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§1. Introduction.

The purpose of this paper is to solve completely one of the open problems
in M. Motoo’s paper [17]

The object that we shall consider is the boundary problem of Markov
processes, which can be formulated in the following way. Let M™in be a
Markov process on a space D whose path functions stop as soon as they
arrive at the boundary V of D (Such a process is called a minimal process in
this paper). Then, the problem is to determine the class of all Markov
processes whose stopped path functions at the boundary V coincide with path
functions of the given minimal process M™in,

Let S be a locally compact Hausdorff topological space with the axiom of
second countability and D be an open subset of S having closure S and non-
empty compact boundary V=S—D. Suppose that we are given a Markov
process Mmir=(JV, Prin; x= S) on S satisfying the following conditions
(Mmin 1), (M™in2) and (M™ir3),

(Mmin1)y Mmin is a Hunt process on S.

(Mmin2) Ppin(x,=§ 0<t<oo)=1 for any £ V.

(M™in3) There exists a measure m, on D such that for any Ee B(D),
my(E)=0 is equivalent to G%(x, £)=0 for any a« >0 and x< D, where G} is
the kernel defined by

f@=Epn([ e fn@ndl)  (@>0, &S, feBS)

and moreover o,(w) is the time when the path w first arrives at V; that is,
oy(w)=inf {t >0; x,(w)e V}.

Then, our purpose is to characterize the Markov process M= (W, P, ; x&S)
on S whose stopped path functions at V coincide with path functions of Mmin
that is, satisfying the following conditions (M.1), (M.2) and (M.3).

(M1) M is a Hunt process on S.

(M.2) Let G, be the Green kernel of M. There exists a measure m on
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S such that for any Ee B(S), m(E)=0 is equivalent to G,(x, E)=0 for any
a>0and x S.
(M.3) The process M stopped at V is Mmin; that is,

B[ rydt) =Gaf)  (@>0),

Ee*vg(xs,)) = Epin(e™*vg(xs,)) = Hog(x) (= 0)

for any fe B(S), g€ B(V) and x= S.

Note that the following (M.3") is an immediate consequence of (Mmin.2)
and (M.3).

(M.3") every point of V is regular to V with respect to M.

Then, M. Motoo proved, fixing a positive number y >0, that M can
be decomposed into the minimal process Mmi» and the boundary system
(M, 1, m, @ and that M is uniquely determined by them, where M is a Markov
process on V (U-process of M) ([16]), [, m = B+*(V) and Q is a bounded kernel
on VXD; roughly speaking I(&), m(£) represent the (suitable weighted) pro-
portions of sojourn on V, of reflection from £ to D (§ € V) respectively, and
the measure Q(&, ) (- C D) denotes the mode of jump from V to D averaged
by G}1, under the following additional conditions (M™ir 4), (M™ir 5) and (M™in.6).

(Mmin 4) WCSH T CES)  for >0,
HAC(V)CCS) for a=0.

(Mmin 5) a, f:%%{i cC©S)  if a>0 and fe CS).
T
(Mmin 6) (A.f; feC@S)} is dense in C(S).

One of the open problems is to replace the above conditions (M™in4),
(M=in5) and (M™in6), in particular (M™n5) and (M™.6), by deeper (pro-
babilistic) and more general ones. As an example which does not satisfy
(Mmin5), let S be the closed interval [—1,17], V be {—1, 0,1} and M™i» be the
Brownian motion stopped at V. Then, (M™in5) is not satisfied near 0, since
0 consists of two entrance points (see §7). In general cases, M. Motoo
and T. Ueno suggest that this problem shall be reduced to obtain the
exit and entrance boundaries for a given minimal process, and to make suitable
identification of certain parts of these boundaries, and then to determine the
class of all consistent boundary systems on the boundary thus constructed.

In this paper, we prove, without the conditions (M™ir4), (M™in5) and
(Mmin 6y and without introducing the entrance boundary, that M satisfying
(M1), (M2) and (M.3) is decomposed and uniquely determined by given
minimal process Mmin and the boundary system (M, [, P, Q——the problem
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stated is resolved completely and generally——, where M is the U-process of
M, [ and Q are the same as those of M. Motoo [17], and P is a bounded

— 0 )
linear positive operator from MV <J%:{—g-‘g‘%, a>0, fe B(D)}) into L=(V,
T

B(V),v) (v is the canonical measure of the y-order sweeping out @ to the

boundary V of the time additive functional ¢ A {(w) for M), that is, we shall

prove the following Theorems B.2, 41 and Proposition 4.1 in §3 and §4.
THEOREM 3.2. (Feller-Ueno decomposition)

Guf ()= G S+ H K1+ P+ @ (-G ) o

for any >0, fe B(S) and xS, where K« is the 0-order resolvent of the a-

order U-process of M ([127, [177]).
PROPOSITION 4.1. For any a>0 and f, he B¥(D),

l’@zXVZ)'dt,

P+ (-G) - 0= pr b,

Qh- 0 =Yy Py(hGy1)- L,

where a system (P, L) is the Lévy system of M and PDg(x)szP(x, dng(y) for
ge B(D) and x< S.

We shall call the system (M, I, P, Q) the boundary system of M, where M
is the U-process of M, [ B(V)*, P is a bounded positive linear operator from
M into L=(V, B(V),v) and Q is a bounded kernel on V x D satisfying the
properties in [Proposition 4.1, since M is uniquely determined by M and the
system (/, P, @) is uniquely determined by M up to equivalence with respect
to v.

THEOREM 4.2. The process M is uniquely determined by the boundary system
(1,1, P, Q.

Next, we shall prove the following theorem which gives the characteriza-
tion of P in §3.

THEOREM 3.3 (Local character of P). Let o= M, &,V and ¢>0. If
there exists an open mneighbourhood U of &, in S such that |¢(x)|<e for any
xeUnND, then

|Pp§)|=se, v-a.ebeUNV.

In particular, for any fe C.(D)N M, Pf=0.
Finally, for the purpose of revealing the operator P, in §5, we shall

1) 9 is the uniform closure of ¥ in B(D).
2) Xy is the indicator function of V.
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introduce the entrance boundary, which is obtained under the following con-
dition.

(Mmin 4%) GYC(D))C C(D) and
Gyl e C(D) for any a>0.

Note that this is equivalent to GY(C(D))C C.(D) for any a>0. Consider the
following superharmonic transformation of {G%; a >0} by G31;

1 f(x):i&g%’i for >0 and f& B(D).
Then, noting that R = GL(C(D))C C(D) and R separates the points of D, we
can obtain the space D** such that
(i) D** is a compact metrizable space,

(ii) there exists a continuous and injective mapping ** from D into D**
with **(D) a dense Borel subset of D**,

(iii) each element ¢ € R can be extended to a continuous function ¢**
on the space D**, that is, p*¥*o** =g,

(iv) R¥*={p**; e R} separates the points of D** The existence and
uniqueness (up to homeomorphism) of such a D** will be proved in §6 in a
general setup. In our case, the existence of such a D** can be easily proved
as follows; let D* be an R-compactification of D ([3]), and ¢* be a continuous
extension of ¢ & R. Next, let D** be the quotient space of D* by the follow-
ing equivalence relation: two points x and y in D* are said to be equivalent
if p*(x)=0¢*(y) for any ¢ = K. Then, we see that D** is our desired space
(see §5). We shall call the space V**= D**—p(D) the entrance boundary
of {G%;a>0}. Note that there is a Hunt process M° associated with
{GY; >0} its resolvent (§4). For any fe C(D**) and a >0, let

GE*f = (GL(for*)yk*.
Then, we see that {G}*; a >0} is a sub-Markov resolvent satisfying Ray’s
hypothesis ((1I], [18]). Denote the set of its branching points by Dj#*. Then,
we shall prove the representation theorem for P.

THEOREM 5.1. For each point £V, there exists a sub-stochastic measure
HE, dx) on D** such that

(i) P(-G)©=] e aof.r,

v-a.e. £€V for any a>0 and fe CD),

Ao GY f \\
where H,f= élglo (ﬁG};( Gl >> Jor any a>0 and fe C(D),

(ii) P1(&)= (&, D**), y-a.e. £V,
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(iii) wE, DFH =0 for any E€ V.

Moreover, such a p(&, dx) is uniquely determined up to equivalence with respect
lo v.

Set Se= Qi**{xeD; dis(x, &) <e} for £ V. Then, we shall have the
e>0

following interesting theorem.
THEOREM 5.3. Under the hypothesis D¥* =0,

W&, D¥*—S)=0  for any Ec V.

See M. Brelot as for S;, where he calls any point » & S: the point asso-
ciated with & (¢ V).

The author does not know whether Sg, N\ Se, =0 for & +£,” A study of
this interesting and significant question would be important and useful in the
future.

ACKNOWLEDGEMENT. The author would like to express his sincere gra-
titude to Professors M. Fukushima, M. Motoo and H. Tanaka. Professors M.
Fukushima and M. Motoo encouraged him and gave him important remarks
with kind discussions. Professors M. Motoo and H. Tanaka read the original
draft and gave him valuable advices.

REMARK. We shall list some notations and definitions which will be used
repeatedly in this paper.

Let S be a topological space and S*=S\U {0} where 0 is an isolated point
if S is compact, or an adjoined point of one point compactification S* of S
if not. B(S) is the Borel field generated by all the closed sets in S. We
introduce several spaces of functions: B(S) is the space of real-valued bounded
B(S)-measurable functions on S, C(S) is the space of real-valued bounded
continuous functions on S, C.(S) is the subset of C(S) consisting of the func-
tions which for any ¢>0, {x=S; |f(¥)|=¢} is compact, and C,S) is the
subset of C(S) consisting of the functions with compact supports. For any
function space .£ on S, .£* means the subset of £ consisting of the functions
which are nonnegative. Sometimes, we consider f in B(E) (E< B(S)) as a
function on S*, setting f(x)=0, x& E. For E, Fe B(S), K(x, A) (x€E, A B(F))
is called a kernel on EXF if K(-, A) is Borel measurable on E and K(x, -) is

a measure on F. If K(x, A) is a kernel, we write Kf(x):fFK(x, dy)f(y) and
K. /@)= K& d)f() (A< BE)).

Now we shall prepare the notations of Markov processes. The path space
W that we shall consider is the set of all mappings w from [0, co] into S*
which satisfies the following properties:

3) See the second proof of in §5.
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(W.1) w(?) is right continuous and has a left limit in [0, oo).
(W.2) w(qo):a.
(W.3) There exists {={(w) (which is called the life time) such that

wheS if t<g,
w)=0 if t=¢.

The Markov process M= (W, P,; x= S*) on S that we shall consider is a Hunt
process, that is, it has the strong Markov property and the quasi-left con-
tinuity of sample functions ((16]). Furthermore we shall assurae the following
hypothesis: let G, be the Green operator of M, then there exists a measure
m on S such that for any E < B(S), m(E)=0 is equivalent to G,(x, E)=0 for
any >0 and x< S.

The additive functionals that we shall use in this paper are nonnegative
continuous additive functionals, unless otherwise stated (see [14]). Two addi-
tive functionals A and B are said to be equivalent if and only if

P (A, w)y=B(, w) for all )=1 for all xS,

and in this case we use the notation A~ B. We also write A< B if P,(A(, w)
< B(t, w) for all )=1 for all x S. For any fe B(S)*, we define

frAGw={  F@)dAG, w).

Then, f- A is an additive functional.

Next, we shall define the sweeping-out of additive functionals. From now
on, assume that S is a locally compact Hausdorff space with the axiom of
second countability. Let V be an element of B(S) such that every point of
V is regular to V with respect to M, that is, denoting the hitting time to V
by oy, Pe(oy, =0)=1 for all £ V. Then, for any >0 and any additive

functional A, such that Ewg ooe""‘dfl) < co, there exists a unique additive func-
0

tional ﬁa such that
E,(f Owe*afdﬁa) =E,([ "edA)
v

(see [16]). We shall call ANa the a-th order sweeping-out of A. In general, ﬁa
depends on a.

Finally, we shall define the canonical measure of additive functionals.
For any additive functional A, such that E,(A(#)) < oo, there exists a unique
(up to absolutely continuity) measure v on B(S) such that for E< B(S),

Xg-A=0 is equivalent to v(E)=0
(see [14], pp. 146). Such a v is called a canonical measure of A.
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§2. The multilinear functionals: &,; and &7 .

In this section, we prepare a series of lemmas which can be considered
to be the continuities and precisions of the resultsin §5 in M. Motoo’s paper
[17]: ¢ Decomposition of the resolvent. The boundary system’. Those can be
proved by the deep analysis in §4 in [17]: ‘Properties of the excursion at V.

In the sequel, we fix a positive number y>0. Let @ be the y-th order
sweeping-out to V of the time additive functional ¢ A {(w) for M ({ is the
Killing time of M), = be its right continuous inverse function, that is, (s, w)
=sup {t; O, w)<s}, v be the canonical measure of @ and (P, L) be the Lévy
system of M ([(15], [21].

For any Markov process M satisfying (M.1), (M.2) and (M.3"), M. Motoo
proved that the following fact holds.

LEMMA 2.1 ([17], p. 88, (31)). There exist two functions I, me B*(V) and
a bounded kernel Q on VXD such that

(1) l'@zXV‘dt,

%) Ex(‘fowe‘”m(xt) d(D) = Ex( s (7 eri(xy dt), xeS,

$=Tg Y t(s—)
3 Qh-O=AyPpr(hGi1)- L, he B*(D),
@ UO+mE+QE D)=1, va.e. E€V,
where
Tw)y={s>0; z(s—, w) <z(s, w) A LW},
T(w)={s € TW); Xee--(W) = Xes-, W)},
Tiw)y={s € TW); Xees-y-(W) F Xes- (W)} -
DEFINITION 2.1. For any a>0, >0 and x= S, the following multilinear

functionals on B(S)XB(S)X B(S) or B(S)x B(S) are defined:

z(s)
Eap(fy 8 @ = Eo( 3 e (e, D8 (e )| P h(x)at)
SET, z(s—)
- =(s) R
S, 8 M) = Ba 3 e (reors I8 (e[~ PO ),

z(8)
Eaifs & M) = Eul( B 7  (tear I8 (e[~ P hxdt)

Eap(fs 8)(xX) =451, 1, £)(),
ELa(fy )0 =541, 1, £)(®),
ga,ﬁ(f’ g)(x) - 8a,ﬁ(f9 1’ g)<.7C) °



54 Y. OkaBE
LEMMA 2.2,
@ 1 8 DD 1684, 8 DD, s, £, B < L7 NELIAL
@ Eapf, & M) =E54(/, &, NX)+EL(S, g, B)(x).
@) sl g W) =E4p(f g, ().
@ &L, ) =¢E%a(f, Xy, D).
©  Eapll, ) = LS, Xp, &)%) .
©)  €apous, &) =EL X pus, (1) =0.
N Eap(f, Xn)(x)=EL5(f; Xy)(x) =0.
®  For any f, g, he B¥(S), &,5(f, () =0, &4(f, g, H)(x) =0.
©) Let (fo)iZy (8n)i2y and (h,)iZ, be uniformly bounded in n such that

lim f(x) = fo(x) on V,
lim g,(x) =gx) in D and lim h,(x) = hy(x) in D.

Then, we have, for any a >0, >0 and x< S,

}iﬂ gfv.ﬁ(fm gn)(x) = 83,3(f0: go)(%),

':111—2 %,B(fnr Ens hn)(x> = gz',/a(fo: Eos ho)(-x) .

Proor. (1) follows from the following inequality :

7(s)
e v "’f(xr(s,)_)g(xr(s_))‘fr(sﬁ)e‘ﬁ“‘T‘s“”h(xt)dl‘I

cariso [P pt-risoy
< IS0 gl- Wrlleef " " e dt

<A1 - gl - [hfemanera [T ganpacagy

ols—)

z(s) )
=171 Ngl-alf_~eerodt.

(2) follows from the fact that T(w)=T, (w)J Tyw) and T (w) T4 (w)=0.
(3) follows from the definition of T (w). (4), (5), (6) and (7) follow from the
fact that (i) for any s>0, x,(wy&V if te(z(s—), z(s), (i) for any s> 0,
Xesy- € V and (iii) for any s& T(W), Xreoy-(W) = X (W) if x (W) V ([17];
pp. 82, [4.3], (1) and pp. 83, [4.11]). (8) is clear. (9) can be proved by apply-
ing the Lebesgue’s dominated convergence theorem to the inequality obtained
in the proof of (1).

4)

IIf| is the supremum norm.



Boundary problem for Markov processes 55
LEMMA 2.3. For any f, g C(S), he B(S), a>0, >0 and xS,

lim E,( 3 e n®Xp f(xoa-)8 * Gy ko) = €45, &, M,

k—o0 n=1

where {p,(k)} is a sequence of Markov times defined by (2) in ([17], pp. 87).
PRrOOF. By (M.3), strong Markov property and Definition 4.2 in7[17], we
have, for any &,

1) Eo 2,072 o [ (Xonao-)g Ghtonan))
= Ey( 3 7P p f (Xpnctr-p & (o)

. j,u n+l(k)e_19(t—Pn(k))h(xt)dt>

On(kd

= Ez(SEZT X(s € Tr)e *® U p [ (Xock,-)8 Kock,s»)

o(k,s)
. j e—,@(t—p(k,s))h(xt)di) )

p(%,8)
Put
ou(s, wy=A(s € Tk>e“a”(k’”xpf(xnm,s)-)g(xp(k,s>)

a(k,3)
. J' =BG p( 3\ dt
P(kxs)

a(k,8)
and (s, =171+ 1l - I4)f" e at. Then, we have

2.2) |0i(s, W) | = (s, w)

and

LAl el - tAl
8;9"(5: w) = anp .

Since for any s& Ty, Xpq,s- € V for sufficiently large £ by [4.13], [4.15] and
[4.16] in [17], we have

@.3) lim ¢,(s, w) =0 for any se Ty(w).
k~s00
On the other hand, since for any se T, Tr—T, p(k, s)—7(S), Xpci,s- — Xres—-

and X5 —> Xes-y = Xes—y- DY [4.7], [4.8] and [4.9] in [17], we have, for any
se Tyw),

z(s)
24 lim (s, w) = & - glxeans )| Pt

Therefore, (2.2), (2.3) and (2.4) complete the proof of Lemma 2.3 by applying
the dominated convergence theorem in (2.1).



56 Y. OKABE
LEMMA 2.4. For any f,g, he B(S), a>0, >0 and xS,

lim £,( 33,791ty ftpr-)8 - Gy hoyr)) = E4 s 81 D).

k=0

where p,(k) is the same as in Lemma 2.3.
ProoF. By (M.3), strong Markov property, Definitions 4.2, 4.4 in [17] and
[4.16] in [17], we have, for any &,

(25) Eo((Z 70"y f(ton-)8 * Gy hTona)
= E’”(Ele_apn(k)xvf (Ko=), 0 8 Kopciy)
T pn 1108
. f + e—ﬁ(t—pn(lt:))h(xt)dt>
on

=E,( X e %Yy f(Xock,5-)% 0 & (Kock,sy)

SETq, i

. f 0(’6»3)@,‘3@~p(k;3))h(xt)dt)

o(k,8)

= Ea( 5,005 € Tap)e™ ™y F(Xraos-) 8 (heceo)

. ‘f (s) e-ﬁ(t—f<s‘)’h(xz)dt> .

(s—)

. . . . 7(8) .
Since each term in the last member is dominated by || f|- || g]l- Ilhllf e~ @Dt
. .. 7(s—)
which is independent of %, and

“ canrigy < IS 1£0 1A
S lgl-lel [~ eeonvdr< R

and T, — Ty (as k—o0) ([4.15] of [I7]), holds by applying the
dominated convergence theorem in {(2.5).
LEMMA 25. For any fe C(S), g B*(S), a>0, >0 and xS,

lim B, (3 "% (xrm-) G & (o))

k—oc0

= B[ et e)d@p g~ db)g) ,

where {p,(k)} is a sequence of Markov times defined by (21) in [17], pp. 87.
Proor. By (M.3), G3g()=E,([ e#d(yg- dp). Noting that 1pg- dI<E
0

(in the sense of [16]) and X, - (Xpg- df) =0, Lemma 2.5 follows from the Theo-
rem 4.4 in [16].
The next Lemma 2.6 can be found in [17], pp. 86, [5.4].
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LeMMA 2.6. For any f, g B*(S), a>0 and xS,

lim E, gle—ap ®Yy f (Xonir-)Xp & (xpncm))

k—o0

=Eo([ ey fPog(xddL(D) ,

where {p,(k)} is the same as in Lemma 2.3.
LEMMA 2.7. For any f< B(S), g€ B*(S), a>0, >0 and xS,

E([ et r)dog dt)p)

= &g, QW+ E([ ey IPHGhQxAL®D),

Proor. By Lemma 2.2 (9), we can assume that f= C(S). By Lemma 2.5
and (4) in [17], pp. 76,

E([ et rdltog - dvy)

= lim E,( 3 e~ "®f (xa5-)Ch £ (7))

k=00

=tim {E.( 3 e mP Ly [ (o )Gh 8 i)

k-0 n=1

+Eo( 3 e Ty [ (oGl 8 (i) §

Therefore, Lemma 2.7 follows from Lemma 2.3 and Lemma 2.6.
LEMMA 2.8. For any f, g, he B(S), a>0, >0 and x& S,

e84/, 8, M@ =E,(f ety fPo(gGhMx)AL(D))

« - Gph
- HaK {fQ(g' : G?T)}(x) ’
where K% is the operator on B(V) defined by
Ko@) = Ee([ "etp(x)dd()) .

Proor. The first equality follows from Lemma 2.4 and Lemma 2.6. The
second equality follows from Lemma 2.1 (3), the definition of K¢ and [5.8] of
7.

LEMMA 2.9. For any fe B(S), a>0 and xS,

Galf - Xy)(0) = H K- ) () .
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PrOOF. By Lemma 2.1(1) and the definition of K¢,

Gl f - 1)@= Eo(f e/ 2y (mdt)
= E,(f et (x)d(ty - )

=E([ “eif - 1n)do(y)

= H.K*(l- [)(x).
LeMMA 2.10. For any fe B(S), g€ B¥*(S), a>0, >0 and xS,

E(f "ot () dtp g db)g) = ., £XH)

This Lemma follows immediately from [Lemma 2.2, Lemma 2.7 and [Lemma 2.8
LemMMA 2.11. For any f, g C(S), he B(S), a>0, >0 and xS,

lim Ex(éle_ap"(k)f(xpnck)—)g - G h(xonm))) =Ea,af, &, (X)),

k-0

where {p,(k)} is the same as in Lemma 2.3.

This is an immediate consequence of Lemma 2.2, Lemma 2.3 and Lemma 2.4
LEMMA 2.12. For any f, g, h€ B(S), a>0, >0, 6>0 and xS,

Cap(fs & W(D)—E5,s(f, g, N(D)+(B—0)E4,4(f, &, G§M)(x)=0.

The same kind of equations hold also for &% 5 and &,4.

PrROOF. We can assume that f, g C(S) (Definition 2.1 and Lemma 2.2).
Then, from Lemma 2.3 and (2) in [17], p. 76, the assertion about &%, follows.
As for &% 5 Lemma 2.4 assures. Therefore, from Lemma 2.2, the assertion
about &, follows.

LEMMA 2.13. For any f B(S), a>0 and xS, £V,
1) &4 (S, D(x) = H K (mf)(x),
@) K@) =¢E,f, DE+Go(f - Xy )(E).

PrOOF. By Lemma 2.7, the definition of @ and Lemma 2.1(3),

S, V) = Ba([ "o )0t - dtyy) = Ba([ e 2y FPoGE DAL
—E, (fowe-“‘f (x)d®) —E([ 0°°e~at FCr)dQly - dtyy)

—E,(f s QUix)d0).
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Noting that (Xy - dby =~ Xy - dt [I6]), by L, @,

E6r(fy D@ = Eo([ e/ (2)d®) —Eo([ “e'f - i(x)d0)

—E,(f "ef - QUx)d0)

=E,( j O”e—at fm(x)d®)

= H K*(mf)(x) .

The second assertion follows from Lemma 2.1 (4), [Lemma 2.8, [Lemma 2.9 and
the above assertion just proved.

§3. The excursion at the boundary V and the operator P.

In this section, we have to cross the first pass in this paper. This pass
is an inevitable one that results from removing the conditions (M™in 4), (M™in.5)
and (M=in6), Though M, [, m and @ are already defined, M can not be
necessarily determined by them without M. Motoo’s additional conditions
(Mmin 4), (M™in5) and (M™in.6). Considering the probabilistic meaning of m
and @, the first work which we have to do is to find a refinement of m and
this is done by introducing the operator P from M into L=(V, B(V), v), where

0
M= {% ;a>0, fe B(D)}. This operator has the same probabilistic mean-
7

ing as m; in fact P1=wm. Our next purpose in this section is to characterize
this operator P. The important way in introducing the operator P is to use
a theorem for additive functionals ([12], Theorem 1.7) analogous to the Radon-
Nykodym theorem for measures. K. Sato [197] used the latter in introducing
his ﬁa and proved that ﬁa depends only upon the minimal process, but our
P is not necessarily determined only by the minimal process Mm™inr ag will
be seen in §5.

A LEMMA 3.1. For each B> 0, there exists a bounded linear positive operator
I:Iﬁ from B(S) into L=(V, B(V),v) such that for any f, g B(S), a >0, >0
ard xS,

&s,5(f, () = HK*(f - B 0)(x) .

ProoF. Fix any ge B*(S). Noting that (Xpg-ddr < | gl@=1g|®, by
Theorem 1.7 in [12], there exists an H,g= L>(V, B(V), v) such that

¢R)) 0<Hg=<|g| and

T — ~
(3.2 (Xpg-dtyy=Hrg-@.
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2 ~y G
(33) Put Hre=Me—Q(Gt) .

Then, by Lemma 2.8, Lemma 2.10/ and [3.2), we have, for any fe B(S), a>0

and x& S,

E5r(fy D) = Eail(f DD —ELAS, D)
= B,({ e szl g(x)d0)

~E([ e Q(-gf) (o)

=E, (j:’e-“tf (0 H; 2(x)dD)

= HK*(fH; 2)(x) .
Therefore, for any g B(S), setting
(34 B g=Hg*—H g,
we have

3.5) &%, f, ge(x)= HQK"‘(fI%fg)(x) for any fe B(S), « >0 and x= S.
For any g B(S) and 3> 0, put

(3.6) Hog=FHg+G—P)Gha).
Then, by and (3.5), we have, for any f< B(S) and x< S,
@7 E.p(fy 8)(0) = E4+([, g+(r—P)GE (%)

= HK(f - B g-+(r— B)GE D))

= HK°(f - Hpg)(x) .
From Lemma 2.1 (4), [3.1), (3.3), and [3.6), the boundedness of Hj; as an
operator from B(S) into L*(V, B(V), v) follows. [Definition 2.1 and show
that f, is a linear positive operator. This completes the proof of Lemma 3.1.
LEMMA 3.2. For any f, ge B(S) and a>0, B>0, if G"f( )—_G@&(x)
holds for any x< D, then

ﬁaf: ﬁﬁg .
Proor. Fix any h< C(S). By Lemma 2.3, under the hypothesis of Lemma
3.2, &%,a(h, f)(x)=&%,5(h, g)(x) holds for any x<=S. Therefore, by Lemma 3.1,

H KA, (%) = HK*(his ))

holds for any x= S. Lemma 3.2 follows from this relation.
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0
Put ﬂi:{go e B(D); there exist a >0 and f< B(D) such that ¢:~G§{~}_
T
Then, by the resolvent equation for {GY%; « >0}, M is a linear subspace of
B(D) and contains constant functions.
THEOREM 3.1. There exists a bounded linear positive operator P from M

into L>(V, B(V), v) such that
) P(—Ggifi):ﬁr F for fe B(S) and a>0,
gei «

@) Pl=m.

0 2
PROOF. Set P(-%f%{— = H,f, then P is well-defined by Lemma 3.2. The

T
linearity of P in % follows from the linearity of A, and the well-definedness

of P. The positivity of P in % can be proved as follows; for any & e C*(S),

0
*(G;‘gi: =0, then &%,4(h, /)(x) =0 for any x= S. Therefore, by
T
0
Lemma 3.1 and the definition of P, HQK“(hP<-g§—{—)>(x)gO for any xe S.
7
0
Noting that this inequality holds also for any h e B*(S), we have P(%g{)
9
=0 if Gjf=0. The boundedness of P in % can be proved as follows; since
we have seen that P is linear and positive, it is sufficient to prove Pl=m,
while this equality P1=m follows from Lemma 2.13 and the definition of P.
This completes the proof of Theorem 3.1.

COROLLARY 3.1. For any f, g, he B(S), a>0, >0 and xS,

by Lemma 2.3 if

c — [24 E%f];
&gl f, & () = HK{feP(-8 1) ).
Comparing this corollary with [Lemma 28, we see a difference between P and

Q. But, this corollary does not exhibit completely the characterization of P.
LEMMA 3.3. For any fe B*S) and a >0,

(o frdDe= P+Q(-%41) 0.

This lemma follows from [Lemma 2.8, [Lemma 2.10/ and [Corollary 3.1, Now,

we shall prove the decomposition theorem for the Green kernel of M.
THEOREM 3.2. (Feller-Ueno decomposition theorem)
For any fe B(S), a >0 and x& S,

Gof D= Gor D+ HK{1- P+ (-2 ) 1o,

PrOOF. We can assume that fe B%(S). By (M.3),
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Caf (D= Glf ()= Eo(f etfdr)
=E,(| °: e=4ty fdt) +E( | °: e=exp fat)

= E([ ety fat)+Eo(f e dClo D).

Therefore, [Theorem 3.2 follows from Lemma 29 and
LEMMA 34. Fix a>0. Let (f)u-e be a sequence in B(D) such that
(1) ”fm”éM (m:O: 1: 2: 3; "')’
@) fn—/f, as m—oo (pointwise convergence in D),

@) there exists a lim P(-S/n)(@) (-a.e. £ V).

maco N G21
Then, lim P —GG%{mr—)@):P(%%{%)(s) (v-a.e. £ V).

Proor. By Corollary 3.1, for any ge< B(S),

3.8) HQK“'(gP<—-GG%]1m—)>(x)
=E4,a(8) fm)(X)

=FE, (sg; e g (Xegsoy-) + f:(zs‘))e_a(l_r(s—))fm (x0) dt)
= E:c( ; g(xr(s—)) : J‘T((S) )e—mfm (xt) dt) .
St e T(8$—

(s z(s)
Put ¢, ()=gCeitt, ) [ " efuCew)dt and g.w)=Mg) | " edt. Then,

3.9) Pms| S o), B e)= Mlel_,

and
7(8) .
Ouna0) —— g xeas) [~ e Fixddt

for any w and se T, (w), since x,(w)e D for te< (z(s—), z(s)) by [17], [4.3].
Therefore, by the dominated convergence theorem, (3.8) and (3.9), we have

@10 HE(gP -%%W})(x)—»Ex(sg;cg(xm_)g f ::i)e-“‘fo (x)df) as m—oo.

This limit function equals to &% ..(g, fo)(x):HaK"‘(gP(wG%]l[L))(x) by Defini-
tion 2.1 and Corollary 3.1. p i
- Gafm ly—a]
On the other hand, noting that IP( Gl l——M>(‘g")]§ M(l-{—ﬂ ,,&,.,,,> by Theo-
rem 3.1, by the hypothesis of Lemma 3.4 and the bounded convergence theorem,
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@3.11) H.k(gP(S GGOJIM )@ — Hk(glim P(-% ClTn ))(x) as m—soo.

m—oo

Therefore, by (3.10) and (3.11), we have

Hakie (P (-G 1))@ = Hakeo (g im P(-Go)) -

m—co

follows from this relation.

LEMMA 3.5. Fix fe C(S), o€ M, a >0 and ¢>0. If there exists an open
neighbourhood U of & in S for any E€{E€ V; f(§)+# 0} such that for any
xeDNU, [pE)|<e, then

| Ho K*(fePp)(0) | < eH KOS - 121 -PD)(%)  for any xS and ge ((S).

Q
PrROOF. It is sufficient to prove the result for go:—ggg»{t— for §>0 and
T
he B(S). Then, by Lemma 2.3 and Corollary 3.1,

(3.12) H Ka(fgp( G° & ))(x)

=lim E ( 2 e™ 0 EY b f(Xpnciey-) & Kopi) Gl h(xpmk)))

k—oo

By (M.3) and strong Markov property of M,

B13) (X e f(ipnar) & - G hlxpa))
=E; (El =P p f (Xonir-)p 8 (Kopar) + G l(xﬂn(k))>
=) v
= E”(,El e—apncmXDf(xpn(k)_)xpggo(xpn(k))Ex,,M)Go e Tt (x,) dt))

= Ex<n§1e“""’n(’“)xpf(xpn(k)_)xpg(p(xpn(k))

) j.a'n—l-l(k)e_rct_‘nn(k))l (Xt) dt)

onk)

= Ex(sé,x(s e Te %Y b [ (Xock,5-)X 0 8P(Xpek,s))

. J. z(s) o~ T-pk,s0] (xt) dt)

o(%,8)
by the Definition 4.2 of [17].
Put
I= E X(s e Tye o A o S (Xock,5r-)% p 8L (Xock,s»)

sET,

z(s)
) ‘f o~7¢=0U] (3)dt
o(k,s)
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and
11 :sgdx(s € Te Y p [ (Xoc,s-)X p 80 (Xpk,s))

7(s)
. j e TE-0ED (xNdE .
0(k,8)

z(s)
Then, each term in I, is dominated by | /| -|gl - l\gp\\j( e “@"\tdt which is

independent of %, and ’

se}‘;‘c 1A - lel- HSDM:S: o=@ < 11 a!|/g\|lr el )

Therefore, by Fatou’s lemma,

(3.14) Iim | 7| = 3 (M (s € Te " Lo f (Foa,n-)

s&Te N g—oo

(8)
. . ~7(t-p(k,s)
Ao ptows)| | eTPEIL (L)
Noting that for s T (w)

(3.15) ok, ) — (s,
(3.16) Kok, — Xes—y- »
3E.17) Xockys) — Xegs—y = Xe(s~y-
and

(3.18) T,— T

by [4.6], [4.8] and [4.9] of [17], for s € T (w) satisfying f(%¢-,-(w)) # 0, using
the hypothesis of to & = x.,_,_(w), there exists an open subset U &
such that |¢(3)| = ¢ for any yeUND. Therefore, by for sufficiently large
ky |o(%o,s) | < 6. Then, by [3.14), [3.15), [3.17), [3.18) and the continuity of f, g,
z(s)
o

@19 T L= 3 e f )| 1G] - |
k-0 s&Te s—)

g TE-TCs "’l(xt)dt .
By [4.15] of [17], the same method as in I, shows that
(3.20) Tim |II,|=0.
k—o0
Therefore, noting that ||, ]IIklgjrmLolflwl—L, by [3:12), (3.13), [3.19), [3:20),
Fatou’s lemma and [Corollary 3.1, we have
z(s)
| H K fePp)@)| < eBa( 3 e | e )18 Crew )| €745 (x)d )
scTe 7(s—)

=€6’&,r(|f|: lgl’ 1)()6)
=eH K*(|f]-1g]- P1)(x).
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This completes the proof of

Finally, we prove the following theorem which gives the characterization
of P, that is, the local character near the boundary V.

THEOREM 3.3 (Local character of P). Let o M, &,V and ¢>0. If
there exists an open neighbourhood U of &, in S such that |p(x)|<¢ for any
xeUnND, then,

|Pp(&)| < eP1(E), v-a.e.EcUNV.

In particular, Pp=0 for any ¢  C.(D)N M.

PROOF. Choose f, = CH(U) (n=1,2,3, ---) such that f, 1 1 in U. Then, for
each n, there exists f, = C*S) such that f,=f, in U and f,=0 in S—U.
Fix any n. Since {£€ V; f,(6)# 0} C U, we have, by Lemma 3.5, for any
g C*S) and any xS,

| HeK7(gf2Pp)(%) | < e Hy KT(g [ P1)() -
Since this inequality holds for any ge< B*(S), we have

|faPp(&)| < efaPL(E), v-a.e. V.
Therefore, setting B,={£< V; |f.Po@&)|> ¢f,P1(£)}, we have B,CU and
v(B,)=0. $So, putting B:,QB”’ we have BC U and yB)=0. Fix any

Ee U—B. Then, |f,Pp&)|<cef,P1(§) for any n. Therefore, letting n tends
to infinity, we have |Pp(€)| < eP1(§). This completes the proof of Theorem 3.3.

COROLLARY 3.2. Let ¢ be any element of M. If for any ¢ >0 there exists
an open mneighbourhood U of V in S such that |e(x)|=Ze for any xeUND,
then Pp=0.

COROLLARY 3.3. Let ¢, = and €, V. If there exists an open neigh-
bourhood U of &, in S such that ¢(x)=¢(x) for any x€ UND, then Pp(§)
=P¢), v-a.e. E€cUNV.

§4. The boundary system and 9(P) (= H).

We have introduced [ B(V)* and a bounded kernel @ on VXD in §2
(Cemma 2l1), and a bounded linear positive operator P from # into
L=V, B(V),v) in §3 (Theorem 3.I). In this section, we shall see that the
process M is uniquely determined by the U-process M and [, P and @ (Theo-
rem 4.1). This fact implies that we have solved the problem to characterize
the process M by its U-process (on the boundary) and certain auxiliary
factors (cf. Sato [19]). But, naturally, the following question arises: What
is the character revealing the difference between P and @7 We may consider
that answers to this question. However, unless {¢ € H ; for any
&,V and ¢>0, there exists an open subset U of &, in S such that |p(x)|<e



66 Y. OkABE

for any x< U\ D} contains sufficiently many functions, has not
any significance. For that purpose, next we shall investigate H.

Let M be a Markov process on V. Let [ B#(V), P be a bounded linear
positive operator from . into L=(V, B(V), v) and Q be a bounded kernel on
VX D.

DEFINITION 4.1. The system (M, [, P, Q) is called the boundary system of

M if and only if M is the U-process of M ([16]), and [, P and Q satisfy the
following conditions;

l'@zx;}'dt
41 Gl ). @~ (Xpf - dt '
(4.1 (P‘I_Q)(MG?’IO @ =Upf-db, for any fe B*(D) and a>0,

Qh- O =A,Pp(hGy1)- L for any h e B¥(D).

From and we have

PROPOSITION 4.1. For M satisfying (M.1), (M.2) and (M.3") there exists a
boundary system. For a fixed y >0, M is uniquely determined by M, and I, Py
and Qh (for any ¢ & M and h e B(D)) are uniquely determined by M except for
a set of v measure zero, where vy is a canonical measure of @.

Let (M, [, P, Q) be a boundary system. Then, by Lemma 2.1, [Theorem 3.1
and Cemma 34, we have the following two lemmas.

LEMMA 4.1. [(&)+P1(E)+QE, D)=1, v-a.e. £ V.

LEMMA 4.2. Fix a>0. Let (f)a-c be a sequence of B(D) such that

@ sup | fmll < -0,

(i) lim f(x) = f(x) for any x= D, and

0
(iii) there exists a lim P<~£%Jim—>(§) (v-a.e. £ V).
m-—co Grl
Then, we have

0 0
lim P w%:;flcm)(s):l) %@@)(5) (-a.e Ec V).

Noting that Proposition 2 of M. Motoo holds for M satisfying (M.1),
(M2) and (M.3"), by and we have

PROPOSITION 4.2. (i) The paths of M have no sojourn on V a.e. if and
only if 1=0, a.e. v.

(ii) The paths of M have no excursion which starts from V (that is, T, is
empty) a.e. if and only if P1=0, a.e. v.

(iii) The paths of M have no jump from V to D a.e. if and only if Q(&, D)
=0, a.e. v.

Now, by making use of our boundary system (M, [, P, @), we replace C,
and U, in 5.3 “ Correspondence of M and its boundary system” of M. Motoo

0
[17] by Caf=1-[/ Y+ P+@(-5)) and U,=aC.H, respectively. Then,
T
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noting that C, and U, are bounded linear positive operators from B(S) into
L=V, B(V),v) and from B(V) into L=(V, B(V),v), by taking the same pro-
cedure as in 5.3 of M. Motoo , we can prove the uniqueness theorem—-
one-to-one correspondence between the processes M and their boundary systems
(M, 1, P, Q—from [Theorem 3.2 and Proposition 4.1

THEOREM 4.1. Let M, and M, be processes on S satisfying the conditions
(M), (M2) and (M.3). Let (M,, 1, P, Q,) and (M,, (,, P,, Q,) be their boundary
systems respectively. Then, M,= M, if and only if M, = M, and 1,=1,, Po=P,p
and Q.h=Q,h (for any ¢ € M and h < B(D)), a.e. v,, where v, is the canonical
measure of (Zi\tj)r for M, (Note that in either ‘if ’ part or ‘only if’ part, v, and
v, associated with P, and P, respectively are absolutely continuous each
other.).

For future use, we prepare the following proposition, which corresponds
to M. Motoo’s [5.14] ([A7).

ProrosiTION 4.3. Let [, l,= B*(V), let P,, P, be bounded linear operators
Jrom S into LV, B(V), v) such that Pyp=P,p=0 for any ¢ & M C(D),
where v is a measure on V, and let Q,, Q, be bounded kernels on VX D. Under
the hypothesis

©) CADyc M,
the following fact holds; for some a>0, if

42) WO FO+PAQ) (S8 Gl IBIG)

=LOFO+PAQ)(-]) @, vae gV,

Jfor any fe B(S), then 1,(§)=1,8), Pip(&)=Pyp(§) and Q,h(&)=Q.h(&), v-a.e.
EeV for any ¢ € M and h e B(D).

PROOF. Substituting f=12X, in (4.2), since G%X,)=0, we have [,(§)=1,(&),
v-a.e. £ V. Therefore, for any f< B(S),

Pre)(-ED)©=CAr(-E1)©, vac eV

Noting that H= G@f i fe B(D)} since P, and P, are bounded operators
and @, and @, are bounded kernels, we have, for any ¢ & %,

(4.3) (Pi+Q:)(@)E) = (Pt Q) (@)&), v-a.e. E€V.

Since P,p=P,p=0 for any ¢ = C.(D) by the hypothesis and the quasi-local
character of P, and P,, substituting ¢ e C..(D) in (4.3), we have

“49 Q.0E)=Q,p(&), v-a.e. £ V.
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Since @, and @, are bounded kernels, holds also for any ¢ € B(D). There-
fore, by (4.3), we have, for any ¢ M, Pip@E) =P,p(€), v-a.e. Ec V. This
completes the proof of [Proposition 4.3,

Now, we prove another uniqueness theorem, which gives the characteri-
zation of (the boundary system) (I, P, @) apart from M.

Note that the definition of the boundary system depends upon M. Let M
be a process on S satisfying the conditions (M.1), (M.2) and (M.3), K%(a > 0)
be the 0-th order resolvent of the a-th order U-process of M ([(12], [17]), and
v be the canonical measure of the y-th order sweeping-out @ to V of time addi-
tive functional ¢ A {(w) for M. Then we can prove the uniqueness theorem,
which will be important in the future.

THEOREM 4.2. Let [, l,€ B*(V), let P,, P, be bounded linear positive
operators from M into L=(V, B(V),v) with the quasi-local character near the
boundary V, and Q,, Q, be bounded kernels on VX D. And the following Feller-
Ueno decomposition holds:

(45) Gaf = G+ H.K{L, f+ (P +Qy) (—%{i)}

— (o « Guf
= G S+ HK{L P+ @ ( G )}
for some a >0 and any f< B(S).

If CAD)C M, then we have 1,(&)=1,&), P.p()=P,p&) and Q,h(E)=Q,h(E),
v-a.e. E€V for any o € M and h < B(D).

Proor. From (5), HK“{L/+(P+@) (5] )} = Hk L+ P @) (G1)}

for any f& B(S). Since HKp(%)=Eq( j "ot (1) d@()), and v is the canonical
0

measure of @, by Lemma 3.5 in [14], we have

LOFO+® A1) ©

=L@OSO+P+QI(-G1) @ vae eV

for any fe B(S). Therefore, by Proposition 4.3, we have Theorem 4.2.

Finally, we answer the following question: “ Under what condition, can
the hypothesis () be satisfied ?”. To pursue this, from now on, we take the
general formulation apart from previous sections. Let D be a locally compact
Hausdorff space with the axiom of second countability, and let {G%; a« > 0} be
a family of linear positive operators from B(D) into B(D) such that

(4.6) aGyl<1 for any a >0 (sub-Markov),
%)) Gi—Gh+(a—P)GLGE =0 (resolvent equation),
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(4.8) lim aGY f(x)=f(x) for any fe C.(D) and x D.

Before answering the above question, we prepare two lemmas.
LEMMA 4.3. For some a >0, if

4.9 GYC.(D)) = C(D)
then
(4.10) (G(C.D))=C(D)  for any B>0.

Proor. By (47) and (4.9), we see that R=G}(Cu(D)) is a subspace of
Banach space C.(D) and is independent of 5. Assume that ® & C(D). Then,
by the Hahn-Banach theorem ([22]), there exists a bounded linear functional T
on C.(D) such that T#0 and TR=0. Furthermore, by the Riesz-Markov-
Kakutani theorem, there exists a bounded Borel signed measure g such that

(4.11) Tf= ij(x)d,,z(x) for any fe C.(D).

Therefore, for any fe C.(D) and >0,

4.12) J gGar(dpm =0.

Since |BGYf| = | fll by (4.6), (4.8) and the bounded convergence theorem imply
that for any fe C.{(D),

J F@dpx= lim | BGHf(Ddu)

=0, by (412.

Therefore, by (4.11), T=0. This contradicts with T+ 0. This completes the
proof of
LEMMA 4.4. If (4.9) is satisfied for some a >0, then

“4.13) ézﬂm 1BGyf—fI=0  for any fe CD).

PrROOF. Fix any fe C.(D). For any ¢>0, by Lemma 4.3, there exists a
g C.(D) such that |Gyg—f|| <e. Then, by (4.6) and (4.7),

laGewr f[—f || = [aGaw(f— Gt @) +laGowrGr g—Gr g | +1IGr g— |l

<20/~Ghgl+IGhugl S2e+ LEL

Therefore, we have |aG%f—f|—0 (a@— o).
Now, we answer the question mentioned before. Set

= {_g{_ ; >0, feCAD)},
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THEOREM 4.3. Let {G%; a >0} be a family of resolvents corresponding to
a diffusion process M° (strong Markov and the paths are continuous in D). If
GYC(D))C C(D) (a>0) and

“4.14) Gyl e CD) for any a >0, then
(4.15) ColD) = Fo(= CD)) .

PROOF. Since Cy(D) is dense in C.(D), it suffices to prove C,(D)C H..
Fix any fe Cy(D). Put K=supp f. Then, there exists an open subset U with
compact closure such that KcUc U®c D. Noting that f- Gyl e C.(D) by
(4.14), by Lemma 4.4, we have

(4.16) laGW(f-G¥D)—f-Gyl)|p — 0 as q—oo.
Therefore, noting that in£G9 1(x) > 0, we have
xelU
@4.17) H ;gggégzig_% D _ fi 0 as a—oo.
Next, fix any xe D—U. Noting that supp fC U, by Dynkin’s formula,
(4.18) GL(fGYD(x) = ES (e * v GL(fGE D)(x05)) -

Noting that P%(x,. e 6U)”=0 by the continuity of M° and UcC D, by [4.18),
we have

(4.19) |GG D] = sup [-FICED. ()| B9 (e-er56 100, .
yeol G 73

Since E§(e " vGyUxs)) = Gy 1(x) for a =y by Dynkin’s formula, by [4.19),

GU/GY (%) aGy (/G D(») ”
4.20 LaG(G D) |
20 B A TE N e B N

| —
Since lim sup v?@é{ f(%yl)l(Y)~fl:o by suppfCUcCTC D, inf G21(3)>0 and
a—o0 YU r el

(4.16), by (4.17) and (4.20), we have

|| aGH/GR L) J _
@20 Tim | =1 / L =0.

This shows f& M.. This completes the proof of C,(D)C ..

§5. The entrance boundary and the expression of P.

We have introduced the operator P of local character (§3, [Theorem 3.1,
Theorem 3.3), characterized the Markov process M satisfying (M.1), (M.2) and

5) ﬁ_is the closure of U in S.
6) 9U is the boundary of U.
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(M.3) by the boundary system (M, [, P, Q) (§ 4, Theorem 4.1) and characterized
the system (I, P, @) under the following assumption

(%) C.(D)c M

where = { G°1 ;a>0, fe B(D)} (§ 4, Mheorem 4.2). In doing these, the

important key was to use the Feller-Ueno decomposition theorem 3.2:
Gof = Gof+ HE{L- F+P+@(-Z41 )}

M. Motoo, under the additional conditions (M™ir4), (M™i».5) and (M™i».6), had
used also the Feller-Ueno decomposition theorem in characterizing the process
M. M. Motoo’s Feller-Ueno decomposition theorem is the following :

Gof = Gof+HI {1 fm- Aur+Q(-E51 )}

So, noting that the assumptions (M™in4), (M=™in5) and (Mmin6) imply the
assumption (*) the following question arises naturally : “ What is the mechanics

that P( G°1 )(E) equals to m(E)Haf(S) under the additional conditions (M™i»4),

(M=™ir5) and (M™.6)?” Our aim in this section is to introduce the entrance
boundary, to reveal the structure of the operator P and to solve the above ques-
tion. Since a series of lemmas before do not relate to the
process M, we formulate generally apart from the process M. From
5.1 on, we return to the process M again.

Let D be a locally compact Hausdorff topological space with the axiom
of second countability, let {G%; « >0} be a family of linear positive operators
from B(D) into B(D) such that

6.1 aGil<1 for any a >0,

(5.2) Go—Gh+(a—Pp)GiGy=0  for any a, §>0,

(6.3) il_)rg aGyf(x)=f(x) for any fe C.(D) and x= D,
GX) WCAD)) T CukD) for any a >0,

(5.5) GileC (D) and GY1(x)>0 for any a>0 and x=D.

Fix a positive number y>0. Put H= {G"l ya>0, fe B(D)} and 9,

= —g%{—; a>0, fe Cm(D)}. Then, we can see easily that the following
)
lemma holds.
LEMMA 5.1. (1) M is a subspace of B(D) and contains 1.

@) M, is a subspace of MNC(D) and separates the points of D.
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Next lemma can be found in ([9], pp. 296, Lemma 2).
LEMMA 5.2. There exists at most countable subset C’' of Cy(D) such that
1) aft+bge C for any f, g C’ and rational numbers a, b,
(2) C is dense in Cy(D) with supremum norm.
LEMMA 5.3. There exists at most countable subset M of M, such that
Q) ap+bpe M for any ¢, ¢ € M and rational numbers a, b,
@) M is dense in M. with supremum norm.

PROOF. Taking ¢’ in Lemma 5.2, put /= —g—%f—; feC}. @E.D)
Let D* be an M.-compactification of D, that is,

(i) D is imbedded homeomorphically in D* as an open dense subset,

(ii) each element f< %M. can be extended to a continuous function f* on
the space D*,

(iii) {f*;fe M.} separates the points of D*—D.
The existence and uniqueness up to homeomorphism of such a D* can be
found in ([3], pp- 96). In our case, D* is metrizable by Lemma 5.3 (2). Next,
consider the following superharmonic transformation of {G%; « >0} by G¢1:

GLf(x) = ﬂ(f;;ﬁl‘%@. for fe B(D), >0 and xe D.

Then, the space D* is the same as {GLf; a >0, f< C(D)}-compactification of
D as will be seen in next Lemma 5.4.

LEMMA 54. (1) {GL; a>0} is a family of linear positive operators from
B(D) into B(D),

2 aGLLZ1 for any a>0,

3) GL—Gh+(a—pB)GLGy=0 for any a, >0,

@ GLCWD)Yc CWD) for any a>0,

G) for any fe C(D) and x< D, lim aGL f(x) = f(x),

©) R={GLf; a>0, f= C(D)} separates the poinis of D,

(7 R is a subspace of M.,

® R=M..

Proor. (1), (2): Linearity and positivity are clear. Since

. _ aGG D) _ G (aGi)(®) Gy l(x) _
aGl)="ry1 =T G = Qe L Y 62

we have (2) and GY(B(D)) < B(D) for any a>0. (3) can be proved as follows :

GLF(x)— Gy f(x) = CLI G 1)(?';)9—:{(2% (fG D)

_ _(B=a)GaGp(fGE (%)
Gy 1(x)
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(-G (BLG - 691)

G} 1(x)

(5 GYGHT - G
S = ()

=(B—a)GLG}f -

(@) follows from and and (5) follows from |5.3) (5) implies (6). (7)
follows from and @), (3). (8 can be proved as follows: for
any fe CLD), by Lemma 4.4, |aG%f—f|—0as a—oco. Therefore, noting that
aGhf
|25y
Gyl G 1

:” G%(aGGg%lf—ﬂ "g laGyf—f1

%%Tflie &. This implies .. & Combining this with (7), we have (8).
Q.E.D)

For any fe C(D*) and a > 0, put G¥ f=[GL(f] p)T*, where [-]* is continuous
extension of -. Then, Lemma 5.4 implies

LEMMA 55. (1) {Gk; a> 0} is a family of linear positive operators from
C(D*) into C(D*).

2 aG¥l <1 for any a>0,

3) G¥—G§+(a—Pp)GEGE =0 for any a, 8> 0,

@ for any fe C(D*) and x= D, 1ir£1o aGEf(x)=f(x).

Put &*={g*; g R} and M= {¢*; o €. 9H.}. Then, the following lemma
holds.

LEMMA 5.6. (1) R(GHC R*C M*%,

2) HE=(H)* and R*=(Ry*,

@) RCH=R*= M.

PrOOF. (1) follows from the definition of G} and Lemma 54 (7). (2) is
clear. (3) can be proved as follows: by Lemma 5.4 (8) and Lemma 5.6 (2), it
suffices to prove ®* C R(GY). Fix any g* € ®*; g*=(G!/)* for some f=C(D).
Then,

aG¥g* = alGi(g*|p)]*

= a[GLGIf]*.
Noting that |aGLG!f—G!f|—0 by Lemma 54 (1), (2) and (3), we have
laGEg*—g*| — 0 as q—oo.

Therefore, g* € K(G%). This implies ®* C R(GY). Q.E.D)
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The definition of D*, (4) and imply

LEMMA 5.7. QR(G¥) separates the points of D and separates the points of
D*—D.

Generally speaking, R(G¥) does not always separate the points of D*.
Therefore, we introduce the following equivalence relation: for each x and
ye D¥, x~y if and only if for any ge R(G¥) g(x)=g(»). Let D** be the
quotient space of D* by this equivalence relation, = be the projection from
D* onto D**, {** pe the restriction of = to D. Then, the next lemma holds.

LEmMMA 5.8. (1) D** is a compact metrizable space.

(2) 1** is continuous and injective from D into D** and 1**(D) is a dense
Borel subset of D**.

(3) ¥+~ {s Borel measurable from i**(D) onto D.

(4) Each element ¢ = M., can be extended to a continuous function @** on
D** such that ¢**omw = @*.

B) {¢**; ¢ = M.} separates the points of D**.

Proor. We shall prove Lemma 5.8 bundling up the statements (1)~(5).
By the definition of D**, # is continuous from D* onto D** and a function
f on D** ig continuous if and only if for is continuous on D*. Hence D**
is compact and ** is continuous. The denseness of **(D) in D** follows
from the denseness of D in D*, the surjectivity and continuity of = and
the definition of **. The injectivity of ** follows from Lemma 5.7. Next,
noting that for each x,ye D* x~y if and only if for any ¢* € HE ¢*(x)
= @*(y) by Lemma 5.6 (3), and each element ¢ € M., can be extended to a
continuous function ¢* on D* Lemma 5.8 (4) holds. (5) can be proved as
follows : for two points y,;, y, € D¥*; y, = n(x,), ¥, = n(x,) for some x,, x, € D*,
assume that for any ¢ & M., ¢**(y)=¢**(y,). Then, by (4) just proved
above, ¢*(x)=¢*(x,) for any ¢ .. Therefore, x,~x,, that is, y,=r(x))
=n(x,) =1y, By (4) and (5) just proved, D** is Hausdorff. Therefore, noting
that D is o-compact and i** is continuous, **(D) is a F,-set, hence **(D) is
a Borel subset of D**, Consequently, (2) is proved. (3) can be proved as
follows: for any open subset G of D, there exists a sequence K, (n=1,2,3, ---)

of compact subsets of D such that G= Cj K,. Therefore, noting that **(G)

n=1

= Cj **(K,) and D** is Hausdorff, **(G) is a F,-set, hence, a Borel subset of
n=1

D**, Hence **(B(D))C B(D**) ([6]). This implies (3). Finally, the metri-
zability of D** remains to be proved. This can be proved as follows: Put
L= g+ P P b bR e ae R, ¢, i=12, - p, 1SS 0}
Then, .£ is a subalgebra of C(D), contains 1 and has countable dense sub-
family by Lemma 5.1 and Lemma 5.3. And each element ¢ € £ can be ex-
tended -to a continuous function @** on D** by (4). Therefore, (5) and the
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Stone-Weierstrass theorem imply £**=C(D*¥). From this, the metrizability
of D** follows. (Q.E.D)

For any fe C(D**) and a>0, put G¥*f=(GYfor*))**. This is well-
defined by (6), (7) and (4). Then, by @),
G for =GX(for) for any fe C(D**) and a>0. Also, by the definition of
D**, for any ge C(D*) and a> 0, Gfg can be extended to a continuous func-
tion (G%g)* such that (GXg)*omw=Gkg. Then, the following lemma holds.

LEMMA 59. (1) {G¥*; a>0} is a family of linear posilive operators from
C(D**) into C(D*¥).

2) aG¥*1<1 for any >0,

B) G¥H—GF*+(a—P)GE*GE*=0 for any a, >0,

@) for any fe C(D**) and x < D, lim aGF*f(1**(x)) = f(**(x)),

a—o

B) R(GEY) separates the points of D**.

Proor. (1) follows from the definition of G¥*. (2) follows from Lemma
55 (2). (3) can be proved as follows: G;“*f(n(&))—G;E%f(n(E)) = GX(fom)(&)
—GE (fom)(§) = (B—a)GE(GE (fom)(§) (by Lemma 5.5 (3)) =(B—a)GEGE*f =)&)
= (B—a)GE*GF*f(n(£)). (4) follows from Lemma 55 (4). For the proof of (5),
consider two points #(§), n(y) € D** such that G¥*/(n(&)) = G¥*f(n(yn)) for any
fe C(D**) and a«>0. Fixany ge C(D¥) and 8>0. Then, noting that G¥*for
= G%(for) and (G} g)*on =G} g by the paragraph before Lemma 5.9, we have,
aGi‘Gﬁg(E):an‘Gﬁg(ﬁ) for any a>0. Letting a—co, G§g(6)=GEg(p) by
Lemma 55 (4). Therefore, by the definition of =, #(§) ==(y). This completes
the proof of (5). Q. E.D)

By Lemma 5.9 and the Ray’s theorem ([11], [18]), we have the following
lemma.

LEMMA 5.10. (1) For any x < D**, there exists uniquely a sub-stochastic
measure p,(x, dy) on D** such that

lim aGF*f@) =] (s, d)f0)  for any fe CD™).

o0

(2) For any fe< C(D*¥), a>0 and x < D**,

G =[  mx &CES().
(B) For any Borel subset E of D**,
wi(, E) 1s Borel measurable in D**.
(4) Put D¥*={xe D**; pu(x, dy) + 8,(dy)}. Then,
D¥* is F,-set and for any x e D**,

ti(x, DF*¥) =0.
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(B) DyF*x C D¥*—i+¥x(D).

Before proving the representation theorem for P introduced in §3, we
shall pick up the properties of P which do not relate to the process M, and
replace the boundary V of D, the topological Borel field B(V) and the canonical
measure v of @ by any measure space (V, &,v), and we shall prepare the
next lemma, which would be useful in the future.” Set £={¢p+a; ¢ & M.,
a < R}.

LEMMA 5.11. Let (V, &, v) be a measure space and P be a bounded linear
positive operator from L into L=(V, F,y) such that P1<1. Then, for each
&V, there exists a sub-stochastic measure pu(&, dy) on D** such that

W) Pe® = e d)e*(), v-ae eV, for any pe .,

@ PLE) = w§, D), v-a.e. £V,

3) p, DFH=0 for any £ V.
Moreover, such a measure p(€, dx) is uniquely determined except for a set of
& e V with v-measure zero.

Proor. (I) Taking ¢’ in Lemma 5.3, put M ={¢p+a; oM, ac Q}.
Then, by Lemma 5.3, we have

5.6) M1,

5.7 ap+bp = M for any ¢, = M” and q,b=Q,
%.8) M is dense in [,

5.9 EM” < 0.

Therefore, there exists a measurable set V,= & such that
(5.10) y(V—-Vp=0
and for any £ V,,

(.11) Plap+-bd)(§)=aPe&)+bP ) for any ¢, o= M” and a, b= Q,

(5.12) Pp)=0  for any ¢ = (M")*,
(.13 Pl®) =1,

(5.14) P = llell  for pem”,

(5.15) Po&) <sup {¢p(x); x= D} for p =M.

By for any ¢ € £, there exists ¢** € C(D**) such that p**o¥*=0.
Set L¥* = {p**; o= L} and (H)** = {p**; o= M"}. Fix £V, We define
T,p**=Pp(€) for ¢ =€ M”. Then, by (5.11)~(5.15), we have

7) For example, by using this [Lemma 5.11, we can get the representation theorem
for r-excessive measure for {G%; a> 0} ih.
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(5.16)  T,(ap**+bg**) = aT,p**+bT ** for any ¢,y M’ and a, b Q,

5.17) To** =0 for any ¢@** & ((M")*$)+,
(5.18) T1x*<1,

(5.19) ITip**| = llp**|  for pean”,

(5.20) T,0** < sup {p**(x) ; x € D**} for p = M”.

Since (M")** is dense in L** by (5.8), from (5.16) and we can easily see
that 7, can be extended to an functional 7, on .£** Thus, by the definition
of T, and (5.16)~(5.20),

(%.21) Ty (ap**+bd**) = aT,p**+-bT,p** for any ¢, =L and q, bR,
(5.22) T,po** =0 for any o@** e (L*¥)*,

(5.23) T,1** <1,

(.24 | To0** | = ll¢**|  for any oL,

(5.25) T,p** < sup {@**(x) ; x € D**} for any o= ..

By (56.21), (5.25) and the Hahn-Banach theorem for a linear space C(D**) [227),
the linear functional T, in £** can be extended to a linear functional T, on
C(D*¥) such that

(5.26) Ty < sup {@(x) ; x € D**} for any ¢ € C(D*%).
Fix ¢ € C(D*¥). —Ty0="Ty(—¢)=<sup {—¢(x); x = D**} by [5.26). Therefore
.27 Tsp = inf {@(x); x € D**} for any ¢ e C(D**).

Thus, by and [5.27), we can easily see that
[ Ts0] = el and T, is positive.

Therefore, by the Riesz-Markov-Kakutani theorem, there exists a bounded
measure p,(&, dy) on D** such that

(5.28) Tup={  mE d)e(y) for any g CD™).
Since 1 & #”, we have, by [5.28),
(5.29) PLE) = Tul#%() = T,1#(@) = Tyl**(©) = (6, D).

Next, for any £ V-V, let
pa(&, ) =0p,(+) (Fix any point 5, D*¥),

Take any ¢ € £. Then, by (5.8), there exists a sequence (¢,)7-, in H” such
that lim ||¢,—¢||=0. Therefore, by the boundedness of P, there exists a
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measurable set V, e & such that

(5.30) W(V—V)=0
and
(5.31) Py, (&) — Pp(f) as n—oo for any £ V.
By (6.10) and [5.30), we have
(5.32) WV —V,AV)=0.
Fix any £V, V,. By and (5.31)
(533) S (&, dypr(3) = Ty
— lim T o
= 1im P¢,(§)
=Pe@).

(ID Using two measures p,(x, dy) and (&, dx) in and (I)
respectively, for any £ € V and E € B(D*¥), let

(5.34) pE BY={ @ dopmn B).

This integral is well-defined by Lemma 5.10/(3). By ) and
(5.35) W&, DFH=0  for any £ V.
And, by Lemma 5.10 and [5.29),

(5.36) wE D =PLE =1, vae £cV.
Next, for any fe C(D**) and a >0, by (2) and [(5.34),

(5.37) § .ue docEre
= [ & dd([ s, d9)GEF())

={ e doGE ().
Dk

For the proof of (1), take any fe C.(D). Noting that
(aih) =@ E )

=o(er] )™




Boundary problem for Markov processes 79

by [56.32), [(5.33) and [5.37), we have

(5.38) P(LEEE o)

:f NZS dX),BG?;‘*([ gf,]l[ ] *>(x), va.e. Ee€V.

0
Sincel *’f;oG;I’—‘”Gol ‘_||BGBf—f“—>O as B—co by [Lemma 4.4, by the
boundedness of P, we have
BGRGIS Y _ v/ _
6 [P(PRE) (G0 s
On the other hand, since ll BG**([—(G;%—f - —D¥¥,

lim gGp+([ gg{ ]**)( )ﬁ gg{) (9 by Lemma 59 2 and Lemma 510,

[S—wo

letting f— oo in [5.38), [5.35), (5.36) and (5.39) imply that
(5.40) P(—%{i)(g): [ e an( gg{ ), vae tev.

(5.35), (5.36) and completes the proof of the first part of Lemma 5.11
The second part of can be proved as follows: let x#®(, dx) and

¢®(, dx) be measures satisfying (1), (2) and (3). Take any fe C(D**). Since
laGE*f| < || f]] and hm aG¥f(x)=f(x) for any xe& D¥*—D¥* by

(2) and Lemma 5.10 the bounded convergence theorem implies that

f EVE d0fG=lim [ p0(E, dnaGE ()

lim p(CCHI G ) e

= lim f o LEOE dDaGEf ()

= fn**ﬂ<2>(§, dx) f(x), v-a.e. £ V.

Therefore, since D** is compact metrizable by we have p®(, )

= p®(, ). This completes the proof of Lemma 511l (Q.E.D)
Now, we shall return to the process M. Our aim was to get the repre-

sentation theorem for P introduced in §3. does not necessarily

satisfy us, because from [Lemma 51 we can only prove that P( gg‘{ >(§)

:j 763 dx)( gg{) (%) for fe Cu(D) and so [- f in the Feller-Ueno decom-
Dk

position theorem ( ) disappears in replacing the operator P in
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by measure u(£, dx) in for fe C(D). For the pur-
pose of overcoming this difficulty, we shall prepare some lemmas.
Since BG%.pGYf is increasing in B for any a>0 and fe B(D)*, we can

easily see that there exists a
- GLf ; Gef _
©.4D lim (8Gis(~gi1 N = lim (8GH(¢i 1 N =1,
for any a >0 and fe C(D).
Then, the following lemma follows from
LEMMA 5.12. (1) ﬁa is a bounded linear positive operator from C(D) into
B(D*¥).
@ o= |-2

@) H, foit*— gg{ for a>0 and fe CD).

@ I-Alaf 1s lower semi-continuous for a >0 and fe< C(D)*.

LeEMMA 5.13. For any a>0 and f< C(D) such that g:{ can be extended

for >0 and fe CD).

to a continuous function G°1 ) on D**,

A skok
Bosy=(-Z1) " for any ne D—Dy*.

ProOF. Since (BGhi ng )) "= pow((- gO{ ™). Lemma 5.3 follows
from Lemma 5.10 and (5.41). Q.E.D)

LEMMA 5.14. For any a, B>0 and f< C(D),
A, f—Hy f+(a— BHHGRf=0.

ProOF.
A, f-Hpr=tima(es (-G) " —tima(es (-G))"
= tim oG} (-5 TH))
= (g~ lim (G (-© G-Gonf N
=(B—a)H,Gyf (Q.E.D)

LeMMA 5.15. af is continuous on D**—D¥* for a >0 and fe C(D).
Proor. By Lemma 5.12 (1) and Lemma 5.14, we have only to prove the
result in case a=y and 0=</=<1. By Lemma 5.13, we have :

(5.42) Hl@)=1 for any 5 e D**—D¥*,
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Since H,f= H,1—H,(1—f), by Lemma 5.12 (4) and we have

(Q.E.D)
LEMMA 5.16. If D¥* =0, then

1) H,fecD*  for any a>0 and fe CD),

) }Qim 1BH o sGLf—HL f| =0  for any a>0 and fe C(D).

Proor. (1) follows immediately from Lemma 5.15. Since

y _ of GhpGhS \**
BH 1. 5GY f = ﬁ<ﬁ§T“) by Lemma 5.13
= B(Ghig(HafoiH)** by Lemma 5.12 (3),
we have, by (1),
BH,.sGo = BGEL . T .

Therefore, by D¥*=0 and (1), we have (2). (Q.E.D)

In fact, we have the following general lemma.
LEMMA 5.17. For any a>0 and fe C(D),

@) %im BHGLf=H,f  on D**—Df*

(i) éim BAGYf=H,f on D*—D*.

PrOOF. (i): By Lemma 5.13, we have

Py L G%G‘,}f **__ ——G%f; ko _
pHGL = B(5g ) =B(Gi(Gir)) om DH—Di*.

Therefore, Lemma 5.17 (i) follows from (5.41).

(ii): this follows immediately from Lemma 5.14 and Lemma 5.17 (i). (Q.E.D.)

Now, we are able to prove the following representation theorem for P
introduced in §3.

THEOREM 5.1. For each point €<V, there exists a sub-stochastic measure
(€, dx) on D*¥* such that

6 P(%Z:{—) ©é= j'DH (&, dDH, f(%), v-a.e. E€V
for any a>0 and feCWD),
(ii) P1(&) = p(&, D*¥), v-a.e. £€V,
(iii) pE, D¥H=0 for any £ V.

Moreover, such a measure p(&, dx) is uniquely determined up to equivalence with
respect to v.

Proor. We shall show that measures u(§, dx) gained in Lemma 5.11 are
ones that we want. Fix any fe C(D). Since Gjg(8>0, g C(D)) is the §-th
order Green operator of a Hunt process M°® (Lemma 4.4), we have, for any
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B8>0 and ge C.(D),
(5.43) e@=EL (] Ome—ﬁtg(xgdt) (xe D).

By the definition of G}, holds for any >0 and ge C(D). Therefore,
noting that for any g C(D) and ye D

(5.44) lim SEy { Owe'ﬁtg(xc)dt) =20,

we have,

(5.45) }3152 BGRf (V) =[() for any vy D.

Since |BGEfII= /Il by (5.1}, we have, by and (5.45),
(5.46) lim P -ﬁ—MGG%gGI%fnya :P(—(G;%)(s), pae Ec V.

On the other hand, by Lemma 5.11 (1),

(547) P <7§‘GG%9%&L> <E) - -f D ¢ (E’ dx) <‘B ‘Gégx ]:> **(.X)

= [ &, dn(pGh %’{))**(x) .

. Gof \\** G f )
Noting that | (8Gh(-or1 )| = |-Gt |, by Lemmasil @) and G4T), tetting
T T
B— oo in [5.47), we have
im P(PCEGS N oy = 7
(5.48) lim P(-2 1 )@ = 1€ dollf o).

Therefore, [5.46) and completes the proof of (). (iii) has
been proved in Lemma 5.11 (3). (ii) follows from (i), (iii) and by
putting «=7 and f=1. This completes the proof. (Q.E.D)
The next theorem is an immediate consequence of and
which is an another form of the Feller-Ueno decomposition.
THEOREM 5.2. (Feller-Ueno decomposition theorem). For any a>0, xS
and fe C(S),

_ 5 4 Gof
Gaf ()= Gof W+ HL{1 f+[ e, d0Hf )+ QG dn)Gif (0}
Put, for each £ V,
Se={n < D**; for any neighbourhood U of & in S, p=v** (U D)}.

Then, we have,
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(549)  S:={n < D**; there exists a sequence (x,);-; in D such that

lim x, =& and lim **(x,) =7} .
Note that the sets S: (¢ € V') is contained in D**—i**¥(D) if the process M° asso-
ciated with {G%; a > 0} has continuous paths, or more generally if C..(D)C H...>

Now, we shall prove [Theorem 5.3, which realizes the profound fact that
states and is more precise than [Theorem 3.3 For that purpose,
we prepare the following lemma. Let £,.={fe CD***; for any a>0,
aGELf=f} and L={fi—f,; fu e L4}

LEMMA 5.18. (1) {G¥*f; fe C(D*)} C £ C C(D**),

@ af, ft+g, fAge Ly for any f,g€ Ly and a=0.

B £yl

4) £ is a vector lattice of C(D**).

(B) L separates the points of D**.

©6) L s dense in C(D**).

PrOOF. (1) and (3) follow from Lemma 5.9 (3) and Lemma 5.9 (2), respec-
tively. Clearly, (2) holds. (4) follows from the following relation: (f,—f,)
/\(glﬂgz):(fl“]‘gz)/\(f2+g1)_(f2+g2>- (5) follows from (1) and Lemma 5.9
(B). By (1), (3), 4 and (5), the Stone-Weierstrass theorem implies that (6)
holds. This completes the proof of Lemma 5.18. Q. E.D.)

Under the hypothesis D¥* =@, we prove the following interesting theorem,
which solves the problem mentioned in the first paragraph in §5.

THEOREM 5.3 (support of p (&, dx)). If DF*=0, then

w(E, D¥*—S)=0  for any E€ V.

ProOOF. Since V is a compact metrizable space, there exists a countable
dense subset {&,, &,, -+, &, -} in V. For any £ V and ¢ >0, put
UE,e)={xe S; dis(x, &) <e} and Uk, &)=U& ¢) (R=1,2,3, ).
Then,

(5.50) V:kyl Uk, eyn\'V),
(5D Se=, M UG 9N D) (for £ V).

Fix any % and >0, and then fix any fe C(D**¥) such that for any
xe**(U(k, )"\ D) f(x)=0. By the same method in Lemma 4.3 and Lemma
4.4 we can see that the hypothesis Df* =0 implies that

(6.52) laGE*f—f| — 0  (a—co).

8) See example 2 in §7. Though the process M9 in this example has no contin-
uous paths, the fact that Co(D)C M. holds.
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Thus, for any positive number ¢ >0, there exists «,(> 0) such that for any
aza, and xe1**Uk, &9 N\ D), |aGE*f(x)| < 0. Since this implies that for any
xe Uk, &) D and a= «,,

' aGWgoz**G" 0N >‘< 5,

we have, by [Theorem 3.3 (local character of P),

(5.53) IP( “G%(f(‘;%»@l)—)@] <5P1E), vae EcUk HAV.

On the other hand, since by

P( aG?x(fO 1**Gr 1) )@) f e, dD)aGEf(x), va.e £V,
we have, by [5.53),

554) |J & dnaGrse

=0, va.e. &e€Ul, )N V.

Therefore, by and the bounded convergence theorem, letting o — oo and
then d—0 in [(0.54), we have

(5.55) [ #E d0f®=0, vae EcUkONT.

Next, fix any fe C{(D**—v**(U(k, ¢) "\ D)). Then, since f can be extended to
D** continuously as f(x) =0, x 1**(U(k, ¢) N\ D), we have, by (5.55),

(5.56) __pédof(x)=0, v-a.e. EcUl, )N V.

-;‘D * (T (ke e) D)
Since D** is a compact metrizable space, implies that

(5.57) n(&, D¥*—1¥%(U(k, ) "\ D))=0, v-a.e. Ec Uk, )N V.
Therefore, by [5.57), there exists a Borel subset B of U(k, &)~ V such that

(5.58) v(B) =0 and
€, D¥*—p**(U(k, &) N\ D)) =0 for any £ Uk, &)\ V—B;.
Set
(5.59) B=\J B:.
P
Theny by ’
(5.60) BcV and

v(B)=0.
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Next, fix any £ = V—B. Since for any rational number ¢>0 there exists &,
such that & e U(k,, ¢/2) and so U(k,, ¢/2) C U(§, ¢), noting that

(5.61) D** %K, & N\ D) C D¥*— Uk, €/2)) ,
Ee Uk, /2N V—B§Z,

we have, by [(5.58) and [(5.61),

(5.62) (&, D*—*¥(UE, o) N\ D) =0.

Consequently, by [(5.51) and [5.62), we have

(5.63) pE, D¥*—S)=0  for any é§ V—B.

(5.60) and complete the proof of (Q.E.D)
We are interested in [Theorem 5.3, for it states that the supports of the
measures u(&, ) (6 = V) which depend on our process M to characterize are
contained in the sets S;(§ = V) which depend only on the minimal process M min
or the process M° associated with {G%; a > 0}, under the condition D¥* =@ (this
condition depends also on M), even if we don’t suppose that the path func-
tions of M are continuous. Next, the question arises whether the supports of
the measures p(&, ) (§€ V) are contained in D**—i**(D). Since the set Ss(é< V)
is not necessarily contained in D**—i**(D) even under the condition D}* =g,
does not answer the above question. The answer is found in
THEOREM 5.4. If the following condition:

(%) Co(D)C M.,

is satisfied, then

(1) ** is a homeomorphism from D onto i**(D) and 1**(D) is open in D**,

2 &, **D)=0 for any E V.

Proor. Since (1) will be proved in §6 (Theorem 6.3) in a general setup,
we omit its proof here. (2) can be proved as follows: by Theorem 3.1 (the
boundedness of P) and Lemma 5.11, we have,

(5.64) Po(§) = fw (&, d)p**(x), v-a.e. E€ V for any o e ...

On the other hand, by Theorem 3.3 (localy character) and the assumption (xx),
we have,

(5.65) Pp=0 for any ¢ e C.(D).

Since the continuous extension ¢** of ¢ & C(D) is zero on D**—**(D) by (1),

we have, by (56.64) and (5.65),

(5.66) j.**w\)u({:, dx)p**(x) =0, v-a.e. £V for any ¢ = C.(D).
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Therefore, the assertion (1) and (5.66) imply that w(g, #**(D))=0 for v-a.e.
&e V. This completes the proof of 2. (Q.E.D)

Finally, we shall resolve the question stated in the first paragraph of §5.
Though we give the answer in such a form as the following for
making our results complete, the mechanics that M. Motoo’s Feller-Ueno
decomposition theorem becomes equal to our Feller-Ueno decomposition theo-
rem under the conditions (M™ir4), (M™ir5) and (M™in6) will be revealed in
the second proof of under the more additional conditions. To
revote the confusions in notations, let M. Motoo’s H,, in (M™in 5y and our ﬁa
be ﬁ;}’ and H @, respectively.

THEOREM 5.5. If the additional conditions (M™»4) and (M™»5) are satis-
fied, then

m@ALF©=[  pe doALIf 1o, v-ae £V
for any a>0 and fe C(S).

FirsT PrROOF. By (Feller-Ueno decomposition) and M. Motoo’s
Feller-Ueno decomposition theorem ([17], Theorem 3), we have

GF O+ K1 F+P+@(-S L)}

A 0
= GAF )+ HK (Lm0 +Q(-24] )}
for any a>0, fe C(S) and x=S. Therefore, we have
o G% - pear [
(5.67) HK{P (—»-Gg{»}(x):HaK (AL}
for any a>0, f=C(S) and x=S. Noting that P(—gg"—{- and mﬁg’f are
7
bounded, by applying in in [5.67), we have
0 A
(5.68) P( )@ =m@APr©, vae eV
7
for any @ >0 and f< C(S). Thus, by and [Theorem 5., we have
[ o d0HFL 1) =m@HP©), vae £V

for any a >0 and f< C(S).
SECOND PrOOF. Moreover, we shall assume the condition (M™ir6) and the
following condition:

(x%x) S is compact and ﬁ,,XV:O for any a>0.

Before giving the second proof, we prepare some lemmas.
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LEMMA 519. {HPf; a>0, fe CAD)} is dense in C(S).
Proor. Fix any fe C(S). No generality is lost in assuming fe& C(S)™.

Choosing a sequence (f,)3-; in C.(D) such that f, increases to G{1 in D, by

the hypothesis (xxx) and the monotone convergence theorem, we have

0<HP(f,GD) 1 HPF  for any a>0 and x& S.
(n)

Therefore, by the Dini theorem, this convergence is uniform on S. This fact
and (M™in.6) complete the proof. (Q.E.D)
LEMMA 5.20. %% is a homeomorphism from D onto i**(D).
PrROOF. Assume that Lemma 5.20 is false. Then, by the compactness of
S, there exist a sequence (x,)r., in D and two points x< D, £ = V such that
X,— & and **¥(x,) —1**(x). For any fe C.(D) and a >0,

A9 =-gf-

=(-S) " i
sk %k
= lim <_G’0”I" @**(xn))

= tim -ZEf () = A97(®).

Therefore, by Lemma 5.19, we have x=2£&. This is absurd. (Q.E.D.)

LEMMA 5.21. There exists a continuous mapping @ from D** onto S such
that @@**(x)) =x for any x D and @ *({&})=S: for any €< V.

Proor. We claim that S;; N\Ss;, =0 for any &, +&,. Assume that there
exists a point n € Sg; N\ Se, for some &, +#&,. Then, there exist two sequences
(xP)zy in D (=1, 2) such that x®—§£; and **&®)—y as n—oco. For any
feC.(D) and a>0,

HPF(E) = lim Hf(xP)

=1im (1) @

= lim (@1—) o) = (& ci !

Therefore, by Lemma 5.19, £, = &,. This is absurd. Since a family ((Sp); é€ V)
is a partition of D**—1**(D) by Lemma 5.20 and the fact proved above, we
can define a mapping @ from D** into S by setting @(i**(x)) =x and @(y) =&
for » = S;. We can see easily that this @ is our desiring mapping. (Q.E.D.)

=1,2).
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LEMMA 5.22. #Sg=1 for any E V.

PROOF. Assume that there exist two points 7, # 7, in S; for some £ V.
Then, there exist two sequences (x®)2.; in D (i=1, 2) such that x® —§ and
P (xP)y—n; as n—oo.

For any a >0 and fe C.(D),

() ao=tim (G ey

. G? i
= lim-GE- )

=0PfE) G=12).

Therefore, by Lemma 5.8 (5), we have 5, =%,. Thisis absurd. Thus, noting

that £Se =1, the proof of Lemma 5.22 is completed. (Q.E.D)
LEMMA 5.23. @ in Lemma 5.21 is a homeomorphism from D** onto S.
PrOOF. By Lemma 5.22, @ is injective. Therefore, noting that D** is

compact and S is Hausdorff, by Lemma 5.21, we have Lemma 5.23. (Q.E.D.)
0
LEMMA 5.24. For any fe C(S), lim "aﬂéffo%—ll— f"D=O.
Qo 7
Proor. Fix any positive number ¢>0. By Lemma 5.4 (8) and Lemma
5.19, we can find g C(D) such that | f—Gig| <e. Therefore, by Lemma 5.4,

we have

= |aGir(LSI0)—fllp
= 1aGhw(Lf Io—Gi @l pt1aGhiGt g—Gi g p+ G g—fp
=2 f—Giglo+1Ghirgl
= 26+C“¥;_g’_“7— .
Thus, letting a— oo and ¢—0 in (5.69), we have Lemma 5.24. (Q.E.D.)
LEMMA 5.25. D¥*=0.

ProofF. Noting that **(x)=0@'(x) for any x=D by Lemma 5.21 and
Lemma 5.23, we have, for any fe C(D**) and a >0,

G.70) laGEF—1| =|{a GalS e D poje

D

e Curo0oGD . o
= | o0

Since fo @' C(S) for any fe C(D**) by Lemma 5.23, therefore, we have, by

D.
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applying in lim |aG¥*f—f|| =0. This implies that Di*=0.

Q.E.D.)
Now, we are able to give the second proof of under the
additional conditions (M™in.6) and (+*+*), in the following way : Fix any feC(S)
and «>0. Since Df*=0 by Lemma b5.25, we have, by and
(.71 [ & doAPL 1@ =] &, dDAPLSIn().
D+ Sg
Since AP[f1p(x)=HPf(E) for any xe S and (&, D**)=m(€) by
(3) and (ii), we have, by
J & dOAPL 1) = m@HAPS©), vae £ V.
(Q.E.D.)

§ 6. Compactification and Completion; The characterization of D**,

In order to reveal the operator P, in §5, we have introduced the space
D** as the field which represents P (Theorem 5.1). In fact, D** was the
quotient space of an H.-compactification D* of D by the following equivalence
relation——an #%-equivalence relation : for x, y € D*, x~y if and only if ¢*(x)
= p*(y) for any ¢ € M. And by the space D** satisfies the
following properties :

6.1) D** is a compact Hausdorff space.

(6.2) There exists a continuous and injective mapping i** from
D into D** such that **(D) is dense in D**,

(6.3)  Each element ¢ € M., can be extended to a continuous
function ¢** on D**, that is, p**oi**=¢.

6.4) MEX = {p**; o =€ M.} separates the points of D**,

In this section, we shall prove the converse——the characterization of the
space D**, that is, any space D** satisfying the above (6.1)~(6.4) is the
quotient space of an .H.-compactification D* of D by an #*-equivalence relation
(Theorem 6.2). This is an immediate consequence of the following uniqueness
theorem (Theorem 6.1)): the space D** satisfying (6.1)~(6.4) is unique up to
homeomorphism.

Since the essence of the problems stated above does not relate to a
minimal process M™ir, we shall take the general formulation. The following
lemma (it had been used in §5) can be found in [3].

LEMMA 6.1. Let D be a locally compact Hausdorff space and Q be a subset
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of C(D). Then, there exists a topological space D* such that
(6.5) D* is a compact Hausdorff space,

(6.6) there exists a continuous and injective mapping 1* from D into D*
such that *(D) is open and dense in D* and i* is a homeomorphism
Jrom D onto 1*(D),

6.7) each element f& @Q can be extended to a continuous function
f* on D*, that is, f*oi*={,

(6.8 Q*={f*; f=Q} separates the points of D*—i*(D).

Moreover, such a D* is unique in a following sense. Let (D¥,i¥) and (D¥, i§)
be systems satisfying (6.5)~(6.8). Then, there exists a homeomorphism @ from
D¥ onto D¥ such that @oi¥ =1¥.

DEFINITION 6.1. We shall call (D*, i¥) a Q-compactification of D.

REMARK 6.1. @Q* does not always separate the points of D* (Theorem 6.3).

Next, we shall introduce the notion of a @Q-completion of D. Such a
notion has not been used explicitly ([4], [5], [11], [13]). Let D be an abstract
space (##) and Q be a function space on D such that separates the points
of D. Then, introduce the uniform structure on D by @ in the following
way. Set a parameter set A={a=<{f, -, fn;e>;[x€Q,e>0,k=1,2, .-, n}
and U () ={yeD; |fi()—fi(x)|<e k=1, 2,3, -.., n} for ac A and x=D. Then,
we can easily see that W, ={U,(x); ae A, x< D} satisfies the axiom of uni-
form structure ([10]). Thus, (D, ;) becomes a uniform space with the above
structure. Therefore, there exists a complete uniform space D** such that
there exists a uniformly continuous and injective mapping ¢** from D into
D** with *¥(D)= D** and i** is a uniform homeomorphism from D onto
i**(D). Therefore, noting that foi**™! is uniformly continuous in 7**(D) for any
feQ, any f= @ can be extended to a uniformly continuous function f** on
D#**, that is, f**oi**=f, Then, the function space Q**={f**; f= Q} sepa-
rates the points of D**. This can be proved as follows. Consider 7,, 9, € D**,
such that f**(y,)=f**(p,) for any f= Q. Since **(D) is dense in D**, there
exist two nets (xp);ec4 and (¥,),ey Such that 11m **(x;) =%, and 11m z**(yp)_yyz

Therefore, llmf(Xx)_llmf**(l**(xz)) U UNES f**(772>—hmf**(l**(y,u))—hmf(y,u)

Thus, by the deﬁmtlon of Ny, (x)ic4 and (V).en are equlvalent ([10]) Since

** is uniformly continuous, (i**(x;));e4 and (**(y,))uex are equivalent. There-

fore, noting that lsz/l1 **(x) =1, and lim 1**(y,) =1, we have =, More-
S peM

over, we can prove that if any element f= @ is bounded, (D,Uy) is totally
bounded and so D** is compact. Thus, we have the first part of the follow-
ing theorem.
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THEOREM 6.1. Let D be a topological space (#+9) and Q be a subset of
C(D) that separates the points of D. Then, there exists a topological space D**
such that

6.9 D** is a compact Hausdorff space,
(6.10) there exists a continuous and injective mapping i1**
Jrom D into D** with t*%(D) = D**,
(6.11) each element f€ Q can be extended to a continuous
Sfunction f** on D**, that is, f¥koi** =1,
(6.12) Q** = {f**; fe Q} separates the points of D**.
Moreover, such a D**is unique in the same sense as in [Lemma 6.1
DEFINITION 6.2. We shall call D**((D**, i**)) a Q-completion of D.
For completing the proof of [Theorem 6.1, we have only to prove the uni-

queness of such a D** the essential part of this theorem. Our aim is to
find a2 homeomorphism @ from D¥* onto D¥* such that

() @ oif* =if*, given systems (DF*, i¥*) and (DF*, i5*)

satisfying (6.9)~(6.12). Before proving (¥), we shall prepare the next lemma.
LEMMA 6.2. Any space D*¥*((D**, 1*¥)) satisfying (6.9)~(6.12) has the follow-
ing property:
Let (x4 be a net in D such that there exists a

(6.13) m f(x) (€R)  for any Q.

Then, there exists uniquely a point p & D** such that 1111*1/11 () = 7.

ProOF. Let 7, and 7, be sub-convergent points of (1**(x;));cs (Since D**
is compact, there exists at least such a point ([10])). We shall write **(x;)
--—7p, and **(x))--—7n,. Fixany f Q. Since f** e C(D**) and f**or¥*=f,
we have

Jx === **@) and  f(x)-->/**(,) .

Therefore, by the hypothesis, f**(n,) = f**(»,). Thus, (6.12) implies that
7, =1, This shows that there exists only a subconvergent point of (I**(x;));c4.
By the compactness of D**, this completes the proof of

Now, we shall prove (x). Denote Q** in D¥* and D¥* by QF* and QF*
respectively. Take any 73, DF*. Moreover, take any net (x3);e4 in D such
that 1213 1*(x) =7n,. (By (6.10), there exists at least such a net.). Then, for

any f<Q, by (6.11), 12151 f(x) =f¥*(n). Therefore, by Lemma 6.2, we can find

a point %, € D¥* such that lirzl i¥*(x;) =7,. Such a point 7, does not depend
Az
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upon the choice of a net (x;);c4. This can be proved as follows. Consider
another net (¥,)uex in D such that lim i¥*(y,) =7, and lim#*(y,) =7, Then,
pEM psM

for any feQ, by (6.11), f¥*(F.) = lim f3*@*(y) = lim f(3,) = im fI*@F*(y )
ueM HEM nEM

=[f*(y,). In the same way, [§*(y,) = fi*(y). Therefore, f§*(p,) = fi*(7,) for
any f Q. (6.12) implies that », =7, Thus, we can define a mapping @ from
Di¥* into D¥* as @(y,) =7, Then, by the definition of @, we can easily see
that

6.14) Q oF* = iF*
and
(6.15) fFro = fi* for any f=Q.

From (6.12) and the injectiveness of @ follows. For the proof of the
surjectiveness of @, take any 7, < Df*. By (6.10), there exists a net (x)ie4
in D such that l)ifrlllié‘*(xx):nz. Then, for any fe@Q, by (6.11), %iﬂrrl}f(xx)

:%1 FE¥@,(x)) = f¥*(5y). Therefore, by there exists a point
7, € DF* such that liifﬁ i¥*(x)) =7, Thus, by the definition of @, O(p,)=7,.

Finally, for the proof of the continuity of @, consider any net (;);e4 and any
point 7, in D#¥* such that lim»,=7%,. Then, by [6.15), for any f= Q, we have
FEY)

(6.16) Hm (D)) = lim f3%(na) = f1*(p0) = FEH(@ (7)) -

Let n, = Df* be any subconvergent point of (@(%,)cs. That is, O(n;)---7,.
Then, by (6.11),

¥ @) -~ () -

Therefore, by [6.16), /#*(@(7) = f#*(7,). Thus, by (6.12), ®(5) =7, Since
D¥* is compact, we have lim @(y;)=@(p,). This completes the proof of
Theorem 6.1 o

REMARK 6.2. For a Q-completion (D**, i*¥), {** is not always a homeomor-
phism from D onto i**(D) (Theorem 6.3).

Finally, we shall examine the relation between a Q-compactification and
a @Q-completion. Let D be a locally compact Hausdorff space and Q) be a subset
of C(D) that separates the points of D. Let (D*, i*) and (D**, i**) be a J-com-
pactification of D and a Q-completion respectively. Then, we are now able to
prove the following main theorem in §6.

THEOREM 6.2. There uniquely exists a continuous mapping @ from D* onto
D** such that @ oi*=1** Moreover, @ has the following properties:

(1) @ s injective as a mapping from 1*(D) into D** or from D*—i*(D)
into D**,
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(i) f**o@=f* for any feQ.

ProOF. Introduce a Q*-equivalence relation on D* and let D¥* be the
quotient space of D* by this equivalence relation and = be a canonical projec-
tion from D* onto D¥*. Set i¥*=mo1*. Then, we can easily see that (D¥*,
1#*) satisfies (6.9)~(6.12). Therefore, by Theorem 6.1, there exists a

i*
Dx
Tk u* T
Kk
D D¥*
?,

homeomorphism @, from D¥* onto D** such that @, 0i}*=i**, Put @ =@, ox.
Then, @ot* =@, omoi* =@, 0if =1**. Clearly @ is continuous from D* onto
D**, This completes the proof of the first part of The second
part can be proved as follows. The first part of (i) follows from the injective-
ness of i** and @or*=1** For the proof of the second part of (i), by (6.8),
we have only to prove (ii). (ii) can be proved as follows. Fix any fe Q.
By (6.7) and (6.11), (f**o @) oi* = f** o (Poi¥) = fH**oi** = f and f*oi*=f. Since
f*o@, f*e C(D*) and *(D) is dense in D*, we have f**o@® = f*. This com-
pletes the proof of

The following theorem answers Remark 6.1 and Remark 6.2.

THEOREM 6.3. The following propositions are equivalent.

(i) Q* separates the points of D*.

(i) ** is a homeomorphism from D onto 1**(D).
Then, D* is homeomorphic to D**,

PrOOF. In the proof of Theorem 6.2, we have seen that @ =@, on, where
@, is a homeomorphism from D¥* onto D** and = is a canonical projection
from D* onto D¥*. (i)=> (ii): Then, = is injective and is a homeomorphism
from D* onto D¥*. Therefore, @ is a homeomorphism from D* onto D**.
Thus, by **=@o* and (6.6), we have (ii). (ii) = (i): Since Q* separates the
points of *(D) by (6.7) and separates the points of D*—i*(D) by (6.8), it
suffices to prove that for any x= D and &< D*—i*(D), there exists feQ
such that f(x)=+# f*(). Assume the contrary. Then, there exist xe D and
¢ e D*—1*(D), such that n(i*(x)) ==(£). By (6.6), there exists a net (x)),e4 in
D such that %gﬂl *(x) =&. Thus, n((*(x)) = }11311 7(1*(x;)). Since @, is continuous
and @,omoi* =@ oi* =1*%¥ we have i**@:}i@‘i’ 7%*%(x;). Since 7** is a homeo-
morphism from D onto **(D) by the hypothesis (ii), we have x= lim x,.
Therefore, i*(x)zaierix *(x)) =&. This contradicts & & i*(D). This comxﬁljzztes

the proof of Theorem 6.3.
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§7. Examples.

We shall consider particular examples of the Markov processes M™i® which
do not satisfy (M™ir5) and investigate completely how D**, D¥* and S: can be.
Example 1. Let S=[—1,1], D=(-1,00U(0,1) and V={—-1,0,1}. Let
{GY%; @ >0} be the resolvent operators of the Brownian motion absorbed at
V. Since G%f (a >0, f< B(D)) is the unique solution of the following equation,

u(x)—f%—— u”(x) = f(x), xeD

(7.1)
u(—D)=u@®=u@)=0

we can see by the Sturm-Liouvill theory that

1 - I L -
(72) G&f(x): \/2&’(1“82/?X> {(e 2ax __g s/zax)j~l(62v2a es/zay_e JZ?’!/)f(y)dy

+(22 /de\'/ﬁxwe_\/é—ix)j 0(exlm~e_\aﬂ)f(y)dy} for xe (_1, 0) ,
and :

73 G ()= ¢2(3—12/2& 1){<e‘2"z?e@te‘@x)j:@%—e‘%)f(y)dy
o

V2az -y (72 Y2q 2wy =N 2qy
+(e"***—e )j (e el __o )f(y)dy} for x= (0, 1).

Since the Brownian motion absorbed at V has the continuous path functions,
the strong Markov property, and by (7.2) and (7.3),

7.9 w(BD)) C Cu(D),
by [Theorem 4.3, we have
(7.5) C.(D)C M.,

where ., { G° 1 —; a>0, fe Cm(D)}. Therefore, by

(7.6) M-compactification D* of D= .%.,.-completion D** of D.

By (7.2) and (7.3), we can prove that for any a >0 and fe< B(D),
R )
@9 lim G = 23(1’)@(:7)8D (@I f(3)dy,

(7.9) lim —%Jli (x) = _(1_;/_ ??2(1)— (eli“:T)J = f 01<e—2 2 g2y __ p"V2aY) £((4)dy

I 1_ ~z/27 Voo 1 o - vim,
@10 Jim g (9= M T e e )y
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ProrosiTION 7.1. (1) S,={p,} and S_,={p_.},
@ SnS.,=0.
Proor. (i) Fix any peS,. There exists a sequence (x,)%.; in D such
that x,—1 and i*(x,)—p. By (7.10), for any fe< C.(D),
GY% GY%
(@1—) ) = lim (-@T) (40 = lim GO{ (%) = lim GO{ @) .

=00 x-1—-0

Therefore, for any p,qeS, <G°1 ) (P)—~< G"l) (@). Since p,qeV*

= D*—1*(D), we have, by (6.8), p=gq. Consequently, £S,=1. Similarly, we
have #S_,=1. For the proof of (2), take fe= C.(D) such that f(x)=0 for

xe (-1, 0) and f(x) > 0 for x= (0, 1). Then, by (7.8) and (7.10), (Gof) b)) >0

and ( G’Ol ) (p-=0. Therefore, p, + p_,. (Q.E.D)

PROPOSITION 7.2. (1) Sy={Do-» Pos}s

@) SinSe=0 and S_,NS,=0.

Proor. (1) Let p,. be a point such that there exists a sequence (x,);_,
in (—1,0) such that limx,=0 and limi*(x,)=p,., and let p,. be a point

Nn=-+o0 n—rx

such that limy,=0 and 1 1m 1%(Vn) = Pos. We shall prove that p,_ =+ p,,.. Take

n—0

J e C(D) such that f(x) 0 for x (1, O) and f(x)>0 for x=(0,1). Then,

by (7.7) and (7.9), ( Gl ) (p,.)=0 and ( it ) (pos) > 0. Therefore, p,. # Dos

Now, we shall prove that £S,—2. Assume that there exist different three
points &, & and &,. Then, there exist sequences (x,)%-1, (V)o=: and (z,)7-
such that limx,=limy,=1limz,=0, and lim*(x,)=¢&, hm *(y) =&, and

n—00 n—oo Tn=»C0 Nn—00

lim i*(z,) = &,. Therefore, for infinitely many #n, at least one of the following

cases hold: (i) x,, ¥, €0, 1), (iD) %n, 2, €0, 1), (iii) yn, 2, €0, 1), (V) xn, Vn
e(—L0), (V) x,, 2z, €(—1,0), (vi) yp, 2. (-1, 0). For example consider the
case (iii). Then, for any f& C.(D), by (7.9), we have ( Gl ) &)= (»Go——l—) (&s).
Since &,, £, V*, we have, by (6.8), §,=¢&,. This is absurd. Other cases are
similar. Therefore, #S,=2. For the proof of (2), take fe C.(D) such that
f(x)>0 for xe(—1,0) and f(x) 0 for x=(0,1). Then, by (7.8) and (7.9),

Go]_ ) (b-1) <0 and ( Gl ) (pos)=0. Therefore, p_; # pes. Next, assume

that p_,=p,.. Then, by (7.7) and (7.8), for any fe& B(D),

[ (e o )y =~ [ (@) fy)dy
Therefore,

[ @ e m = @10 £y
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In particular, taking a:—-~% and f(y):e“/m, we have, ¢?—2e¢—1=0. This

is absurd. Consequently, p_, # p,-. This completes the proof of S_;"\S,=20.
Similarly, S, S,=0. Q. E.D)
PROPOSITION 7.3. D¥=0.
PrROOF. We shall prove that lim aG¥%f(p,.) = f(p,.) for any fe C(D*).

a0

Other cases are similar as will be seen below. By (7.7) and (7.2),

1) aGEfn)=a(- LT o, )

571 — o VB L
~a \/E/ng)( i'z?r)l)af Ol(ezfz“e*z“”—e ) FNGL()dy
—e @ e — —

_ V2 a 0 Vix ,Viay__ ,~Viay
VT -1y l—e”ﬁjﬂe ¢ e )

{7 — oo T 4 (T 1™ (1"} f(3)dy

~ i N
N O s N L T | LMsz(e ¢ )

R
(@7 — /Ty 4 (7 Dy Ve + AT} () dz

_ 1 1 ,f
VT (el =12 e Ve 1) v

(@—e ") (D) f (’\7%3) dz,

where
_ Vrz _ vz
(7.12) 0.(2) = eVor (e*/ﬂ—l)evz?.k(e«/zr —'1)e~“/07+(1——e2ﬁ?)
vVa
We can prove that for any ze& (—oo, 0)
(7.13) lim . (2) = /7 (V7 —1)z .

Put t = —\/—1&_— and g,(2) = eV (¢V7 —1)e"7 4 (¥ —1)e V7= Then,

(7.14) ) = pufa) = BE &)

Fix any ze& (—+2a,0). By the mean value theorem, there exists se< (0, t)
such that ¢ (2) = gi(z) = "7 ("7 —1)/7 ¢ 72— (V7 —1)o/7 ¢ “7z.  Since
sz € (—+/2,0), there exists a constant ¢> 0 such that

(7.15) P (D) = —cz.

Since ¢—e*% > 0 for ze (—+/2a, 0), by (7.15),
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16 H—v2a <z<O(—e N ) f (i) |2 el e

z
v 2a
Noting that f —ze*dz=1 and hmf( \/Z,%_) = f(p,-), applying the Lebes-

o 00

gue’s dominated convergence theorem, by (7.11), [(7.12), (7.13) and [7.16), we have

: . 1 0 2/ (M
lim @G o)== i gy ) YT € Ve Gz
= f(bo-) -
This completes the proof of [Proposition 7.3 (Q.E.D.)

Example 2. The spaces S, D and V are the same as in Example 1. Let
M?® be the process whose path functions behave according to the Brownian
motion {G,; @ >0} absorbed at {—1, 0} in (—1, 0) and behaviors in (0, 1) are
the ones of the uniform motions moving from the left to the right such that
are killed by ¢ Ed t (c is a constant and 0<c<1) for the time interval of d¢ and

then jump to a point —&. Then, we can see that the resolvent {G%; a >0}
associated with M° is the following:

L e e R CE L S e (SR S CESDINE
for x= (0, 1),
(7.18) GL ) =CullFlre)®)  for x&(=1,0).

ProPOSITION 7.4. GYC(D)) C(D) for any a>0.
PRrROOF. By (7.4), (7.17) and (7.18), we have only to prove that G31(6)—0
as £ 0, which can be proved as follows. Since

(7.19) { 01”5_@%%?{ ferernaryds

- jome_at_(Tf—c_t)T I Xon(E+Ddt

for any a>0, fe B(D) and £ (0, 1), we have

(7.20) { :‘E@%ﬁ*{ j:e-“tl(éﬂ)dt}——»o as £10.
Since by (7.2)

(7.21) C1() = % for xe (—1,0),
where

(7.22) Ba(%) = V7 (V2 1)V EE 4 (¢ —1)e Ve

we have
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7.23) { 01 f@%i)m -G 1(—E—s)ds

c&° e g(—6—95)—g0)
o Ml b iy ==

By using the same method as in and (7.15), we have

@2 | 8529280 | < oz oo ).

Therefore, noting that

(7.25) [retas=L -,

0

we have, by [7.23) and [7.24),

(7.26) j: : . f)m G, 1(—E—s)ds—0 as £10.

Thus, by (7.17), [(7.20) and [7.26), we have léim GY1(8) =0. (Q.E.D)
10
Noting that for any a >0, f= B(D) and & = (0, 1),

.27 aGL@)= [ e[ e Lo (64 ) du

+0 % -1, @Gal[ f I sy )(—E—$) s

©_ cE _
and 5‘0 st-—l, we have

PROPOSITION 7.5. For any fe C(D) and x< D,
lim aGY f(x) = f(x).

Next, we shall calculate the entrance boundary of D for {G%; a> 0}.
Since by (7.17) and [7.19), for any &< (0, 1),

;1,‘ S e < Gl Je-1,0)(— —£—5)
728 -Sel ()= ENGE >cf<f+s>ds+f Eroy s o
: Gl &= 1 fl P fl et GA(—E—s) 4
(5+S)C o (E+s)° E+s
noting [(7.21), [(7.24) and [7.25), we have
e ™ Ca([f](—l,o))(__s)
af, j c f(s)ds+cf - el ds

@29 lim @)=

jl e rs dech e‘:s ) Gr1(—s) ds
0 S S

for any @ >0 and fe C(D). Since by (7.28), for any &< (0, 1),
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“‘(f (z)dt+cf e Ga([f](;ho))(—l‘) a)

l-c
ers (

j ert | GAD gp) ’
e t

noting (7.4), (72T), (724 and [7.25), by muitiplying (7.30) by ~1é§-, we have,

for any >0 and fe C{(—1, 0)\U (0, 17),

@30 G ©=

N €Y P
(7.31) lim -84 =/
Let D** be an %H,.-completion of D.
ProPOSITION 7.6. (1) S_;={b_1}, So={Po-s Dos}, Si={b:}
2 S.inSe=9, S.iNS;=0, S;nS;=0
(3) D¥*—i*x(D)=S_,\US,\US,.
Proor. (1): By [(7.I8) and [Proposition 7.1, we have #S_,=1. By [7.31),

G01L>**(;b) =0 for any p=S,. There-

fore, by the property (6.12) of the .H.-completion, we have #S,=1. Noting
and (7.29), by using the same way as in Proposition 7.2 (1), we have
#S,=2.

(2): Since (@'1‘) (pl)-O for any a > 0 and fe C.(D) by [7.3I), we can
see, by [(7.7), (7.8) and (7.29), that S_, " S;=0@ and S, S,=0. By Proposition
7.2 (2), p_1# po-- By (7.8) and (7.29), p_, # po.. Therefore, S, NS, =0.

(3): Since S is compact, it is clear that D**—(D)cC S_,\US,US,. There-
fore, for the proof of (3), it is sufficient to prove that p_,, Po-, Dos, D1 E 1¥*(D),

Gy(J/GY)
Go1 H,O)»>0 as a—oco

for any fe C.(D) by and [Theorem 4.3, we can see that p_,, p,. e 1**¥(D).
0 %k .

Since (—gg’—flc—)k*(pl)_—_o for any a>0 and fe C. (D) by we have, by
I's

(7.2) and (7.28), p, & (D). Finally, we shall prove that p,. e i**(D). Assume
that p,. =1*%(x) for some x= D. Then, by and (7.29), we can see that x
should be contained in (0, 1). Take fe C.(D) such that f(y)=0 for ye (-1, 0)

Ulx, 1 and f(») >0 for y (0, x). Then, by (7.28) and (7.29), 0= (@i)(x)

we have, for any a > 0 and fe C.(D),

which can be proved as follows. Since ||«

0
GYLf \** . eil
=< Gl 1 ) (o) > 0. This is absurd. (Q.E.D)

PROPOSITION 7.7. i** {5 a homeomorphism from D onto **(D).
This follows from Proposition 7.6 (3).
PROPOSITION 7.8. D#F*= {p,}.
Proor. Fix any fe C(D*¥). Since by (7.8) and [7.18)

aGEHf(p-) = lim CORIOTCED () i @GS0 P JesnCrl) (),

T-—1 T £-—1 Gr]-
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we have, by [Proposition 7.3, lim aG¥*f(p.)=s(p-). Therefore, p_, < DF*.
Similarly, p,. & D¥*. By (7.29),

(7.32)  aGEF*f(pos)
af 1£:ifo P*GY 1(S)ds—l—cvcj1 e—‘:s Gullf 0¥ ]G (=9) ds
— o S o S

s
178 e Gyl(—s)
fo & ds—l—cJ0 S ds

SC

Since {a Ga([fo i**](—l.o)arl)(”‘s)
s
noting we have
(7.33) lim caf ¢ Gallfoi**Je1oGrD(=9) 4o,
0

¢ S

< 1 A-CEES < M ) by (72 and (7283

Q=00

1 g~ et

as 1 t
By (7.17), since j oG} 1(s)ds = j - (f e=@-15 . f(#x(s))ds ) dt
0 0 0
tef l%ﬁfllfil ([ e-@rif(ie(s)ds)dt, noting (72}, (7.24) and (725}, we
0 0

have,

. 1 e—as .
(7.34) lim & j Foi**GL1(s)ds
0

C
a—co S

= G {[ e £ A as)

Therefore, by (7.32), [(7.33) and [7.34), we have lim aG¥*f(pos) = f(Por)- Thus,

Dor & DF*. By [(7.31), for any @ > 0 and fe C(D*¥), aG¥*f(p,)=0. This implies
that p, € D¥*. Consequently, noting [Proposition 7.5 and Proposition 7.6 (3),
we have D¥*={p,}. (Q.E.D)

Finally, we shall investigate how large #. can be. Since the path func-
tions of M° are not continuous, we can not apply to our M°.
But, also in this case, we have

PROPOSITION 7.9. C.(D)C H..

PROOF. Since CyD) is dense in C.(D), it suffices to prove that C,(D)cC ...
Fix any fe Cy(D). By applying (4.21) in the proof of Theorem 4.3 to {G,; a>0},

(7.35) lim “Ca([fg;il-wéfl) =0

Therefore, by (7.18), we have only to prove that

ji%ﬁg—l)__f”(o.l) =0

(7.36) lim | 47007

a0

By (7.17) and (7.18), for any £ (0, 1),
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GL(fGL1
(7.37) L?((TLL(E)
—a p-ac-¢ G G 1) (—
a,j‘ “ GO l(z‘)dt—l—caf ¢ . Ga([f](—l.to)crl)( t) dt
1 g-7U-6 T ) Grl(—t) ’
L“——tv dt—|~cL F— -
(738) « j ° e i@t
. 1 e—a(t—é‘) 1-t o TS cC;l(-—tas)
““L / (t){jo ¢ (t+s)° dS“Lj s U i1 ds }t
. 1 e T-6 o T¢=5 Grl(——t)
=[ (St ) Rt Ot
where
739 g @ne-d a p
(7.39) (9= (G ).
Since fe& Cy(D), there exists a < (0, 1) such that
(7.40) f(x)=0 for any x=(—1, —a]U[aq, D).
For any ¢> 0, by for sufficiently large a(> 7), H “Ga([fé<—1l,o>0r1) —f"
<e. Therefore, for any &< (0, 1), by ’ e
acjll e_c;::—b . Ca([f](—l.o)érlx—t)dt
(7-41) 1 74:t &) 1 -7E-§ C 1( l‘)
e 7¢-¢ e 7" rl(—
55* £ dt“f gyt
1 —a-% sl -
J, S st ar
<
= Mo, 7(t ) 1 g-7-8 C_;rl(Mll)
L*wtc dt+cj6 et
1 —a(t-&) al 1(—%
J. S 1ol
<
= j‘l A Grl(——t) d te
3 : ¢
e 1 t
1 -at-& 1 —F
[ ) G
=g TACD, te
e’ | Gr
{ s dt
(A ¢ e Gl(—£&—5)
< I . .
= .sq o1t ] Grl(_t) it 5‘0 s€ 5"]"3 d3+6.
o 1 t

Similarly,
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1 —a(t-§& sl al .
acf e e Ga([f]c—x,to)Grl)( ) dt

tc
(7.42) e - -
e -8 1 ¢ 7U-8 Grl(—-t)
56 ——di+c| R i s
_ I (e Gl(—E—9)
= fo o EFs ds—e.

e s,
t

a I

Therefore, noting [(7.21), [7.24) and [7.25), letting « —co and then ¢ | 0 in
and [7.42), we have

acj; g=a-9 . C—;a([f](—lyto)érl)(_—t) dt

tc
(7.43) £ — _ =0
o T ) 1 p-7t-9 Grl(—t)
5.5 _tc_dt+cj5 1° . ; dt
as a—oco uniformly in £ (0,1). Put
-7 -7-&6 =10
(7.44) Gt &) =- E_Ti e e th . Grlg H
Then, by (7.38),
1 p-a-9
af S fC Lt
(7.45) —E

T ) P () G,1(—b)
j‘f 7o dt_l_cje 7 10 7 dt

6t 9.0 O—r@nat
R J.Gatt, 1t '

Since fe C,(D), defining by f(x)=0 for xe R—D, f becomes uniformly con-

tinuous in R and so for any ¢ >0, there exists d > (0 such that |f(X)—f())|< e

for |x—y|<d. Since
Y . ) T A — (11— &

Fut, =@ =[ e {1 +8)—r@pdv—(1=- 2 )A®

—-Y(j—r)(c—efai?’ e_vf(‘“i?’ JrE)dU
and since

| e T G S B GHE

a—7 a—y

= j05a€—<a—r>u{f<u+f)~—f(§) | du-+2|| 7| j:)ae—w_y)udu

[24

<&
="a—y

E+2071f,, e,
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we have

@16 |f. Gt Xt O—FENat]

<{ aﬁr (e—l—3||f||f:_r)6e—”dv>+’l— a '||f[|j;+aGa(t, odt}

a—y

<er (‘fol*?;cf\dt%_c 01 e;:t C—‘-rlt(—f) dt){ air <5+3”f”,f:_r)ae—vdv>

e [
On the other hand, noting that |F,(, s)lgw?j? I f]| from [7.39),
§+0
(7.47) 76t Pt s @)t
= (2 A | (G +5- S s

Therefore, noting [7.21), [7.24) and [7.25), we have, by (7.46) and

(7.48) . Gutt, Ot O—F@)t—0 a5 a—oo

uniformly in &.
Moreover, since F,(t, &) =7()=0 for t =& < [a, 1) from ((7.40),

[ Gt X @t
.6t ot

(7.49)

[ 6. 0. O revar
R e

a a 1

Consequently, by (7.37), [(7.43), (7.45), [(7.48) and [7.49), we have [7.36).
(Q.E.D)

Osaka University
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