On injective modules

By Hideki HARUI

(Received Jan. 23, 1969) (Revised April 4, 1969)

In [3] C. Faith and E. A. Walker gave a characterization of a left artinian ring in terms of module theories. That is, a ring B is left artinian if and only if every injective left B-module is a direct sum of injective hulls of simple left B-modules. Under the assumption that a ring B is commutative, P. Vámos investigated in [9] some conditions for B to be locally artinian. One part of this paper is concerned with these results, that is, we give some conditions for a commutative ring R such that there exists a finitely generated injective R-module. The details are the following: Let R be a commutative ring with the noetherian total quotient ring. Then we have the followings: (1) There is a torsion-free and finitely generated injective R-module if and only if there exists a maximal ideal $\mathfrak M$ in R such that $R_{\mathfrak M}$ is an artinian local ring (Theorem 1). (2) There is a cyclic injective R-module if and only if there exists a maximal ideal $\mathfrak M$ in R such that $R_{\mathfrak M}$ is a self-injective artinian local ring (Theorem 3).

The other part of this paper is concerned with the ring property of an injective hull of a commutative ring. Let B be a ring and let $E_B(B)$ be an injective hull of B. Then we call $E_B(B)$ a B-algebra only when $E_B(B)$ (identifying B with its canonical image in $E_B(B)$) has a B-algebra structure and the multiplication between an element of B and an element of $E_B(B)$ as a B-algebra coincides with the multiplication as a B-module. In [7] B. L. Osofsky gave an example of a non commutative ring B whose injective hull is not a B-algebra. Even when a ring is commutative, such a ring exists (Theorem 4). Now we give here a necessary and sufficient condition for a commutative ring of special type such that its injective hull is an B-algebra. The result is the following: Let B be a commutative ring whose total quotient ring is artinian. Then an injective hull of B can be made into an B-algebra if and only if the total quotient ring of B is a self-injective ring (Theorem 6).

In this paper we assume always that a ring is commutative and has a unit element and a module is unitary. Let R be a ring. We denote an injective hull of an R-module M by $E_R(M)$, the set of all the regular elements (= non zero-divisors) in R by S(R), and the total quotient ring of R by Q(R).

If it is clear from context we sometimes denote by S (resp. Q) instead of S(R) (resp. Q(R)). Terminologies and notations are due to [1] and [5].

The author wishes to express his heartfelt thanks to Professor Y. Nakai for his kind advices and valuable suggestions.

§ 1. Existence of an injective module of finite type.

First we observe the properties of an injective hull of a simple module over a noetherian local ring.

Lemma 1. Let R be a noetherian local ring with the maximal ideal \mathfrak{M} . Then the following conditions are equivalent.

- (1) R is an artinian local ring with $\mathfrak{M}^n = 0$ for some n > 0.
- (2) $A_n = E_R(R/\mathfrak{M})$, where $A_i = \{x \in E_R(R/\mathfrak{M}) | \mathfrak{M}^i x = 0\}$.
- (3) $E_R(R/\mathfrak{M})$ is a finitely generated R-module.

PROOF. The equivalence of (1) and (3) follows from Theorem 5 of [8]. (1) \rightarrow (2): This is trivial. (2) \rightarrow (1): Assume that $A_n=E_R(R/\mathfrak{M})$ and $A_n\neq A_{n-1}$. Now, if $\mathfrak{M}^n\neq 0$, then there is an R-homomorphism f of Rx (0 $\neq x\in \mathfrak{M}^n$) into $E_R(R/\mathfrak{M})$ defined by f(x)=y, where $y\in A_1=\{z\in E_R(R/\mathfrak{M})|\mathfrak{M}z=0\}$. Since $E_R(R/\mathfrak{M})$ is injective, there is an R-homomorphism g of R into $E_R(R/\mathfrak{M})$ such that the restriction of g to Rx is f. Set g(1)=a. Then y=f(x)=g(x)=xa and $x\in \mathfrak{M}^n$, and so xa=0. This is impossible. Thus $\mathfrak{M}^n=0$.

When R is a noetherian ring, in [6] E. Matlis showed that $E_R(R/\mathfrak{P}) \cong E_{R\mathfrak{P}}(R\mathfrak{P}/\mathfrak{P}R\mathfrak{P})$ as an R-module and as an $R\mathfrak{P}$ -module for any prime ideal \mathfrak{P} of R. We can now omit the condition that R is noetherian.

LEMMA 2. Let R be a ring and \mathfrak{P} be a prime ideal of R. Then $E_R(R/\mathfrak{P})$ $\cong E_{R\mathfrak{P}}(R\mathfrak{P}/\mathfrak{P}R\mathfrak{P})$ as an R $(R\mathfrak{P})$ -module.

PROOF. We first prove that $E_R(R/\mathfrak{P})$ can be regarded as an $R_{\mathfrak{P}}$ -module. For any $r \in R-\mathfrak{P}$, we define an R-homomorphism $T_r \colon E_R(R/\mathfrak{P}) \to E_R(R/\mathfrak{P})$ by $T_r(x) = rx$ for all x in $E_R(R/\mathfrak{P})$. Then T_r is a monomorphism. In fact, if rx = 0 $(0 \neq x \in E_R(R/\mathfrak{P}))$, then $Rx \cap R/\mathfrak{P} \neq 0$ because $E_R(R/\mathfrak{P})$ is an essential extension of R/\mathfrak{P} , and $r(Rx \cap R/\mathfrak{P}) = 0$. Since \mathfrak{P} is a prime ideal of R, this is impossible. Thus $Ker(T_r) = 0$.

As $E_R(R/\mathfrak{P})$ is an indecomposable injective R-module by Theorem 2.4 of [6] and as T_r is a monomorphism, T_r is an automorphism. For any $r \in R - \mathfrak{P}$ and for any $x \in E_R(R/\mathfrak{P})$, there is only one element y in $E_R(R/\mathfrak{P})$ such that ry = x. Therefore $E_R(R/\mathfrak{P})$ can be regarded as an $R_\mathfrak{P}$ -module. Next we show that $E_R(R/\mathfrak{P})$ is injective as an $R_\mathfrak{P}$ -module. Let \mathfrak{A} be any ideal of $R_\mathfrak{P}$ and let $f \in \operatorname{Hom}_R(\mathfrak{A}, E_R(R/\mathfrak{P}))$. Then f can be regarded as an R-homomorphism. As $E_R(R/\mathfrak{P})$ is injective as an R-module, there is an R-homomorphism g of $R_\mathfrak{P}$ into $E_R(R/\mathfrak{P})$ such that the restriction of g to \mathfrak{A} is f. g can be regarded

576 H. Harui

as an $R_{\mathfrak{P}}$ -homomorphism which is an extension of f because for any $r \in R - \mathfrak{P}$, T_r is an automorphism. Thus $E_R(R/\mathfrak{P})$ is injective as an $R_{\mathfrak{P}}$ -module. Consider an injective hull $E_{R\mathfrak{P}}(R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}})$ in $E_R(R/\mathfrak{P})$ of $R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}}$, as an $R_{\mathfrak{P}}$ -module. Then since $E_R(R/\mathfrak{P})$ is an indecomposable injective R-module and since any $R_{\mathfrak{P}}$ -module can be regarded as an R-module, we have $E_R(R/\mathfrak{P}) = E_{R\mathfrak{P}}(R_{\mathfrak{P}}/\mathfrak{P}R_{\mathfrak{P}})$. The proof is completed.

Let R be a ring and let M be an R-module. Then M is said to be torsion-free in case for any element x in M and for any element s in S(R), sx=0 implies s=0, and s=0 implies s=0, and s=0 implies s=0, such that s=0.

It is easily seen that for any R-module M, $t(M) = \{x \in M | sx = 0 \text{ for some } s \text{ in } S(R)\}$ is a unique maximal submodule of M which is torsion (this submodule of M is called the torsion submodule of M and is denoted by t(M)), and that M is torsion-free if and only if t(M) = 0. For any R-module M, M is called a divisible R-module if sM = M for all s in S(R).

Let M be an R-module. Then, if M is injective, M is divisible. It is easily seen that if M is a torsion-free and divisible R-module, then M can be regarded as a Q(R)-module.

THEOREM 1. Let R be a ring with the noetherian total quotient ring. Then there is a torsion-free and finitely generated injective R-module if and only if there exists a maximal ideal $\mathfrak M$ in R such that $R_{\mathfrak M}$ is an artinian local ring.

PROOF. If $R_{\mathfrak{M}}$ is an artinian local ring for some maximal ideal \mathfrak{M} in R, then by Theorem 5 of [8] $E_R(R/\mathfrak{M})$ is a finitely generated R-module. On the other hand, as $\mathfrak{M}R_{\mathfrak{M}}$ is nilpotent, \mathfrak{M} is not a regular ideal of R, and so $S(R) \subseteq R-\mathfrak{M}$. Thus $E_R(R/\mathfrak{M})$ is torsion-free because $E_R(R/\mathfrak{M}) \cong E_{R_{\mathfrak{M}}}(R_{\mathfrak{M}}/\mathfrak{M}R_{\mathfrak{M}})$ by Lemma 2.

Assume that there is a torsion-free and finitely generated injective R-module M. Then M can be regarded as a Q(R)-module and it is injective as a Q(R)-module by Lemma 2.1 of [5]. Since Q = Q(R) is a noetherian ring, using Proposition 3.1 of [6], M can be expressed as follows:

$$M = \Sigma \oplus E_Q(Q/\mathfrak{P}_i')$$
,

where \mathfrak{P}'_i is a prime ideal of Q for all i. Thus $E_Q(Q/\mathfrak{P}'_i)$ is finitely generated as an R-module, a fortiori as a Q-module. Furthermore, $\mathfrak{P}_i = \mathfrak{P}'_i \cap R$ is not regular, and so the quotient field of Q/\mathfrak{P}'_i is equal to that of R/\mathfrak{P}_i . On the other hand, by Theorem 3.4 of $\lceil 6 \rceil$,

$$A_1 = \{ x \in E_o(Q/\mathfrak{P}_i) \mid x\mathfrak{P}_i' = 0 \}$$

is isomorphic to the quotient field of Q/\mathfrak{P}'_i as a vector space. Moreover A_1 is finitely generated as a Q-module because Q is noetherian and A_1 is a submodule of a finitely generated R-module $E_Q(Q/\mathfrak{P}'_i)$. Thus the quotient field of

 Q/\mathfrak{P}_i' is integral over Q/\mathfrak{P}_i' , and hence \mathfrak{P}_i' is a maximal ideal of Q. From the facts that $A_n/A_{n-1}(A_j = \{x \in E_Q(Q/\mathfrak{P}_i') \mid x(\mathfrak{P}_i')^j = 0\}$, $A_n = E_Q(Q/\mathfrak{P}_i')$, and $A_n \neq A_{n-1}$) is a finite dimensional vector space over Q/\mathfrak{P}_i' and is a finitely generated R-module, and that the quotient field of R/\mathfrak{P}_i is equal to Q/\mathfrak{P}_i' , we have that the quotient field of R/\mathfrak{P}_i is integral over R/\mathfrak{P}_i . Hence \mathfrak{P}_i is a maximal ideal of R.

Next, let us prove that $R_{\mathfrak{P}_i}$ is artinian. Since $E_Q(Q/\mathfrak{P}_i')=E_{Q_{\mathfrak{P}_i'}}(Q_{\mathfrak{P}_i'}/\mathfrak{P}_i'Q_{\mathfrak{P}_i'})$ by Lemma 2, $Q_{\mathfrak{P}_i'}$ is an artinian local ring by Lemma 1. Furthermore, $Q_{\mathfrak{P}_i'}\supseteq R_{\mathfrak{P}_i}$ and $S(R)\subseteq R-\mathfrak{P}$, and so, we have $R_{\mathfrak{P}_i}=Q_{\mathfrak{P}_i'}$.

Next let us consider a condition for a ring R that the torsion submodule of any finitely generated injective R-module is zero.

LEMMA 3. Let M be a cyclic module over a ring R. Then the torsion submodule of M is isomorphic to $(\mathfrak{A}Q \cap R)/\mathfrak{A}$, where $M = R/\mathfrak{A}$.

A torsion R-module is of bounded order in case it is annihilated by some element in S(R).

LEMMA 4. Let $x = (x_i)_{i=1,2,\dots,n}$ be a finite set of zero-divisors in a ring R. Then the torsion submodule of R/Rx_i is of bounded order if and only if the set $F_x = \{(Rx: Rs) \mid s \in S(R)\}$ satisfies the maximal condition, where $Rx = \Sigma Rx_i$.

PROPOSITION 1. Let R be a ring with the noetherian total quotient ring and assume that for any finite set $x = (x_i)_{i=1,2,\cdots,n}$ of zero-divisors in R, the set $F_x = \{(Rx: Rs) \mid s \in S(R)\}$ satisfies the maximal condition. Then the torsion submodule of any finitely generated R-module is of bounded order.

PROOF. Let $M=R/\mathfrak{A}$, where \mathfrak{A} is an ideal of R. If \mathfrak{A} is a regular ideal of R, then t(M) is of bounded order. Assume that \mathfrak{A} is not regular. Then $\mathfrak{A}Q$ is a proper ideal of Q and it is finitely generated since Q is noetherian. We may assume that $\mathfrak{A}Q=Qy_1+Qy_2+\cdots+Qy_n$ any $y_i\in\mathfrak{A}$ for all i. Now, by Lemma 3 $(\mathfrak{A}Q\cap R)/\mathfrak{A}$ is the torsion submodule of R/\mathfrak{A} . By the assumption and by Lemma 4, $(\mathfrak{A}Q\cap R)/\Sigma Ry_i$ is of bounded order.

But $(\mathfrak{A}Q \cap R)/\mathfrak{A}$ is a homomorphic image of $(\mathfrak{A}Q \cap R)/\Sigma Ry_i$, and so $(\mathfrak{A}Q \cap R)/\mathfrak{A}$ is of bounded order. Therefore the torsion submodule of any cyclic R-module is of bounded order. Let M be a finitely generated R-module with the generators z_1, z_2, \cdots, z_t . If t=1, then the proposition is true. Assume that for any R-module generated by at most t-1 elements the proposition is true. Consider the following exact sequence:

$$0 \longrightarrow Rz_1 \longrightarrow M \longrightarrow M/Rz_1 \longrightarrow 0$$
.

Then we have the exact sequence: $0 \rightarrow t(Rz_1) \rightarrow t(M) \rightarrow t(M/Rz_1)$ with $t(Rz_1)$ and $t(M/Rz_1)$ being of bounded order by the induction hypothesis. Thus t(M) is of bounded order.

THEOREM 2. Let R be a ring with the noetherian total quotient ring and

578 H. Harui

assume that for any finite set $x = (x_i)_{i=1,2,\dots,n}$ of zero-divisors in R, the set $F_x = \{(Rx:Rs) \mid s \in S(R)\}$ satisfies the maximal condition. Then there is a finitely generated injective R-module if and only if there exists a maximal ideal \mathfrak{M} of R such that $R_{\mathfrak{M}}$ is artinian local.

PROOF. By Proposition 1, the torsion submodule of any finitely generated R-module is of bounded order. Furthermore, the torsion submodule of any divisible R-module is also divisible. Hence the torsion submodule of any finitely generated injective R-module is zero, and so every finitely generated injective R-module is always torsion-free. From this we have the result by Theorem 1.

If R is a noetherian ring, then for every finitely generated R-module M, t(M) is of bounded order. Thus we have the following corollary.

COROLLARY 1. Let R be a noetherian ring. Then there is a finitely generated injective R-module if and only if there is a maximal ideal $\mathfrak M$ in R such that $R_{\mathfrak M}$ is artinian local.

If R is an integral domain, then the torsion submodule of any finitely generated R-module is of bounded order. For any proper prime ideal $\mathfrak P$ of R, $R_{\mathfrak P}$ is not artinian. Hence we have the following corollary.

COROLLARY 2. Let R be an integral domain. Then if there is a finitely generated injective R-module, R is a field.

The author does not know whether there is a ring R such that there is a finitely generated injective R-module which is not torsion-free and not cyclic.

§ 2. Existence of a cyclic injective module.

In this section, we investigate the conditions for a ring over which there is a cyclic injective module.

LEMMA 5. Let R be a ring and let $\mathfrak A$ be an ideal of R. Suppose that $R/\mathfrak A$ is divisible as an R-module. Then $R/\mathfrak A$ is a torsion-free R-module.

PROOF. If $\mathfrak A$ is a regular ideal of R, then $R/\mathfrak A$ is divisible and a torsion R-module of bounded order, and so $R/\mathfrak A=0$. If $\mathfrak A$ is not a regular ideal of R, then $S(R) \subset R-\mathfrak A$ and hence, for any s in S(R) the class $\overline s$ in $R/\mathfrak A$ containing s is not zero in $R/\mathfrak A$. By the assumption $\overline s(R/\mathfrak A)=R/\mathfrak A$ for any s in S(R). Thus $\overline s$ is invertible in $R/\mathfrak A$. Hence $R/\mathfrak A$ is torsion-free as an R-module.

THEOREM 3. Let R be a ring with the noetherian total quotient ring. Then there is a cyclic injective R-module if and only if there exists a maximal ideal \mathfrak{M} in R such that $R_{\mathfrak{M}}$ is a self-injective artinian local ring.

PROOF. Assume that $R_{\mathfrak{M}}$ is a self-injective artinian local ring for some maximal ideal \mathfrak{M} in R. Then $R_{\mathfrak{M}}$ is a finitely generated R-module. In fact, set $A_i = \{x \in R_{\mathfrak{M}} \mid \mathfrak{M}^i R_{\mathfrak{M}} x = 0\}$. Then, by Theorem 1, $A_n = R_{\mathfrak{M}}$ for some posi-

tive integer n and A_i is a finitely generated $R_{\mathfrak{M}}$ -module for $i=1,2,\cdots,n$, and so A_i/A_{i-1} is finitely generated as an $R_{\mathfrak{M}}/\mathfrak{M}R_{\mathfrak{M}}$ (= R/\mathfrak{M})-module for $i=1,2,\cdots,n$. Thus, $R_{\mathfrak{M}}$ is a finitely generated R-module.

Set $\mathfrak{A}=\{x\in R\mid xr=0 \text{ for some } r \text{ in } R-\mathfrak{M}\}$. Since $R_{\mathfrak{M}}$ is noetherian and it is finitely generated as an R/\mathfrak{A} -module, by Theorem 2 of [2], R/\mathfrak{A} is a noetherian ring. Furthermore, for any $a\in\mathfrak{M}$, there is a positive integer m such that $a^m\in\mathfrak{A}$. In fact, since $R_{\mathfrak{M}}$ is artinian local, $\mathfrak{M}^mR_{\mathfrak{M}}=0$ for some positive integer m, and hence, there is an r in $R-\mathfrak{M}$ such that $ra^m=0$. Therefore $a^m\in\mathfrak{A}$. From the above remarks, $\mathfrak{M}/\mathfrak{A}$ is nilpotent, and so, R/\mathfrak{A} is an artinian local ring because $\mathfrak{M}/\mathfrak{A}$ is a maximal ideal of R/\mathfrak{A} . Thus $R/\mathfrak{A}\cong R_{\mathfrak{M}}$, that is, $R_{\mathfrak{M}}$ is a cyclic R-module.

Hence $R_{\mathfrak{M}}$ is a cyclic injective R-module.

Conversely, assume that there is a cyclic injective R-module M and let $M=R/\mathfrak{A}$ (\mathfrak{A} : an ideal of R). Then R/\mathfrak{A} can be regarded as a Q-module by Lemma 5 and the canonical map $f\colon R\to R/\mathfrak{A}$ is uniquely extended to a Q-homomorphism $h\colon Q\to R/\mathfrak{A}$. Set $\mathfrak{B}=\mathrm{Ker}\,(h)$. Then, by Lemma 2.1 of [5], Q/\mathfrak{B} is injective as a Q-module. Moreover, Q/\mathfrak{B} is a self-injective noetherian ring. In fact, for any $g\in\mathrm{Hom}_{Q/\mathfrak{B}}\,(\mathfrak{C}/\mathfrak{B},Q/\mathfrak{B})$ (\mathfrak{C} : any ideal of Q containing \mathfrak{B}), there is a Q/\mathfrak{B} -homomorphism k which is an extension of g because g can be regarded as a Q-homomorphism of $\mathfrak{C}/\mathfrak{B}$ into Q/\mathfrak{B} and Q/\mathfrak{B} is injective as a Q-module.

Thus, by Lemma 2.8 of [5], we can express Q/\mathfrak{B} as follows,

$$Q/\mathfrak{B} = Q_1 \oplus Q_2 \oplus \cdots \oplus Q_n$$
 (as a ring),

where Q_i is a self-injective artinian local ring for $i=1, 2, \dots, n$. In this case, Q_i is an indecomposable injective Q-module for all i.

Set $\mathfrak{D}'=Q_2\oplus\cdots\oplus Q_n$ and set $\mathfrak{M}'=\mathfrak{M}''\oplus Q_2\oplus\cdots\oplus Q_n$, where \mathfrak{M}'' is the maximal ideal of Q_1 . Then $Q_1=(Q/\mathfrak{B})/\mathfrak{D}'$ and \mathfrak{D}' is an irreducible \mathfrak{M}' -primary ideal of Q/\mathfrak{B} because $(Q/\mathfrak{B})/\mathfrak{D}'$ is an indecomposable injective Q/\mathfrak{B} -module. Let $\mathfrak{D}=h^{-1}(\mathfrak{D}')$ and let $\mathfrak{M}=h^{-1}(\mathfrak{M}')$. Then \mathfrak{M} is a maximal ideal of Q and \mathfrak{D} is an irreducible \mathfrak{M} -primary ideal of Q. Furthermore, $Q_1=(Q/\mathfrak{B})/\mathfrak{D}'\cong Q/\mathfrak{D}$, $Q/\mathfrak{D}\cong E_Q(Q/\mathfrak{M})$ by Theorem 2.4 of [6] because Q/\mathfrak{D} is an indecomposable injective Q-module, and by Lemma 2, $Q/\mathfrak{D}=E_{Q_{\mathfrak{M}}}(Q_{\mathfrak{M}}/\mathfrak{M}Q_{\mathfrak{M}})$, and hence $Q_{\mathfrak{M}}$ is artinian local by Lemma 1 since Q/\mathfrak{B} is a cyclic injective Q-module.

Now, $Q/\mathfrak{D} \to Q_{\mathfrak{M}}/\mathfrak{D}Q_{\mathfrak{M}}$ is monomorphic and Q/\mathfrak{D} ($\cong E_{Q_{\mathfrak{M}}}(Q_{\mathfrak{M}}/\mathfrak{M}Q_{\mathfrak{M}})$) is an indecomposable injective $Q_{\mathfrak{M}}$ -module. Thus $Q/\mathfrak{D} = Q_{\mathfrak{M}}/\mathfrak{D}Q_{\mathfrak{M}}$. Since $Q_{\mathfrak{M}}$ is artinian local and $Q/\mathfrak{D} = Q_{\mathfrak{M}}/\mathfrak{D}Q_{\mathfrak{M}}$ is injective as a $Q_{\mathfrak{M}}$ -module by Lemma 2, we have $\mathfrak{D}Q_{\mathfrak{M}} = 0$. Thus $Q_{\mathfrak{M}}$ is a self-injective artinian local ring.

Now, set $\mathfrak{M} \cap R = \mathfrak{P}$. Then \mathfrak{P} is not regular because $R/\mathfrak{P} \subseteq Q/\mathfrak{M}$ is torsion-free. From this, the quotient field of R/\mathfrak{P} is equal to Q/\mathfrak{M} . On the other hand, since $E_Q(Q/\mathfrak{M})$ is a finitely generated R-module, by the same method

580 H. HARUI

as in the proof of Theorem 2, \mathfrak{P} is a maximal ideal of R. Moreover, $S(R) \subseteq R - \mathfrak{P}$, and $R_{\mathfrak{P}} \to Q_{\mathfrak{M}}$ is monomorphic, and so, $R_{\mathfrak{P}} = Q_{\mathfrak{M}}$. Thus $R_{\mathfrak{P}}$ is injective as an R-module and is artinian local. By Lemma 2, $R_{\mathfrak{P}}$ is a self-injective artinian local ring. The proof is completed.

COROLLARY 3. Let R be a ring. Then the following conditions are equivalent.

- (1) R is a self-injective artinian ring.
- (2) Q(R) is a noetherian ring and for any simple R-module M, $E_R(M)$ is cyclic as an R-module.

PROOF. $(1) \rightarrow (2)$: It is immediate. $(2) \rightarrow (1)$: Assume that Q(R) is noetherian and, for any simple R-module, its injective hull is cyclic as an R-module. Let $M \cong R/\mathfrak{M}$ be any simple R-module. Then, as is shown in proof of Theorem 3, $R_{\mathfrak{M}}$ is a self-injective artinian ring, and so R is a self-injective noetherian ring. Therefore, R is a self-injective artinian ring.

REMARK. There exists a ring, which is not artinian, such that $E_R(M)$ is a cyclic R-module for any simple R-module M. In fact, set $R = \prod_{i=1}^{\infty} K_i$, where K_i is a field for $i=1,2,\cdots$. Then, for any maximal ideal \mathfrak{M} , $R_{\mathfrak{M}}$ is a field which is isomorphic to $E_R(R/\mathfrak{M})$ as an R-module. Let us show that $R_{\mathfrak{M}}$ is a field for any maximal ideal \mathfrak{M} in R. Now, it is sufficient to show that for any $x = (x_i)$ in \mathfrak{M} , there is an element r in $R - \mathfrak{M}$ such that rx = 0. Set $r_i = 0$ if $i \in \{i \in I | x_i \neq 0\} = D(x)$, $r_i \neq 0$ in K_i if $i \in D(x)$. Then x + r ($r = (r_i)$) is a unit element in R and $x \in \mathfrak{M}$, and hence $r \in \mathfrak{M}$. Furthermore, we have rx = 0. Hence $R_{\mathfrak{M}}$ is a field.

§ 3. The ring properties of injective hulls.

Next we observe the ring property of an injective hull of a commutative ring. Let R be a ring and let M be an R-module. Then the socle of M is defined by the sum of all simple submodules of M. Thus the socle of a ring R is a direct sum of all distinct minimal ideals of R.

LEMMA 6. Let R be an artinian local ring. Then R is self-injective if and only if the socle of R is simple.

PROOF. If R is self-injective, then by Proposition 3.1 of [6] $R = E_R(R/\mathfrak{M})$ (\mathfrak{M} is the maximal ideal of R) since R is indecomposable as an R-module. Thus by Theorem 3.4 of [6] the socle of R is equal to A_1 (= $\{x \in R \mid x\mathfrak{M} = 0\}$) $\cong R/\mathfrak{M}$. Conversely, assume that the socle of R is simple. Then $A_i = \{x \in E_R(R/\mathfrak{M}) \mid x\mathfrak{M}^i = 0\} \supseteq \mathfrak{M}^{n-i}$ ($\mathfrak{M}^n \neq 0$ and $\mathfrak{M}^{n+1} = 0$) and by Lemma 1 of [8] $A_{i+1}/A_i \cong \mathfrak{M}^i/\mathfrak{M}^{i+1}$ as a vector space over R/\mathfrak{M} . Furthermore, R is an essential extension of the socle of R, and so $E_R(R/\mathfrak{M}) \cong E_R(R)$. Hence $E_R(R)$ has the same length as R. Thus $R = E_R(R)$.

PROPOSITION 2. Let R be a ring with the noetherian total quotient ring. Then R can be embedded into a direct sum of finitely many self-injective artinian local rings, which is an essential extension of R.

PROOF. Let $(0) = \mathfrak{D}_1 \cap \mathfrak{D}_2 \cap \cdots \cap \mathfrak{D}_n$ ($\mathfrak{D}_i : \mathfrak{P}_i$ -primary) be an irredundant irreducible primary decomposition of (0) in the total quotient ring Q of R. Then by Theorem 2.3 of [6], we have $E_Q(Q) = \Sigma \oplus E_Q(Q/\mathfrak{D}_i)$.

On the other hand, $E_Q(Q/\mathfrak{P}_i) = E_Q(Q/\mathfrak{D}_i)$ by Proposition 3.1 of [6], and $E_Q(Q/\mathfrak{P}_i) \cong E_{Q_{\mathfrak{P}_i}}(Q_{\mathfrak{P}_i}/\mathfrak{P}_iQ_{\mathfrak{P}_i})$ by Lemma 2, for all i.

Furthermore, by Proposition 3.1 of [6], $E_{Q_{\mathfrak{P}_{i}}}(Q_{\mathfrak{P}_{i}}/\mathfrak{P}_{i}Q_{\mathfrak{P}_{i}}) = E_{Q_{\mathfrak{P}_{i}}}(Q_{\mathfrak{P}_{i}}/\mathfrak{D}_{i}Q_{\mathfrak{P}_{i}})$. Since by Lemma 2.1 of [5], $E_{R}(R) = E_{Q}(Q)$, we have $E_{R}(R) = \Sigma \oplus E_{Q}(Q_{\mathfrak{P}_{i}}/\mathfrak{P}_{i}Q_{\mathfrak{P}_{i}})$. Thus $\Sigma \oplus Q_{\mathfrak{P}_{i}}/\mathfrak{D}_{i}Q_{\mathfrak{P}_{i}}$ is an essential extension of R because we can embed R in $\Sigma \oplus Q_{\mathfrak{P}_{i}}/\mathfrak{D}_{i}Q_{\mathfrak{P}_{i}}$. Moreover by Lemma 6 $Q_{\mathfrak{P}_{i}}/\mathfrak{D}_{i}Q_{\mathfrak{P}_{i}}$ is a self-injective artinian local ring for all i.

EXAMPLES. (1) Let R be an integral domain. Then an injective hull of R is isomorphic to the quotient field of R. Thus $E_R(R)$ can be made into an R-algebra and R is contained in the center of $E_R(R)$. (2) Let R be a ring and $M \supset N$ be R-modules. Then M is called a rational extension of N in case for any endomorphism f of M, if f is trivial on N, then f is trivial. Now, if $E_R(R)$ is a rational extension of R, then $E_R(R)$ can be taken into an R-algebra and moreover, R is contained in the center of $E_R(R)$. In fact, since $E_R(R)$ is a rational extension of R, any R-homomorphism of R into $E_R(R)$ can be uniquely extended to an R-endomorphism of $E_R(R)$. Thus $\operatorname{Hom}_R(E_R(R), E_R(R)) \cong \operatorname{Hom}_R(R, E_R(R)) \cong E_R(R)$. The canonical embedding φ of R into $\operatorname{Hom}_R(E_R(R), E_R(R))$ is given by $\varphi(r) = T_r$, where T_r is defined by $T_R(x) = rx$ for all x in $E_R(R)$. Hence R is contained in the center of $E_R(R)$.

LEMMA 7. Let R be a noetherian local ring and suppose that the socle of R is not simple. Then $E_R(R)$ can not be made into an R-algebra.

PROOF. Let S_1 and S_2 be two distinct simple submodules of R. Then $E_R(S_1)$ is a direct summand of $E_R(R)$. Set $S_1 = Rx_1$ and set $S_2 = Rx_2$ $(x_1, x_2 \in R)$. Let $f_i \in \operatorname{Hom}_R(Rx_1 \oplus Rx_2, E_R(Rx_1))$ such that $f_i(x_i) = x_1$ and $f_i(x_j) = 0$ if $i \neq j$, for i, j = 1, 2. Then there is $g_i \in \operatorname{Hom}_R(R, E_R(Rx_1))$ such that the restriction of g_i to $Rx_1 \oplus Rx_2$ is f_i , for i = 1, 2. Set $g_i(1) = a_i$ for i = 1, 2. Then $x_1a_1 = x_1 = x_2a_2$ and $x_1a_2 = x_2a_1 = 0$. Hence $(x_2a_2) \cdot a_1 = x_1 \cdot a_1 = x_1 \neq 0$, but $a_2 \cdot (x_2a_1) = a_2 \cdot 0$, and so $E_R(R)$ can not be made into an R-algebra because $E_R(Rx_1)$ is a direct summand of $E_R(R)$.

Theorem 4. Let R be an artinian local ring. Then an injective hull of R can be made into an R-algebra if and only if R is a self-injective ring.

PROOF. If R is not self-injective, then the socle of R is not simple by Lemma 6. Thus by Lemma 7, $E_R(R)$ can not be made into an R-algebra. The converse is trivial.

582 H. Harui

Let R be a ring, \mathfrak{P} a prime ideal, and let M be an R-module. Then let us call the socle of $M_{\mathfrak{P}}$ the socle of M at \mathfrak{P} .

THEOREM 5. Let R be a ring with the noetherian total quotient ring. Then if an injective hull of R can be regarded as an R-algebra, then the socle of Q = Q(R) at any prime ideal of Q is simple or empty.

PROOF. Suppose that the socle of Q at some prime ideal $\mathfrak P$ of Q is not simple and not empty, then there are two elements x_1, x_2 in Q such that $Qx_1 \cap Qx_2 = 0$ and the annihilator ideal of Qx_i is equal to $\mathfrak P$, for i=1,2. In fact, since the socle of $Q_{\mathfrak P}$ is not simple and not empty, there are at least two simple submodules S_1, S_2 in $Q_{\mathfrak P}$. Thus there are y_1, y_2 in Q such that $Q_{\mathfrak P}y_i = S_i$ for i=1,2. Since $\mathfrak P$ is finitely generated, there is an r in $Q-\mathfrak P$ such that $r\mathfrak Py_i = \mathfrak Pry_i = 0$ for i=1,2, and so $x_i = ry_i$ (i=1,2) answer the question.

Let f_1 and f_2 be two Q-homomorphism of Qx_1+Qx_2 into $E_Q(Qx_1)$ defined by $f_1(x_1)=f_2(x_2)=x_1$ and $f_1(x_2)=f_2(x_1)=0$. Since $E_Q(Qx_1)$ is injective, there is a Q-homomorphism g_i of into $E_Q(Qx_1)$ such that the restriction of g_i to Qx_1+Qx_2 is f_i for i=1,2. Set $g_i(1)=a_i$ for i=1,2. Then $x_1a_1=x_2a_2=x_1$ and $x_1a_2=x_2a_1=0$. Now, we have $(x_2a_2)\cdot a_1=x_1\cdot a_1=x_1$ and $a_2\cdot (x_2a_1)=a_2\cdot 0=0$. Thus $E_Q(Q)$ can not be made into a Q-algebra since $E_Q(Qx_1)$ is a direct summand of $E_Q(Q)$. Therefore $E_R(R)$ can not be made into an R-algebra. This is a contradiction to the hypothesis that $E_R(R)$ is an R-algebra.

Let R be a ring with the total quotient ring which is artinian. Then we call such a ring a (qa)-ring. It is well known that if R is noetherian then R is a (qa)-ring if and only if the prime divisors of (0) in R are all minimal.

THEOREM 6. Let R be a (qa)-ring. Then an injective hull $E_R(R)$ of R can be made into an R-algebra if and only if $E_R(R) = Q(R)$.

PROOF. Assume that $E_R(R)$ is an R-algebra. As $E_R(R)$ is a torsion-free and divisible R-module, $E_R(R)$ can be regarded as a Q-module, and hence $E_R(R)$ is injective as a Q-module by Lemma 2.1 of [5]. On the other hand, Q is an essential extension of R, and so we have $E_R(R) = E_R(Q)$. Furthermore by Lemma 2.1 of [5] $E_R(R) = E_Q(Q)$. Since R is a (qa)-ring, we may write $Q = \Sigma \oplus Q_i$, where Q_i is artinian local for all i. Thus $E_Q(Q) \cong \Sigma \oplus E_Q(Q_i) = \Sigma \oplus E_{Q_i}(Q_i)$.

If Q_i is not a self-injective artinian local ring, then by Lemma 6 there are at least two distinct minimal ideals S_1 , S_2 in Q_i , a fortiori, of Q. Thus there are two elements x_1 , x_2 in Q_i such that $Qx_j = S_j$ for j = 1, 2. By the same method as in proof of Theorem 5, we can find two elements a_1 , a_2 in $E_Q(Qx_1)$ such that $x_1a_1 = x_2a_2 = x_1$ and $x_1a_2 = x_2a_1 = 0$. Now, we have $(x_2a_2) \cdot a_1 = x_1 \cdot a_1 = x_1$ and $a_2 \cdot (x_2a_1) = a_2 \cdot 0 = 0$. Thus $E_Q(Q)$ can not be made into a Q-algebra because $E_Q(Qx_1)$ is a direct summand of $E_Q(Q)$. Thus $E_R(R) = E_Q(Q)$ can not

be taken into an R-algebra. This is a contradiction. The converse is trivial.

Hiroshima University

References

- [1] H. Cartan and S. Eilenberg, Homological algebra, Princeton, Princeton Univ. Press, 1956.
- [2] P.M. Eakin, Jr., The converse to a Well Known Theorem on Noetherian rings, Math. Ann., 177 (1968), 278-282.
- [3] C. Faith and E. A. Walder, Direct sum representation of injective modules, J. Algebra, 5 (1967), 203-221.
- [4] R. N. Gupta, Self-injective quotient rings and injective quotient modules, Osaka J. Math., 5 (1968), 68-87.
- [5] Harui, Modules over (qa)-rings, J. Sci. Hiroshima Univ. Ser. A-I Math., 32 (1968), 247-257.
- [6] E. Matlis, Injective modules over Noetherian rings, Pacific J. Math., 8 (1958), 511-528.
- [7] B.L. Osofsky, On ring properties of injective hulls, Canad. Math. Bull., 7 (1964), 405-413.
- [8] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. Bd. 70, s. 372-380 (1959).
- [9] P. Vamos, The dual of the notion of "finitely generated", J. London Math. Soc., 43 (1968), 643-646.