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Introduction.

In [9], the author proved the complete integrability of the distribution
of principal tangent vector spaces of a hypersurface in a Riemannian mani-
fold of constant curvature and applied it to the investigation of minimal
hypersurfaces in a sphere with some special properties. The principal tangent
vector space at a point of a hypersurface in a Riemannian manifold is the
linear subspace of vectors which are eigenvectors corresponding to a fixed
eigenvalue of the 2nd fundamental form at the point. If we consider this
eigenvalue as the length of a normal vector to the hypersurface, we can
generalize the above consideration to any submanifold in a Riemannian mani-
fold of constant curvature.

In the present paper, he will prove a more generalized theorem than
Theorem 2 in [9] and study the properties of the integral submanifolds of
the distribution of principal tangent vector spaces corresponding to a principal
normal vector field.

§1. Preliminary.

For any C> vector bundle E— M over a C> differentiable manifold M, we
denote the set of C= cross sections by I'(E, M).

Let M=M""? be an (n-+p)-dimensional C* Riemannian manifold and
M= M™" be an n-dimensional immersed C> submanifold in M by an immer-
sion ¢: M—M. Let P:*T(M)—T(M) be the projection defined by the
orthogonal decomposition:

T (M) = P (To(M)+N,, xe M and put PL=1—P,

We denote the normal bundle of M in A by the immersion ¢ by N(M, M)
whose total space is \J xXN,C MxT(M). Then
xEM

*)  Work done under partial support from NSF grant GP-8623.



36 T. OTsuUKI

G*T(M) =TM)DNWM, M) .
In the following, we denote simply XM)=I'(T(M), M) and 2X-(M)
= I'(N(M, M), M). We denote the covariant differentiation operators for M
and M by V and | réspectively. For the vector bundle N(M, M), we have

the naturally induced metric connection from the one of M and denote the
corresponding covariant differential operator by /L. According to Martz
for an X e 2(M), we have the following decomposition of F .
1.1) Vy=Vy+Ty on xM),
where
Vy=PVy and Ty=PLll,
and
1.2) Vy=Tx+V% on x(M),
where
Ty=PPy and P%=PiF,.
Ty is called the shape operator of M in M due to O’Neill. _
Applying P and P+ to the equation of definition of curvature tensor of M,
EX,Y: [VX: VY]“VEX,Y]
considered only for X, Y e %¥(M), and substituting the decompositions’ (1.1}
and of Iy, Iy, we have the following formulas:

@ On xM)
1.3) PRy y=Ryy+[Tyg, Ty] (the Gauss equation)
1.4 PJ'EX,Y =TxVy—TyV x+VxTy—V3 Tx—Ttx,r

(the second Codazzi-Mainardi equation),

where Ry,y =V xVy—VyV x—V x5y is the curvature tensor of M and [Ty, Ty}
::TxTY_TyTX.
(i) On XL(M)

(1-5) PEX,Y - VXTY—VYTX'FTXV? '_TYV‘J‘L"'—T[X,Y]
(the first Codazzi-Mainardi equation),
1.6) P'Ryy=R¥y+[TxTy] (the Ricci equation),

where Ry y="V%Vs —V3V%—Vi.y is the curvature tensor of N(M, M).
Now, take a fixed point xe M and a normal vector v N,. A non zero
tangent vector uc M,=T,(M) is called a principal tangent vector for v if

a.n Tz ={u, 2>v for any ze M,,
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where ¢, ) denotes the inner product of M. And v is called a principal normal
vector of M in M at the point. If v is a principal normal vector at xe& M,
the set of all principal tangent vectors for v and the zero vector is clearly a
linear subspace of M, which we call the principal tangent vector space for v
and denote it by E(x,v). On the principal tangent vector spaces, we have
the following.

LEMMA 1. If v, and v, are principal normal vectors at x& M and v, v,,
then E(x, vy 1 E(x, v,).

ProOF. Let u,  E(x,v;) and u, € E(x, v,). By means of [1.7), we get

Tty =<Uy, vy and  Toy,u; = Uy, UV, .

Since the operator T is self adjoint, we have T, u, =T,,u,, hence {u,, u,)(v,—v,)
=0, which follows {u,, u,)=0. q.e.d.

Now, let F(M) and F(M) be the orthonormal frame bundles over M and
M respectively, here we consider M has the induced Riemannian metric from
M through ¢. Let B be the set of elements b=(x, e, -, €ny Cnryy =+ 5 Cnip),
where (x, ey, -+, €z) € F(M) and (¢(x), Px€ys -+ PxCny Cnays -+ » Cnap) € F(M). B is
considered naturally C* manifold and B— M is a principal fibre bundle over
M. We denote the basic forms and connection forms on F(M) of M by

W4, QAB:"EBA: A!B:‘l: 2, "‘,n‘i'P

and the induced forms on B through the natural mapping B— F(M) by the
notations omitted bars. We have the structure equations for M :

(18) { 04 =30 NOpas
AW 5= B0 N\ Bop+24p
and on B
19 { @e=0, a=n+l, -, ntp
wia=§Am~jwj, i=1,2,.-,n,
where?
(1.10) Ay = Anyy -

Then using the frame b=(x, e,, -+, €y, €psy, =, €nyp), the shape operator Ty
will be expressed as follows:

1) In the following, the indices run as follows:
GGy By =1, 2, e, 1
&, By s =01, e, nt s
A, B,C,ee=1,2, e, n4-p

with some exceptions.
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(111) Tei<ej) = 2 chr(ei)ea = 2 Aaijea

and

(1'12) Tei(ea) = 2 waj(ei)ej - Z Aaijej
J J

and the bilinearity of T,(v) in u and v.

§2. Principal normal vector fields.

Now, we suppose that a principal normal vector field V e I'(N(M, M)) is
given. Then, dim E(x, V(x)), xe M, is clearly an upper semi-continuous posi-
tive integer valued function on M. Hence for its minimal value m(> 0), the
point set M, of x such that m=dim E(x, V(x)) is an open subset of M.

LEMMA 2. If V is a C= principal normal vector field of M in M, then
EM, V) :xyM()E(x, V(x)) makes a C m-dimensional distribution on M,.

Proor. Take any point x,= M, and a local cross section of the bundle
B— M about x,. Then, any vector u € E(x, V(%)) is a solution of the equations

(2.1) Z{Aa”(x)*va(x)aw}u]:o, 1:1, 2, Tty n; a:n+1, M} n+p9
J
where u = 3 ue; and V(x) = Zv.(x)e,(x), because we have
TuZ:EAaijuiZjea, Z:_"szej
« J

by (1.11). Since the system of linear equations in u,, ---, 4, has rank n—m,
the distribution E(x, V(x)) is C* about x,. g.e.d.

LEMMA 3. Let M be an n-dimensional C= submanifold immersed in an
(n+p)-dimensional C* Riemannian manifold M of constant curvature ¢ with a
C= principal normal vector field V such that E(M, V) has constant dimension
m>1. Then, the m-dimensional distribution E(M, V) is completely integrable
of and only if ViV =0 for any ue E(M, V).

Proor. By Lemma 2, E(M, V) is an m-dimensional C* distribution on M.
We take any two tangent vector fields X, Y = (M) such that X(x), Y (x)
e E(x, V(x)), x M, which we denote simply by X, YCEWM, V). For any
Ze x(M), we have

(2.2) TyZ=<XX,2>V, TyZ=XY,Z>V.
By means of the second Codazzi-Mainardi equation [1.4), from we have
Texrt PRy, ) Z=TxVyZ—TyV xZ+V%TyZ—V$ TxZ
=X, VyZ)—LY, VxZ)} VAPV xKY, ZYV)—PLF (X, Z)V))
=T YTy X, ZXVHY, ZXVx VX, Z)F3 V,
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that is
2.3) TixriZ=X, Y0, Z>VILY, Z5V VX, Z5V¥ V—Pi(RxyZ).

Since M is of constant curvature ¢, we have

2.9 Ry yZ=¢(KY,Z)X—X, ZY)
in general. Thus, is equivalent to
(2.5) Tixyi Z =<X[X, Y1, Z)VAHY, ZWWx VX, Z)P¥ V.

Therefore [ X, Y]C E(M, V) if and only if
(2.6) Y, ZWxV=LX,ZFsV

for any Z< 2(M). This condition is dependent only on X(x), Y(x) at each
xe M. Since m>1, we can take Z(x) such that <(Y(x), Z(x)) # 0, {X(x), Z(x))
=0 if X()AY(x)+#0. Then [(2.6) implies

Vf(x)v—'—’o-

Therefore, if E(M, V) is completely integrable, then FEV =0 for any u e
E(M, V). Conversely, if this condition is satisfied, then E(M, V) is completely
integrable from [2.5). q.e. d.

LEMMA 4. Let M, M and V be supposed as in Lemma 3. Then, the prin-
cipal normal vector field V satisfies ViV =0 for any ues E(M, V).

ProOF. For a fixed point x,= M, we can take a sufficiently small neigh-
borhood of x, and a local cross section (x, e, ==+, €, €441, -+, €54,) Of the bundle
B— M defined on this neighborhood such that e, ---, ¢, C E(M, V). Then,
putting V=3 v.e,, by (1.11) and (1.7) we have

(2'7) Tea(ej) = 2 Aaajea = 5(1]’2 Valy a= 1; 21 e, M
or
ve 0 O
Ag= ((Aaij>) =110 Va ’ }Ia = ((Aa'rt)) ’
0 A

7, t=m+1, -, n; a=n+1, -, n+p.2
On the other hand, we get from w;,= 23 A,:;;0; by means of exterior deriva-
J
tive and the structure equation (1.8) replaced with

(2.8) Qip=—Co, Ndg,

2) In the following, a, b, ¢, --- run from 1 to m and 7, s, ¢, --- run from m+1 to n.
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d(Dia = d(z]; Aaij(t)j) = 2 dAm;j AN (l)j—l— 2 Am;jda)j
J J

= ZJ} dAsijNo;+ E Apir@r; N\

and
dw;q= ?w”/\wja—l— Zﬁ}wiﬁAwpa—EwiAwa

:k,Zj) coikAakj/\a)j—l—J%) WapApijANw;,

hence
Zj) {d A+ Zk) Agrj@ri+ % Agiryj+ Zﬁ) Apijwpa} Nw;=0.

By E. Cartan’s lemma, we can put
2.9 dAqi;+ % ArjOri+ Zk) Apir®r;+ % Apijwpa= A::Baijkwk
and we see that

(2.10) B, is symmetric with respect to i, j, &
by using in addition. Putting i=j=a in we get
n+p n
(2'11) dva+ 2 vﬁwﬂa: 2 Baaakwk ’
B=n+1 k=1
and putting i=gq, j=0b, a+b, in [2.9)] we get
2 Baabkwk == O ’
k=1
hence

(2.12) Baabk — 0 ’ a=+ b .
Making use of (2.10) and the right hand side of [2.11) can be written as

n+p n

dve+ 20 VpWga = Bogaa®et+ 2 Booar@r
f=n+1 r=m+1l

a:l,Z, e, My a:n_l—l: NI (% oy

Since m > 1, it must be

Bzxaaa =0
2.13)

Ballr = Bazzr == Bammr(: Bar) .
Hence, we get
2.14) vt S0pope ==§H By, -

This equation implies that for any ue E(M, V)



Principal normal vector fields of submanifolds 41

ViV= 3 Buo,(W)e,=0,
1

r=m+

since ¢, = E(M, V). q.e.d.

Thus, we get the following

THEOREM 1. Let M be an n-dimensional C* submanifold immersed in an
(n+p)-dimensional C* Riemannian manifold M of constant curvature ¢ with a
C> principal normal vector field V. Let M, be the open subset of points x of
M such that dim E(x, V(x)) =minimum. Then, E(x, V(x)), x € M,, is a completely
integrable distribution on M,.

REMARK. When p=1, this theorem contains Theorem 2 in [9], in which
we supposed that the multiplicities of principal curvatures are all constant.

§ 3. Integral submanifolds of E(M, V).

In this section, we consider only the case in [Theorem 1l with M,= M and
dim E(M, V) >1, i.e.

M is an n-dimensional C* submanifold immersed in an

@ (n+p)-dimensional C’°° Riemannian manifold M of constant
curvature ¢ with a C* principal normal vector field V0
such that E(M, V) is an m-dimensional distribution and m >1

EM, V) is C* by [Lemma 2 and completely integrable by [Theorem 1. We
denote the integral submanifold of E(M, V) through xe M by M™x)=M™.

THEOREM 2. Any integral submanifold M™ of the distribution E(M, V)
under the condition (a) is of constant curvature and totally umbilic in M™ and
Mm?,

Proor. About any point x,& M, we use b=(x, e, -*+, €y, €p11, ***» Cpyp)EB
such that e, ---, e, CEM, V) and V =4e,,,. By the way analogous to (2.7)
and (2.14) we have

(3]-) Ans 1aj — 26&1‘ or Wgp+1 = /zwa. s
3.2) Apej=0 or =0, f=n+2, -, n4p
and
3.3) d= 3 B0,
r=m-+t1
(34) Monsp= 3 Bpo,,  P=nt2 -, ntp.

From (3.1) and (3.2), we get
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m n
dwan+1 = bEI Wap \Wppsyt+ 2 lwar/\w'rn+1
= r=m+

n+p

+ 2 waﬁ/\wﬁn-l-l_c-wa NWpyq
f=n+2

— R%wab/\wb"!' gwar/\wrn+1 ’

dQw) = dANG AR S 0; 0,0 5
j=1

hence

3.5 ANGAL D O G~ D) Ogr ABpyy=0.
r=m-+1 r=m+1

Analogously, from dw,;=0 we get

(3.6) A0 AGOnipt D) GarAwr=0,  B=n+2, -, ntp.
r=m+1

From and [3.5), we get
; (Bn+lrwa,—lwa'r+ ; watAn—l-ltr) /\wr - 0 .

From and [(3.6), we get
Z’r) (Bﬂrwa+ ;watA‘Btr)/\wr =0.

By means of E. Cartan’s lemma, we get from these

Zt: wat(An+1t'r—/.{5tr)+Bn+1ra)a = Et Cartwt ’

EzwatAﬁtr’l_BBrwa = Et CﬁaTtwt s ,8 =n+2, -, n+p,

where C,,; = Cur and Cggpe = Cgarr» From the assumption (), the solution of
the following equations in ., =+, Uy

zl) ut(An+1Lr_115t,'r> - 0 ’

Zt utAﬁt,T = 0
iS Upyy = Upeps = ++» =U,=0. Therefore, w,, can be written as
(3-7) waT:prwa+ 2 Fartwc
t=m+1

where p;, [’y are C> functions on the submanifold of B whose points satisfy
the conditions in the beginning of the proof.

From [3.7), [3.1), [3.2) and the structure equations, we get the following
equalities
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dwg, = dp, Awg+ prdw,+ 2{ I'gido,

= dprAwa+Przb](0b/\wba+ gpartwb/\wbt

=dp, Nwg+p, ; Wy A Wyq

(mod Oma1y > Dn) s

dwar = ; Wap /\wbr_l_ Zt Wqt Awtr+wan+1 /\wn+1r—5wa/\w'r
= % Pr@ap NWp+ 20 010 N\ Wy

(mOd Wpt1s *** wn) ’

hence (dp,+ ; 0:wi) ANw, =0, that is
3.8 do,+ ? P, =0 (mod Wy, -+, Wy) .
This follows that
3.9 dZp,0)=0  (mod wpsy, -, @n).
Now, we consider any integral submanifold M™ of the distribution E(M, V).

On M™, we have

Opiy= - =@, =0
and

(3.10) Wor = PrWg +
Therefore, the curvature forms of M™ are given by

n+p

(3.11) Adway— é Wae N\ Wep = dw gy — Czlwao/\wca

n
+ 2 lwar A Wrp +wan+1 A Wy 1p

r=m+

=—(C+ Zr]pi +2wa Awy -

By means of [Lemma 3, 1 is constant on M™ and ] p? is also constant on it
T
by [3.9) Therefore M™ is of constant curvature ¢+ X p2+2% The relations
7

Wor = P;Wq 5 Wgpig= AW, , Wep = 0

show that M™ is totally umbilic in A/™*? and the first relations show that M™

is also totally umbilic in M™. g.e.d.
COROLLARY. Let M™ be a C= submanifold of a sphere S™? C R™P+' yith

a C= principal normal vector field V+0 such that E(M, V) is an m-dimensional
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distribution (m >1). Then E(M, V) is completely integrable and any one of its
integral submanifolds is contained in an m-dimensional sphere which is the
intersection of S™? and an (m-+1)-dimensional linear subspace in R™ P+,

By the tangent vector field U= 3 pre, of M™ is a principal

r=m+1
normal vector field on each integral submanifold M™ of E(M, V) whose prin-
cipal tangent vector space is the tangent space to M™ We call U the induced
principal normal vector field of M™in M™ from V. gives us immediately
the following

THEOREM 3. The induced principal normal vector field U of any integral
submanifold M™ of the distribution E(M, V) under («) is parallel in the normal
vector bundle NIM™, M™) with the induced connection from M™.

THEOREM 4. For any integral submanifold M™ of E(M, V) under (), there
exists a totally geodesic submanifold M™?(M™") of M™? in which M™ is im-
mersed, if U does not vanish (or vanishes near M™ in M™).

Proor. Using the notation in the proof of Theorem 2, furthermore we
may put

3.12) U=pen, (p+0)

locally, if U=+0. By Theorem 3, p is constant on M™ Then (3.7) and (3.8)
imply

n
Wamr1= PWq+ 2+ 1Fam+1rwr ’
r=m

(3.13) Wy = 2 1]"',1”(0,, a=1,2,.-,m,
r=m
n
Oprye= 25 lntrwr: t=m+2, -, n
r=m+

Hence, we have
(3.14) Wompr = PWgy Wt =0, Wpe =0 on M™, t=m+2, .-, n.
On the other hand, from (3.1), (3.2) and (3.4)
Wiy =0, t=m+2, -, n,
(3.15) w,s =0, a=1,2,-,m,
Ona1p =0, B=n+2, o, ntp.
Finally, we consider the following exterior derivative on M™
0=dw.p= Oams1 A\ On118= PO\ Ops1p8 s
by means of (3.14), (3.15), (1.8) and (2.8). Hence, we get
(3.16) Onrip=0, B=n+2, ..., n+p, on M™.
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On the other hand, if we consider the following Pfaff equation system

;= 0: Doy = O, Dprys = O: Dy = 0 ’
3.17)

wg=0, @.p=0, 5m+1,8:-0: 5,,4_15:0.
a:l, 2: e, M, t:m+2’ e, AB:n+2’ Tt n+p on F(M),

this is clearly completely integrable and its maximal integral submanifold in
F(M) gives an (m+2)-dimensional totally geodesic submanifold M™** in M™+?.
and show that M™ satisfies [3.17) Therefore we may con-
sider that M™ contains M™.

Next, we consider the case U =0 about a point of M™ in M From [3.7),

and [(3.4), we have

3.18) Wyr =0, 0e=0, Wp4,;,=0, wprp=0 on M™,
a=1,2,---,m; r=m+1l,--,n; B=n+2 -, nt+p.

On F(M), the Pfaffian equation system

W, = 0. Wor = 0: Dpy1r = 0,
(3.19)

0—5/3:0, aaﬁ:O, (-O_n.,.l[g:o
a=1,2,-,m; r=m+l, -, n; B=n+2, ..., ntp,

is completely integrable and its maximal integral submanifold in F(M) gives
an (m-1)-dimensional totally geodesic submanifold M™ in M™*?. shows
that we may consider that M™ contains M™

REMARK. M™% (or M™) is clearly the locus of geodesics tangent to the

vector space spanned by V and U at each point of M™

University of California, Berkeley
Tokyo Institute of Technology
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