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It is well known that special models and saturated models are nice tools
in the theory of models. The technique of special models and saturated
models is widely used in different problems, $e$ . $g$ . preservation theorems (see

[3], [6], [7], [8], [12]), two cardinal problems (see [2]), theory of definition
(see [1], [11]), and categoricity in powers (see [13]).

In this paper we shall consider some operations on models ( $i$ . $e$ . functions
whose domain and range are classes of models), which preserve special models
and saturated models. An operation $U$ on models which has the following
property $i$ . $e$ . for any formula $\theta$ and any model $\mathfrak{A}$ , the satisfaction of $\theta$ in
$U(\mathfrak{A})$ by elements of $U(\mathfrak{A})i\cdot s$ reducible to that of a formula corresponding to
$\theta$ in $\mathfrak{A}$ by corresponding elements of $\mathfrak{A}$ , will be called a normal operation.
Then our main theorem says that normal operations preserve special models
and saturated models. As an example of normal operations we can take the
n-direct power operation and the reduct operation. Using this main theorem.
we shall get some generalized forms of preservation theorems and interpola-
tion theorems.

I would like to thank Prof. C. C. Chang and Prof. H. J. Keisler who read
the original manuscript of this paper and gave me useful advices. I would
also like to express my thanks to Prof. R. Lyndon who kindly encouraged me
and to Prof. S. Maehara who suggested to me the possibility of a generaliza-
tion of results of the original manuscript of this paper.

\S 0. Preliminaries.

We shall distinguish between classes and sets. Occasionally we shall
consider collections of classes. We consider each ordinal number as coincid-
ing with the set of smaller ordinal numbers. We use letters $\xi,$ $\alpha$ to denote
ordinal numbers and $\delta$ to denote limit ordinal numbers and $n,$ $m,$ $1,$ $j,$ $k$ to
denote natural numbers. We use $\Omega$ to denote the class of ordinal numbers.
The cardinal numbers are identified with the corresponding ordinal numbers
and denoted by $\kappa$ . ru is the least infinite ordinal number, and $\kappa^{+}$ is the suc-
cessor cardinal of $\kappa$ .
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If $X,$ $Y$ are sets we use the following ordinal notations, $\in,$ $\{x_{\xi}\}_{\xi<\alpha},$ $\langle x_{\xi}\rangle_{\xi<a}$ ,
$n$

$\{x: x\cdots\},$ $\subseteqq,$ $U,$ $\cap,$
$X^{Y},\overline{\overline{X}},$ $f(*\cdots*)-,$ $D(f),$ $R(f),$ $f|X$ and $\Gamma^{1}$ respectively,

membership, the class consisting of $x_{\xi},$
$\xi<\alpha$ , the a-sequence whose $\xi$ -th mem-

ber is $x_{\xi}$ , the class of $x$ such that ... $ x\cdots$ , inclusion, union, intersection, the
set of all functions from $Y$ to $X$, the cardinality of $X$, n-ary function, domain
of $f$, range of $f$, restriction of $f$ to $X$ and inverse of the one to one function $f$.

By a similarity type, or briefly type, we mean a function whose range is
to. If $\mu$ is a type, and $\alpha\in\Omega$ , then $\mu\oplus\alpha$ is the type such that $D(\mu\oplus\alpha)=$

$ D(\mu)U\alpha$ (disjoint sum, without loss of generality we can assume $D(\mu)$ and $\alpha$

is disjoint) and $\mu\oplus\alpha\uparrow D(\mu)=\mu,$ $(\mu\oplus\alpha)(\xi)=0$ for $\xi<\alpha$ . If $\mu,$
$\mu^{\prime}$ are types,

$\mu\subseteqq\mu^{\prime}$ means that $D(\mu)\subseteqq D(\mu^{\prime})$ and $\mu^{\prime}|D(\mu)=\mu$ . A given type $\mu$ , a system
$\mathfrak{A}=\langle A, R_{i}\rangle_{i\in D(\mu)}$ formed by non empty set $A$ and $\mu(i)$-ary relation R. on $A$ if
$\mu(i)>0$ , i-th element $R_{i}$ of $A$ if $\mu(i)=0$ , is a relational system of type $\mu$ , or
briefly $\mu$ -system whose universe $|\mathfrak{A}|=A$ , i-th relation $\mathfrak{A}^{(i)}=R_{i}$ if $\mu(i)>0$ , i-th
element $\mathfrak{A}^{(i)}=R_{i}$ if $\mu(i)=0$ and power $\mathfrak{A}==A=$ . If $\mathfrak{A}$ is a $\mu$-system and $a\in|\mathfrak{A}|^{\alpha}$ ,

then $(\mathfrak{A}, a)$ is the $\mu\oplus\alpha$-system, whose $\xi$ -th element is $a(\xi)$ for $\xi<\alpha$ . $\mathfrak{A},$ $\mathfrak{B},$ $\mathfrak{C}$

are used to denote $\mu$-systems and $M(\mu)$ denote the class of all $\mu$-systems.

For each type $\mu$ , we consider the first order predicate calculus with
equality $L(\mu)$ . We assume that the reader is familiar with the syntactical
and semantical notions related to it.

$L(\mu)$ has the identity symbol $\pm$ , (individual) variables $\{v_{n}\}_{n<\omega}$ , for each
$i\in D(\mu)$ such that $\mu(i)>0,$ $\mu(i)$-ary predicate symbol $P_{i}$ , and for each $i\in D(\mu)$

such that $\mu(i)=0$ , individual constant $c_{i}$ . We shall use ordinary logical sym-
bols, $\Lambda,$ $\vee,$ $7,$ $\rightarrow\leftrightarrow\exists,$ $\forall$ . The set of formulas, the set of formulas having
no free variables except $\{v_{m}\}_{m<k}$ , the set of sentences will be denoted by $F(\mu)$ ,
$F_{k}(\mu),$ $S(\mu)$ respectively. Let $F^{*}(\mu)=\bigcup_{\alpha-\Omega}F(\mu\oplus\alpha)$ .

If $\mathfrak{A}$ is a $\mu$-system, $\theta\in F(\mu)$ and $a\in|\mathfrak{A}|^{\omega}$ , we shall write $\models \mathfrak{A}\theta[a]$ to mean
that the sequence $a$ satisfies $\theta$ in $\mathfrak{A}$ . In case that $\theta\in F_{k}(\mu)$ , we may write,
instead $\models_{\mathfrak{A}}\theta[a(0), \cdot.. , a(k-1)]$ . If $\theta\in S(\mu)$ , we write $\models \mathfrak{A}\theta$ to mean that $\theta$ is true

in $\mathfrak{A}$ . $T_{n}\mathfrak{A}$ is the set of all sentences of $L(\mu)$ which are true in $\mathfrak{A}$ . For $\mathfrak{A},$ $\mathfrak{B}\in$

$M(\mu),$ $\mathfrak{A}\cong \mathfrak{B},$ $\mathfrak{A}\equiv \mathfrak{B}$ and $\mathfrak{A}<\mathfrak{B}$ mean respectively, $\mathfrak{A}$ is isomorphic to $\mathfrak{B},$ $\mathfrak{A}$ is
elementary equivalent to $\mathfrak{B}(i. e. T_{n}\mathfrak{A}=T_{n}\mathfrak{B})$ and $\mathfrak{A}$ is elementary subsystem
of $\mathfrak{B}(i$ . $e$ . $|\mathfrak{A}|\subseteqq|\mathfrak{B}|$ and for any $\theta\in F(\mu)$ , any $a\in|\mathfrak{A}|^{\omega},$ $F\theta[a]$ is equivalent

$\mathfrak{U}$

to $\models \mathfrak{B}\theta[a]$). A function $f$ from $|\mathfrak{A}|$ to $|\mathfrak{B}|$ is said to be elementary embedding

if $f$ is injection and the image $f(\mathfrak{A})$ of $\mathfrak{A}$ by $f$ is elementary subsystem of $\mathfrak{B}$ .
For $\Sigma\subseteqq F_{k}(\mu),$ $\mathfrak{A}\in M(\mu),$

$\Sigma$ is satisfiable in $\mathfrak{A}$ if there is an $a\in|\mathfrak{A}|^{k}$ such
that $\models\theta[a]$ for all $\theta\in\Sigma$ and $\Sigma$ is said to be finitely satisfiable if every finite

$\mathfrak{A}$

subset of $\Sigma$ is satisfiable in $\mathfrak{A}$ . $\mathfrak{A}$ is said to be $\kappa$ -saturated if for any $\alpha<\kappa$ ,
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$a\in|\mathfrak{A}|^{\alpha},$ $\Sigma\subseteqq F_{1}(\mu\oplus\alpha)$ , if $\Sigma$ is finitely satisfiable in $(\mathfrak{A}, a)$ , then $\Sigma$ is satisfiable
in $(\mathfrak{A}, a)$ . $\mathfrak{A}$ is said to be saturated if $\mathfrak{A}$ is $\mathfrak{A}\Leftrightarrow$-saturated. $\mathfrak{A}$ is said to be speciaf
if there is an elementary chain $\{\mathfrak{A}_{\kappa}\}_{\kappa<\mathfrak{A}}=$ of elementary subsystems of $\mathfrak{A}$ such
that $\mathfrak{A}_{\kappa}$ is $\kappa^{+}$-saturated and

$\bigcup_{\kappa<\overline{\overline{\mathfrak{A}}}}\mathfrak{A}_{\kappa}=\mathfrak{A}$

, when $\{\mathfrak{A}_{\kappa}\}_{\kappa<\mathfrak{A}}=$ is said to be a specializing
chain of $\mathfrak{A}$ .

\S 1. Normal operations on models.

A function $U$ from $M(\mu)$ to $M(\mu^{\prime})$ is said to be an operation on models
(o.p. $m.$) of type $(\mu, \mu^{\prime})$ . A binary function $\tau$ is said to be an assignment trans-
formation (a.s. $t.$) associate to a given o.p. $m$ . $U$ of type $(\mu, \mu^{\prime})$ if there is a
unique natural number $n$ and for any $\mathfrak{A}\in M(\mu)$ , $\tau(\mathfrak{A}, *)$ is a bijectio $7l$ from
$|U(\mathfrak{A})|$ to $|\mathfrak{A}|^{n}$ , when we shall denote $\tau(\mathfrak{A}, *)$ and $n$ by $\tau_{\mathfrak{A}}(*)$ and $d(\tau)$ .

If $\tau$ is an a.s. $t$ . associate to an o.p. $m$ . $U$ , then for any ordinal number $\alpha_{t}$

and any $\mathfrak{A}\in M(\mu)$ , we can define a bijection $\tau_{\mathfrak{A}}^{*}$ from $|U(\mathfrak{A})|^{a}$ to $|\mathfrak{A}|^{a(\tau)\alpha}$ by

$(\tau_{\mathfrak{A}}^{*}(a))(\delta+d(\tau)m+j)=(\tau_{\mathfrak{A}}(a(\delta+m)))(j)$ for $a\in|U(\mathfrak{A})|^{\alpha}$ ,

$\delta+m<\alpha,$ $j<d(\tau),$ $ m<\omega$ , where $\delta$ is a limit ordinal. The definition of $\tau_{\mathfrak{A}}^{*}$

depends upon $\alpha$ but without any confusion we can use $\tau_{\mathfrak{U}}^{*}$ for any ordinal $\alpha$ .
A function $F$ from $S(\mu)$ to $S(\mu^{\prime})$ is said to be an operation on sentences

(o.p. $s.$) of type $(\mu, \mu^{\prime})$ . A function $F$ from $F(\mu)$ to $F(\mu^{\prime})$ is said to be an
operation on formulas (o.p. $f.$) of type $(\mu, \mu^{\prime})$ if there is a natural number
$n$ (the least $n$ denoted by $d(F)$) such that for any $\theta\in F_{k}(\mu),$ $F(\theta)\in F_{nk}(\mu^{\prime})$ for
$ k<\omega$ . A function $F$ from $F^{*}(\mu)$ to $F^{*}(\mu^{\prime})$ is said to be a strong operation on
formulas (s.o. $f.$) of type $(\mu, \mu^{\prime})$ if there is an $n$ (the least $n$ denoted by $d(F)$)
such that for any $\alpha\in\Omega$ , if $\theta\in F_{k}(\mu\oplus\alpha)$ then $F(\theta)\in F_{nk}(\mu^{\prime}\oplus n\alpha)$ .

Suppose $F$ is an o.p. $s$ . (o.p.f. or s.o. $f.$) of type $(\mu, \mu^{\prime})$ . $F$ is said to be com-
mutable with $\Lambda$ ( $\vee$ or 7) if for any $\theta,$ $\varphi\in S(\mu)$($F(\mu)$ or $F^{*}(\mu)$),

$|-F(\theta\Lambda\varphi)\leftrightarrow(F(\theta)\Lambda F(\varphi))$ ( $\leftarrow F(\theta\vee\varphi)\leftrightarrow(F(\theta)\vee F(\varphi))$ or $\mapsto F(7\theta)\leftrightarrow 7F(\theta)$).

Suppose $U$ is an o.p. $m$ . of type $(\mu, \mu^{\prime})$ and $\tau$ is an a.s. $t$ . associate to $U$ .
$U$ is said to be normal with respect to an o.p.s. $F$ of type $(\mu^{\prime}, \mu)$ if for

any $\theta\in S(\mu^{\prime})$ and $\mathfrak{A}\in M(\mu),\models\theta U(\mathfrak{A})$ is equivalent to $\models \mathfrak{U}F(\theta)$ .
$(U, \tau)$ is said to be normal with respect to an o.p.f. $F$ of type $(\mu^{\prime}, \mu)$ if $d(\tau)$

$=d(F)$ and for any $\theta\in F_{k}(\mu^{\prime}),$ $\mathfrak{A}\in M(\mu),$
$a\in|U(\mathfrak{A})|^{k},F\theta[a]U(\mathfrak{A})$ is equivalent to

$F_{\mathfrak{A}}F(\theta)[\tau_{\mathfrak{U}}^{*}(a)]$ .

$(U, \tau)$ is said to be normal with respect to a s.o.f. $F$ of type $(\mu^{\prime}, \mu)$ if $d(\tau)$

$=d(F)$ and for any $\alpha\in\Omega,$ $\theta\in F_{k}(\mu^{\prime}\oplus\alpha),$ $\mathfrak{A}\in M(\mu),$ $a\in|U(\mathfrak{A})|^{k},$ $b\in|U(\mathfrak{A})|^{\alpha}$,

$(U(\mathfrak{A}),b)F\theta[a]$ is equivalent to
$(\mathfrak{A},\tau_{\mathfrak{A}^{}}(b))\models_{\backslash },F(\theta)[\tau_{a}^{*}(a)]$

.
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$U$ is said to be weakly normal if $U$ is normal with respect to some o.p. $s$ .
of type $(\mu^{\prime}, \mu)$ .

$(U, \tau)$ is said to be (strongly) normal if $U$ is normal with respect to some
o.p. $f$ . (s.o.f.) of type $(\mu^{\prime}, \mu)$ .

$U$ is said to be (strongly) normal if there is an a.s. $t$ . $\tau$ associate to $U$ such
that $(U, \tau)$ is (strongly) normal.

Then the following four propositions are immediate from the above de-
finitions.

PROPOSITION 1.1.
(I) If $U$ is strongly normal, then $U$ is normal.
(II) If $U$ is normal, then $U$ is weakly normal.
PROPOSITION 1.2.
(I) If $U$ is normal with respect to two $0$ .p.s.s $F$ and $G$ of type $(\mu^{\prime}, \mu)$ ,

$-F(\theta)\leftrightarrow G(\theta)$ for all $\theta\in S(\mu^{\prime})$ .
(II) If $(U, \tau)$ is normal with respect to two o.p.fs (s.o.p.s) $F$ and $G$ of type

$(\mu^{\prime}, \mu)$ ,
$\leftarrow F(\theta)\leftrightarrow G(\theta)$ for all $\theta\in F(\mu^{\prime}),$ $(F^{*}(\mu^{\prime}))$ .

By Proposition 1.2, weakly normal $U$ and (strongly) normal $(U, \tau)$ have
the unique corresponding $0$ .p.s and o.p. $f$ . (s.o.f.) respectively if we neglect the
difference between logically equivalent formulas. So, we denote them by $F_{U}$

and $F_{(U,\tau)}$ .
PROPOSITION 1.3.
(I) If $U$ is weakly normal, then $F_{U}$ is commutable with $\wedge,$ $\vee$ and 7.
(II) If $(U, \tau)$ is (strongly) normal, $F_{(U,\tau)}$ is commutable with $\wedge,$ $\vee$ and 7.
PROPOSITION 1.4.
If $U$ is normal, then $\overline{\overline{U(\mathfrak{A}}}$) $=\mathfrak{A}=for$ any $\mathfrak{A}\in M(\mu)$ such that $\mathfrak{A}=\geqq\omega$ and $\overline{\overline{U(\mathfrak{A}}}$) $<\omega$

for any $\mathfrak{A}\in M(\mu)$ such that $\mathfrak{A}=<\omega$ .
LEMMA 1.5. Suppose $(U, \tau)$ is normal.
(I) If $\mathfrak{A}<\mathfrak{B}$ , then $U(\mathfrak{U})$ is elementary embeddable in $U(\mathfrak{B})$ by $\tau_{\mathfrak{B}}^{-1}\circ\tau_{\mathfrak{A}}=f_{\mathfrak{U}\mathfrak{B}}$ .
(II) If $\mathfrak{A}<\mathfrak{B},$ $\mathfrak{B}<\mathfrak{C}$ , then $\mathfrak{A}^{\prime}<\mathfrak{B}^{\prime}<U(\mathfrak{C})$ , where

$\mathfrak{A}^{\prime}=f_{\mathfrak{A}\mathfrak{C}}(U(\mathfrak{A}))$ and $\mathfrak{B}^{\prime}=f_{\mathfrak{B}\mathfrak{C}}(U(\mathfrak{B}))$ .
PROOF. (I) Let $\theta\in F_{k}(\mu^{\prime}),$ $\langle a_{0}, \cdots , a_{k- 1}\rangle\in|U(?t)|^{k},$ $ k<\omega$ . Suppose $\models\theta[a_{0}$ ,

$U(\mathfrak{A})$

... , $a_{k- 1}$]. Then $F_{\mathfrak{A}}F(\theta)[\tau_{\mathfrak{A}}(a_{0}), \cdots , \tau_{\mathfrak{A}}(a_{k-1})]$ . Since $\mathfrak{A}<\mathfrak{B},$

$\models F(\theta)[\tau_{\mathfrak{A}}(a_{0})\mathfrak{B}\ldots$ ,

$\tau_{\mathfrak{A}}(a_{k-1})]$ . By the normality of $(U, \tau),\models\theta[\tau_{\mathfrak{B}}^{-1}(\tau_{\mathfrak{A}}(a_{1}))U(\mathfrak{B}) \tau_{\mathfrak{B}}^{-1}(\tau_{\mathfrak{A}}(a_{k- 1}))]$ . So we
get $\models\theta[f_{\mathfrak{A}\mathfrak{B}}(a_{1}), \cdots , f_{\mathfrak{A}\mathfrak{B}}(a_{k- 1})]$ . Hence $f_{\mathfrak{A}\mathfrak{B}}$ is an elementary embedding of $U(\mathfrak{A})$

$U(\mathfrak{B})$

to $U(\mathfrak{B})$ .
(II) By (I) $\mathfrak{A}^{\prime}<U(\mathfrak{C})$ and $\mathfrak{B}^{\prime}<U(\mathfrak{C})$ . So it is sufficient to prove that $|\mathfrak{A}^{\prime}|$

$\subseteqq|\mathfrak{B}^{\prime}$ . But this is obvious from the definitions. $q$ . $e$ . $d$ .
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LEMMA 1.6. Suppose $(U, \tau)$ is strongly normal of type $(\mu, \mu^{\prime})$ and $d(\tau)=n$

and $\kappa$ is a cardinal number. If $\mathfrak{A}$ is $ n\kappa$ -saturated, then $U(\mathfrak{A})$ is rc-saturated.
PROOF. Let $F=F_{(U,\tau)}$ . Assume that $\mathfrak{A}$ is $ n\kappa$ -saturated. Let $\alpha<\kappa$ ,

$a\in|U(\mathfrak{U})|^{\alpha},$ $\Sigma\subseteqq F_{1}(\mu^{\prime}\oplus\alpha)$ . Suppose that $\Sigma$ is finitely satisfiable in $(U(\mathfrak{A}), a)$ .
Let $\Sigma^{\prime}=\{F(\theta);\theta\in\Sigma\}$ . Then $\Sigma/\subseteqq F_{n}(\mu\oplus n\alpha)$ . Let $\{\theta_{0}, \cdots , \theta_{m}\}$ is an arbitrary
finite subset of $\Sigma$ . Since $\Sigma$ is finitely satisfiable in $(U(\mathfrak{U}), a)$ there is a
$b\in|U(\backslash J\mathfrak{h}|$ such that $(U(\mathfrak{A}),a)F\theta_{j}[b]$ for all $j\leqq m$ . By the strong normality of

$(U, \tau),$
$(\mathfrak{A}_{T^{*}}(a))F_{\mathfrak{A}}F(\theta_{j})[\tau_{\mathfrak{A}}(b)]$

for all $j\leqq m$ . Therefore $\Sigma^{\prime}$ is finitely satisfiable in

$(\backslash )t,$ $\tau_{\mathfrak{A}}^{*}(a))$ . Since $\mathfrak{A}$ is $ n\kappa$ -saturated, $\Sigma/\subseteqq F_{n}(\mu\oplus n\alpha)$ and $n\alpha<n\kappa,$ $\Sigma^{\prime}$ is satis-
fiablejin $(\mathfrak{A}, \tau_{\mathfrak{U}^{\backslash }}^{*}(a))$ (see [11] Lemma 2). So there is an $e\in|\mathfrak{A}|^{n}$ such that

$(\mathfrak{A},\tau^{*}(a))\models_{\mathfrak{A}}F(\theta)[e]$

for all $\theta\in\Sigma$ . Hence
(

$U(\mathfrak{A}a)\models_{)},\theta[\tau_{\mathfrak{A}}^{-1}(e)]$ for all $\theta\in\Sigma$ . This shows

that $\Sigma$ is satisfiable in $(U(\mathfrak{A}), a)$ . Therefore $U(\mathfrak{A})$ is $\kappa$ -saturated. $q$ . $e$ . $d$ .
THEOREM 1.7. Suppose that $U$ is strongly normal of type $(\mu, \mu^{\prime})$ .
(I) If $\mathfrak{A}\in M(\mu)$ is saturated, then $U(\mathfrak{U})$ is saturated.
(II) If $\mathfrak{A}\in M(\mu)$ is special, then $U(\backslash 1\mathfrak{h}$ is special.
PROOF. (I) is obvious from Proposition 1.4 and Lemma 1.6. (II) Let $\tau$ be

an $a$ . $s$ . $t$ . associate to $U$ such that $(U, \tau)$ is strongly normal. Let $d(\tau)=n$ ,
$\Gamma_{(U,\tau)}^{\prec}=F$. By Proposition 1.4, it is enough to consider the case that $\mathfrak{A}=\geqq\omega$

(see [3] Corollary 6.2.2). Let $\{\mathfrak{A}_{\kappa}\}_{\kappa<\mathfrak{A}}=$ be a specializing chain of $\mathfrak{A}$ . Define
$\mathfrak{A}_{\kappa}^{\prime}$ for $\kappa<\overline{\overline{U}\overline{(\backslash \mathfrak{Y}}}=\mathfrak{A}=$ by $\mathfrak{A}_{\kappa}^{\prime}=f_{\mathfrak{A}_{K}\mathfrak{A}}(U(\mathfrak{A}_{\kappa}))$ if $\kappa\geqq\omega$ and $\mathfrak{A}_{\kappa}^{\prime}=f_{\mathfrak{A}n(\kappa+1)\mathfrak{A}}(U(\mathfrak{A}_{n(\kappa+1)}))$ if
$\kappa<\omega$ , where $f_{\mathfrak{A}_{\kappa}\mathfrak{A}}$ is $\tau_{\mathfrak{A}}^{-1}\circ\tau_{\mathfrak{A}_{K}}$ . Then by Lemma 1.5 and Lemma 1.6, $\{\mathfrak{A}_{\kappa}^{\prime}\}_{\kappa<\overline{\overline{U(\mathfrak{A})}}}$ is
an elementary chain of elementary subsystems of $U(\mathfrak{A})$ such that $\mathfrak{A}_{\kappa}^{\prime}$ is $\kappa^{+_{-}}$

saturated for $\kappa<\overline{\overline{U(?t}}$). In order to show that $\{\mathfrak{A}_{\kappa}^{\prime}\}_{\kappa<\overline{\overline{U(\mathfrak{A})}}}$ is a specializing chain
of $U(\mathfrak{A})$ , we only need to prove that $U(\mathfrak{A})=$ $U$ $\mathfrak{A}_{\kappa}^{\prime}$ . By Lemma 1.5, $U(\mathfrak{A})$

$\kappa<\overline{\overline{U(\mathfrak{A})}}$

$>$ V $\mathfrak{A}_{\kappa}^{\prime}$ (see [17] Theorem 1.9). Let $a$ be an arbitrary element of $U(\mathfrak{A})$ .
$\kappa<\overline{\overline{U(\mathfrak{A}_{\backslash _{/}}^{\backslash }}}$

Then $\tau_{\mathfrak{A}}(a)\in|\mathfrak{A}|^{n}$ . But
$|\mathfrak{A}|=\bigcup_{\kappa<^{-}\overline{\mathfrak{A}}}|\mathfrak{A}_{\kappa}|$

, so there is a $\kappa<\mathfrak{A}=$ such that $\tau_{\mathfrak{A}}(a)\in|\mathfrak{A}_{\kappa}|^{n}$ .
In case $\kappa<\omega,$ $\tau_{\mathfrak{A}}(a)\in|\mathfrak{A}_{n(\kappa+1)}|^{n}$ because $|\mathfrak{A}_{\kappa}|\subseteqq|\mathfrak{A}_{n(\kappa+1)}|$ . Let $\kappa^{\prime}=\kappa$ for $ K\geqq\omega$ and
$\kappa^{\prime}=n(\kappa+1)$ for $\kappa<\omega$ . Then $\tau_{\mathfrak{A}}(a)\in|\mathfrak{A}_{\kappa},$ $|^{n}$ . Hence $\tau_{\mathfrak{A}_{\kappa}}^{-1}\circ\tau_{\mathfrak{A}}(a)\in|U(\mathfrak{A}_{\kappa},)|$ . But
$a=\tau_{\mathfrak{A}}^{-1}(\tau_{\mathfrak{A}_{\kappa^{\prime}}}(\tau_{\mathfrak{A}\kappa^{\prime}}^{-1}, (\tau_{\mathfrak{A}}(a))))=f_{\mathfrak{A}_{\mathcal{K}}’ \mathfrak{A}}(\tau_{\mathfrak{A}}^{-}‘, \circ\tau_{\mathfrak{A}}(a))$ and $f_{\mathfrak{A}_{\mathcal{K}}\mathfrak{A}}(\tau_{\mathfrak{A}_{\overline{\iota}}}^{-1}, \circ\tau_{\mathfrak{A}}(a))\in|\mathfrak{A}_{\kappa}^{\prime}$ . Hence
$U(\mathfrak{A})=\mathfrak{A}_{\kappa}^{\prime}\kappa<^{\frac{U}{U\overline{(\mathfrak{A})}}}$

Therefore $U(\mathfrak{A})$ is special. $q$ . $e$ . $d$ .

\S 2. Examples of normal operations on models.

In this section, we shall find some normal operations on models. Especially
example 3 (n-direct powers and n-conjunctive formulas) will illustrate the
ideas of this paper.
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EXAMPLE 1 (Reduct). Let $\mu,$
$\mu^{\prime}$ be two types such that $\mu^{\prime}\subseteqq\mu$ Then the

operation $U$ defined by $U(\mathfrak{A})=\mathfrak{A}|\mu^{\prime}$ for $\mathfrak{A}\in M(\mu)$ , is a strongly normal opera-
tion. For a. s. $t$ . $\tau$ and $F_{(U,\tau)}$ , we can take identity map on $|\mathfrak{A}|$ and $F^{*}(\mu)$ .

EXAMPLE 2 (Relativization). Let $\mu,$
$\mu^{\prime}$ be two types such that $\mu^{\prime}\subseteqq\mu$ and

$D(\mu)=\alpha+1,$ $R(\mu)$ \yen $0\mu(\alpha)=1$ where $ D(\mu^{\prime})=\alpha$ . Then the operation $U$ defined
by $U(\mathfrak{A})=\mathfrak{A}_{\alpha}$ , where $\mathfrak{A}_{\alpha}$ is the $\mu^{\prime}$ -system such that $\mathfrak{A}_{\alpha}=\langle B, B_{\xi}\rangle_{\xi<\alpha},$ $B=R_{\alpha}$ ,
$B_{\xi}=R_{\xi}\cap(R_{o})^{ft}(\xi)$ for $\xi<\alpha$ and $\mathfrak{A}=\langle A, R_{\xi}\rangle_{\xi<\alpha+1}$ . For $F_{U}$ , we use $F_{U}(\theta)=$

$(\exists v_{0})P(v_{0})\rightarrow\theta^{(P\alpha})$ where $\theta^{(P\alpha^{)}}$ is the relativization of $\theta$ by $P_{\alpha}$ (see [16]). Then
$U$ is weakly normal.

REMARK. In Example 2 we must define $T_{n}\mathfrak{A}=S(\mu^{\prime})$ for $\mu^{\prime}$ -system whose
universe is empty set.

It is well known that relativization preserves saturated models and special
models (see [14] Theorem 3.7 and [18] Theorem 4.2). But in our definition of
a. s. $t$ . $\tau$ , we require that $\tau_{\mathfrak{A}}$ is bijection for $\mathfrak{A}\in M(\mu)$ , and this is not true if
we take $\tau_{\mathfrak{A}}$ as inclusion map from $R_{\alpha}$ to $A$ . So, in order to extend Theorem
1.7 to include relativization we must modify the definition of $a$ . $s$ . $t$ . and need
more complicated treatments.

To describe the next two examples we require some preliminaries.
Let $n<\omega,$ $j<n$ . For $\theta\in F^{*}(\mu)$ , define $\theta^{(nj)}$ by the result of proper simul-

taneously substitution of $v_{m}$ by $v_{nm+j}$ and $c_{\xi}$ by $c_{n\xi+j}$ for $m<\omega,$ $\xi\in\Omega$ . Then
obviously if $\theta\in F_{k}(\mu\oplus\alpha)$ , then $\theta^{(n,j)}\in F_{nk}(\mu\oplus n\alpha)$ .

EXAMPLE 3 (n-direct power and n-conjunctive formulas). Fix a natural
number $n$ . Let $U(?t)=\mathfrak{A}^{n}$ for $\mathfrak{A}\in M(\mu)$ and $\tau_{\mathfrak{U}}(a)=a$ for $a\in|U(\mathfrak{A})|$ . Define
$F(\theta)=\Lambda\theta^{(nj)}$ if $\theta$ is atomic, and $F(\theta_{1}\wedge\theta_{2})=F(\theta_{1})\Lambda F(\theta_{2}),$ $F(\theta_{1}\vee\theta_{2})=$

$j<n$

$F(\theta_{1})\vee F(\theta_{2}),$ $F(7\theta)=7F(\theta),$ $F((\forall v_{m})\theta(v_{m}))=(\forall v_{nm})\cdots(\forall v_{nm+n- 1})F(\theta(v_{m}))$ ,
$F((\exists v_{m})\theta(v_{m}))=(\exists v_{nm})\cdots(\exists v_{nm+n-1})F(\theta(v_{m}))$ , then $(U, \tau)$ is strongly normal with
respect to $F$ (see [15], this information is due to C. C. Chang and H. J. Keisler).

Hence $U$ is strongly normal. Any $\theta\in F(\mu)$ and $\varphi\in S(\mu)$ such that $\theta\in R(F)$

and $\varphi\in R(F)$ are called n-conjunctive formulas and n-conjunctive sentences.
EXAMPLE 4 (n-direct sum and n-disjunctive formulas). Suppose $ n<\omega$ and

$\mu$ is a type such that $\mu(i)>0$ for all $i\in D(\mu)$ (for convenience’s sake). For
$\mathfrak{A}=\langle A, R_{\dot{\lambda}}\rangle_{i\in D(\mu)}$ , define $n\mathfrak{A}=\langle A^{n}, nR_{i}\rangle_{i\in D(\mu)}$ where $\langle a_{0}$ , $\cdot$ .. , $a_{\ell(i)- 1}\rangle\in nR_{i}$ if and
only if for some $j<n,$ $\langle a_{0}(j), \cdots , a_{\iota(i)-1}(j)\rangle\in R_{i}$ for $\langle a_{0}, \cdots , a_{\mu^{(i)- 1}}\rangle\in(A^{n})^{\mu^{(i)}}$ ,

$i\in D(\mu)$ . $n\mathfrak{A}$ is called the n-direct sum of $\mathfrak{A}$ . Define $U$ by $U(\mathfrak{A})=n\mathfrak{A}$ , and $\tau$

by $\tau_{\mathfrak{A}}(a)=a$ for $a\in|U(\mathfrak{A})|$ , for $\mathfrak{A}\in M(\mu)$ . Define $F$ by $F(\theta)=\vee\theta^{(nj)}$ if $\theta$ is
$j<n$

atomic and other cases are the same as Example 3. Then $(U, \tau)$ is strongly
normal with respect to $F$, so $U$ is strongly normal. Any element in $ R(F)\cap$

$F(\mu)(R(F)\cap S(\mu))$ is called as n-disjunctive formula (sentence).
REMARK. We can treat Example 3 and 4 more generally as a generalized

power defined on $n$ (see [4]).
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\S 3. Preservation theorems.

We shall consider in this section a generalized form of preservation theo-
rems. At first, we consider functions whose domain is $M(\mu)$ and whose range
is the collection of subclasses of $M(\mu)(P(M(\mu)))$ . Weglorz called this type of
function an operation, but we use this term by another meaning. So we call
them operators (see [12]).

A function $0$ from $M(\mu)$ to $P(M(\mu))$ is said to be an operator on models
of type $\mu(0. r. m.)$ . For $0$ . $r$ . $m$ . $O$ of type $\mu$ , let $\Delta(O)$ be the set of sentences
$\theta$ such that if $F\theta \mathfrak{A}$ then $\models\theta \mathfrak{B}$ for all $\mathfrak{B}\in O(\mathfrak{U})$ . This definition of $\Delta(O)$ is due

to Weglorz (see [12]).
Weglorz also defined perfect $0$ . $r$ . $m$ . $O$ by the following:
$O$ is perfect if and only if $T_{n}\mathfrak{A}\cap\Delta(O)\subseteqq T_{n}\mathfrak{A}$ implies that there are $\mathfrak{A}_{1}>\mathfrak{A}$ ,

$\mathfrak{B}_{1}>\mathfrak{B}$ such that $\mathfrak{B}_{1}\in O(\mathfrak{A}_{1})$ for any $\mathfrak{A},$ $\mathfrak{B}\in M(\mu)$ . This definition is very natu-
ral if we $conside_{-}\wedge\wedge$ classical proofs of some preservation theorems (see [10],

[5]). But we shall use the following stronger definition of perfect $0$ . $r$ . $m$ . to
represent the key method of special models and saturated models in preser-
vation theorems (see [6], [7], [8]).

DEFINITION 3.1. Suppose $O$ is an $0$ . r. m. of type $\mu$ . $0$ is perfect if $T_{n}\mathfrak{A}$

$\cap\Delta(O)\subseteqq T_{n}\mathfrak{B}$ implies $\mathfrak{B}\in O(\mathfrak{A})$ for any special models $\mathfrak{A}$ and $\mathfrak{B}$ such that
$\mathfrak{A}^{=}=\mathfrak{B}^{=}$ or $\mathfrak{A}=<\omega$ or $\mathfrak{B}=<\omega$ .

From now on, we assume that $U$ is an $0$ . $p$ . $m$ . of type $(\mu, \mu^{\prime})$ and $O$ is an
$0$ . $r$ . $m$ . of type $\mu^{\prime}$ . Then $U^{-1}\circ 0\circ U$ is defined by $\mathfrak{B}\in(U^{-1}\circ O\circ U)\mathfrak{W}$ if and only
if $U(\mathfrak{B})\in O(U(\mathfrak{A}))$ . Hence $U^{-1}\circ 0\circ U$ is an $0$ . $r$ . $m$ . of type $\mu$ For $\Delta\subseteqq S(\mu)$ ,
$F(\Delta)=\{F(\theta);\theta\in\Delta\}$ .

THEOREM 3.2. Suppose that $U$ is strongly normal, $O$ is perfect, $\mathfrak{A}$ and $\mathfrak{B}$

are special such that $\mathfrak{A}==\mathfrak{B}$ or $ fI=<\omega$ or $\mathfrak{B}=<\omega$ . $T_{n}\mathfrak{A}\cap F_{U}(\Delta(O))\subseteqq T_{n}\mathfrak{B}$ is equiva-
lent to $U(\mathfrak{B})\in O(U(\mathfrak{A}))$ .

PROOF. It is obvious that $U(\mathfrak{B})\in O(U(?t))$ implies $T_{n}\mathfrak{A}\cap F_{U}(\Delta(O))\subseteqq T_{n}\mathfrak{B}$ .
Suppose $T_{n}\mathfrak{A}\cap F_{U}(\Delta(O))\subseteqq T_{n}\mathfrak{B}$ . Then clearly $T_{n}U(\mathfrak{A})\cap\Delta(O)\subseteqq T_{n}U(\mathfrak{B})$ . Since
$U$ is strongly normal, by Proposition 1.4 and Theorem 1.7, $U(\mathfrak{A})$ and $U(\mathfrak{B})$ are
special and $\overline{U\overline{(\mathfrak{A}}}$) $=\overline{\overline{U(\mathfrak{B}}}$) or $\overline{\overline{U\overline{(}}\mathfrak{A}}$) $<\omega$ or $\overline{\overline{U(\mathfrak{B}}}$) $<\omega$ . Since $O$ is perfect, $ U(\mathfrak{B})\in$

$O(U(\mathfrak{A}))$ . q. e. d.
For $\Delta\subseteqq S(\mu)$ , let $\Delta^{\prime}$ be the logical closure of $\Delta$ .
THEOREM 3.3. Suppose that $U$ is strongly normal and $O$ is perfect. Then

$\Delta(U^{-1}\circ O\circ U)=(F_{U}(\Delta(O)))^{\prime}$ .
PROOF. It is obvious from the definition and assumption that $(F_{U}(\Delta(O)))^{\gamma}$

$\subseteqq\Delta(U^{-1}\circ O\circ U)$ . Let $\theta$ be an arbitrary element of $\Delta(U^{-1}\circ O\circ U)$ and $\Gamma=\{\psi$ ;
$\psi\in F_{U}(\Delta(O)),$ }$-\theta\rightarrow\psi$ }. Suppose that $\Gamma U\{7\theta\}$ is consistent. Let $\mathfrak{B}$ be one
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of its models and $\Gamma^{\prime}=\{7\psi;\psi\in F_{U}(\Delta(O)), \mathfrak{B}\models 7\psi\}$ . Since $\Delta(0)$ is closed under

disjunction and $F_{U}$ is commutable with disjunction, $\Gamma^{\prime}U\{\theta\}$ is consistent.
Let $\mathfrak{A}$ be a model of $\Gamma^{\prime}U\{\theta\}$ . Then $\models\theta \mathfrak{A}$ $\models 7\theta \mathfrak{B}$ and $T_{n}\mathfrak{A}\cap F_{U}(\Delta(O))\subseteqq T_{n}\mathfrak{B}$ .
Let $\mathfrak{A}_{1},$ $\mathfrak{B}_{1}$ be two special models such that $\mathfrak{A}_{1}\equiv \mathfrak{A},$ $\mathfrak{B}_{1}\equiv \mathfrak{B}$ and $Ut_{1}=\mathfrak{B}_{1}\approx$ or $U_{1}<\omega$

or $\mathfrak{B}_{1}=<\omega$ (see [14]). Then
$\mathfrak{A}\mathfrak{B}\models_{1}\theta,\models_{1}7\theta$

and $T_{n}\mathfrak{A}_{1}\cap F_{U}(\Delta(O))\subseteqq T_{n}\mathfrak{B}_{1}$ . By Theorem

3.2, $U(\mathfrak{B}_{1})\in O(U(\mathfrak{A}_{1}))$ . Since
$\mathfrak{A}F_{1}\theta$

and $\theta\in\Delta(U^{-1}\circ O\circ U),$
$F\theta \mathfrak{B}$ This is a con-

tradiction. Hence $\Gamma U\{7\theta\}$ is inconsistent. By the compactness theorem and
the fact that $\Gamma$ is closed under conjunction, $\theta\in(F_{U}(\Delta(O)))^{\prime}$ . This means that
$\Delta(U^{-1}\circ O\circ U)=(F_{U}(\Delta(O)))^{\prime}$ . q. e. d.

COROLLARY 3.4. (Keisler [4], Theorem 4.1 and Corollary 4.2).
(I) If $\mathfrak{A}$ and $\mathfrak{B}$ are special of same power, then the following two condi-

tions are equivalent:
(i) $\mathfrak{A}^{n}\cong \mathfrak{B}^{n}$

(ii) Every n-conjunctive sentence true in $\mathfrak{A}$ is also true in $\mathfrak{B}$ .
(II) The following two conditions are equivalent:
(i) $If\models\theta \mathfrak{A}$ and QI $n\cong \mathfrak{B}^{n}$ , then $\models\theta \mathfrak{B}$

(ii) $\theta$ is equivalent to some n-conjunctive sentence.
PROOF. In Theorem 3.3, take $O$ as isomorphism and $U$ as n-direct power.

$q$ . $e$ . $d$ .

\S 4. Interpolation theorem.

In this section, we shall get a generalized form of the Craig-Lyndon inter-
polation theorem using normal operations and perfect operators on models.
Throughout this section we fix $U_{1},$ $U_{2},$ $V_{1},$ $V_{2},$ $U$ as strong normal operations
on models of type $(\mu^{\prime}, \mu_{1}),$ $(\mu_{1}, \mu),$ $(\mu^{\prime}, \mu_{2}),$ $(\mu_{2}, \mu),$ $(\mu^{\prime}, \mu),$ $respectively_{\overline{s}}^{m}$ such
that $U=U_{2}\circ U_{1}=V_{2}\circ V_{1}$ ( $i$ . $e$ . the following diagram commutes)

and $F_{U}=F_{U_{2}}\circ F_{U_{1}}=F_{V_{2}}\circ F_{V_{1}}$ .
Moreover $0,$ $O^{\prime}$ are operators on models of type $\mu,$

$\mu^{\prime}$ . $O\subseteqq O^{\prime}$ means that
for any $\mathfrak{A},$ $\mathfrak{B}\in M(\mu^{\prime})$ , if $U(\mathfrak{B})\in O(U(\mathfrak{A}))$ , then there are $\mathfrak{A}^{\prime},$ $\mathfrak{B}^{\prime}\in M(\mu^{\prime})$ such
that $U_{1}(\mathfrak{A}^{\prime})=U_{1}(\mathfrak{A}),$ $V_{1}(\mathfrak{B}^{\prime})=V_{1}(\mathfrak{B})$ and $\mathfrak{B}^{\prime}\in O^{\prime}(\mathfrak{A}^{\prime})$ .
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(i. e.

$\exists_{\mathfrak{A}}\mathfrak{A}$

,
$\underline{UU^{\underline{1_{1}}}}U_{1}(\mathfrak{A})_{l}U^{1}(\mathfrak{A})||\underline{\sim}U(\mathfrak{A})$

$\downarrow 0^{\prime}$ } $O$

If then
$\exists_{\mathfrak{B}^{\prime}}$

$\underline{V_{1}}V_{1}(\mathfrak{B}^{\prime})-U(\mathfrak{B})$

$\mathfrak{B}$

$\rightarrow^{V_{1}}V_{1}(\mathfrak{B})||\nearrow$

THEOREM 4.1 (interpolation theorem). Suppose that $O$ is perfect and $O\subseteqq O^{\prime}$ ,

$\theta\in R(F_{U_{1}}),$ $\varphi\in R(F_{V_{1}})$ and $\theta\in\Delta(0^{\prime})$ or $\varphi\in\Delta(O^{\prime})$ .
If $-\theta\rightarrow\varphi$ , then there is a $\psi\in F_{U}(\Delta(O))$ such $ that\leftarrow\theta\rightarrow\psi$ $ and\leftarrow\psi\rightarrow\varphi$ .
PROOF. Suppose }$-\theta\rightarrow\varphi$ . Let $\Delta$ be the set of sentence $\psi\in F_{U}(\Delta(O))$ such

that $|-\theta\rightarrow\psi$ . Suppose that $\Delta U\{7\varphi\}$ is consistent. Then by the same method
in the proof of Theorem 3.3, we can get two special models $\mathfrak{A}_{2}$ and $\mathfrak{B}_{2}$ in $M(\mu^{\prime})$

such that $s_{U_{2}}=\mathfrak{B}_{2}=$ or $\mathfrak{A}_{2}=<\omega$ or $s_{B_{2}}<\omega$ and $\models\theta,$ $\models 7\varphi,$ $T_{n}\mathfrak{A}_{2}\cap F_{U}(\Delta(O))\subseteqq T_{n}\mathfrak{B}_{2}$ .
$\mathfrak{A}_{2}$ $\mathfrak{B}_{2}$

Since $O$ is perfect, by Theorem 3.2, $U(\mathfrak{B}_{2})\in O(U(\mathfrak{A}_{2}))$ . Since $O\subseteqq O^{\prime}$ , there are
$\mathfrak{A}_{1},$ $\mathfrak{B}_{1}\in M(\mu^{\prime})$ such that $U_{1}(\mathfrak{A}_{1})=U_{1}(\mathfrak{A}_{2}),$ $V_{1}(\mathfrak{B}_{1})=V_{1}(\mathfrak{B}_{2})$ and $\mathfrak{B}_{1}\in O^{\prime}(\mathfrak{A}_{1})$ . Since
$\theta\in R(F_{U_{1}}),$ $\models\theta$ and $U_{1}(\mathfrak{A}_{1})=U_{1}(\mathfrak{A}_{2})$ , we get $\models\theta$ . Since $\varphi\in R(F_{V_{1}}),$ $\models 7\varphi$ and

$\mathfrak{A}_{2}$ $\mathfrak{A}_{1}$ $\mathfrak{B}_{2}$

$V_{1}(\mathfrak{B}_{1})=V_{1}(\mathfrak{B}_{2})$ , we get
$\mathfrak{B}\models_{1}7\varphi$

. If $\theta\in\Delta(O^{\prime})$ , then
$\mathfrak{B}F_{1}\theta$

by
$\mathfrak{A}\models_{1}\theta$

and $\mathfrak{B}_{1}\in O^{\prime}(\mathfrak{A})$ .

Since $|-\theta\rightarrow\varphi,$

$\mathfrak{B}\models_{1}\varphi$
. This contradicts

$\mathfrak{B}\models_{1}7\varphi$
. If $\varphi\in\Delta(O^{\prime})$ , since $\leftarrow\theta\rightarrow\varphi$ and

$\models_{1}\theta \mathfrak{A}$ $\mathfrak{A}\models_{1}\varphi$

. Hence
$\mathfrak{B}\models_{1}\varphi$

by $\mathfrak{B}_{1}\in O^{\prime}(\mathfrak{A}_{1})$ . This contradicts
$\models_{1}7\varphi \mathfrak{B}$

Therefore

$\Delta U\{7\varphi\}$ is inconsistent. By the compactness theorem and the fact that $\Delta$

is closed under conjunction, there is a $\psi\in\Delta$ such that $\leftarrow\psi\rightarrow\varphi$ . Hence $|-\theta\rightarrow\psi$ ,
$\phi-\psi\rightarrow\varphi,$ $\psi\in F_{U}(\Delta(0))$ . $q$ . $e$ . $d$ .

REMARK. Let $U,$ $U_{1},$ $U_{2},$ $V_{1},$ $V_{2}$ be reducts with some natural conditions.
If we take $O$ and $O^{\prime}$ as isomorphisms, then we get Craig’s interpolation

theorem. If we take $O$ and $O^{\prime}$ as $\Gamma$ -homomorphism and $\Gamma^{\prime}$ -homomorphism
for appropriate generalized atomic formulas $\Gamma,$ $\Gamma^{\gamma}$ (see [5], [9], [10]), then
we get Lyndon’s interpolation theorem.

University of Tokyo
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