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§1. Introduction.

In this paper we shall compute some explicit formulas for the characters
and infinitesimal characters of general continuous series representations. We
then apply these results to deduce some facts concerning equivalence and
disjointness among representations from various series.

In more detail, let G be a connected semisimple Lie group and P a cuspidal
parabolic subgroup of G. Then P has a Langland’s decomposition P= MAN,
where N is the ‘“ unipotent radical” of P, A is a maximal ‘ split torus” and
M is a reductive Lie group, not connected in general. Let A be a unitary
representation of P such that A(man)=yv(a)o(m), me M, a< A, n < N, where
v is a character of A and ¢ is a square-integrable irreducible representation
of M. Such representations exist whenever P is cuspidal. The non-degenerate
continuous series representations of G (corresponding tc P) are obtained by
inducing these “ cuspidal ” representations A from P to G.

Let #=1Ind¢ A. It is known that for fe Cy(G), n(f):j flg)rn(g)dg is a
G
trace class operator. Moreover, there exists a locally integrable function 6,
on G such that Tr n(f):f F(g)0-(g)dg, fCF(G). We are going to compute
G

8. explicitly on an open subset G» of G. Specifically, let H be any Cartan
subgroup of G such that HE P, HnNAN=A and Hn\ M is a compact Cartan
subgroup of M. Then Gp={geG: g is regular (see §2 for the definition)
and grlgg, € H for some g, = G}. The main steps in the computation are as
follows: (i) extend Harish-Chandra’s results on the discrete series of connected
semisimple Lie groups to connected reductive Lie groups (§ 3); (i) employ
Mackey’s theory in order to compute the discrete series of the disconnected
group M (§4); (iii) develop an analog of the Weyl-Harish-Chandra integration
formula for the group M (§7); (iv) define an appropriate class function on
G (§8); and (v) combine various integral formulas to get the desired character
formula (see 9.1). Although we do not evaluate 6. on all of G, we shall
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compute its support (Lemma 10.5). In addition, we compute the infinitesimal
characters for the discrete series of M (at the end of §4) and the continuous
series of G (see [Theorem 11.10).

Utilizing our character formula, we can deduce the following results (§ 10)
on equivalence;

1) Let P, P, be two cuspidal parabolics (P,=G is allowed if G has a
discrete series). Let =, m, be any representations in the series corresponding
to P,, P,, respectively. Suppose P, and P, are not associate (see § 10 for the
definition). Then x; and =, are not unitarily equivalent.

2) Let P be a proper cuspidal parabolic, #;=Ind¢4;, j=1,2. Then
n,=m, if and omnly if A, and A, are conjugate under the Weyl group
Wy =[Norm (H) N G]/Cent (H).

By an examination of the infinitesimal characters, we get the following
additional result (§11):

3) Let P, P, be non-associate cuspidal parabolics (P,=G possible).
Suppose dim A, # dim A,.Y Let =, m, be any representations in the corre-
sponding series. Then =, and =, are disjoint, i.e. no irreducible constituent
of =, is equivalent to any irreducible constituent of =,.

We remark finally that our work generalizes [1a, the case of a minimal
parabolic] and [3]. Both of these papers assume M= M°-Cent (M), where
M?° denotes the connected component of the identity in M. We do not make
that restrictive assumption here.

NOTATION. Let G be a Lie group. Set G°=the connected component of
the identity in G, Zz=Cent(G), and G =the space of unitary equivalence
classes of irreducible unitary representations of G. Quite often, we blur the
distinction between a given irreducible unitary representation = of G and its
class [#]= 6. Denote G,={[x]1<G:x is square-integrable}.

Let g= LA(G) be the Lie algebra of G. Suppose SE G, 8< g are subsets
and x&G. We denote S®={x"yx: y& S}, 8 ={Adz x(Y): Y8}, S =1 S?,

<G

86 = \J8". We always use N(-), Z(-) to denote normalizers and centralizers,
zed .

respectively. Finally, if V is a vector space, g§ will denote the linear maps
from g to V.

§2. Semisimple groups and parabolic subgroups.

Let G be a connected semisimple Lie group with finite center. Let g be
its Lie algebra and let g, be the complexification. Suppose g=1+p is a Cartan
decomposition. Let # denote the corresponding Cartan involution of g(or G),

1) This restriction has been removed. See footnote 4).
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and set K =the maximal compact subgroup of G having t as Lie algebra.

Next let P be a parabolic subgroup of G. This means: P is a closed
subgroup of G such that (i) if = LA(P), then P= N(B) and (ii) P, contains
a maximal solvable subalgebra of g.. Let N=the maximal normal subgrour
of P such that Ad(n) is unipotent for every n& N. Set & =P 6P, A=the
maximal connected split (i.e. Ad(a) diagonizable over R) abelian subgroup
& Zz. Then E=Z(A)NG. Let X(E)={X:E—R* X a continuous homo-
morphism}. Set M:er@ ker |[X|. Then M is reductive (i.e. m= LA(M) is
reductive), but not connected in general. Moreover £=MA is a direct
product, and the map (m, a, n)— man is an analytic diffeomorphism of MX AX N
onto P.

Suppose P is cuspidal. By this we shall mean: there exists ), a #-stable
Cartan subalgebra of g, such that Y \p=a=LA(A). Let H=ZMH) "G, a
Cartan subgroup of G. We call any such H compatible with P. Set B=H K.
Then H=BA is a direct product [le, p. 481]. (Note: H and B are not neces-
sarily connected or abelian [1d, p. 556].)

DEFINITION. A Cartan subgroup of M is the centralizer of a Cartan sub-
algebra of m.

LEMMA 2.1. B is a compact Cartan subgroup of M.

PROOF. B is clearly a compact group. Set b=hHh N so that h=bPDa.
Let b B. Then b&; but the map b—|X(b)|, X € X(&), is a continuous
homomorphism of B into R*. Hence BS M, and so b&m. Moreover, it is
clear that b is a Cartan subalgebra of m. Next let S Z(b) M. Then feH,
B=ba, b= B, ac A. If a+1, choose X € X(&) so that |X(a)|+1. Then since
Be M, be BS M, we have 1=|X(B)|=]X()||X(a)|# 1. Therefore 3=be< B;
that is B=Z(b) n\ M.

REMARK. It is clear that if B, is any #-stable compact Cartan subgroup
of M, then H,=B,A is a Cartan subgroup of G which is compatible with P.

Now let 3= LA(E)=Z(@ "g=mEa (in fact m is the orthogonal comple-
ment of a in 3 with respect to the Killing form). 3 is of course reductive.
By [1le, p. 481], & =545, where Ex=5 K and E,=exp(GNp). But Zx
= MmN K, since for X € X(&), £—|X(&)| is a continuous homomorphism of &g
into R*¥. Also exp(@nNnp) =exp[(m+a)npl=exp[(mNp) +al=expmNp A.
It follows easily that M= MxM,, where Mxy=MNK, My=exp(mnNyp). It is
well-known that G = PK= MANK. Since PN\ K= Mg, it is readily proven
that (m, a, n, k)— mank is an analytic diffeomorphism of M,X AX NxX K onto

Gi[lc, Lemma 11]. Finally let pp = ak be defined by pp(Y)= ; trace (ad Y ).,
Yea, n=LA(N).

Let ¢ denote the involution of g, corresponding to g. Fix 7& g, such that
¢(@)=—i. We regard g S g.=g+1¢ and so naturally adg < adg.. Let Int(g.)
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be the adjoint group of g.. We may identify Int(g)=the adjoint group of g
with the (closed) analytic subgroup of Int(g,) whose Lie algebra is adg [2,
p. 1557,

We denote the adjoint representation of G by Adg: G—Int(g). Define

I' = Adz(Ads(K) N exp ia) .

THEOREM 2.2. (i) I is a finite subgroup of B that commutes with M°.

(ii) I is normal in M.

(iiiy H=H"T".

PROOF. (i) Since ker Ad;= Z; is a finite group, it is easily seen that I’
is a finite subgroup of B. But [a,m]=0 and so I' and M° commute.

(ii) Since M S Z(a), we must have Adz(M) commutes with Adz(K) N exp ia.
But I" is the complete inverse image (under Ads;) of Adg(K)nexpia. It
follows that M normalizes .

(iii) The proof that follows strengthens the argument of [le, Lemma 50]
(see [6, p. 93] in this connection). Since A £ H®, it is enough to prove B=B°]".
First assume G = Int(g), that is Z;= {e}. Let H, be the Cartan subgroup of
Int (g,) corresponding to §.=the complexification of §. Let u=*%+ip and
U =the analytic subgroup of G.,=Int(g,) having u as Lie algebra. U is a
maximal compact subgroup of G,. But UnH,=UNZ{,) and %, is invariant
under the Cartan involution of g, determined by u. By [le, Lemma 27],
U H, is a connected compact Lie subgroup of G, having Lie algebra=uY%,.
Therefore expuNnbh)=UNH,. But un).=0ONnH+ihNp)="04+ia. Let b=B
S UNH, Then b=b,b, where b,cexpb=B° and b,=bi'b=expianK=1I".

Now drop the assumption Z; = {e}. Consider the adjoint representation
Adg: G—1Int(g). Clearly Adg(ZW)NG)=ZH) NInt(g). Also Ade(ZH) NG
S[ZM NInt(g)]°. But these are both connected Lie subgroups of Int(g)
having Lie algebra ). Therefore they are equal. Part (iii) is thus a con-
sequence of the following general

LEMMA 2.3. Let v:G,— G, be a continuous homomorphism onto. Suppose
H;, I'; are subgroups of G,;, j=1, 2 with the properties: G,=H,I",, t(H,)=H,,
and I'y=<"'I",). Then G,=H,I,.

ProOOF. If xeG,, then (x) e G,=t(x)=h,y, for some h,€H,, 7y, &l,.
Then there are h, €H,, 7, €I, such that z(h))=h,, (7)) =7. S0 t(x)=7(h7))
=y 'xekerz S I',. Therefore x= H,I',.

REMARK. When P is a minimal parabolic, then (a) M is compact and (b)
M=M"I" (see [4, Lemma 3.1]). Neither (a) nor (b) is true in general

Let n=dimg, ) S g a f-stable Cartan subalgebra, [=dim§). For an inde-
terminate f, consider det (t+1—Adg(x))= Dy(x)+ -+ +D,(x)t", x € G. The first
non-zero coefficient will be D,(x). Set D(x)=D,(x). The regular elements are
G'={xe G: D(x)+ 0}, a dense open submanifold. The following are obvious:
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D(xz)=D(x), z= Z;, and D(gxg™')= D(x), g x< G. For any subset SE G, we
denote S’ = SNG’. In particular, if H is a Cartan subgroup of G, let H/'=HNG'.

Consider the map
(7} ZH\GXH"‘"’G/

defined by ¢u(g*, h)=g'hg. The image Gy=(H’)’ is an open submanifold
of G and the map
P . ZH\GXH/""’G;{

is proper (i.e. the inverse image of a compact set is compact). More precisely,
let Wy=NH)/Zy. Then Wy acts effectively on (Z;\GXH") and G% is dif-
feomorphic to (Z;\Gx H")/Wy (see [le, p. 488]).

Next consider the roots of (g, §). By definition these are the linear forms
a = h¥ such that g¢={Xeg:[Y, X1=a(Y)X for all Y.} is non-empty.
Choose an ordering on the roots. Set W(g, ) =the group of automorphisms
of %), generated by the reflections corresponding to a simple root system.
Then W, may be identified with a subgroup of W(g, 0).

Suppose 4 is a linear form on ). Then there exists at most one homo-
morphism &;: H— C such that

SexpY)=e"", Yey.
If a is a root of (g, h) then &, always exists. Let Q denote a choice of positive
roots and set p= py = é EQa. We assume henceforth that G is acceptable,
as

that is &, exists. (This is independent of the choice of Hh—see [le, p. 484].)
Let Q.={acsQ: aly+=0}, Q;=0Q—@Q_.. We can now define several C>-
functions: For he H, let '

Adh)=d,(h)= §o(h) IL(1—£a(R7)
4. (= $p(h-1g_(1—$a(h“)) ,
4.(h)y=d(h)/4-(h)y= $o(ha) 11 +(1~$a(h'l)) ,

where h=h_h,, h. e HNK, h, = exp(HNp). It is well-known [1e, p. 504] that
D(h)=(—1DP4d(h)?, heH, p=%#Q); and so H ={heH: 4,(h)+0}. It also
follows that (up to sign) 4 is independent of the choice of ordering on the
roots.

Suppose € G. Then for every fe Cg(G), z(f)zf flg)n(g)dg is trace
(€]

class and there exists a locally integrable function €. such that .|, is real
analytic and

Tra(f)=[ _f(&)0Le)dg, f=CF(G). @D
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0. is called the character of =. One of our goals is to make some fairly
explicit computations on &, for certain “ continuous series” representations .

We also wish to consider infinitesimal characters. Let U=the universal
enveloping algebra of g,, 3=the center of I. 3 may be identified with the
commutative algebra of left and right invariant differential operators on G.
We recall how to construct characters of 3. Let ) S g be any Cartan sub-
algebra, ). its complexification. Denote by I(§.) the W(g, h)-invariant poly-
nomial functions on §¥*. Then there is a natural isomorphism 7y : 3—I(%.)
[1b, Lemma 19]. If A2<b¥, define Xy:3—C by X2(z) =1y (2)(A), ze 3. We
obtain all homomorphisms of 3 into C this way, and X2=X% if and only if
A=s4’ for some s=W(g, ). Now it is well-known (and easy to see) that for
G, 0. is an eigendistribution of 8. Thus there exists X.: 83— C such that

20, =XA2)0, ze 3. 2.2)

may be understood in the sense of distribution theory or as a differential
equation on the manifold G’. X. is called the infinitesimal character of x.

§ 3. Discrete series for connected reductive groups.

Let G be as hefore, a connected semisimple Lie group with finite center
and acceptable. Suppose there is b<f, a Cartan subalgebra of g. Then
B =Z(b) is a compact Cartan subgroup—moreover, it is abelian and connected.
Let B=the character group. Every be B determines A< %% by blexpY)
=e!®, Y b, The collection £ S 6% thus obtained is a lattice; in fact,

L={Aeb: AY)e<2niZ whenever expY =e¢, Y €b}.

Let w be the polynomial function on b, defined by w=1I]a, @ a system
acQ

of positive roots for (g, 5). Identifying b, and b¥ via the Killing form, we
single out the regular elements £/'={ic L: w(A)+*0}. For seW(g,b), set
w’ =¢(s)w. Note finally that Wz leaves £/ invariant. The following theorem
is due to Harish-Chandra [1h, Theorem 16].

THEOREM 3.1. Let 0 €G,. Then there exists A= L’ such that

6,(b) = "21’;6(’6)" % e(s)e™® | expY=be B, (3.1)

c=c(o)=(—1)sgn w(l), ¢= ,;_ dim G/ K. Moreover A is uniquely determined

up to an element of Wy and the infinitesimal character of o is Xi. Conversely
if € L7, then there exists o(d) € G, such that G,y is given by (3.1) on B’ and

the infinitesimal character Xqq, 1S precisely X%
COROLLARY. Let oG, and let 2= L’ be a corresponding linear form.
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Then
a(z)= E(z)ép(z_l)ldimu ) zelg, (3.2)
blexpY)=e2®, Y.
PROOF. Since ¢ is irreducible, there is some character X = Z; such that

0(2)=X(2) Igims» 2E Z=2Z4. It follows from a simple calculation that 6,(zg)
=X(2)0,(g), g€ G, z€ Z. But for be B/,

0(b2)= 'zrfz;y > e(s)(s - b))

=4y SO by(b),

since Wp leaves Z pointwise fixed. But 4p(bz) =§,(2)4p(b) [1f, p. 299]. This
proves the corollary (once we choose b € B’ such that 6,(b) + 0).

REMARK. It follows from D(b)=(—1)?dp(b)?, D(bz)= D(b), and 4dp(bz)
=&u(2)4p(2) that £,(2)>=1. Hence &(2)==*1, ze Z.

We wish to extend Theorem 3.1 to the reductive case. So let G be a
connected reductive Lie group, ¢ = LA(G). Let g,=[g, g¢] be the semisimple
part, and c=Centg. Then g=g,+¢. Let g,=1%,-+p be a Cartan decomposition
of g,. Set I=1%,4c¢ so that g=1+p is a Cartan decomposition of g. Suppose
h, S g, is a Cartan subalgebra. Then §h=},+c is a Cartan subalgebra of g.
Let G, and C be the analytic subgroups of G corresponding to g, and ¢. Then
G=G,C, and G, (resp. C) is closed in G since it is the commutator subgroup
of G (resp. ZY).

Once again, consider det ({-+1—Adg(x)), x=G. The lowest non-vanishing
coefficient of t/ will be the [-th, where [=dimY. Set Dg(x)=the coefficient
of t!. The regular elements are G’ = {x< G: D(x)# 0}, again an open dense
submanifold such that D(g 'xg)=D(x). More importantly, D(x{)=D(x), x€G,
LeZ; In fact, it is easy to see that Dg;(g,0)=Ds,(g), 8.€G,, LC. So
g=g, is regular in G & g, is regular in G,.

Let H=Z(). Then H=H,C where H=HNG,=Z0,)NG,. It is im-
mediate that

Gu= (Gl)}'ll -C, (3.3
where Gy is as usual the set of elements in G conjugate to H' =G’ N H.
Equation (3.3) will be useful later.

Now let a be a root of (g, 5,). Extend a to §, by setting it equal to zero
on ¢,. The resulting forms are the roots of (g, )). Furthermore W(g, ) is the
group of automorphisms of Y, obtained from W(g,%,) by letting each
se W(g,, b, fix the elements of c,.

Next assume G, N C is finite (as is the case for example if C is compact).
Then &, can be defined as usual for any root a [le, p. 483]. Assume in
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addition that G is acceptable; that is &, can be defined. In particular, since
the roots vanish on ¢,

Soleinc=1. 3.4)
Defining 4 as in the semisimple case, it is easily verified that
AHUHC) = AH1(h1> s h, e H,, feC. (3-5)

Now suppose there exists a Cartan subalgebra b, &§f, of g,. Set b=5b,+¢
and B=Z(®)N\G. Suppose B is compact. Then C is compact and Z;, must
be finite. Also B=B,C, where B,=B NG, =Z0,)NG, is a torus. Therefore
B itself is a torus. Moreover N(B)NG=[NB)NG,]-C and NB)NnG,NC
=B, NC. Therefore Wz=Wgp,.

Let B be the character group of B. Then b« B determines 1< b by
b(exp Y)=e*®, Y=b. The collection so obtained is the lattice

L={1€b: AY)e<2n1Z whenever expY =¢e, Y Eb}.
For be B, set by=0b|p, and X =10, Let A, € (6)%, X =cf be defined by
blexpY)=e2® | Yeb,; AexpY)=®, Yec.

Note we use X both for the element of C as well as its differential €cf. In
any event A=A1,+X and we also have

L={4+X: 2(Y)—X(Y,) €2niZ
whenever exp Y, =exp VY, Y,eb, Y,=}. (3.6)

Defining w (or w,) as the product of the positive roots of (g, b) (or (g,, b)), we
check easily that w(Q)=w,(4,), A=A,+X. Letting L'={1e L: o(4)+0}, we
see that A= A4,+X is regular if and only if 4, is regular.

We obtain the irreducible unitary representations of G as follows. Let
o, G, X=C be such that

0,(2)=%28) lsimer, &G, NC. 3.7

Define 6 =0,QX% =G. More precisely, the space of ¢ is the space of ¢, and
(g 0)=0,(g)X), .= G, L=C. o is well-defined because of [3.7), and is
easily seen to be in G. Moreover changing the class of either ¢, or X changes
the class of 0. Conversely, every representation of G is obtained in this way.
Finally, since C is compact, ¢ is square-integrable if and only if o, is square-
integrable.

Suppose 6,, is the character of o,. Then a simple computation shows that:
for every f= C3(G), Tr o(f) exists and

Tra(f)= fa f(g)0.g)dg, where
0,(8:8) = 0,,(g)X(L), g2, €061, LeC. (3.8
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Now let € G,, 0=0,QX. Let 2, L] be a linear form in (b))% deter-
mined by o, (according to Theorem 3.1). Set A=2,+X < L’. It follows from
(35), (3.8) and that

00) =0 b0 = 4.0y BT AQ),  Viehy, expY,=b B, LeC

LT
=Ac(b)~ze(s)ewﬂ, Yeb,expY=beB’.
B WB

Clearly 2« £’ is uniquely determined up to an element of Wj5. Also ¢=c(0)

= c¢(0,) because w(d)=w,(4,) and —é dim g/f = % dim g,/f, = %~ dim p.

Conversely, let ie £/, A=A,4+X, A, ], xeC. By [Theorem 3.1, there
exists o, €(G,); such that

Ooi(0) = Aélc(bl) > e(s)eqyv, Y, eb,, expY,=b,EBi.

WB1

Claim: o, and X satisfy [3.7). In fact, by the Corollary to and
formulas and (3.6)

0.(8)=5,8)60(8) Iaima; » b,= et
:51(g) Idimal
=X(8) ldimoy » if geG,NC.

Here we used the fact that the p function is the same for (g, b) and (g, b).
Therefore 6 =0, ®X is 2 member of G, whose character satisfies

— C,ﬁ $A(Y) —_
8,(b)= RO %e(s)e @ Yeb, expY=be B’.

Finally we compute the infinitesimal character of 0 =0, X. Let U=the
universal enveloping algebra of g, 3 its center. Set U,, € =the subalgebras
of I generated by (1, (g,).) and (1, ¢.) respectively. Then U=U1,3 and 3=23,6,
direct products, where 3, is the center of U,. U, is isomorphic to the
enveloping algebra of (g,). and € is isomorphic to the enveloping (i.e. sym-
metric) algebra S(¢c.). Once again, if ) S g is a Cartan subalgebra, there is a
natural isomorphism 7y : 3— I(h.)=the W(g, b)-invariant polynomials in S(¥).
We obtain all characters of 3 by X%z) =71y (2)(4), z€ 3 and

N=A & sa=2, some s< W(g,Y) 3.9

(see [1b, Lemma 9] and [1le, §127]). Let I,, I, be the subalgebras of I(§,)
generated by (1, (h).) and (1,c.), respectively. These are isomorphic to I((9,).)

and S(c.). Moreover 7yl3,:3,—1;, and yy|c: €—1,. With these observations
it is easy to check that for
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c=0,1%, A=A+X, 20, = X5(2)0,, ze 3.

So we have proven Harish-Chandra’s theorem for reductive groups. More
precisely, we have

THEOREM 3.2. Let G be a connected reductive Lie group. Suppose G has
a compact Cartan subgroup B and that G is acceptable. Let o =G, Then
there is A< L' such that

6,(b) = —A;C(T) % s)e*™™ | Yeb, expY=beB (3.10)

and A is uniquely determined up to an element of Wp. Conversely, if 1< L7,
there exists o(Q) =G, such that 6, is a locally integrable function on G,

analytic on G’, and given by (3.10) on B’; ¢ =c(o) =(—1)?sgn w(A), q:%* dim p.
Moreover, the infinitesimal character of o= o(A) is precisely Xi.

REMARK. We shall have occasion in the sequel to use the following fact:
all compact Cartan subgroups of G are conjugate under G. This is proven
easily by using: (a) the corresponding fact which is known for compact G,
and (b) the conjugacy of all maximal compact subgroups.

§ 4. Discrete series for M.

We begin with a word on Weyl groups. Let g be a reductive Lie algebra
with Cartan subalgebra f). W(g, ) is the group of automorphisms of Y,
generated by the reflections corresponding to a simple root system. Let
GLl=1Int (g.). Then every s W(g, ) may be realized by an element of G
i. e. there is y& G} such that y{;,=s. Conversely, if y € G, leaves }), invariant,
then y|y, € W(g, ). More generally, let G, be any connected Lie group with
g. as Lie algebra (G! has Lie algebra equal to the semisimple part of g, but
that is immaterial). Then

W, 1) = [NOINGI/LZOINGe] .

Now let G be a connected semisimple Lie group, with finite center and
acceptable. Return to the notation of §2: P=MAN, H=BA a Cartan, etc.
Let B,=B\M°=2Z(®)~M° a compact connected Cartan subgroup of the
connected reductive group M°. But then B, and B° are both connected Lie
subgroups of M° having b as Lie algebra. Therefore B°=B\M°. By [le,
Lemma 30] M° is acceptable; and so holds for M°. We wish,
however, to compute the discrete series for M. We accomplish this by ap-
plying Mackey’s theory of normal subgroups.

Let 6 =(M°), and £ € 5. Define of € (M°; by

o*(m) = o(£-'mé&), me M°.
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THEOREM 4.1. (1) o° is unitarily equivalent to o if and only if Ec E°T.

(2) ©o° has the same infinitesimal character as o for everyée 5.

PROOF. First let £ &5°I". Then &=m'ay, m*e M, ac A, yI' and
0" =0™7 =¢™=~g¢g. Here, we are using the properties of I’ derived in
Theorem 2.2.

Next, we wish to compute the character and infinitesimal character of
o, o €(M";, £ Z. Before proceeding, we establish the following notation:
G’ = the regular elements of G, (M°)” =the regular elements of M° Now let
le L’ (=the regular forms on b) be such that

0,(b) = - ABj(b) Py es)e "D | Yeb, expY=be(BY)

vV go

and X} is the infinitesimal character. As usual, 4 is unique up to an element
of Wpgo. It is trivial to check that the character 0, of ¢° is given by

O,6(m) = 0,(6'm&), me M°.

Now the compact Cartan subgroups of M° are all conjugate under M°.
Hence (modifying & by an element of M° if necessary), we may assume that
& leaves B°® (and b) invariant. Then

00)= 4, (608) o XD, VS, expY=beBY 4D
where 25(Y)=2(Ad £°(Y)), Y b.

Now consider the adjoint representation of G, Adg: G— Int(g) S Int (g.).
Then Adg(E) S Z(a)N\Ge, G.=Int(g.). But a, is invariant under the involution
of g, determined by the compact real form u=1%+4+ip. Hence Z(a.) NG, is the
connected Lie subgroup of G, having Z(a,)\g. as Lie algebra [1e, Lemma 27].
One checks easily that Z(a,) "g.=(Z(@ Ng).=3.. That is, the Lie algebra of
Z(a.) is 3. =m.+a.,. Let M} be the analytic subgroup of G, having m, as Lie
algebra and set A.=expa,. Then Z(a,)=M!A.,. Consider Ads(&)=m,a,,
m, e M}, a,= A,. Since [b,a]=0, it is clear that the action of £ on b under
Adg coincides with that of m,. But the discussion at the beginning of this
section shows that m,; determines an element s € W(m, b). Therefore in (4.1)
we have: dpio(E70E) = e(se)dpo(b), (%)= (—1)?sgn w(s:2) = e(s¢)c(a), and Af=
s:A< L£’. Thus the regular form on b determined (up to Wge) by of is precisely
P =s:2e L. It follows immediately from (3.9) that ¢ and ¢° have the same
infinitesimal character. This proves (2)-

It remains to prove (1), i.e. that ¢* = ¢ if and only if £ = £°I". We have
already observed that & £° = 0=~ 0. Conversely, suppose ¢*=~¢. Then
0,:=0, and by (4.1), there must exist s, = Wpo such that A=s,A. But
Wgo=(NBY\M®/B°; and so (modifying & by an element of M° if necessary)
we may assume that A= 1. But A=s:4, s; & W(m, b). The regularity of 1
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therefore implies that sz=1. That is, in Ads(&)=m,a,, we must have
m,e Z(,). But then E€Z(O\)NE=HNE=H'"< 5. q.e. d.

We are ready to compute the discrete series of M. First consider the
subgroup M°I". Since M° and I' commute, the irreducible unitary represen-
tations of M°I" are obtained as follows: take o (M%", we I’ such that
0| yonr, @) mwonp act via the same scalar (in different dimensions, of course).
Then c®@w = (M°I")" and we get all representations of M°I" this way. If
0Fo, or wZ w, then cRQw % o, RQw,. It is trivial to verify that ¢ is square-
integrable if and only if 6@ w is square-integrable. The character is easily
computed :

Ooa(m’y) = 0,mN0u(y), m'eM’, rel,

where 6,, 6, are the characters of o, w respectively. Finally, since I is finite,
‘we have
zaa@w - Xa(z)ﬁo@)w ’ ze S(S:R) s

where 3(0M) =the center of the universal enveloping algebra M of m,, and X,
is the infinitesimal character of o¢. That is, the infinitesimal character of
cQ@w is the same as that for o.

Now M°I" is a normal subgroup of M. Let e € (M°I")y, m < M. Consider
the representation 6™ & (M°I"); defined by o™(m,)=o(m*mm), m,e M°I". It
follows from that o™ =¢ if and only if me M°I". Applying
Mackey’s theory [5, Theorem 8.1], we conclude: Ind%oraeM and Ind¥or o
=~ Ind%.r ¢’/ if and only if there exists m & M such that ¢/ =o¢™ Moreover,
Ind#o; o is square-integrable; and since [M: M°["] < oo, we certainly obtain
all of M, in this way.?

Next we compute the character and infinitesimal character of a represen-
tation in M,. To do that we need the following

THEOREM 4.2. Let G be a unimodular Lie group, HS G an open normal
subgroup of finite index. Lel & be a unitary representation of H in a separable

Hilbert space. Suppose that jfor every fe Cy(H), n'(f)z‘f f(Wr(h)dh is trace
H
class and that there is a locally integrable function 6, on H such that Tr n(f)
:j f(WeL(h)dh, fe Cy(H). Let T==1Ind% n. Then T=(f) is trace class for
H

every f€ C3(G) and Tr T=(f)= fﬂ F(O)Ox)dx where

> 0(gxg™) xe€H
6.0
0 xe H.

2) This is a consequence of the fact that for finite (indeed compact) extensions,
the normal subgroup is always “regularly embedded.”
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This result is perhaps known, but we have not been able to locate it in
the literature. The basic idea of the following proof is due to A. Kleppner.
Suppose = acts in the separable space <&’. Let 4(x) be the space of
functions f: G— <V such that f(hx)=7z(h) f(x). 4(x) is a Hilbert space under
the inner product (f, f’)z}?ﬂ(f(g), f(g)>, where (-, -> is the inner product

on <. The induced representation T7” acts on #(x) via T7(g)f(x)= f(xg).
Let g G, ve <y and define

m(h)v if x=hg, heH

funl)=| |
0 otherwise.
It is clear that f,,, = H(x).

LEMMA 4.3.

(n(g'g v, v if ggteH

(fg,m fg',v') = [ )

0 otherwise .

PROOF.

(fg,v: fg’,v’)= 2 <fg,v(x): fg’,v’(x)> - 0 ’
rEH\ G

if g and g’ are not in the same right coset. If on the other hand g=hg,
then
(fz,m fg',v’) - <fhg’.v(g,)’ fg',o’(g/)>

={n(h v, v')
={n(g'g v, v').

LEMMA 44. Let g, , 8, denote a choice of representatives for H\G and
{v;} an orthonormal basis for V. Then {f,,.;} forms an orthonormal basis
of 4(xm).

ProoOF. It follows from Lemma 4.3 that the system is orthonormal. In
fact, it is also complete. For suppose (f, fz,0,)=0, 1=1=7, j=1. Then

0=(f, fago) =, 35 KT Fupn @)

=f(8) fow(8)>=LS(g)v;>, 1=i=r, j=l.

Since {v;} is complete in <V, f(g)=0, 1=:1=r. But f is completely deter-
mined by its values on g;,, 1=:=<7r; and so f=0.
The next result is almost obvious and we omit the proof.
LEMMA 4.5.
T fep = Soz-10, x8€G, vE.

Now let ¢ & C3(G), T™(¢)= fggp(x)Tf(x)dx. Then
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T g fad=, 3 { [ GOT D o), Fol) )
= 3 (J ¢ 1005, Forl))
- J'G H;GK fg.z“l,v(.y)» fg,v(y> > SO(JC)dx

= fa(fgw—l,v, fg,v)@(X)dx .

But
(n(gxg Vv, vy if gxgteH
(fgx'l,v: fg,v) = { .
otherwise
{alhyv, v if x=ghg
B { 0 otherwise.

Now if dg denotes agchoice of Haar measure on G, then dg|y is a Haar
measure on H. Therefore

(TH@)fg,00 fa,0) = LI( m(hyv, vy (g *hg)dh
=@, v7,
where ¢f € C5(H) is defined by ¢*(h) =¢(g 'hg). Hence, for g€ G fix~d
jEZI(Tn(SD)fg,vj: fg,vj) :§1<75(§0g)'l)j, Uj>

=J (g hg)0(h)dh.
Finally
- . -1
1 % T D ey Tern) =, 3, [ om0y

= 3 [ obLyhyan

=| P()O(x)dx .
We now apply to the case M°I" S M.
THEOREM 4.6. Let g& M, o=Ind% 0, o,=(MI);. Then for every
feCyM), Tr o(f) exists and Tr a(f):j f(m)8 ,(m)dm, where
M

3 8, (mmym™?) m,e M°I"
O,(m,) =1 ¥\x s ' ) 4.2
0 otherwise .

It is easy to write down the value of §, on B=B°I". Indeed, if 0,=0"'QRo,
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@ e(M°;, we I, then
— 0,y — 0,,,-1 -1
6.(6) = 6,(b r)—MOIZ_\)Mﬁao(mb m0,(mym").

Moreover, we have the

COROLLARY. The characters of M, corresponding to inequivalent represen-
tations are linearly independent on B.

PrROOF. We have the corresponding fact for characters of inequivalent
representations of (M°), on B’ This is easily extended to (M°[");, i.e. the
characters of inequivalent representations of (M°I"); are linearly independent
on B°['=B.

Now suppose o, ---, 0, are non-equivalent representations in M,, ;=
Ind¥or 7;,

0o )= 0:(mbm™), beB.

Assume i}c,ﬂ,,jzo, a.e. on B. Then
i=1
-1 cee -1y —
c,MOIZ\Mﬁn(mbm )+ -{—CTMOIZ\MB,,(mbm )=0.

By the corresponding result for M°[’, either ¢;=0, 1<j=<7r or
tp=7} for some 1, j, m, m’.

(Recall t™(m,)=t(m*mm), m,e M°I') If i=j and m, m’ are distinct as
elements of M°I'\M, then <P Z ¢ by [Theorem 4.1. On the other hand, if
i#j and =7}, then o,=Ind¥e,7;=Ind¥orr? = Ind}forr] = Ind¥fe,r;=0;.
Hence the constants c¢; must all be zero and the corollary is proven.
Finally, what is the infinitesimal character of ¢ =Ind¥%.7? Let t1=0'QRuw,
o= (M®%;, w=I'. The infinitesimal character X. is equal to X,. But it
follows immediately from part (2) and equation (4.2) that

20, = Xr(z)aa ’ ze S(S'DD .

Thus the infinitesimal character of ¢ is the same as that for z and o¢°

§5. The continuous series.

Let P=MAN be a cuspidal parabolic as in §2. Take g <= M, (see §4),
and a linear form veal. Set n=n(o, v)=Ind cQv, where (¢Qv)(man)
=ev(ogalg(m), The representations = so obtained are called the non-degenerate
continuous series corresponding to P. (In case P is a minimal parabolic, it is
more common to say principal series.) It is known a priori (at least when =
is irreducible) that these representations have characters which are locally
integrable functions, analytic on G’/ [1e]. Our goal is to compute these func-
tions explicitly on H’ (and so on Gy) where H is a Cartan subgroup, compa-
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tible with P (see § 2).

Let us write down © more explicitly now and obtain a first approximation
for Tr n(f). If 4,=the space of ¢ (a separable Hilbert space), then we may
take

f Borel-measurable
H(@)=14 f:G—I,, [f(manx)=erte)logdg(m)f(x), mancs P, x=G

iA1E=f 17Ul dk < co.

Here we identify functions equal a.e. and p= pp comes in because

left Haar measure on P is dm da dn,

right Haar measure on P is e*Ueg®dm da dn .

The representation # =Indf s ®v acts on 4 (x) by right translation.
Suppose ¢ = C7(G), n(go):jago(g)z(g)dg. The functions in 4 (x) are
uniquely determined by their values on K. Thus if fe 4(x)

n()f (k)= [ _¢(@)m(e)f(k)dg

=f690(k"g)f(g)dg
(5.1)
= L (k™" man §)f(man x)dm da dn dx

= | Ak, §) f(r)dr

where

Ak, K) ‘:—_f o(k~'man K)e*to s D g(m) dm da dn .
P

In (5.1) we used the fact that G=PK, PN\ K= My is compact, and a well-
known integral decomposition.® Now it can be shown that under our assump-
tions, w(¢p) is trace class and

Tr a(p)= [ _Tr Ay(k, k)dk.
This is worked out for example in [3, §4]. But then

Tr n(p)= | T (f ; Gr(m)a(m)dm ) dk

where

3) N. Bourbaki, Livre VI, Intégration, Ch. 7, p. 66.
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gb,‘(m)::f ok 'man k)evrerleendag dn e Cy(M).
AN
Therefore

Tr z(p)= | . |  um)Bom)dm dk
= jx @(k~'man k)e o) og 2§ (mYdm da dn dk
X P

= [ _O.(Ohy($)de
where 6,,, denotes the character of 6 ®v on &= MA and

ho@=d@ [ ok~ énk) = C7(E)
(5.2)
d(§) =|det Ad &,|/? = erlioga) | §=ma.

These formulas have been obtained already by Harish-Chandra [1i, p. 19].

§6. The support of 4,

In this section we make a calculation regarding the support of the function
defined by (5.2).

THEOREM 6.1. Suppose ¢ = C{(Gh), i.e. ¢ is a continuous function on G
with compact support contained in Gy. Then Supp h, S (H")=.

Proor. By [1g, p. 93], if ¢ is regular

{ (kT Enk)dk dn=5(8) [} kT Enk)dkdn, @& C(G)

0(§) =|det (Ad(§~)—1l. .
Now let ¢ € C(Gy). It will suffice to prove that Supp A, S (H')E, where

Hy(&) = j (kT n T nk)dk dn. (6.1)

Let £ =5 and suppose hy(§) #0. Then from (6.1) there is g € G such that
gég™* e H’. In particular £ € G’. We shall show that there exists &, € £ such
that §,§§&i'te H'. Set Z:Ag)={Xeg: Adz&(X)=X}. By [le, p. 4601, Z:(g) is
a Cartan subalgebra of g (since ¢ is regular). But £ & = a < Z:(g). Since
Ze(g) is abelian, [Z:(g),a]=0. But 3=LA(Z) is the centralizer of a in g.
Therefore Zg(g) =3 and it follows that Z:(g) is also a Cartan subalgebra of j.
Set §h, =Z:(g) and H,=Z(},), a Cartan subgroup of G. Since aSh,, we have
that H, is also a Cartan subgroup of =.

Now & H, "\ (H")?; therefore H and H, are conjugate under G [1le, p. 505].
Let x=G be such that H,=H*. Then H,=(BA)*=B*A*. Consider H}=(H*)".
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Claim: (H*)°=(H%® Indeed, (H°® is a connected Lie subgroup of H*=
(H%* < (H*)*. But they have the same Lie algebra, namely %)*, and so they are
equal. Hence H)}=(B°A)*=(B%*A*. Since B° is a maximal compact subgroup
of H° (B°” must be a maximal compact subgroup of Hj.

Next let B,=H{\M°. Since a<h,, it follows readily that HY is a direct
product H{=B,A. Let B, be a maximal compact subgroup of the connected
abelian Lie group B,. Then there is a vector group V such that B,=B,V.
Moreover, H)=B,VA, and B, is also a maximal compact subgroup of Hj.
Hence dim B,=dim (B%*. But dim A=dim A”; thus dim V=0, i.e. B,=B,.

Now (B%® and B, are both maximal compact subgroups of the connected
abelian Lie group H!. Hence they are conjugate in Hf, and so in fact equal
B;=(B%*. Therefore B® and B, are two compact Cartan subgroups of the
connected reductive Lie group M° By the remark at the end of §3, there
exists m € M° such that

B,=(B". (6.2)

Finally, let b, =%, "m. Then b, is the Lie algebra of B; and §,="5,+a, a
direct sum. It follows from that b, =9". Then §, =b,+a=0b"+a=H"
Taking centralizers in G, we get

Hi=ZO)=Z@®m=ZO"=H™.
In particular, mém*e HNG'=H'. So &< (H")E.

Now let &< Supp k. Choose &, such that hy(£,)#0, & (H)E, §,—6.
Then there exists g; € G such that ¢(g;ég;) # 0. Moreover, it is clear from
that we may restrict g; to a fixed compact set in G (depending only on ¢).
So we may assume g;,—g. But then g&g™ Supp ¢ S Gg. It follows that &
is regular and that £ € G5. Reasoning as in the preceding case, we conclude
once again that £ = (H)E. The proof is now complete.

§7. An analog of Weyl’s integration formula.

Let G be a connected semisimple Lie group, with finite center and accep-
table. Let HS G be a Cartan subgroup. Choose Haar measures dg, dh on
G, H respectively. Since Zy is open in H, dh|z, is a Haar measure on Zy.
The following result is due to Harish-Chandra [1h, Appendix].

THEOREM 7.1. Normalize the invariant measure dg* on G*=Zy\G such
that

[, /(@dg=] de*|, rhg)dn, feCiO).
Then for any fe C(Ghk), we have

[ fdg=w{ |dum®dn | r(h=)dg*,
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where w=wy=44(Wpy).

In case G is compact and H is a maximal torus, this is precisely Weyl’s
classical integration formula.

Next suppose G=G,C is a connected reductive Lie group as in §3. Let
H be a Cartan subgroup H=H,C, H,=HN\ G, It follows from [3.3),(3.5)and
the facts Wy = Wy, Z,\G=Z4\G, that also holds for such
reductive groups.

Let P=MAN be a cuspidal parabolic subgroup of G as usual. For
&e&, let Dg(&) be the first non-zero coefficient in det (!4+1—Adz(&)). (Here
Adz: E— Aut(3) and Adz(&) €Int(3) whenever £ =5°I") Define the regular
elements £7"={f= 5 : Ds(&)#0}. Since g=3+n+6n, each of which is left
invariant by &, it is easy to see that £/ S &”. Note that Dz(&a)= Dg(&),
e b, acs A, so that H” = B” A.

Next we remark that Q_ can be identified with the positive roots of (3, 9).
Since y&'= Adsy € expia, it follows readily that &,(y)=1, a= Q.. Also
r—1&(y)| is a homomorphism of [I” into R* and so |&()|=1, relrl.
Therefore

[d_(hp)l=14-(W|, heH, yel. (7.1)

In particular, H” =(H®)”I". Set %4 =(H")E and °E{ =[(H%"]=".
Now choose a Haar measure d¢ on Z (and so also on £°). We have
already chosen dh on H (and so also on H°). We haveo the following
THEOREM 7.2. (1) E4=°E4I.

(2) Normalize the invariant measure d&é* on E*= H°\&°= B°\M"® so that
Jr@de=]_dex[ rhe)an, recyE.
Then for any fe C(E%), we have
J r@de=wit [ 14.(m1%anf_ srne)de,

where wi' =%(Wyo), Wyo=[NH)YNE]/H".

PROOF. (1) Consider HZ. Since M normalizes I', we have HE = (BA)Y4
=BYA=(B""I'A. But (B)Y=(B"*°. In fact, let m *bm < (B%¥. The map
b,—m 'bym, b, = B°, is a continuous homomorphism ; thus (B%™ is another
compact Cartan subgroup of M° Hence there exists m, = M° such that
m™B°m = mi'B°m,, that is m™'bm < (B°)"’. Therefore (H")E=[(B)"MAIl =
[(BO)/I]MOAI":OE;;{ r.

(2) If f has support in &%, then using (1)

[ f@de=5 [ooy rEaee
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—_— -1 2 *
=3t [ 14.\*dnf_ f(hep)de*

=wit | 14-(W1%dh_ f(he)dex.

Here, we have applied to the pair (&£° H°) and used formula

§8. A class function on G.

Let G, P=MAN be as before, #=n(o,v) in the continuous series cor-
responding to P. Set '
0,,,(h) = e*(cg 0§ (b), h=baes H, be B, ae A,
as in §5. Let
¥ (h)= 'I'A%(h)“lﬁ”’”(h) . heH,

T(hy= 3 Uyh, heH .
seWgr

LemMMA 8.1. ¥ is a G-class function on H’ ; that is, if for h,, h, = H’ there
exists g& G such that g~'h,g=h,, then ¥(h,)=¥(h,).

PrROOF. Recall that W= NH)/Zy=[NH)NK][[ZuNK] (see [le, p.
4887]). Therefore Wy leaves a invariant. In particular, Wy stabilizes Q..
Hence [4.(h%)|=|4.(h)]|, s€ Wy.

Next recall the w-to-1 mapping ¢y : G¥*XH —G%, ¢u(g* h)=g 'hg. But
the equation g~'h, g = h, says precisely that ¢u(g*, h,) = @u(e*, hy). Hence there
isfs e Wy such that A, =~h5. From these facts it is clear that ¥'(h)=¥(h,)
and

1 s ’
Uf(h) = 12:(5[— P;Hﬁg,u(h ) , he H .

§9. Computation of the character.
Continuing with the same situation as in § 8, define
O0(yxy"), y€G, x&GCx

0(x)=1 0 , x& Gy 9.1)

(4

1 s - ,
WW%Q"W@)’ x=heH,

where ¢ is a fixed positive constant (whose precise value will be commented
on later). 6. is a class function on G (by Lemma 8.1).
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THEOREM 9.1. Let nm=n(o,v) be a continuous series representation. Let
€ CP(Gy). Then

Tra(f) =, f(R)0x)dx .
PRrROOF. By the results of §5
Tr a(f)= [ _0au&h(§)dE

with &, given by (5.2). By [Theorem 6.1, the support of k, is contained in
(H)E < (H")E=ZE%. Applying we obtain

Tra( ) =wit [ |4-()1*0,.(R)dh [ _ h(he)de

—wit [ |4.(W)1*0.)eomsmdn | dex| fkbaynkydkdn. (92)

Now

J 7@0ddx= L[ | AR 0man | fh=dxx

W
i B, O] 50

—_c_ > J 1412 (wdn | AR ™dxr

Wow w
_ -
= o[ AW T (WdR [ fh)dxx
because |4]| is invariant under Wj and dx* is G-invariant. Therefore
J @0 dx == [ 14.(W)I*14u(W)| 80 (h)d [ fCR=)dx*

But [1g, p. 94, Corollary 2] says that there exists a positive constant ¢ such
that for he H’

cen(h)d . (h) j S (h)dxx = eptioz j _dex j SRR (9.3)

(see [le, §§ 19 & 22] for the definition of eg). Choosing f=0 in [(9.3), we see
that ep(h)4.(h) =0, that is egp(h)d.(h)=|d.(h)|. (This could also be deduced
from [1d, Lemma 9].) Thus

J F@0x)dx

=ug' [ 14.(W*0.Byev+oteardn | dex( f(ethembyddn.  (9.4)
H g* KxN
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Comparing (9.2) and (9.4), we obtain the theorem.

REMARK. The absolute constant ¢ in (9.1) comes from the constant in
formula [(9.3). Suppose that H is abelian, H=Zy. This is always the case
for example if G has a faithful matrix representation. Then we can compute
¢ as follows:

f( S(h™)dx* = ja - S(x thx)dx
={_ d&f _fGg e
=[ dwdn( _fG-n-tgthénk)dE
KxXN H\E

= _ dkdn_s f(E-'n-lERe hEE mk)dE* . (9.5)

°F\EJH\50T

But 5°I\& = M°I'\M = (M°I" N K)\Myg. Therefore
(9.5) =#(5°T'\5) f dk dn j F(k'n-E"thénk)de*
KXN okl

ep(log a)

=4E"T\E) (7 j _ dkdn f SRRy dgx

Here we used [1g, p. 94, Corollary 1]. So the constant c¢=1/#(&°I\&).
Unfortunately, in the general case H+# Zy, we have not been able to pin down
¢ precisely.

§10. Equivalence.

In this section we would like to determine when equivalence can occur
among the continuous series representations we have been considering.

First of all, suppose P,, P, are conjugate cuspidal parabolics. Let 7=0c@v
be a cuspidal representation of P, as usual. Choose x € G such that P{=F,.
Consider the representation 7° of P, defined by 3*(m,a,n,)= n(xmyan,x).
Then, it is well-known and easy to see that =(») and z(»®) are unitarily
equivalent. Next suppose P,, P, are only associate: that is, P;=M;A;N;,
7=1,2, and there is x& G (equivalently x< K) such that Af=A4,. Con-
jugating by x, we may assume (see the proof of that P,=MAN,,
P,=MAN,. Let 6Fi be the characters of the representations zn%7/= zn¥i(o, v)
:Ind?,j oc®v. (In§9, we denoted #f =character of w-characteristic function
of GY%, H compatible with P. Henceforth 6. denotes the full character as in
2.0

THEOREM 10.1. (Harish-Chandra [1i, p. 20].) 6F*=6EF2. Consequently nF*
is unitarily equivalent to =*2.
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We obtain now some necessary conditions for equivalence. First suppose
P is a cuspidal parabolic and ¢;Qv;, j=1, 2 are cuspidal representations of
P. Then we have

THEOREM 10.2. =#,=Ind§ o,Qv, is unitarily equivalent to n,=1Ind§ o, Qv,
tf and only if there is s€W =Wy such that so,=a, and sy, =y,.

PROOF. Let s&W exist. Then clearly =, is unitarily equivalent to the
representation of G induced from P°*=MAN® by o0,Qv,. The result then
follows from Theorem 10.1. This implication is also a consequence of [1i,
Lemma 9].

Conversely, assume x,=r,. Then in particular 6., =6,, on H'. By
Theorem 9.1 and the explicit formula for the character, we see that

> eno8 9,,,(0) = T enaos0,,(b),  baeH' . (10.1)

Now multiply both sides of (10.1) by 4_(b). But for any o  M,, the function
4_6, extends to a bounded continuous function on B (by our results on 8, z).
Putting b=1 and using the fact that exponentials of distinct linear forms are
linearly independent, we see that there is s, €W such that v, =s,v,.
Let Wo={teW: tv,=v,}, a subgroup of W. Then from (10.1)
> Oisgor= 2 Oi0 a.e. on B.
t=wy

teWy

Now apply the Corollary to Theorem 4.6. There must exist ¢, =W, such that
1,50, = 0,. Let s=1t, Then so,=0, and sy,=*%yv,=v,. This completes the
proof.

We do not need the full strength of the next result, but we include it
for its own sake.

LEMMA 10.3. Let P,=M,AN,, P,=M,A,N, be two cuspidal parabolics.
Suppose H,, H, are corresponding compatible Cartan subgroups. Then P, is
associate to P, if and only if H, is conjugate to H,.

PROOF. First suppose P, and P, are associate. Then there is x € G such
that A,= A%. Then Z(A)=2Z(A%)=Z(A,)*. But M,=nNker|X|: X e X(Z(A)).
Therefore

Mt =n(ker [X])*7': X e X(Z(A))

=n(ker |[X]) : X X(Z(A)=M,.
Hence M, = M3%.

Consider B? and its Lie algebra b¢. Then b, and b are compact Cartan
subalgebras of m;. So there exists k= M{ K such that 6f =0f. Moreover,
BE = Z(0,)* = Z(63) = Z(b¥) = B¥. Finally, H{* ' = (B,A,)** '= B§* ' A3 '=B, A"
=B,A,=H,.

Conversely, suppose H,, H, are conjugate. The Lie algebras Y,, }), are also
conjugate. But they are #-invariant Cartan subalgebras. Hence §; and §, are
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also conjugate under X. Let 2= K be such that §, =0, Then H,= H?¥ and
Af=H,Nnexpp)*=Hinexpp=H, Nexpp=A4,.

‘That is A, and A, are conjugate, and so P,, P, are associate.

We now begin work on the following

THEOREM 10.4. Let P,, P, be non-associate parabolics; n,, n, representations
in the continuous series corresponding to P,, P, respectively. Then r, and =,
«are not unitarily equivalent.

We shall prove this by showing that #f and 6% have different supports.
‘We begin by making a

DEFINITION. Let P=ZN be a cuspidal parabolic, and let HS G be any
Cartan subgroup. We say P surrounds H and write H< P if there is xG
such that H* < £Z—or equivalently, if §=LA(H), there is x € G such that §°
is a Cartan subalgebra of 3= LA(L).

Suppose H is not surrounded by P. Claim: Gy N\ &Z=¢. Indeed, suppose
‘there is £= Gy N\ &. Then, as in §6, ), ={X<g: Adz(6)X= X} is a Cartan
'subalgebra of 3. Setting H,=Z(5,), we obtain a Cartan subgroup of £ and
§e Gy H,. Therefore H and H, are conjugate, contradicting the fact that
H is not surrounded by P.

Fix a cuspidal parabolic P. Let H, ---,H, be a complete list of non-
«<onjugate Cartan subgroups of G. Suppose H,, -, H; < P and Hg.y, -+, H. <} P.
Then we may assume H,--,H, S5 and GyNE=¢, j=s+1,---,7. Let
o@v be a cuspidal representation of P and = ==(o, v) as usual.

r

LEMMA 105. 6. is identically zero on \J Ga,.
Jj=s+1

PROOF. Let f= Cy(G). Then from our work in §5 and §6, we know

[, 7@)0Le)dg="Tr x(f)=[ _80,.&)h&)d¢
‘where

h(©=d@ 3 fen " enk)dk dn.

But for any § €&, we have § & Gy, j>s. Therefore, if Supp f& Gu, J> s,
‘we must have 4;(§)=0 and the lemma is proven.

LEMMA 10.6. Suppose H< P and H is O-invariant. Then we may choose
xe K such that H* S 5.

PROOF. By assumption there is x€ G such that H*S £. Let H,=H?% a
Cartan subgroup of & and G. If H, is also #-invariant, then we know H
and H, are K-conjugate. Claim: there is £ € £ such that H{ is #-invariant.
“To show this, let ¢ be the center of m. Since m has a compact Cartan sub:
algebra, we must have ¢cSm i Therefore m=mNH+mNyp) is a Cartan
decomposition of the reductive Lie algebra m. Now let ), = LA(H,), a Cartan
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subalgebra of ;. Hence b, =9,a, where §,=Y, "m is a Cartan subalgebra
of m. It follows that there exists & & M° such that §§ is invariant under the
appropriate Cartan involution, namely 8], [1b, p. 100]. Hence % =% +a and
Hf=Z%) are both @-invariant. But then H** = H{=H, is #-invariant and
contained in &. Therefore H and H, are conjugate under K.

The following result will enable us to complete the proof of the theorem..

LEMMA 10.7. Suppose P,= E,N,, P,=E,N, are cuspidal parabolics; and
H,, H, are compatible Cartan subgroups. Suppose H,< P, and H, < P,. Then
P, and P, are associate.

PrROOF. By Lemma 10.6, there exist x, vy € K such that

HY

N

52’ Hﬁy

N
n

1

Or equivalently §f S 3,, ¥ S3,. That is

F€3:=Z0.NPNQ, Weau=2Z0,nmNg.
Therefore

[f)f,f)zf\pjzo» [bg,fhf\pjzo-

But %7, §Y are Cartan subalgebras of g; in particular they are maximal abeliam
subalgebras =

NP E BT, h.ApPShHy.
Since x€ K, h, "pSH Ndp=0,N\p?* Similarly §, "pE (h, "\p)Y. Therefore
dim (bzf\p)édlm (f)lﬂp)'z:dim (f)“’\p)édlm (f)zf\b”“:dim (620’9)

Thus we get equality throughout. In particular

dim (9, N\p) =dim (5; "\ p)*.

But h, "\ p S (h, Np)*. By dimensionality, §, "p= (6, N\p)*. Taking exponentials,.
we obtain A,= A?, that is P, and P, are associate.

PROOF OF THEOREM 10.4. Suppose =, and 7, were unitarily equivalent..
Then 081 =6%. Let H,, H, be Cartan subgroups, compatible with P,, P,. But
H; S Supp 0,,’;'.:’, j=1,2. Therefore 65! +0 on Gy, and 6%2+0 on G%,. By
Lemma 10.5, it follows that H, < P, and H, < P,. Hence, by Lemma 10.7, P,
and P, are associate. This contradicts the hypothesis and completes the proof..

REMARK. Theorem 10.4 remains valid in case P,=( is cuspidal. That
is, suppose G has a compact Cartan subgroup so that G has a discrete series..
By a representation m corresponding to P,=G, we mean any irreducible
square-integrable unitary representation. So let P, be a proper cuspidal
parabolic and suppose P,—=G. Let n, and n, be in the continuous (respectively
discrete) series corresponding to P, (respectively P,). Then 7, and 7, are not
unitarily equivalent. In fact, %2 has support in the whole group (see Harish-
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Chandra’s computation of these characters [1f, part IIJ). But 6Z! does not.
Indeed, if H,; is a compact Cartan subgroup, it is easily seen that H,<tP,.
Therefore Lemma 10.9 insures that 6Z! is zero on the open set Gp,.

§11. Disjointness.

Let P,, P, be non-associate cuspidal parabolics (P, =G allowed). Suppose
m, T, are representations in the series corresponding to P,, P, respectively.
Then we know (Theorem 10.4) that these representations are not unitarily
equivalent. If they are irreducible, they give rise to distinct points of G.
On the other hand, suppose one or both are reducible. We would like to
show that they have distinct constituents, i.e. z; and =, are disjoint. Since
any subrepresentation of z; has the same infinitesimal character as =, it is
enough to show that =z, and =, have distinct infinitesimal characters. Un-
fortunately, we can only prove that result for some parabolics.”

THEOREM 11.1. Let P,, P, be non-associate cuspidal parabolics; =, =,
representations in the corresponding series. Assume dim A;# dim A,* (dim A,=0
if P,=G). Then m, and =m, have distinct infinitesimal characters.

PrROOF. First, let us compute the infinitesimal characters. If P,=G, we
already have Harish-Chandra’s computations (see § 3). Otherwise, let P=MAN
be a proper cuspidal parabolic, = = n(o, v) as usual. Let 3 and 3(W) be the
centers of the enveloping algebras U(g.) and U(m,) respectively. Then there
is a canonical homomorphism g: 3—3(MN) of 3 onto 3(M) [1le, §12].

Next, recall the equation '

0)= [ F(@)0)dg = [ 00, (&)dE =0, (hy)

Using this formula together with a result stated [le, Lemma 527 and proved
[1g, § 10] by Harish-Chandra, we obtain

Zan‘(f) - ,u(2>00,u(hf> ’ fE CSO(G) » zZ e 8 .

It follows that X.(2)=X,,.(#(2)). Now we use the results of §4. Let §) be a
Cartan subalgebra of 3 (and g) compatible with P. Let 4 be a linear form on
b determined by o, and set »=the linear form on § such that

A on b

77:
Yy on a.

4) By examining our proof, one sees that to complete the argument in case
dim A;=dim A,, the following fact is required: If p,, h, are g.,-conjugate Cartan sub-
algebras of g, then they are g-conjugate. A proof of this has been communicated to

me by Joe Wolf.
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Then X,,.(2) = XIm(z), z= 3(M).
Now let
7 8 _— ]L(f)c)

IER 3(9‘)1) - Im(f)c)

be the canonical isomorphisms (see §2). Also let i: I,(§.)— I.(§.) be the
injection. Then p=r7rilotoy [le, §12]. If z= 3, we compute

X(2) = X3 ((2))
= 7u(p(2))(7)
= (@)1
=Xx¥=2).

Thus we have shown that X.(z)=X4z), z< 3, where 7 is the linear form on
) such that p=4 on b, »=v on a.

NOTE. By the results in §4, the form A4 is regular. That is sA# A for
all se W(m, b), s+ 1.

It is enough now to prove

LEmMA 11.2. Let 9, %, be non-conjugate, 8-invariant Cartan subalgebras of
g, h;="0b;4a;, where b;=0%;N%, a;,=N;\p. Let n; be linear forms on Y; such
that

A; on b
7=
y; on aj;.
Suppose the A; are regular, i.e. s2;# A; for all s€ W(m,, b)), s+ 1. (Here we
may take m;=the orthogonal complement with respect to the Killing form of
a; in 3;=2Z(a;). Of course my=g in case a,={0}.) Then X5t Ap2.

ProOoOF. Unfortunately, to give the proof, we have to make the additional
assumption dim a; # dim a,.¥ Now by the symmetry of the hypotheses, we may
suppose dim a, < dima,. Let §$ be the complexifications of ); and suppose Q;
denotes a choice of positive roots of (g, b3). Set Qf ={acQ;: al,;#0},
Y, =the simple roots of Q,. Then #(2; N\ Qf)=dimga;. Choose ye< Int(g.)
such that ()Y ="%5. Then X%}:XZ%{ where 7¥(X)=n,(y" ! X), X b

Suppose %3t =X32. Then XZ%{:X%; therefore there exists s € W(g, §,) such

that 7Y =s»,. Choose y, € Int(g.) N\ N($) such that y, acts on §§ by the same
automorphism as s. Setting z=yy;!=Int(g.), we see that 7i=rmn,, 7(X)=
7z X), X b

Now fix a choice of positive roots @, on (g,9%;). Then @% is a set of
positive roots Q, for (g, %,), a(Y)=a(z™*-Y), Yebh, ac@Q,. Let a, -, «a,
eQtn2,, r=dima,. Then aj --,a2€2,. Suppose ai --,a?< @Qf. Since
these are linearly independent forms, it would follow that dima,= dim a,.
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This is contrary to assumption. Hence we may assume that
,szafeQ‘z_:{ﬁEQz: ,Blagzo} .

Next for &< (§9* choose Y:=h5 so that &Y )=(Y, Yo, YEb;, (-, )=
the Killing form. When a € QJ, then Y,<a;; and when a € Qy, then Y, ib;.
Consider Y,, €q,. Then

7 (Ya)=v(Ya) SiR.
But »2=17, and so

771( Yaq) = ”2(2 : Ya'l) == 772( Yﬂl) = Z(Y‘fh) = R ’

since 8, = af € Q; =the positive roots of (3,, §),) = the positive roots of (m,, b,).
Therefore 7,(Yg,)=0; that is sg 7, =17, Where sz & W(m,, b,) is the reflection
through the simple root 3,. This contradicts the regularity of », and con-
cludes the proof.

REMARK. In particular, the proof works for dima,=0. So every irre-
ducible constituent of any continuous series representation is not equivalent
to a discrete series representation.

The University of Maryland
Department of Mathematics
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