On principal normal vector fields of submanifolds in a Riemannian manifold of constant curvature

By Tominosuke OTSUKI*)

(Received March 27, 1969)

Introduction.

In [9], the author proved the complete integrability of the distribution of principal tangent vector spaces of a hypersurface in a Riemannian manifold of constant curvature and applied it to the investigation of minimal hypersurfaces in a sphere with some special properties. The principal tangent vector space at a point of a hypersurface in a Riemannian manifold is the linear subspace of vectors which are eigenvectors corresponding to a fixed eigenvalue of the 2nd fundamental form at the point. If we consider this eigenvalue as the length of a normal vector to the hypersurface, we can generalize the above consideration to any submanifold in a Riemannian manifold of constant curvature.

In the present paper, he will prove a more generalized theorem than Theorem 2 in [9] and study the properties of the integral submanifolds of the distribution of principal tangent vector spaces corresponding to a principal normal vector field.

§ 1. Preliminary.

For any C^{∞} vector bundle $E \to M$ over a C^{∞} differentiable manifold M, we denote the set of C^{∞} cross sections by $\Gamma(E, M)$.

Let $\overline{M}=\overline{M}^{n+p}$ be an (n+p)-dimensional C^{∞} Riemannian manifold and $M=M^n$ be an n-dimensional immersed C^{∞} submanifold in \overline{M} by an immersion $\phi: M \to \overline{M}$. Let $P: \phi*T(\overline{M}) \to T(\overline{M})$ be the projection defined by the orthogonal decomposition:

$$T_{\psi_{(x)}}(ar{M}) = \psi_*(T_x(M)) + N_x$$
 , $x \in M$ and put $P^\perp = 1 - P$.

We denote the normal bundle of M in \bar{M} by the immersion ψ by $N(M, \bar{M})$ whose total space is $\bigcup_{x \in M} x \times N_x \subset M \times T(\bar{M})$. Then

^{*)} Work done under partial support from NSF grant GP-8623.

$$\phi * T(\bar{M}) = T(M) \oplus N(M, \bar{M})$$
.

In the following, we denote simply $\mathfrak{X}(M) = \Gamma(T(M), M)$ and $\mathfrak{X}^{\perp}(M) = \Gamma(N(M, \overline{M}), M)$. We denote the covariant differentiation operators for \overline{M} and M by \overline{V} and V respectively. For the vector bundle $N(M, \overline{M})$, we have the naturally induced metric connection from the one of \overline{M} and denote the corresponding covariant differential operator by V^{\perp} . According to Martz [2] for an $X \in \mathfrak{X}(M)$, we have the following decomposition of \overline{V}_X .

(1.1)
$$\overline{V}_X = V_X + T_X$$
 on $\mathfrak{X}(M)$,

where

$$\overline{V}_X = P\overline{V}_X$$
 and $T_X = P^{\perp}\overline{V}_X$

and

(1.2)
$$\overline{V}_X = T_X + \overline{V}_X^{\perp}$$
 on $\mathfrak{X}^{\perp}(M)$,

where

$$T_X = P\overline{V}_X$$
 and $V_X^{\perp} = P^{\perp}\overline{V}_X$.

 T_X is called the shape operator of M in \overline{M} due to O'Neill.

Applying P and P^{\perp} to the equation of definition of curvature tensor of \bar{M} ,

$$\overline{R}_{X,Y} = [\overline{V}_X, \overline{V}_Y] - \overline{V}_{[X,Y]}$$

considered only for $X, Y \in \mathcal{X}(M)$, and substituting the decompositions (1.1) and (1.2) of \overline{V}_X , \overline{V}_Y , we have the following formulas:

(i) On $\mathcal{X}(M)$

(1.3)
$$P\overline{R}_{X,Y} = R_{X,Y} + [T_X, T_Y]$$
 (the Gauss equation)

$$(1.4) \qquad \qquad P^{\perp} \overline{R}_{X,Y} = T_X \overline{V}_Y - T_Y \overline{V}_X + \overline{V}_{\overline{X}}^{\perp} T_Y - \overline{V}_{\overline{Y}}^{\perp} T_X - T_{[X,Y]}$$

(the second Codazzi-Mainardi equation),

where $R_{X,Y} = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}$ is the curvature tensor of M and $[T_X, T_Y] = T_X T_Y - T_Y T_X$.

(ii) On $\mathcal{X}^{\perp}(M)$

$$(1.5) P\overline{R}_{X,Y} = \nabla_X T_Y - \nabla_Y T_X + T_X \nabla_Y^{\perp} - T_Y \nabla_X^{\perp} - T_{[X,Y]}$$

(the first Codazzi-Mainardi equation),

(1.6)
$$P^{\perp} \overline{R}_{X,Y} = R_{X,Y}^{\perp} + [T_X T_Y]$$
 (the Ricci equation),

where $R_{X,Y}^{\perp} = V_X^{\perp} V_Y^{\perp} - V_Y^{\perp} V_X^{\perp} - V_{X,Y}^{\perp}$ is the curvature tensor of $N(M, \bar{M})$.

Now, take a fixed point $x \in M$ and a normal vector $v \in N_x$. A non zero tangent vector $u \in M_x = T_x(M)$ is called a *principal tangent vector* for v if

$$(1.7) T_u z = \langle u, z \rangle v \text{for any } z \in M_x,$$

where \langle , \rangle denotes the inner product of M. And v is called a principal normal vector of M in \overline{M} at the point. If v is a principal normal vector at $x \in M$, the set of all principal tangent vectors for v and the zero vector is clearly a linear subspace of M_x which we call the principal tangent vector space for v and denote it by E(x, v). On the principal tangent vector spaces, we have the following.

LEMMA 1. If v_1 and v_2 are principal normal vectors at $x \in M$ and $v_1 \neq v_2$, then $E(x, v_1) \perp E(x, v_2)$.

PROOF. Let $u_1 \in E(x, v_1)$ and $u_2 \in E(x, v_2)$. By means of (1.7), we get

$$T_{u_1}u_2 = \langle u_1, u_2 \rangle v_1$$
 and $T_{u_2}u_1 = \langle u_2, u_1 \rangle v_2$.

Since the operator T is self adjoint, we have $T_{u_1}u_2 = T_{u_2}u_1$, hence $\langle u_1, u_2 \rangle \langle v_1 - v_2 \rangle$ = 0, which follows $\langle u_1, u_2 \rangle = 0$.

Now, let $F(\bar{M})$ and F(M) be the orthonormal frame bundles over \bar{M} and M respectively, here we consider M has the induced Riemannian metric from \bar{M} through ψ . Let B be the set of elements $b=(x,e_1,\cdots,e_n,e_{n+1},\cdots,e_{n+p})$, where $(x, e_1, \dots, e_n) \in F(M)$ and $(\phi(x), \phi_* e_1, \dots, \phi_* e_n, e_{n+1}, \dots, e_{n+p}) \in F(\bar{M})$. B is considered naturally C^{∞} manifold and $B \rightarrow M$ is a principal fibre bundle over M. We denote the basic forms and connection forms on $F(\overline{M})$ of \overline{M} by

$$\bar{\omega}_A$$
, $\bar{\omega}_{AB} = -\bar{\omega}_{BA}$, $A, B = 1, 2, \dots, n+p$

and the induced forms on B through the natural mapping $B \to F(\overline{M})$ by the notations omitted bars. We have the structure equations for \bar{M} :

(1.8)
$$\begin{cases} d\bar{\omega}_A = \sum_B \bar{\omega}_B \wedge \bar{\omega}_{BA}, \\ d\bar{\omega}_{AB} = \sum_B \bar{\omega}_{AC} \wedge \bar{\omega}_{CB} + \bar{\Omega}_{AB} \end{cases}$$

and on B

(1.9)
$$\left\{ \begin{array}{ll} \pmb{\omega}_{\alpha}\!=\!0\,, & \alpha=n\!+\!1,\cdots,n\!+\!p\\ \pmb{\omega}_{i\alpha}\!=\!\sum_{j}A_{\alpha ij}\pmb{\omega}_{j}\,, & i\!=\!1,2,\cdots,n\,, \end{array} \right.$$

where1)

$$A_{\alpha ij} = A_{\alpha ji} .$$

Then using the frame $b=(x,e_1,\cdots,e_n,e_{n+1},\cdots,e_{n+p})$, the shape operator T_X will be expressed as follows:

$$i, j, k, \dots = 1, 2, \dots, n;$$

 $\alpha, \beta, \gamma, \dots = n+1, \dots, n+p;$
 $A, B, C, \dots = 1, 2, \dots, n+p$

with some exceptions.

¹⁾ In the following, the indices run as follows:

(1.11)
$$T_{e_i}(e_j) = \sum_{\alpha} \omega_{j\alpha}(e_i) e_{\alpha} = \sum_{\alpha} A_{\alpha ij} e_{\alpha}$$

and

(1.12)
$$T_{e_i}(e_\alpha) = \sum_j \omega_{\alpha j}(e_i)e_j = -\sum_j A_{\alpha ij}e_j$$

and the bilinearity of $T_u(v)$ in u and v.

§ 2. Principal normal vector fields.

Now, we suppose that a principal normal vector field $V \in \Gamma(N(M, \overline{M}))$ is given. Then, dim E(x, V(x)), $x \in M$, is clearly an upper semi-continuous positive integer valued function on M. Hence for its minimal value m(>0), the point set M_0 of x such that $m = \dim E(x, V(x))$ is an open subset of M.

LEMMA 2. If V is a C^{∞} principal normal vector field of M in \overline{M} , then $E(M, V) = \bigcup_{x \in M_0} E(x, V(x))$ makes a C^{∞} m-dimensional distribution on M_0 .

PROOF. Take any point $x_0 \in M_0$ and a local cross section of the bundle $B \to M$ about x_0 . Then, any vector $u \in E(x, V(x))$ is a solution of the equations

(2.1)
$$\sum_{j} \{A_{\alpha i j}(x) - v_{\alpha}(x) \delta_{i j}\} u_{j} = 0, \quad i = 1, 2, \dots, n; \ \alpha = n+1, \dots, n+p,$$

where $u = \sum_{i} u_{i}e_{i}$ and $V(x) = \sum_{\alpha} v_{\alpha}(x)e_{\alpha}(x)$, because we have

$$T_u z = \sum_{lpha} A_{lpha ij} u_i z_j e_{lpha}$$
, $z = \sum_j z_j e_j$

by (1.11). Since the system of linear equations in u_1, \dots, u_n has rank n-m, the distribution E(x, V(x)) is C^{∞} about x_0 .

LEMMA 3. Let M be an n-dimensional C^{∞} submanifold immersed in an (n+p)-dimensional C^{∞} Riemannian manifold \overline{M} of constant curvature \overline{c} with a C^{∞} principal normal vector field V such that E(M, V) has constant dimension m>1. Then, the m-dimensional distribution E(M, V) is completely integrable if and only if $\overline{V}_{u}^{\perp}V=0$ for any $u\in E(M, V)$.

PROOF. By Lemma 2, E(M, V) is an m-dimensional C^{∞} distribution on M. We take any two tangent vector fields $X, Y \in \mathcal{X}(M)$ such that $X(x), Y(x) \in E(x, V(x)), x \in M$, which we denote simply by $X, Y \subset E(M, V)$. For any $Z \in \mathcal{X}(M)$, we have

$$(2.2) T_{X}Z = \langle X, Z \rangle V, T_{Y}Z = \langle Y, Z \rangle V.$$

By means of the second Codazzi-Mainardi equation (1.4), from (2.2) we have

$$\begin{split} &(T_{\complement X,Y\urcorner} + P^{\bot} \overline{R}_{X,Y}) Z = T_{X} \overline{V}_{Y} Z - T_{Y} \overline{V}_{X} Z + \overline{V}_{X}^{\bot} T_{Y} Z - \overline{V}_{Y}^{\bot} T_{X} Z \\ &= \{ \langle X, \overline{V}_{Y} Z \rangle - \langle Y, \overline{V}_{X} Z \rangle \} \, V + P^{\bot} (\overline{\overline{V}}_{X} (\langle Y, Z \rangle V)) - P^{\bot} (\overline{\overline{V}}_{Y} (\langle X, Z \rangle V)) \\ &= \langle \overline{V}_{X} Y - \overline{V}_{Y} X, Z \rangle V + \langle Y, Z \rangle \overline{V}_{X}^{\bot} V - \langle X, Z \rangle \overline{V}_{Y}^{\bot} V \,, \end{split}$$

that is

$$(2.3) T_{\Gamma X,Y}Z = \langle [X,Y],Z \rangle V + \langle Y,Z \rangle \overline{V}_{X}^{\perp}V - \langle X,Z \rangle \overline{V}_{Y}^{\perp}V - P^{\perp}(\overline{R}_{X,Y}Z).$$

Since \bar{M} is of constant curvature \bar{c} , we have

(2.4)
$$\bar{R}_{X,Y}Z = \bar{c}(\langle Y, Z \rangle X - \langle X, Z \rangle Y)$$

in general. Thus, (2.3) is equivalent to

$$(2.5) T_{[X,Y]}Z = \langle [X,Y],Z \rangle V + \langle Y,Z \rangle \overline{V}_{X}^{\perp}V - \langle X,Z \rangle \overline{V}_{Y}^{\perp}V.$$

Therefore $[X, Y] \subset E(M, V)$ if and only if

$$(2.6) \langle Y, Z \rangle \nabla_{\overline{X}}^{\perp} V = \langle X, Z \rangle \nabla_{\overline{Y}}^{\perp} V$$

for any $Z \in \mathcal{X}(M)$. This condition is dependent only on X(x), Y(x) at each $x \in M$. Since m > 1, we can take Z(x) such that $\langle Y(x), Z(x) \rangle \neq 0$, $\langle X(x), Z(x) \rangle = 0$ if $X(x) \wedge Y(x) \neq 0$. Then (2.6) implies

$$\nabla \frac{1}{X}(x) V = 0$$
.

Therefore, if E(M, V) is completely integrable, then $\nabla_u^{\perp} V = 0$ for any $u \in E(M, V)$. Conversely, if this condition is satisfied, then E(M, V) is completely integrable from (2.5).

Lemma 4. Let M, \overline{M} and V be supposed as in Lemma 3. Then, the principal normal vector field V satisfies $\nabla_u^{\perp} V = 0$ for any $u \in E(M, V)$.

PROOF. For a fixed point $x_0 \in M$, we can take a sufficiently small neighborhood of x_0 and a local cross section $(x, e_1, \cdots, e_n, e_{n+1}, \cdots, e_{n+p})$ of the bundle $B \to M$ defined on this neighborhood such that $e_1, \cdots, e_m \subset E(M, V)$. Then, putting $V = \sum_{\alpha} v_{\alpha} e_{\alpha}$, by (1.11) and (1.7) we have

(2.7)
$$T_{e_a}(e_j) = \sum_{\alpha} A_{\alpha a j} e_{\alpha} = \delta_{a j} \sum_{\alpha} v_{\alpha} e_{\alpha}, \quad a = 1, 2, \dots, m$$

or

$$A_{lpha} = ((A_{lpha ij})) = \left(\begin{pmatrix} v_{lpha} & 0 & 0 \\ 0 & v_{lpha} \\ 0 & \overline{A}_{lpha} \end{pmatrix} \right), \qquad \overline{A}_{lpha} = ((A_{lpha rt})),$$

$$r, t = m+1, \dots, n;$$
 $\alpha = n+1, \dots, n+p.^{2}$

On the other hand, we get from $\omega_{i\alpha} = \sum_{j} A_{\alpha ij} \omega_{j}$ by means of exterior derivative and the structure equation (1.8) replaced with

$$\bar{\Omega}_{AB} = -\bar{c}\bar{\omega}_A \wedge \bar{\omega}_B,$$

²⁾ In the following, a, b, c, \dots run from 1 to m and r, s, t, \dots run from m+1 to n.

$$d\boldsymbol{\omega}_{i\alpha} = d(\sum_{j} A_{\alpha i j} \boldsymbol{\omega}_{j}) = \sum_{j} dA_{\alpha i j} \wedge \boldsymbol{\omega}_{j} + \sum_{j} A_{\alpha i j} d\boldsymbol{\omega}_{j}$$
$$= \sum_{j} dA_{\alpha i j} \wedge \boldsymbol{\omega}_{j} + \sum_{k,j} A_{\alpha i k} \boldsymbol{\omega}_{k j} \wedge \boldsymbol{\omega}_{j}$$

and

$$egin{aligned} d\omega_{ilpha} &= \sum_{j} \omega_{ij} \wedge \omega_{jlpha} + \sum_{eta} \omega_{ieta} \wedge \omega_{etalpha} - ar{c}\omega_{i} \wedge \omega_{lpha} \ &= \sum_{k,j} \omega_{ik} A_{lpha k j} \wedge \omega_{j} + \sum_{j,eta} \omega_{lphaeta} A_{eta i j} \wedge \omega_{j} \,, \end{aligned}$$

hence

$$\sum_{j} \left\{ dA_{\alpha ij} + \sum_{k} A_{\alpha kj} \omega_{ki} + \sum_{k} A_{\alpha ik} \omega_{kj} + \sum_{\beta} A_{\beta ij} \omega_{\beta \alpha} \right\} \wedge \omega_{j} = 0.$$

By E. Cartan's lemma, we can put

(2.9)
$$dA_{\alpha ij} + \sum_{k} A_{\alpha kj} \omega_{ki} + \sum_{k} A_{\alpha ik} \omega_{kj} + \sum_{\beta} A_{\beta ij} \omega_{\beta \alpha} = \sum_{k} B_{\alpha ijk} \omega_{k}$$

and we see that

(2.10) $B_{\alpha ijk}$ is symmetric with respect to i, j, k

by using (1.10) in addition. Putting i=j=a in (2.9) we get

(2.11)
$$dv_{\alpha} + \sum_{\beta=n+1}^{n+p} v_{\beta} \omega_{\beta\alpha} = \sum_{k=1}^{n} B_{\alpha a a k} \omega_{k},$$

and putting i=a, j=b, $a \neq b$, in (2.9) we get

$$\sum_{k=1}^{n} B_{\alpha abk} \omega_k = 0,$$

hence

$$(2.12) B_{\alpha abk} = 0, a \neq b.$$

Making use of (2.10) and (2.12), the right hand side of (2.11) can be written as

$$dv_{\alpha}+\sum_{\beta=n+1}^{n+p}v_{\beta}\omega_{\beta\alpha}=B_{\alpha\alpha\alpha\alpha}\omega_{\alpha}+\sum_{r=m+1}^{n}B_{\alpha\alpha\alpha r}\omega_{r}$$
, $a=1,2,\cdots,m$; $\alpha=n+1,\cdots,n+p$.

Since m > 1, it must be

(2.13)
$$\begin{cases} B_{\alpha aaa} = 0 \\ B_{\alpha 11r} = B_{\alpha 22r} = \cdots = B_{\alpha mmr} (= B_{\alpha r}). \end{cases}$$

Hence, we get

(2.14)
$$dv_{\alpha} + \sum_{\beta} v_{\beta} \omega_{\beta \alpha} = \sum_{r=m+1}^{n} B_{\alpha r} \omega_{r}.$$

This equation implies that for any $u \in E(M, V)$

$$abla_u^{\perp} V = \sum_{r=m+1}^n B_{\alpha r} \omega_r(u) e_{\alpha} = 0$$
 ,

since $e_a \in E(M, V)$.

q. e. d.

Thus, we get the following

THEOREM 1. Let M be an n-dimensional C^{∞} submanifold immersed in an (n+p)-dimensional C^{∞} Riemannian manifold \overline{M} of constant curvature \overline{c} with a C^{∞} principal normal vector field V. Let M_0 be the open subset of points x of M such that dim $E(x, V(x)) = \min$ minimum. Then, E(x, V(x)), $x \in M_0$, is a completely integrable distribution on M_0 .

REMARK. When p=1, this theorem contains Theorem 2 in [9], in which we supposed that the multiplicities of principal curvatures are all constant.

§ 3. Integral submanifolds of E(M, V).

In this section, we consider only the case in Theorem 1 with $M_0 = M$ and $\dim E(M, V) > 1$, i.e.

 $(\alpha) \left\{ \begin{array}{l} M \text{ is an } n\text{-dimensional } C^{\infty} \text{ submanifold immersed in an} \\ (n+p)\text{-dimensional } C^{\infty} \text{ Riemannian manifold } \bar{M} \text{ of constant} \\ \text{curvature } \bar{c} \text{ with a } C^{\infty} \text{ principal normal vector field } V \neq 0 \\ \text{such that } E(M,\,V) \text{ is an } m\text{-dimensional distribution and } m>1 \end{array} \right.$

E(M, V) is C^{∞} by Lemma 2 and completely integrable by Theorem 1. We denote the integral submanifold of E(M, V) through $x \in M$ by $M^m(x) = M^m$.

THEOREM 2. Any integral submanifold M^m of the distribution E(M, V) under the condition (α) is of constant curvature and totally umbilic in M^n and \overline{M}^{n+p} .

PROOF. About any point $x_0 \in M$, we use $b = (x, e_1, \dots, e_n, e_{n+1}, \dots, e_{n+p}) \in B$ such that $e_1, \dots, e_m \subset E(M, V)$ and $V = \lambda e_{n+1}$. By the way analogous to (2.7) and (2.14) we have

$$(3.1) A_{n+1a,i} = \lambda \delta_{a,i} \text{or} \omega_{a,n+1} = \lambda \omega_{a,i},$$

(3.2)
$$A_{\beta aj} = 0$$
 or $\omega_{a\beta} = 0$, $\beta = n+2$, ..., $n+p$

and

$$(3.3) d\lambda = \sum_{r=m+1}^{n} B_{n+1r} \omega_r,$$

(3.4)
$$\lambda \omega_{n+1\beta} = \sum_{r=m+1}^{n} B_{\beta r} \omega_{r}, \qquad \beta = n+2, \dots, n+p.$$

From (3.1) and (3.2), we get

$$egin{aligned} d\omega_{an+1} &= \sum\limits_{b=1}^m \omega_{ab} \wedge \omega_{bn+1} + \sum\limits_{r=m+1}^n \omega_{ar} \wedge \omega_{rn+1} \ &+ \sum\limits_{eta=n+2}^{n+p} \omega_{aeta} \wedge \omega_{eta+1} - ar{c}\omega_a \wedge \omega_{n+1} \ &= \lambda \sum\limits_b \omega_{ab} \wedge \omega_b + \sum\limits_r \omega_{ar} \wedge \omega_{rn+1} \,, \ d(\lambda \omega_a) &= d\lambda \wedge \omega_a + \lambda \sum\limits_{i=1}^n \omega_i \wedge \omega_{ja} \,, \end{aligned}$$

hence

(3.5)
$$d\lambda \wedge \omega_a + \lambda \sum_{r=m+1}^n \omega_r \wedge \omega_{ra} - \sum_{r=m+1}^n \omega_{ar} \wedge \omega_{rn+1} = 0.$$

Analogously, from $d\omega_{a\beta}\!=\!0$ we get

(3.6)
$$\lambda \omega_a \wedge \omega_{n+1\beta} + \sum_{r=m+1}^n \omega_{ar} \wedge \omega_{r\beta} = 0, \qquad \beta = n+2, \dots, n+p.$$

From (3.3) and (3.5), we get

$$\sum_{r} (B_{n+1r}\omega_a - \lambda \omega_{ar} + \sum_{t} \omega_{at} A_{n+1tr}) \wedge \omega_r = 0.$$

From (3.4) and (3.6), we get

$$\sum_{r} (B_{\beta r} \omega_a + \sum_{t} \omega_{at} A_{\beta tr}) \wedge \omega_r = 0$$
.

By means of E. Cartan's lemma, we get from these

$$\begin{split} &\sum_t \omega_{at}(A_{n+1tr} - \lambda \delta_{tr}) + B_{n+1r}\omega_a = \sum_t C_{art}\omega_t \,, \\ &\sum_t \omega_{at}A_{\beta tr} + B_{\beta r}\omega_a = \sum_t C_{\beta art}\omega_t \,, \qquad \beta = n+2, \, \cdots, \, n+p \,, \end{split}$$

where $C_{art} = C_{atr}$ and $C_{\beta art} = C_{\beta atr}$. From the assumption (α), the solution of the following equations in u_{m+1}, \dots, u_n :

$$\sum_t u_t (A_{n+1tr} - \lambda \delta_{tr}) = 0$$
 , $\sum_t u_t A_{eta tr} = 0$

is $u_{m+1} = u_{m+2} = \cdots = u_n = 0$. Therefore, ω_{ar} can be written as

(3.7)
$$\omega_{ar} = \rho_r \omega_a + \sum_{t=m+1}^n \Gamma_{art} \omega_t$$

where ρ_t , Γ_{art} are C^{∞} functions on the submanifold of B whose points satisfy the conditions in the beginning of the proof.

From (3.7), (3.1), (3.2) and the structure equations, we get the following equalities

$$egin{aligned} d\omega_{ar} &\equiv d
ho_{r} \wedge \omega_{a} +
ho_{r} d\omega_{a} + \sum\limits_{t} arGamma_{art} d\omega_{t} \ &\equiv d
ho_{r} \wedge \omega_{a} +
ho_{r} \sum\limits_{b} \omega_{b} \wedge \omega_{ba} + \sum\limits_{t,b} arGamma_{art} \omega_{b} \wedge \omega_{bt} \ &\equiv d
ho_{r} \wedge \omega_{a} +
ho_{r} \sum\limits_{b} \omega_{b} \wedge \omega_{ba} \ &\qquad \qquad (ext{mod } \omega_{m+1}, \, \cdots, \, \omega_{n}) \;, \ d\omega_{ar} &= \sum\limits_{b} \omega_{ab} \wedge \omega_{br} + \sum\limits_{t} \omega_{at} \wedge \omega_{tr} + \omega_{an+1} \wedge \omega_{n+1r} - ar{c} \omega_{a} \wedge \omega_{r} \ &\equiv \sum\limits_{b}
ho_{r} \omega_{ab} \wedge \omega_{b} + \sum\limits_{t}
ho_{t} \omega_{a} \wedge \omega_{tr} \ &\qquad \qquad (ext{mod } \omega_{m+1}, \, \cdots, \, \omega_{n}) \;, \end{aligned}$$

hence $(d\rho_r + \sum_i \rho_i \omega_{tr}) \wedge \omega_a \equiv 0$, that is

(3.8)
$$d\rho_r + \sum_t \rho_t \omega_{tr} \equiv 0 \quad (\text{mod } \omega_{m+1}, \cdots, \omega_n).$$

This follows that

(3.9)
$$d(\sum_{r} \rho_r \rho_r) \equiv 0 \quad (\text{mod } \omega_{m+1}, \cdots, \omega_n).$$

Now, we consider any integral submanifold M^m of the distribution E(M, V). On M^m , we have

$$\omega_{m+1} = \cdots = \omega_n = 0$$

and

$$(3.10) \omega_{ar} = \rho_r \omega_a.$$

Therefore, the curvature forms of M^m are given by

(3.11)
$$d\omega_{ab} - \sum_{c=1}^{m} \omega_{ac} \wedge \omega_{cb} = d\omega_{ab} - \sum_{c=1}^{n+p} \omega_{ac} \wedge \omega_{cb}$$
$$+ \sum_{r=m+1}^{n} \omega_{ar} \wedge \omega_{rb} + \omega_{an+1} \wedge \omega_{n+1b}$$
$$= -(\bar{c} + \sum_{r} \rho_{r}^{2} + \lambda^{2}) \omega_{a} \wedge \omega_{b}.$$

By means of Lemma 3, λ is constant on M^m and $\sum_{r} \rho_r^2$ is also constant on it by (3.9). Therefore M^m is of constant curvature $\bar{c} + \sum_{r} \rho_r^2 + \lambda^2$. The relations

$$\omega_{ar} = \rho_r \omega_a$$
, $\omega_{an+1} = \lambda \omega_a$, $\omega_{a\beta} = 0$

show that M^m is totally umbilic in \overline{M}^{n+p} and the first relations show that M^m is also totally umbilic in M^n .

COROLLARY. Let M^n be a C^{∞} submanifold of a sphere $S^{n+p} \subset R^{n+p+1}$ with a C^{∞} principal normal vector field $V \neq 0$ such that E(M, V) is an m-dimensional

distribution (m > 1). Then E(M, V) is completely integrable and any one of its integral submanifolds is contained in an m-dimensional sphere which is the intersection of S^{n+p} and an (m+1)-dimensional linear subspace in R^{n+p+1} .

By Theorem 2, the tangent vector field $U = \sum_{r=m+1}^{n} \rho_r e_r$ of M^n is a principal normal vector field on each integral submanifold M^m of E(M, V) whose principal tangent vector space is the tangent space to M^m . We call U the induced principal normal vector field of M^m in M^n from V. (3.8) gives us immediately the following

THEOREM 3. The induced principal normal vector field U of any integral submanifold M^m of the distribution E(M, V) under (α) is parallel in the normal vector bundle $N(M^m, M^n)$ with the induced connection from M^n .

THEOREM 4. For any integral submanifold M^m of E(M, V) under (α) , there exists a totally geodesic submanifold $\overline{M}^{m+2}(\overline{M}^{m+1})$ of \overline{M}^{n+p} in which M^m is immersed, if U does not vanish (or vanishes near M^m in M^n).

PROOF. Using the notation in the proof of Theorem 2, furthermore we may put

$$(3.12) U = \rho e_{m+1} (\rho \neq 0)$$

locally, if $U \neq 0$. By Theorem 3, ρ is constant on M^m . Then (3.7) and (3.8) imply

(3.13)
$$\begin{cases} \omega_{am+1} = \rho \omega_a + \sum_{r=m+1}^n \Gamma_{am+1r} \omega_r, \\ \omega_{at} = \sum_{r=m+1}^n \Gamma_{atr} \omega_r, \quad a = 1, 2, \dots, m, \\ \omega_{m+1t} = \sum_{r=m+1}^n \Pi_{tr} \omega_r, \quad t = m+2, \dots, n. \end{cases}$$

Hence, we have

(3.14)
$$\omega_{am+1} = \rho \omega_a$$
, $\omega_{at} = 0$, $\omega_{m+1t} = 0$ on M^m , $t = m+2$, ..., n .

On the other hand, from (3.1), (3.2) and (3.4)

(3.15)
$$\begin{cases} \omega_{tn+1} = 0, & t = m+2, \dots, n, \\ \omega_{a\beta} = 0, & a = 1, 2, \dots, m, \\ \omega_{n+1\beta} = 0, & \beta = n+2, \dots, n+p. \end{cases}$$

Finally, we consider the following exterior derivative on M^m

$$0 = d\omega_{\alpha\beta} = \omega_{\alpha m+1} \wedge \omega_{m+1\beta} = \rho \omega_{\alpha} \wedge \omega_{m+1\beta}$$

by means of (3.14), (3.15), (1.8) and (2.8). Hence, we get

(3.16)
$$\omega_{m+1\beta} = 0$$
, $\beta = n+2$, ..., $n+p$, on M^m .

On the other hand, if we consider the following Pfaff equation system

(3.17)
$$\begin{cases} \overline{\omega}_{t} = 0, \quad \overline{\omega}_{at} = 0, \quad \overline{\omega}_{m+1t} = 0, \quad \overline{\omega}_{n+1t} = 0, \\ \overline{\omega}_{\beta} = 0, \quad \overline{\omega}_{a\beta} = 0, \quad \overline{\omega}_{m+1\beta} = 0, \quad \overline{\omega}_{n+1\beta} = 0. \end{cases}$$

$$a = 1, 2, \dots, m; \ t = m+2, \dots, n; \ \beta = n+2, \dots, n+p \quad \text{on } F(\overline{M}),$$

this is clearly completely integrable and its maximal integral submanifold in $F(\bar{M})$ gives an (m+2)-dimensional totally geodesic submanifold \bar{M}^{m+2} in \bar{M}^{n+p} . (3.14), (3.15) and (3.16) show that M^m satisfies (3.17). Therefore we may consider that \bar{M}^{m+2} contains M^m .

Next, we consider the case $U \equiv 0$ about a point of M^m in M^n . From (3.7), (3.2) and (3.4), we have

(3.18)
$$\omega_{ar} = 0$$
, $\omega_{a\beta} = 0$, $\omega_{n+1r} = 0$, $\omega_{n+1\beta} = 0$ on M^m , $a = 1, 2, \dots, m$; $r = m+1, \dots, n$; $\beta = n+2, \dots, n+p$.

On $F(\bar{M})$, the Pfaffian equation system

(3.19)
$$\begin{cases} \overline{\omega}_{r} = 0, & \overline{\omega}_{ar} = 0, & \overline{\omega}_{n+1r} = 0, \\ \overline{\omega}_{\beta} = 0, & \overline{\omega}_{a\beta} = 0, & \overline{\omega}_{n+1\beta} = 0 \end{cases}$$

$$a = 1, 2, \dots, m; \quad r = m+1, \dots, n; \quad \beta = n+2, \dots, n+p,$$

is completely integrable and its maximal integral submanifold in $F(\bar{M})$ gives an (m+1)-dimensional totally geodesic submanifold \bar{M}^{m+1} in \bar{M}^{n+p} . (3.18) shows that we may consider that \bar{M}^{m+1} contains M^m .

REMARK. \overline{M}^{m+2} (or \overline{M}^{m+1}) is clearly the locus of geodesics tangent to the vector space spanned by V and U at each point of M^m .

University of California, Berkeley Tokyo Institute of Technology

References

- [1] S.S. Chern, M. DoCarmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, to appear.
- [2] R. Maltz, Isometric immersion into spaces of constant curvature, to appear.
- [3] B. O'Neill, Isometric immersions which preserve curvature operators, Proc. Amer. Math. Soc., 13 (1962), 759-763.
- [4] B. O'Neill, Isometric immersion of flat Riemannian manifolds in Euclidean space, Michigan Math. J., 9 (1962), 199-205.
- [5] B. O'Neill, Umbilic of constant curvature immersions, Duke Math. J., 32 (1965), 149-159.
- [6] B. O'Neill and E. Stiel, Isometric immersions of constant curvature manifolds,

- Michigan Math. J., 10 (1963), 335-339.
- [7] T. Otsuki, A theory of Riemmanian submanifolds, Kōdai Math. Sem. Rep., 20 (1968), 282-295.
- [8] T. Otsuki, Pseudo-umbilical submanifolds with M-index ≤1 in Euclidean spaces, Kōdai Math. Sem. Rep., 20 (1968), 296-304.
- [9] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, to appear.
- [10] E. Stiel, Isometric immersions of manifolds of nonnegative constant sectional curvature, Pacific J. Math., 15 (1965), 1415-1419.