ . Then for every

$f\in C_{0}^{\infty}(M)$ , Tr $\sigma(f)$ exists and Tr $\sigma(f)=\int_{M}f(m)\theta_{\sigma}(m)dm$ , where

$\theta_{\sigma}(m_{1})=\left\{\begin{array}{l}\sum_{Hor\backslash Jf}\theta_{\sigma_{1}}(mm_{1}m^{-1}) m_{1}\in M^{0}\Gamma\\ 0 otherwise.\end{array}\right.$ (4.2)

It is easy to write down the value of $\theta_{\sigma}$ on $ B=B^{0}\Gamma$ . Indeed, if $\sigma_{1}=\sigma^{0}\otimes\omega$ ,
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$\sigma^{0}\in(M^{0})_{l^{\wedge}},$
$\omega\in\hat{\Gamma}$ , then

$\theta_{\sigma}(b)=\theta_{\sigma}(b^{0}\gamma)=_{M}\sum_{I\backslash M}\theta_{\sigma 0}(mb^{0}m^{-1})\theta_{\omega}(m\gamma m^{-1})$ .
Moreover, we have the

$CoROLLARY$ . The characters of $\hat{M}_{s}$ corresponding to inequivalent represen-
tations are linearly independent on $B$ .

PROOF. We have the corresponding fact for characters of inequivalent
representations of $(M^{0})_{\epsilon^{\wedge}}$ on $B^{0}$ . This is easily extended to $(M^{0}\Gamma)_{s^{\wedge}},$ $i$ . $e$ . the
characters of inequivalent representations of $(M^{0}\Gamma)_{\epsilon^{\wedge}}$ are linearly independent
on $B^{0}\Gamma=B$ .

Now suppose $\sigma_{1},$ $\cdots,$ $\sigma_{r}$ are non-equivalent representations in $\hat{M}_{s},$

$\sigma_{j}=$

$IndM0\Gamma^{T}j$
’

$\theta_{\sigma_{j}}(b)=_{M^{\circ}}\sum_{\tau\backslash M}\theta_{\tau_{j}}(mbm^{-1})$ , $b\in B$ .

Assume $\sum_{j=1}^{r}c_{j}\theta_{\sigma_{j}}=0,$ $a$ . $e$ . on $B$ . Then

$c_{1}$ $\Sigma\theta_{\tau_{1}}(mbm^{-1})+\cdots+c_{r}$ $\Sigma$ $\theta_{r_{r}}(mbm^{-1})=0$ .
$M\circ I^{\cdot}\backslash M$ $M^{0}\Gamma\backslash M$

By the corresponding result for $ M^{0}\Gamma$ , either $c_{f}=0,1\leqq 1\leqq r$ or
$\tau_{\ell}^{m}\cong\tau_{j}^{m^{\prime}}$ for some $i,$ $j,$ $m,$ $m^{\prime}$ .

(Recall $\tau^{m}(m_{1})=\tau(m^{-1}m_{1}m),$ $m_{1}\in M^{0}\Gamma.$) If $i=j$ and $m,$ $m^{\prime}$ are distinct as
elements of $M^{0}\Gamma\backslash M$, then $\tau_{i}^{m}\neq\tau_{i}^{m’}\sim$ by Theorem 4.1. On the other hand, if
$i\neq j$ and $\tau_{i}^{m}\cong\tau_{j}^{m}$ ‘, then $\sigma_{i}=Ind_{M\Gamma}^{M_{0}}\tau_{i}\cong 1nd_{M\Gamma}^{M_{0}}\tau_{i}^{m}\cong Ind_{ur}^{M_{0}}\tau_{j}^{m^{\prime}}\cong Ind_{H\Gamma}^{M_{0}}\tau_{j}=\sigma_{j}$ .
Hence the constants $c_{j}$ must all be zero and the corollary is proven.

Finally, what is the infinitesimal character of $\sigma=Ind_{u\Gamma}^{M_{0}}\tau$ ? Let $\tau=\sigma^{0}\otimes\omega$ ,
$\sigma^{0}\in(M^{0})_{s^{\wedge}},$ $\omega\in\Gamma$ . The infinitesimal character $\chi_{\tau}$ is equal to $\chi_{\sigma^{0}}$ . But it
follows immediately from Theorem 4.1 part (2) and equation (4.2) that

$z\theta_{\sigma}=x_{\tau}(z)\theta_{\sigma}$ , $z\in \mathfrak{Z}(\mathfrak{M})$ .
Thus the infinitesimal character of $\sigma$ is the same as that for $\tau$ and $\sigma^{0}$ .

\S 5. The continuous series.

Let $P=MAN$ be a cuspidal parabolic as in \S 2. Take $\sigma\in\hat{M}_{\epsilon}$ (see \S 4),
and a linear form $\nu\in a_{iR}^{*}$ . Set $\pi=\pi(\sigma, \nu)=Ind_{p}^{G}\sigma\otimes\nu$ , where $(\sigma\otimes\nu)(man)$

$=e^{\nu(l\circ ga)}\sigma(m)$ . The representations $\pi$ so obtained are called the non-degenera $fe$

continuous series corresponding to P. (In case $P$ is a minimal parabolic, it is
more common to say principal series.) It is known a priori (at least when $\pi$

is irreducible) that these representations have characters which are locally
integrable functions, analytic on $c/[1e]$ . Our goal is to compute these func-
tions explicitly on $H^{\prime}$ (and so on $G_{H}^{\prime}$) where $H$ is a Cartan subgroup, compa-
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tible with $P$ (see \S 2).
Let us write down $\pi$ more explicitly now and obtain a first approximation

for Tr $\pi(f)$ . If $\mathcal{H}_{\sigma}=the$ space of $\sigma$ (a separable Hilbert space), then we may
take

$\mathcal{H}(\pi)=$ $man\in P,$ $x\in G$

Here we identify functions equal $a$ . $e$ . and $\rho=\rho_{P}$ comes in because

left Haar measure on $P$ is $dmdadn$ ,

right Haar measure on $P$ is $e^{2\rho(\log a)}dmdadn$ .
The representation $\pi=Ind_{P}^{G}\sigma\otimes\nu$ acts on $\mathcal{H}(\pi)$ by right translation.

Suppose $\varphi\in C_{0}^{\infty}(G),$ $\pi(\varphi)=\int_{G}\varphi(g)\pi(g)dg$. The functions in $\mathcal{H}(\pi)$ are
uniquely determined by their values on $K$. Thus if $f\in \mathcal{H}(\pi)$

$\pi(\varphi)f(k)=\int_{G}\varphi(g)\pi(g)f(k)dg$

$=\int_{G}\varphi(k^{-1}g)f(g)dg$

(5.1)

$=\int_{P\times K}\varphi$( $k^{-I}$ man $\kappa$)$ f(man\kappa)dmdadnd\kappa$

$=\int_{K}\Lambda_{\varphi}(k, \kappa)f(\kappa)d\kappa$

where

$\Lambda_{\varphi}(k, \kappa)=\int_{P}\varphi(k^{-1}man\kappa)e^{(\nu+\rho)(\log a)}\sigma(m)dmdadn$ .

In (5.1) we used the fact that $G=PK,$ $P\cap K=M_{K}$ is compact, and a well-
known integral decomposition.3) Now it can be shown that under our assump-
tions, $\pi(\varphi)$ is trace class and

Tr $\pi(\varphi)=\int_{K}$ Tr $\Lambda_{\varphi}(k, k)dk$ .

This is worked out for example in [3, \S 4]. But then

Tr $\pi(\varphi)=\int_{K}$ Tr $(\int_{M}\psi_{k}(m)\sigma(m)dm)dk$

where

3) N. Bourbaki, Livre VI, Int\’egration, Ch. 7, p. 66.
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$\psi_{k}(m)=\int_{1N}\varphi$($k^{-1}$ man $k$) $e^{(\nu+\rho)(l\circ ga)}dadn\in C_{0}^{\infty}(M)$ .
Therefore

Tr $\pi(\varphi)=\int_{K}\int_{u}\psi_{k}(m)\theta_{\sigma}(m)dmdk$

$=\int_{K\times P}\varphi(k^{-1}mank)e^{(\nu\vdash\rho)(l\circ ga)}\theta_{\sigma}(m)dmdadndk$

$=\int_{\Xi}\theta_{\sigma,\nu}(\xi)h_{\varphi}(\xi)d\xi$

where $\theta_{\sigma,\nu}$ denotes the character of $\sigma\otimes\nu$ on $\Xi=MA$ and

$h_{\varphi}(\xi)=d(\xi)\int_{KxN}\varphi(k^{-1}\xi nk)\in C_{0}^{\infty}(\Xi)$

(5.2)
$d(\xi)=|\det Ad\xi_{\mathfrak{n}}|^{1/2}=e^{\rho(l\circ ga)}$ , $\xi=ma$ .

These formulas have been obtained already by Harish-Chandra [li, p. 19].

\S 6. The support of $h_{\varphi}$ .
In this section we make a calculation regarding the support of the function

defined by (5.2).

THEOREM 6.1. Suppose $\varphi\in C_{0}(G_{H}^{\prime})$ , $i$ . $e$ . $\varphi$ is a continuous function on $G$

$’,//ith$ compact support contained in $G_{H}^{\prime}$ . Then $Supph_{\varphi}\subseteqq(H^{\prime})^{\Xi}$ .
PROOF. By [$lg$ , p. 93], if $\xi$ is regular

$\int_{K\times N}\varphi(k^{-1}\xi nk)dkdn=\delta(\xi)\int_{K\times N}\varphi(k^{-1}n^{-1}\xi nk)dkdn$ , $\varphi\in C_{0}(G)$

$\delta(\xi)=|\det(Ad(\xi^{-1})-1)_{\mathfrak{n}}|$ .
Now let $\varphi\in C_{0}(G_{H}^{\prime})$ . It will suffice to prove that $Supph_{\varphi}^{\prime}\subseteqq(H^{\prime})\overline{=}$ , where

$h_{\varphi}^{\prime}(\xi)=\int_{K\times N}\varphi(k^{-1}n^{-1}\xi nk)dkdn$ . (6.1)

Let $\xi\in\Xi$ and suppose $h_{\varphi}^{\prime}(\xi)\neq 0$ . Then from (6.1) there is $g\in G$ such that
$g\xi g^{-1}\in H^{J}$ . I $n$ particular $\xi\in G^{\gamma}$ . We shall show that there exists $\xi_{1}\in\Xi$ such
that $\xi_{1}\xi\xi_{1}^{-1}\in H^{\gamma}$ . Set $Z_{\overline{\sigma}}(\mathfrak{g})=\{X\in \mathfrak{g}:Ad_{G}\xi(X)=X\}$ . By [le, p. 460], $Z_{\xi}(\mathfrak{g})$ is
a Cartan subalgebra of $\mathfrak{g}$ (since $\xi$ is regular). But $\xi\in\Xi=>\mathfrak{a}\subseteqq Z_{\xi}(\mathfrak{g})$ . Since
$Z_{\xi}(\mathfrak{g})$ is abelian, $[Z_{\xi}(\mathfrak{g}), \mathfrak{a}]=0$ . But $\mathfrak{z}=LA(\Xi)$ is the centralizer of $\mathfrak{a}$ in $\mathfrak{g}$ .
Therefore $Z_{\xi}(\mathfrak{g})\subseteqq \mathfrak{z}$ and it follows that $Z_{\hat{\sigma}}(\mathfrak{g})$ is also a Cartan subalgebra of 3.
Set $\mathfrak{h}_{1}=Z_{\xi}(\mathfrak{g})$ and $H_{1}=Z(\mathfrak{h}_{1})$ , a Cartan subgroup of $G$ . Since $\mathfrak{a}\subseteqq \mathfrak{h}_{1}$ , we have
that $H_{1}$ is also a Cartan subgroup of $\Xi$ .

Now $\xi\in H_{1}\cap(H^{\gamma})^{G}$ ; therefore $H$ and $H_{1}$ are conjugate under $G$ [le, p. 505].

Let $x\in G$ be such that $H_{1}=H^{x}$ . Then $H_{1}=(BA)^{x}=B^{x}A^{x}$ . Consider $H_{1}^{0}=(H^{x})^{0}$ .



Continuous series representations 469

Claim: $(H^{x})^{0}=(H^{0})^{x}$ . Indeed, $(H^{0})^{x}$ is a connected Lie subgroup of $ H^{x}\Rightarrow$

$(H^{0})^{x}\subseteqq(H^{x})^{0}$ . But they have the same Lie algebra, namely $\mathfrak{h}^{x}$ , and so they are
equal. Hence $H_{1}^{0}=(B^{0}A)^{x}=(B^{0})^{x}A^{x}$ . Since $B^{0}$ is a maximal compact subgroup
of $H^{0},$ $(B^{0})^{x}$ must be a maximal compact subgroup of $H_{1}^{0}$ .

Next let $B_{1}=H_{1}^{0}\cap M^{0}$ . Since $\mathfrak{a}\subseteqq \mathfrak{h}_{1}$ , it follows readily that $H_{1}^{0}$ is a direct
product $H_{1}^{0}=B_{1}A$ . Let $B_{2}$ be a maximal compact subgroup of the connected
abelian Lie group $B_{1}$ . Then there is a vector group $V$ such that $B_{1}=B_{f}V$ .
Moreover, $H_{1}^{0}=B_{2}$ VA, and $B_{2}$ is also a maximal compact subgroup of $H_{1}^{0}$ .
Hence $\dim B_{2}=\dim(B^{0})^{x}$ . But $\dim A=\dim A^{x}$ ; thus $\dim V=0$ , i. e. $B_{2}=B_{1}$ .

Now $(B^{0})^{x}$ and $B_{1}$ are both maximal compact subgroups of the connected
abelian Lie group $H_{1}^{0}$ . Hence they are conjugate in $H_{1}^{0}$ , and so in fact equal
$B_{1}=(B^{0})^{x}$ . Therefore $B^{0}$ and $B_{1}$ are two compact Cartan subgroups of the
connected reductive Lie group $M^{0}$ . By the remark at the end of \S 3, there
exists $m\in M^{0}$ such that

$B_{1}=(B^{0})^{m}$ . (6.2)

Finally, let $b_{1}=\mathfrak{h}_{1}\cap \mathfrak{m}$ . Then $b_{1}$ is the Lie algebra of $B_{1}$ and $\mathfrak{h}_{1}=b_{1}+\mathfrak{a}$ , a
direct sum. It follows from (6.2) that $\mathfrak{b}_{1}=\mathfrak{b}^{m}$ . Then $\mathfrak{h}_{1}=b_{1}+a=b^{m}+a=\mathfrak{h}^{m}$ .
Taking centralizers in $G$ , we get

$H_{1}=Z(\mathfrak{h}_{1})=Z(\mathfrak{h}^{m})=Z(\mathfrak{h})^{m}=H^{m}$ .
In particular, $m\xi m^{-1}\in H\cap G^{\prime}=H^{\prime}$ . So $\xi\in(H^{\prime})^{\Xi}$ .

Now let $\xi\in Supph_{\varphi}^{\prime}$ . Choose $\xi_{j}$ such that $h_{\varphi}^{\prime}(\xi_{j})\neq 0,$ $\xi_{j}\in(H^{\prime})^{\Xi},$ $\xi_{j}\rightarrow\xi$ .
Then there exists $g_{j}\in G$ such that $\varphi(g_{j}\xi g_{j}^{-1})\neq 0$ . Moreover, it is clear from
(6.1) that we may restrict $g_{j}$ to a fixed compact set in $G$ (depending only on $\varphi$).

So we may assume $g_{j}\rightarrow g$. But then $g\xi g^{-1}\in Supp\varphi\subseteqq G_{H}^{\prime}$ . It follows that $\xi$

is regular and that $\xi\in G_{H}^{\prime}$ . Reasoning as in the preceding case, we conclude
once again that $\xi\in(H^{\prime})^{\Xi}$ . The proof is now complete.

\S 7. An analog of Weyl’s integration formula.

Let $G$ be a connected semisimple Lie group, with finite center and accep-
table. Let $H\subseteqq G$ be a Cartan subgroup. Choose Haar measures $dg,$ $dh$ on
$G,$ $H$ respectively. Since $Z_{H}$ is open in $H,$ $dh|_{Z_{H}}$ is a Haar measure on $Z_{H}$ .
The following result is due to Harish-Chandra [lh, Appendix].

THEOREM 7.1. Normalize the invariant measure $dg^{*}$ on $c*=Z_{H}\backslash G$ such
that

$\int_{G}f(g)dg=\int_{a*}dg^{*}\int_{Z_{H}}f(hg)dh$ , $f\in C_{0}(G)$ .

Then for any $f\in C_{0}(G_{H}^{\prime})$ , we have

$\int_{G}f(g)dg=w^{-1}\int_{H}|\Delta_{H}(h)|^{2}dh\int_{G^{*}}f(h^{g*})dg^{*}$ ,
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where $w=w_{H}=\#(W_{H})$ .
In case $G$ is compact and $H$ is a maximal torus, this is precisely Weyl’s

classical integration formula.
Next suppose $G=G_{1}C$ is a connected reductive Lie group as in \S 3. Let

$H$ be a Cartan subgroup $H=H_{1}C,$ $H_{1}=H_{\cap}G_{1}$ . It follows from (3.3), (3.5) and
the facts $W_{H}\cong W_{H_{1}},$ $Z_{H}\backslash G\cong Z_{H_{1}}\backslash G_{1}$ that Theorem 7.1 also holds for such
reductive groups.

Let $P=MAN$ be a cuspidal parabolic subgroup of $G$ as usual. For
$\xi\in\Xi$ , let $D_{\Xi}(\xi)$ be the first non-zero coefficient in $\det(t+1-Ad_{\Xi}(\xi))$ . (Here
$Ad_{\Xi}$ : $\Xi\rightarrow Aut(\mathfrak{z})$ and $Ad_{\Xi}(\xi)\in Int(\mathfrak{z})$ whenever $\xi\in\Xi^{0}\Gamma.$) Define the regular
elements $\Xi^{\prime\prime}=\{\xi\in\Xi ; D_{\Xi}(\xi)\neq 0\}$ . Since $\mathfrak{g}=\mathfrak{z}+\mathfrak{n}+\theta \mathfrak{n}$ , each of which is left
invariant by $\Xi$ , it is easy to see that $-\cdot-’\subseteqq\Xi^{\prime\prime}$ . Note that $D_{\Xi}(\xi a)=D_{\Xi}(\xi)$ ,
$\xi\in\Xi,$ $a\in A$ , so that $H^{\prime\prime}=B^{\prime\prime}A$ .

Next we remark that $Q_{-}$ can be identified with the positive roots of $(\mathfrak{z}, \mathfrak{h})$ .
Since $\gamma\in\Gamma=>Ad_{G}\gamma\in\exp i\mathfrak{a}$ , it follows readily that $\xi_{\alpha}(\gamma)=1,$ $\alpha\in Q_{-}$ . Also
$\gamma\rightarrow|\xi_{\rho}(\gamma)|$ is a homomorphism of $\Gamma$ into $R_{+}^{*}$ , and so $|\xi_{\rho}(\gamma)|=1$ , $\gamma\in\Gamma$ .
Therefore

$|\Delta_{-}(h\gamma)|=|\Delta_{-}(h)|$ , $h\in H$ , $\gamma\in\Gamma$ . (7.1)

In particular, $ H^{\prime\prime}=(H^{0})^{\prime\prime}\Gamma$ . Set $\Xi_{H}^{\prime\prime}=(H^{\prime\prime})^{\Xi}$ and $0\Xi_{H^{\prime}}^{\gamma}=[(H^{0})^{\prime\prime}]^{\Xi^{0}}$ .
Now choose a Haar measure $ d\xi$ on $\Xi$ (and so also on $\Xi^{0}$). We have

already chosen $dh$ on $H$ (and so also on $H^{0}$). We havo the following
THEOREM 7.2. (1) $\Xi_{H}^{\prime\prime}=^{0}\Xi_{H}^{\prime\prime}\Gamma$ .
(2) Normalize the invariant measure $d\xi^{*}$ on $\Xi*=H^{0}\backslash \Xi^{0}\cong B^{0}\backslash M^{0}$ so that

$\int_{\Xi^{0}}f(\xi)d\xi=\int_{\Xi^{*}}d\xi^{*}\int_{H^{0}}f(h\xi)dh$ , $f\in C_{0}(\Xi^{0})$ .

Then for any $f\in C_{0}(\Xi_{H}^{\prime\prime})$ , we have

$\int_{\Xi}f(\xi)d\xi=w_{0}^{-1}\int_{H}|\Delta_{-}(h)|^{2}dh\int_{\Xi^{*}}f(h^{\xi})d\xi^{*}$ ,

where $w_{0}^{-1}=\#(W_{H^{0}}),$ $W_{H^{0}}=[N(H^{0})\cap\Xi^{0}]/H^{0}$ .
PROOF. (1) Consider $H--$ . Since $M$ normalizes $\Gamma$ , we have $H^{\Xi}=(BA)^{MA}$

$=B^{M}A=(B^{0})^{M}\Gamma A$ . But $(B^{0})^{M}=(B^{0})^{M^{0}}$ . In fact, let $m^{-1}bm\in(B^{0})^{M}$ . The map
$b_{1}\rightarrow m^{-1}b_{1}m,$ $b_{1}\in B^{0}$ , is a continuous homomorphism; thus $(B^{0})^{m}$ is another
compact Cartan subgroup of $M^{0}$ . Hence there exists $m_{1}\in M^{0}$ such that
$m^{-1}B^{0}m=m_{1}^{-1}B^{0}m_{1}$ , that is $m^{-1}bm\in(B^{0})^{M^{0}}$ . Therefore $(H^{\prime\prime})^{\Xi}=[(B^{0})^{\prime\prime}]^{M}A\Gamma=$

$[(B^{0})^{\prime\prime}]^{M^{0}}A\Gamma=^{0}\Xi_{H}^{\prime\prime}\Gamma$ .
(2) If $f$ has support in $\Xi_{H}^{\prime\prime}$ , then using (1)

$\int_{\Xi}f(\xi)d\xi=\sum_{\gamma\in\Gamma}\int_{0}\Xi_{H}^{\prime\prime}f(\xi^{0}\gamma)d\xi^{0}$
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$=\sum_{\Gamma}w_{0}^{-1}\int_{H^{0}}|\Delta_{-}(h)|^{2}dh\int_{\Xi^{*}}f(h^{\xi^{*}}\gamma)d\xi^{*}$

$=w_{0}^{-1}\int_{H}|\Delta_{-}(h)|^{2}dh\int_{\Xi^{*}}f(h^{\xi^{*}})d\xi^{*}$ .

Here, we have applied Theorem 7.1 to the pair $(\Xi^{0}, H^{0})$ and used formula
(7.1).

\S 8. A class function on $G$ .
Let $G,$ $P=MAN$ be as before, $\pi=\pi(\sigma, \nu)$ in the continuous series cor-

responding to $P$. Set

$\theta_{\sigma,\nu}(h)=e^{\nu(l\circ ga)}\theta_{\sigma}(b)$ , $h=ba\in H^{\prime}$ , $b\in B$ , $a\in A$ ,

as in \S 5. Let

$\Psi_{1}(h)=\frac{1}{|\Delta_{+}(h)|}\theta_{\sigma,\nu}(h)$ , $h\in H^{\prime}$ ,

$\Psi(h)=\sum_{s\in W_{H}}\Psi_{1}(h^{s})$
, $h\in H^{\prime}$ .

LEMMA 8.1. $\Psi$ is a G-class function on $H^{\prime}$ ; that is, if for $h_{1},$ $h_{2}\in H^{\prime}$ there
exists $g\in G$ such that $g^{-1}h_{1}g=h_{2}$ , then $\Psi(h_{1})=\Psi(h_{2})$ .

PROOF. Recall that $W_{H}=N(H)/Z_{H}\cong[N(H)\cap K]/[Z_{H}\cap K]$ (see [le, $p$ .
488]). Therefore $W_{H}$ leaves $\mathfrak{a}$ invariant. In particular, $W_{H}$ stabilizes $Q_{+}$ .
Hence $|\Delta_{+}(h^{s})|=|\Delta_{+}(h)|,$ $s\in W_{H}$ .

Next recall the w-to-l mapping $\varphi_{H}$ : $G^{*}\times H^{\prime}\rightarrow G_{H}^{\prime},$ $\varphi_{H}(g^{*}, h)=g^{-1}hg$. But
the equation $g^{-1}h_{1}g=h_{2}$ says precisely that $\varphi_{H}(g^{*}, h_{1})=\varphi_{H}(e^{*}, h_{2})$ . Hence there
$is_{J}^{\vee}s\in W_{H}$ such that $h_{1}=h_{2}^{s}$ . From these facts it is clear that $\Psi(h_{1})=\Psi(h_{2})$

and

$\Psi(h)=\frac{1}{|\Delta_{+}(h)|}\sum_{W_{H}}\theta_{\sigma,\nu}(h^{s})$ , $h\in H^{\prime}$ .

\S 9. Computation of the character.

Continuing with the same situation as in \S 8, define

$\theta_{\pi}(x)=$ (9.1)

where $c$ is a fixed positive constant (whose precise value will be commented
on later). $\theta_{\pi}$ is a class function on $G$ (by Lemma 8.1).
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THEOREM 9.1. Let $\pi=\pi(\sigma, \nu)$ be a continuous series representation. Let
$f\in C_{0}^{\infty}(G_{H}^{\prime})$ . Then

Tr $\pi(f)=\int_{G}f(x)\theta_{\pi}(x)dx$ .
PROOF. By the results of \S 5

Tr $\pi(f)=\int_{\Xi}\theta_{\sigma_{J}\nu}(\xi)h_{f}(\xi)d\xi$

with $h_{f}$ given by (5.2). By Theorem 6.1, the support of $h_{f}$ is contained in
$(H^{\prime})^{\Xi}\subseteqq(H^{\prime\prime})^{\Xi}=\Xi_{H}^{\prime\prime}$ . Applying Theorem 7.2, we obtain

Tr $\pi(f)=w_{0}^{-1}\int_{H}|\Delta_{-}(h)|^{g}\theta_{\sigma,\nu}(h)dh\int_{\Xi}.h_{f}(h^{\xi})d\xi^{*}$

$=w_{0}^{-1}\int_{H}|\Delta_{-}(h)|^{2}\theta_{\sigma}(b)e^{(\nu+\rho)(\log a)}dh\int_{\Xi^{*}}d\xi^{*}\int_{KxN}f(k^{-1}(ba)^{\xi}nk)dkdn$ . (9.2)

Now

$\int_{G}f(x)\theta_{\pi}(x)dx=\frac{c}{w_{0}w}\int_{H}|\Delta(h)|^{2}\theta_{\pi}(h)dh\int_{G}.f(h^{x})dx^{*}$

$=\overline{w}_{0}^{c_{-}}w^{-\sum_{W_{H}}}\int_{H}|\Delta(h)|^{2}\Psi_{1}(h^{\iota})dh\int_{c_{r}*}f(h^{x})dx^{*}$

$=\frac{c}{w_{0}w}\sum_{W_{H}}\int_{H}|\Delta(h^{\epsilon-1})|^{2}\Psi_{1}(h)dh\int_{c*}f((h^{\iota- 1})^{x})dx^{*}$

$=\frac{c}{w_{0}}\int_{H}|\Delta(h)|^{2}\Psi_{1}(h)dh\int_{G^{s}}f(h^{x})dx^{*}$

because $|\Delta|$ is invariant under $W_{H}$ and $dx^{*}$ is G-invariant. Therefore

$\int_{G}f(x)\theta_{\pi}(x)dx=\frac{c}{w_{0}}\int_{H}|\Delta_{-}(h)|^{2}|\Delta_{+}(h)|\theta_{\sigma,\nu}(h)dh\int_{G},f(h^{x})d_{X^{*}}$ .

But [$lg$, p. 94, Corollary 2] says that there exists a positive constant $c$ such
that for $h\in H^{\prime}$

$c\epsilon_{R}(h)\Delta_{+}(h)\int_{G^{*}}f(h^{x})dx^{*}=e^{\rho(l\circ ga)}\int_{\Xi^{*}}d\xi^{*}\int_{K\times N}f(k^{-1}h^{\xi}nk)$ (9.3)

(see [le, \S \S 19 &22] for the definition of $\epsilon_{R}$). Choosing $f\geqq 0$ in (9.3), we see
that $\epsilon_{R}(h)\Delta_{+}(h)\geqq 0$, that is $\epsilon_{R}(h)\Delta_{+}(h)=|\Delta_{+}(h)|$ . (This could also be deduced
from [ld, Lemma 9].) Thus

$\int_{G}f(x)\theta_{\pi}(x)dx$

$=w_{0}^{-1}\int_{H}|\Delta_{-}(h)|^{2}\theta_{\sigma}(b)e^{(\nu+\rho)(l\circ g\alpha)}dh\int_{g*}d\xi^{*}\int_{KxN}f(k^{-1}h^{\xi}nk)dkdn$ . (9.4)
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Comparing (9.2) and (9.4), we obtain the theorem.
REMARK. The absolute constant $c$ in (9.1) comes from the constant in

formula (9.3). Suppose that $H$ is abelian, $H=Z_{H}$ . This is always the case
for example if $G$ has a faithful matrix representation. Then we can compute
$c$ as follows:

$\int_{\sigma*}f(h^{x})d_{X^{*}=}\int_{H\backslash G}f(x^{-1}hx)dx$

$=\int_{\Xi\backslash G}d\overline{g}\int_{H\backslash \Xi}f(x^{-1}\xi^{-1}h\xi x)d\overline{\xi}$

$=\int_{K\times N}dkdn\int_{H\backslash \Xi}f(k^{-1}n^{-1}\xi^{-1}h\xi nk)d\overline{\xi}$

$=\int_{K\times N}dkdn\sum_{\Xi^{0}\Gamma\backslash \Xi}\int_{H\backslash \Xi^{0}\Gamma}f(k^{-1}n^{-1}\xi_{1}^{-1}\xi^{-1}h\xi\xi_{1}nk)d\xi^{*}$ . (9.5)

But $\Xi^{0}\Gamma\backslash \Xi\cong M^{0}\Gamma\backslash M\cong(M^{0}\Gamma\cap K)\backslash M_{K}$ . Therefore

$(9.5)=\#(\Xi^{0}\Gamma\backslash \Xi)\int_{K\times N}dkdn\int_{\Xi^{*}}f(k^{-1}n^{-1}\xi^{-1}h\xi nk)d\xi^{*}$

$=\#(\Xi^{0}\Gamma\backslash \Xi)\frac{e^{\rho(\log a)}}{|\Delta_{+}(h)|}\int_{K\times N}dkdn\int_{\Xi^{*}}f(k^{-1}h^{\xi}nk)d\xi^{*}$ .

Here we used [ $lg$ , p. 94, Corollary 1]. So the constant $c=1/\#(\Xi^{0}\Gamma\backslash \Xi)$ .
Unfortunately, in the general case $H\neq Z_{H}$ , we have not been able to pin down
$c$ precisely.

\S 10. Equivalence.

In this section we would like to determine when equivalence can occur
among the continuous series representations we have been considering.

First of all, suppose $P_{1},$ $P_{2}$ are conjugate cuspidal parabolics. Let $\eta=\sigma\otimes\nu$

be a cuspidal representation of $P_{1}$ as usual. Choose $x\in G$ such that $P_{1}^{x}=P_{2}$ .
Consider the representation $\eta^{x}$ of $P_{2}$ defined by $\eta^{x}(m_{2}a_{2}n_{2})=\eta(xm_{2}a_{2}n_{2}x^{-I})$ .
Then, it is well-known and easy to see that $\pi(\eta)$ and $\pi(\eta^{x})$ are unitarily
equivalent. Next suppose $P_{1},$ $P_{2}$ are only associate: that is, $P_{j}=M_{j}A_{j}N_{j}$ ,

$j=1,2$, and there is $x\in G$ (equivalently $x\in K$ ) such that $A_{1}^{x}=A_{2}$ . Con-
jugating by $x$ , we may assume (see the proof of Lemma 10.3) that $P_{1}=MAN_{1}$ ,

$P_{2}=MAN_{2}$ . Let $\theta_{\pi}^{P_{j}}$ be the characters of the representations $\pi^{Pj}=\pi^{Pj}(\sigma, \nu)I$

$=Ind_{P_{j}}^{G}\sigma\otimes\nu$ . (In \S 9, we denoted $\theta_{\pi}^{P}=character$ of $\pi$ . characteristic function
of $G_{H}^{\prime}$ , $H$ compatible with $P$. Henceforth $\theta_{\pi}$ denotes the full character as in
(2.1).)

THEOREM 10.1. (Harish-Chandra [li, p. 20].) $\theta_{\pi^{1}}^{P}=\theta_{\pi^{2}}^{P}$ . Consequently $\pi^{P_{1}}$

is unitarily equivalent to $\pi^{P_{2}}$ .
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We obtain now some necessary conditions for equivalence. First suppose
$P$ is a cuspidal parabolic and $\sigma_{j}\otimes\nu_{j},$ $j=1,2$ are cuspidal representations of
$P$. Then we have

THEOREM 10.2. $\pi_{1}=Ind_{P}^{G}\sigma_{1}\otimes\nu_{1}$ is unitarily equivalent to $\pi_{2}=1nd_{P}^{G}\sigma_{2}\otimes\nu_{2}$

if and only if there is $s\in W=W_{H}$ such that $s\sigma_{1}\cong\sigma_{2}$ and $s\nu_{1}=\nu_{2}$ .
PROOF. Let $s\in W$ exist. Then clearly $\pi_{1}$ is unitarily equivalent to the

representation of $G$ induced from $P^{S}=MAN^{S}$ by $\sigma_{2}\otimes\nu_{2}$ . The result then
follows from Theorem 10.1. This implication is also a consequence of [li,
Lemma 9].

Conversely, assume $\pi_{1}\cong\pi_{2}$ . Then in particular $\theta_{\tau_{1}}=\theta_{\pi_{2}}$ on $H^{\gamma}$ . By
Theorem 9.1 and the explicit formula for the character, we see that

$\sum_{W}e^{s\nu_{1}(l\circ ga)}\theta_{s\sigma_{1}}(b)=\sum_{W}e^{s\nu_{2^{(l\circ ga)}}}\theta_{s\sigma_{2}}(b)$ , $ba\in H^{\prime}$ . (10.1)

Now multiply both sides of (10.1) by $\Delta_{-}(b)$ . But for any $\sigma\in\hat{M}_{s}$ , the function
$\Delta_{-}\theta_{\sigma}$ extends to a bounded continuous function on $B$ (by our results on $\theta_{\sigma 1B^{\prime}}$).
Putting $b=1$ and using the fact that exponentials of distinct linear forms are
linearly independent, we see that there is $s_{0}\in W$ such that $\nu_{2}=s_{0}\nu_{1}$ .

Let $W_{0}=\{t\in W:t\nu_{2}=\nu_{2}\}$ , a subgroup of $W$. Then from (10.1)

$\sum_{\iota\in W_{0}}\theta_{ts_{0}\sigma_{1}}=\sum_{t\subset W_{0}}\theta_{t\sigma_{2}}$

$a$ . $e$ . on $B$ .

Now apply the Corollary to Theorem 4.6. There must exist $t_{1}\in W_{0}$ such that
$t_{1}s_{0}\sigma_{1}\cong\sigma_{2}$ . Let $s=t_{1}s_{0}$ . Then $s\sigma_{1}\cong\sigma_{2}$ and $s\nu_{1}=t_{1}\nu_{2}=\nu_{2}$ . This completes the
proof.

We do not need the full strength of the next result, but we include it
for its own sake.

LEMMA 10.3. Let $P_{1}=M_{1}A_{1}N_{1},$ $P_{2}=M_{2}A_{2}N_{2}$ be two cuspidal parabolics.
Suppose $H_{1},$ $H_{2}$ are corresponding compatible Cartan subgroups. Then $P_{1}$ is
associate to $P_{2}$ if and only if $H_{1}$ is conjugate to $H_{2}$ .

PROOF. First suppose $P_{1}$ and $P_{2}$ are associate. Then there is $x\in G$ such
that $A_{1}=A_{2}^{x}$ . Then $Z(A_{1})=Z(A_{2}^{x})=Z(A_{2})^{x}$ . But $M_{1}=\cap ker|\chi|$ : $\chi\in X(Z(A_{1}))$ .
Therefore

$M_{1}^{x^{-1}}=\cap(ker|\chi|)^{x-1}$ : $\chi\in X(Z(A_{2})^{x})$

$=\cap(ker|\chi|)$ : $\chi\in X(Z(A_{2}))=M_{2}$ .
Hence $M_{1}=M_{2}^{x}$ .

Consider $B_{2}^{r}$ and its Lie algebra $b_{2}^{x}$ . Then $b_{1}$ and $b_{2}^{x}$ are compact Cartan
subalgebras of $\mathfrak{m}_{1}$ . So there exists $k\in M_{1}^{0}\cap K$ such that $\mathfrak{b}_{2}^{x}=b_{1}^{k}$ . Moreover,
$B_{2}^{x}=Z(b_{2})^{x}=Z(b_{2}^{x})=Z(b_{1}^{k})=B_{1}^{k}$ . Finally, $H_{2}^{xk^{-1}}=(B_{2}A_{2})^{xk- 1}=B_{2}^{xk^{- 1}}A_{2}^{xk^{- 1}}=B_{1}A_{1}^{k^{-1}}$

$=B_{1}A_{1}=H_{1}$ .
Conversely, suppose $H_{1},$ $H_{2}$ are conjugate. The Lie algebras $\mathfrak{h}_{1},$ $\mathfrak{h}_{2}$ are also

conjugate. But they are $\theta$ -invariant Cartan subalgebras. Hence $\mathfrak{h}_{1}$ and $\mathfrak{h}_{2}$ are
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also conjugate under $K$. Let $k\in K$ be such that $\mathfrak{h}_{1}=\mathfrak{h}_{2}^{k}$ . Then $H_{1}=H_{2}^{k}$ and

$A_{2}^{k}=(H_{2}\cap\exp \mathfrak{p})^{k}=H_{2}^{k}\cap\exp \mathfrak{p}=H_{1}\cap\exp \mathfrak{p}=A_{1}$ .
That is $A_{1}$ and $A_{2}$ are conjugate, and so $P_{1},$ $P_{2}$ are associate.

We now begin work on the following
THEOREM 10.4. Let $P_{1},$ $P_{2}$ be non-associate parabolics; $\pi_{1},$ $\pi_{2}$ representations

in the continuous series corresponding to $P_{1},$ $P_{2}$ respectively. Then $\pi_{1}$ and $\pi_{2}$

nare not unitarily equivalent.
We shall prove this by showing that $\theta_{\pi 1^{1}}^{P}$ and $\theta_{\pi^{2}}^{P_{2}}$ have different supports.

We begin by making a
DEFINITION. Let $P=\Xi N$ be a cuspidal parabolic, and let $H\subseteqq G$ be any

Cartan subgroup. We say $P$ surrounds $H$ and write $H<P$ if there is $x\in G$

such that $H^{x}$ $\subseteqq\Xi$ –or equivalently, if $\mathfrak{h}=LA(H)$ , there is $x\in G$ such that $\mathfrak{h}^{x}$

is a Cartan subalgebra of $\mathfrak{z}=LA(\Xi)$ .
Suppose $H$ is not surrounded by $P$. Claim: $ G_{H}^{\prime}\cap\Xi=\phi$ . Indeed, suppose

-there is $\xi\in G_{H}^{\prime}\cap\Xi$ . Then, as in \S 6, $\mathfrak{h}_{1}=\{X\in \mathfrak{g}:Ad_{G}(\xi)X=X\}$ is a Cartan
subalgebra of 3. Setting $H_{1}=Z(\mathfrak{h}_{1})$ , we obtain a Cartan subgroup of $\Xi$ and
$\xi\in G_{H}^{\prime}\cap H_{1}$ . Therefore $H$ and $H_{1}$ are conjugate, contradicting the fact that
$H$ is not surrounded by $P$.

Fix a cuspidal parabolic $P$. Let $H_{1}$ , $\cdot$ .. , $H_{r}$ be a complete list of non-
conjugate Cartan subgroups of $G$ . Suppose $H_{1},$

$\cdots,$ $H_{s}<P$ and $H_{s+1},$ $\cdots$ , $H_{r}\not\leq P$.
Then we may assume $H_{1},$

$\cdots,$
$ H_{s}\subseteqq\Xi$ and $G_{H_{j}}^{\prime}\cap\Xi=\phi,$ $i=s+1,$ $\cdots,$ $r$. Let

$|\sigma\otimes\nu$ be a cuspidal representation of $P$ and $\pi=\pi(\sigma, \nu)$ as usual.
LEMMA 10.5. $\theta_{\pi}$ is identically zero on $\cup^{r}G_{H_{j}}^{\prime}$ .

$j=s+1$

PROOF. Let $f\in C_{0}^{\infty}(G)$ . Then from our work in \S 5 and \S 6, we know

$\int_{G}f(g)\theta_{\pi}(g)dg=Tr\pi(f)=\int_{\Xi}\theta_{\sigma,\nu}(\xi)h_{f}(\xi)d\xi$

where

$h_{f}(\xi)=d(\xi)\delta(\xi)\int_{K\times N}f(k^{-1}n^{-1}\xi nk)dkdn$ .

But for any $\xi\in\Xi$ , we have $\xi\not\in G_{H_{j}}^{\prime},$ $j>s$ . Therefore, if $Suppf\subseteqq G_{H_{j}}^{\prime},$ $j>s$ ,

we must have $h_{f}(\xi)=0$ and the lemma is proven.
LEMMA 10.6. Suppose $H<P$ and $H$ is $\theta$ -invariant. Then we may choose

$x\in K$ such that $ H^{x}\subseteqq\Xi$ .
PROOF. By assumption there is $x\in G$ such that $ H^{x}\subseteqq\Xi$ . Let $H_{1}=H^{x}$, a

Cartan subgroup of $\Xi$ and $G$ . If $H_{1}$ is also $\theta$-invariant, then we know $H$

.and $H_{1}$ are K-conjugate. Claim: there is $\xi\in\Xi$ such that $ H\xi$ is $\theta- invariant_{1}$

To show this, let $c$ be the center of $\mathfrak{m}$ . Since $\mathfrak{m}$ has a compact Cartan sub-
algebra, we must have $c\subseteqq \mathfrak{m}\cap f$ . Therefore $\mathfrak{m}=(\mathfrak{m}\cap f)+(\mathfrak{m}\cap \mathfrak{p})$ is a Cartan
decomposition of the reductive Lie algebra $\mathfrak{m}$ . Now let $\mathfrak{h}_{1}=LA(H_{1})$ , a Cartan
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subalgebra of $\mathfrak{z}$ Hence $\mathfrak{h}_{1}=\mathfrak{h}_{2}\oplus \mathfrak{a}$ , where $\mathfrak{h}_{2}=\mathfrak{h}_{1}\cap \mathfrak{m}$ is a Cartan subalgebra
of $\mathfrak{m}$ . It follows that there exists $\xi\in M^{0}$ such that $\mathfrak{h}5$ is invariant under the
appropriate Cartan involution, namely $\theta|_{\mathfrak{m}}$ [lb, p. 100]. Hence $\mathfrak{h}_{1}^{\xi}=\mathfrak{h}\S+\mathfrak{a}$ and
$H\xi=Z(\mathfrak{h}_{1}^{\xi})$ are both $\theta$-invariant. But then $H^{x\xi}=H\xi=H_{2}$ is $\theta$ -invariant and
contained in $\Xi$ . Therefore $H$ and $H_{2}$ are conjugate under $K$.

The following result will enable us to complete the proof of the theorem..
LEMMA 10.7. Suppose $P_{1}=\Xi_{1}N_{1},$ $P_{2}=\Xi_{2}N_{2}$ are cuspidal parabolics; and

$H_{1},$ $H_{2}$ are compatible Cartan subgroups. Suppose $H_{1}<P_{2}$ and $H_{2}<P_{1}$ . Then
$P_{1}$ and $P_{2}$ are associate.

PROOF. By Lemma 10.6, there exist $x,$ $y\in K$ such that

$H_{1}^{x}\subseteqq\Xi_{2}$ , $H\mathscr{X}\subseteqq\Xi_{1}$ .

Or equivalently $\mathfrak{h}_{1}^{x}\subseteqq\int_{2},$ $\mathfrak{h}_{2}^{y}\subseteqq \mathfrak{z}_{1}$ . That is

$\mathfrak{h}_{1}^{x}\subseteqq \mathfrak{z}_{2}=Z(\mathfrak{h}_{2}\cap \mathfrak{p})\cap \mathfrak{g}$ , $\mathfrak{h}_{2}^{y}\subseteqq \mathfrak{z}_{1}=Z(\mathfrak{h}_{1}\cap \mathfrak{p})$ A $\mathfrak{g}$ .
Therefore

$[\mathfrak{h}_{1}^{x}, \mathfrak{h}_{2}\cap \mathfrak{p}]=0$ , $[\mathfrak{h}_{2}^{y}, \mathfrak{h}_{1}\cap \mathfrak{p}]=0$ .

But $\mathfrak{h}_{1}^{x},$ $\mathfrak{h}_{2}^{y}$ are Cartan subalgebras of $\mathfrak{g}$ ; in particular they are maximal abeliarm
$subalgebras\Rightarrow$

$\mathfrak{h}_{2}\cap \mathfrak{p}\subseteqq \mathfrak{h}_{1}^{x}$ , $\mathfrak{h}_{1}\cap \mathfrak{p}\subseteqq \mathfrak{h}\mathscr{X}$ .

Since $x\in K,$ $\mathfrak{h}_{2}\cap \mathfrak{p}\subseteqq \mathfrak{h}_{1}^{x}\cap \mathfrak{p}=(\mathfrak{h}_{1}\cap \mathfrak{p})^{x}$ . Similarly $\mathfrak{h}_{1}\cap \mathfrak{p}\subseteqq(\mathfrak{h}_{2}\cap \mathfrak{p})^{y}$ . Therefore

$\dim(\mathfrak{h}_{2}\cap \mathfrak{p})\leqq\dim(\mathfrak{h}_{1}\cap \mathfrak{p})^{x}=\dim(\mathfrak{h}_{1}\cap \mathfrak{p})\leqq\dim(\mathfrak{h}_{2}\cap \mathfrak{p})^{y}=\dim(\mathfrak{h}_{2}\cap \mathfrak{p})$ .
Thus we get equality throughout. In particular

$\dim(\mathfrak{h}_{2}\cap \mathfrak{p})=\dim(\mathfrak{h}_{1}\cap \mathfrak{p})^{x}$ .

But $\mathfrak{h}_{2}\cap \mathfrak{p}\subseteqq(\mathfrak{h}_{1}\cap \mathfrak{p})^{x}$ . By dimensionality, $\mathfrak{h}_{2}\cap \mathfrak{p}=(\mathfrak{h}_{1}\cap \mathfrak{p})^{x}$ . Taking exponentials,.
we obtain $A_{2}=A_{1}^{x}$ , that is $P_{1}$ and $P_{2}$ are associate.

PROOF OF THEOREM 10.4. Suppose $\pi_{1}$ and $\pi_{2}$ were unitarily equivalent.
Then $\theta_{\pi}^{P_{t^{1}}}=\theta_{\pi^{2}}^{P_{2}}$ . Let $H_{1},$ $H_{2}$ be Cartan subgroups, compatible with $P_{1},$ $P_{2}$ . But
$H_{j}\subseteqq Supp\theta_{\pi_{j}^{P_{j}}},$ $j=1,2$ . Therefore $\theta_{\pi}^{P_{1^{1}}}\neq 0$ on $G_{H_{2}}^{\prime}$ and $\theta_{\pi_{2^{2}}}^{P}\neq 0$ on $G_{H_{1}}^{\prime}$ . By

Lemma 10.5, it follows that $H_{1}<P_{2}$ and $H_{2}<P_{1}$ . Hence, by Lemma 10.7, $P_{1}$

and $P_{2}$ are associate. This contradicts the hypothesis and completes the proof.
REMARK. Theorem 10.4 remains valid in case $P_{2}=G$ is cuspidal. That

is, suppose $G$ has a compact Cartan subgroup so that $G$ has a discrete series.
By a representation $\pi$ corresponding to $P_{2}=G$ , we mean any irreducible
square-integrable unitary representation. So let $P_{1}$ be a proper cuspidal
parabolic and suppose $P_{2}=G$ . Let $\pi_{1}$ and $\pi_{2}$ be in the continuous (respectively

discrete) series corresponding to $P_{1}$ (respectively $P_{2}$). Then $\pi_{1}$ and $\pi_{2}$ are not
unitarily equivalent. In fact, $\theta_{\pi}^{P_{2^{2}}}$ has support in the whole group (see Harish-
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Chandra’s computation of these characters [lf, part II]). But $\theta_{\pi^{1}}^{P_{1}}$ does not.
Indeed, if $H_{2}$ is a compact Cartan subgroup, it is easily seen that $H_{2}\not\leq P_{1}$ .
Therefore Lemma 10.5 insures that $\theta_{\pi_{1}}^{P_{1}}$ is zero on the open set $G_{H_{2}}^{\prime}$ .

\S 11. Disjointness.

Let $P_{1},$ $P_{2}$ be non-associate cuspidal parabolics ($P_{2}=G$ allowed). Suppose
$g\tau_{1},$ $\pi_{2}$ are representations in the series corresponding to $P_{1},$ $P_{2}$ respectively.
Then we know (Theorem 10.4) that these representations are not unitarily
equivalent. If they are irreducible, they give rise to distinct points of $\hat{G}$ .
On the other hand, suppose one or both are reducible. We would like to
show that they have distinct constituents, $i$ . $e$ . $\pi_{1}$ and $\pi_{2}$ are disjoint. Since
any subrepresentation of $\pi_{j}$ has the same infinitesimal character as $\pi_{j}$ , it is
enough to show that $\pi_{1}$ and $\pi_{2}$ have distinct infinitesimal characters. Un-
fortunately, we can only prove that result for some parabolics.4)

THEOREM 11.1. Let $P_{1},$ $P_{2}$ be non-associate cuspidal parabolics; $\pi_{1},$ $\pi_{2}$

representations in the corresponding series. Assume $\dim A_{1}\neq\dim A_{2}^{4)}(\dim A_{2}=0$

if $P_{2}=G$). Then $\pi_{1}$ and $\pi_{2}$ have distinct infinitesimal characters.
PROOF. First, let us compute the infinitesimal characters. If $P_{2}=G$, we

already have Harish-Chandra’s computations (see \S 3). Otherwise, let $P=MAN$
be a proper cuspidal parabolic, $\pi=\pi(\sigma, \nu)$ as usual. Let $\mathfrak{Z}$ and $\mathfrak{Z}(\mathfrak{M})$ be the
centers of the enveloping algebras $\mathfrak{U}(\mathfrak{g}_{c})$ and $\mathfrak{U}(\mathfrak{m}_{c})$ respectively. Then there
is a canonical homomorphism $\mu:\mathfrak{Z}\rightarrow \mathfrak{Z}(\mathfrak{M})$ of $\mathfrak{Z}$ onto $\mathfrak{Z}(JJl)$ [le, \S 12].

Next, recall the equation

$\theta_{\pi}(f)=\int_{(G}f(g)\theta_{\pi}(g)dg=\int_{\Xi}\theta_{\sigma,\nu}(\xi)h_{f}(\xi)d\xi=\theta_{\sigma,\nu}(h_{f})$ .

Using this formula together with a result stated [le, Lemma 52] and proved
$[lg, \S 10]$ by Harish-Chandra, we obtain

$z\theta_{\pi}(f)=\mu(z)\theta_{\sigma,\nu}(h_{f})$ , $f\in C_{0}^{\infty}(G)$ , $z\in \mathfrak{Z}$ .

It follows that $\chi_{\pi}(z)=\chi_{\sigma,\nu}(\mu(z))$ . Now we use the results of \S 4. Let $\mathfrak{h}$ be a
Cartan subalgebra of $\mathfrak{z}$ (and $\mathfrak{g}$) compatible with $P$. Let $\lambda$ be a linear form on
$\mathfrak{b}$ determined by $\sigma$ , and set $\eta=the$ linear form on $\mathfrak{h}$ such that

$\eta=\left\{\begin{array}{lll} & & \lambda on b\\ & & \nu on \mathfrak{a}.\end{array}\right.$

4) By examining our proof, one sees that to complete the argument in case
$\dim A_{1}=\dim A_{2}$ , the following fact is required: If $\mathfrak{h}_{1},$ $\mathfrak{h}_{2}$ are $\mathfrak{g}_{c}$ -conjugate Cartan sub-
algebras of $\mathfrak{g}$ , then they are $\mathfrak{g}\cdot conjugate$ . A proof of this has been communicated to
me by Joe Wolf.
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Then $\chi_{\sigma,\nu}(z)=\chi_{\eta}^{\mathfrak{h}(\mathfrak{n}\iota)}(z),$ $z\in \mathfrak{Z}(\mathfrak{M})$ .
Now let

$\gamma$ : $\mathfrak{Z}\rightarrow I_{c}(\mathfrak{h}_{c})$

$\gamma_{\mathfrak{m}}$ : $\mathfrak{Z}(\mathfrak{M})\rightarrow I_{1r}.(\mathfrak{h}_{c})$

be the canonical isomorphisms (see \S 2). Also let $i:I_{\mathfrak{g}}(\mathfrak{h}_{c})\rightarrow I_{\mathfrak{m}}(\mathfrak{h}_{c})$ be the
injection. Then $\mu=\gamma_{1tt}^{-1}\circ i\circ\gamma$ [le, \S 12]. If $z\in \mathfrak{Z}$ , we compute

$\chi_{\pi}(z)=x_{\eta}^{\mathfrak{h}(\mathfrak{m})}(\mu(z))$

$=r\cdot(\mu(z))(\eta)$

$=\gamma(z)(\eta)$

$=x_{\eta}^{\mathfrak{h}}(z)$ .
Thus we have shown that $\chi_{\pi}(z)=x_{\eta}^{\mathfrak{h}}(z),$ $z\in \mathfrak{Z}$ , where $\eta$ is the linear form on
$\mathfrak{h}$ such that $\eta=\lambda$ on $b,$ $\eta=\nu$ on $\mathfrak{a}$ .

NOTE. By the results in \S 4, the form $\lambda$ is regular. That is $ s\lambda\neq\lambda$ for
all $s\in W(\mathfrak{m}, b),$ $s\neq 1$ .

It is enough now to prove
LEMMA 11.2. Let $\mathfrak{h}_{1},$ $\mathfrak{h}_{2}$ be non-conjugate, $\theta$ -invariant Cartan subalgebras of

$\mathfrak{g},$ $\mathfrak{h}_{j}=b_{j}+\mathfrak{a}_{j}$ , where $\mathfrak{b}_{j}=\mathfrak{h}_{j}\cap f,$ $\mathfrak{a}_{j}=\mathfrak{h}_{j}\cap \mathfrak{p}$ . Let $\eta_{j}$ be linear forms on $\mathfrak{h}_{j}$ such
that

$\eta_{j}=\left\{\begin{array}{l}\lambda_{j}\\\nu_{j}\end{array}\right.$ $onon$ $\mathfrak{a}_{j}^{j}b$

.
Suppose the $\lambda_{j}$ are regular, $i$ . $e$ . $s\lambda_{j}\neq\lambda_{j}$ for all $s\in W(\mathfrak{m}_{j}, b_{j}),$ $s\neq 1$ . (Here we
may take $\mathfrak{m}_{j}=the$ orthogonal complement with respect to the Killing form of
$\mathfrak{a}_{j}$ in $\mathfrak{z}_{j}=Z(\mathfrak{a}_{j})$ . Of course $\mathfrak{m}_{2}=\mathfrak{g}$ in case $\mathfrak{a}_{2}=\{0\}.$) Then $\chi_{\eta_{1}^{1}}^{\mathfrak{h}}\neq\chi_{\eta_{2}^{2}}^{\mathfrak{h}}$ .

PROOF. Unfortunately, to give the proof, we have to make the additional
assumption $\dim \mathfrak{a}_{1}\neq\dim \mathfrak{a}_{2}^{4)}$ Now by the symmetry of the hypotheses, we may
suppose $\dim \mathfrak{a}_{2}<\dim \mathfrak{a}_{1}$ . Let $\mathfrak{h}_{j}^{c}$ be the complexifications of $\mathfrak{h}_{j}$ and suppose $Q_{j}$

denotes a choice of positive roots of $(\mathfrak{g}_{c}, \mathfrak{h}_{j}^{c})$ . Set $Q_{j}^{+}=\{\alpha\in Q_{j} : \alpha|_{a_{j}}\not\equiv 0\}$ ,

$\Sigma_{j}=the$ simple roots of $Q_{j}$ . Then $\#(\Sigma_{j}\cap Q_{J}^{+})=\dim_{R}\mathfrak{a}_{j}$ . Choose $y\in Int(\mathfrak{g}_{c})$

such that $(\mathfrak{h}_{1}^{c})^{y}=\mathfrak{h}_{2}^{c}$ . Then $\chi_{\eta_{1}^{1}}^{\mathfrak{h}}=\chi_{\eta_{1}^{2}}^{\mathfrak{y}_{y}}$ where $\eta_{1}^{y}(X)=\eta_{1}(y^{-1}\cdot X),$ $X\in \mathfrak{h}_{2}^{c}$ .
Suppose $\chi_{\eta_{1}^{1}}^{\mathfrak{h}}=\chi_{\eta_{2}^{2}}^{\mathfrak{h}}$ . Then $\chi_{\eta_{1}^{2}}^{\mathfrak{y}_{y}}=x_{\eta^{2}}^{\mathfrak{y}_{\sim^{)}}}$ ; therefore there exists $s\in W(\mathfrak{g}, \mathfrak{h}_{2})$ such

that $\eta_{1}^{y}=s\eta_{2}$ . Choose $y_{1}\in Int(\mathfrak{g}_{c})\cap N(\mathfrak{h}_{2}^{c})$ such that $y_{1}$ acts on $\mathfrak{h}_{2}^{c}$ by the same
automorphism as $s$ . Setting $z=yy_{1}^{-1}\in Int(\mathfrak{g}_{c})$ , we see that $\eta_{1}^{z}=\eta_{2},$ $\eta_{1}^{z}(X)=$

$\eta_{1}(z^{-1}\cdot X),$ $X\in \mathfrak{h}_{2}^{c}$ .
Now fix a choice of positive roots $Q_{1}$ on $(\mathfrak{g}, \mathfrak{h}_{1})$ . Then $Q_{1}^{z}$ is a set of

positive roots $Q_{2}$ for $(\mathfrak{g}, \mathfrak{h}_{2}),$ $\alpha^{z}(Y)=\alpha(z^{-1}\cdot Y),$ $Y\in \mathfrak{h}_{2}^{c},$ $\alpha\in Q_{1}$ . Let $\alpha_{1},$ $\cdots,$ $\alpha_{r}$

$\in Q_{1}^{+}\cap^{\Sigma_{1}},$ $r=\dim \mathfrak{a}_{1}$ . Then $\alpha_{1}^{z},$

$\cdots,$
$\alpha_{r}^{z}\in\Sigma_{2}$ . Suppose $\alpha_{1}^{z},$

$\cdots,$
$\alpha_{r}^{z}\in Q_{2}^{+}$ . Since

these are linearly independent forms, it would follow that $\dim \mathfrak{a}_{2}\geqq\dim \mathfrak{a}_{1}$ .
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This is contrary to assumption. Hence we may assume that

$\beta_{1}=\alpha_{1}^{z}\in Q^{-}\lrcorner)=\{\beta\in Q_{2} : \beta|_{a_{2}}\equiv 0\}$ .
Next for $\xi\in(\mathfrak{h}_{j}^{c})^{*}$ , choose $Y_{\xi}\in \mathfrak{h}_{j}^{c}$ so that $\xi(Y)=(Y, Y_{\xi}),$ $Y\in \mathfrak{h}_{j}^{c},$ $(\cdot, )=$

the Killing form. When $\alpha\in Q_{j}^{+}$ , then $Y_{\alpha}\in \mathfrak{a}_{j}$ ; and when $\alpha\in Q_{j}^{-}$ , then $Y_{\alpha}\in i\mathfrak{b}_{f}$ .
Consider $Y_{\alpha_{1}}\in \mathfrak{a}_{1}$ . Then

$\eta_{1}(Y_{\alpha_{1}})=\nu(Y_{\alpha_{1}})\subseteqq iR$ .
But $\eta_{1}^{z}=\eta_{2}$ and so

$\eta_{1}(Y_{\alpha_{1}})=\eta_{2}(z\cdot Y_{\alpha 1})=\eta_{2}(Y_{\beta_{1}})=\lambda(Y_{\beta_{1}})\subseteqq R$ ,

since $\beta_{1}=\alpha_{1}^{z}\in Q_{2}^{-}=the$ positive roots of $(\mathfrak{z}_{2}, \mathfrak{h}_{2})=the$ positive roots of $(\mathfrak{m}_{2}, b_{2})$ .
Therefore $\eta_{2}(Y_{\beta_{1}})=0$ ; that is $s_{\beta_{1}}\eta_{2}=\eta_{2}$ , where $s_{\beta_{1}}\in W(\mathfrak{m}_{2}, \mathfrak{b}_{2})$ is the reflection
through the simple root $\beta_{1}$ . This contradicts the regularity of $\eta_{2}$ and con-
cludes the proof.

REMARK. In particular, the proof works for $\dim \mathfrak{a}_{2}=0$ . So every irre-
ducible constituent of any continuous series representation is not equivalent
to a discrete series representation.

The University of Maryland
Department of Mathematics
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