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It is well known that special models and saturated models are nice tools
in the theory of models. The technique of special models and saturated
models is widely used in different problems, e.g. preservation theorems (see
31 [61 [7]1 [8] [12]), two cardinal problems (see [2]), theory of definition
(see [1], [11]), and categoricity in powers (see [13]).

In this paper we shall consider some operations on models (i. e. functions
whose domain and range are classes of models), which preserve special models
and saturated models. An operation U on models which has the following
property i.e. for any formula ¢ and any model ¥, the satisfaction of ¢ in
U@ by elements of UM) is reducible to that of a formula corresponding to
6 in A by corresponding elements of 9, will be called a normal operation.
Then our main theorem says that normal operations preserve special models
and saturated models. As an example of normal operations we can take the
n-direct power operation and the reduct operation. Using this main theorem,.
we shall get some generalized forms of preservation theorems and interpola-
tion theorems.

I would like to thank Prof. C.C. Chang and Prof. H.]J. Keisler who read
the original manuscript of this paper and gave me useful advices. 1 would
also like to express my thanks to Prof. R. Lyndon who kindly encouraged me
and to Prof. S. Maehara who suggested to me the possibility of a generaliza-
tion of results of the original manuscript of this paper.

§0. Preliminaries.

We shall distinguish between classes and sets. Occasionally we shall
consider collections of classes. We consider each ordinal number as coincid-
ing with the set of smaller ordinal numbers. We use letters &, a to denote
ordinal numbers and J to denote limit ordinal numbers and n, m, [, j, k& to
denote natural numbers. We use £ to denote the class of ordinal numbers.
The cardinal numbers are identified with the corresponding ordinal numbers
and denoted by k. o is the least infinite ordinal number, and x* is the suc-
cessor cardinal of &.
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If X, Y are sets we use the following ordinal notations, &, {Xs}scq {XzDecar
n

{x:x), S, U, A XY, X, fG ), DOA), RO, 1 X and -, respectively,
membership, the class consisting of xz, & < a, the a-sequence whose &-th mem-
ber is xz the class of x such that ... x ..., inclusion, union, intersection, the
set of all functions from Y to X, the cardinality of X, n-ary function, domain
of f, range of f, restriction of f to X and inverse of the one to one function f.

By a similarity type, or briefly type, we mean a function whose range is
o. If pis a type, and ac 2, then pPa is the type such that D(pPa)=
D(p)\J « (disjoint sum, without loss of generality we can assume D(y) and «
is disjoint) and pPa | D(pw)=p, (P a)é)=0 for §<a. If p, y¢ are types,
©# S ¢ means that D(p) S D(¢) and p/ | D(g)=p. A given type p, a system
A=<{A, R;)iepi» formed by non empty set A and p(i)-ary relation R; on A if
p(@)> 0, i-th element R; of A if p(1)=0, is a relational system of type g, or
briefly p-system whose universe |%|= A, i-th relation A° =R, if u()>0, i-th
element Y= R, if w(i)=0 and power Y=A. IfAisa p-system and a < [A|%,
then (%, a) is the pu@ a-system, whose &-th element is a(§) for E<a. U, B, €
are used to denote u-systems and M(y) denote the class of all p-systems.

For each type p, we consider the first order predicate calculus with
equality L(y). We assume that the reader is familiar with the syntactical
and semantical notions related to it.

L(y) has the identity symbol =, (individual) variables {v,},<, for each
i< D(p) such that p(i) >0, p(i)-ary predicate symbol P;, and for each i< D(y)
such that p(i)=0, individual constant ¢;, We shall use ordinary logical sym-
bols, A, V, 7, —, <, 3, V. The set of formulas, the set of formulas having
no free variables except {v,}n.< the set of sentences will be denoted by F(p),
F(1), S(p) respectively. Let F*(p) ZQUQF (1D a).

If % is a p-system, 6§ = F(y) and a = |A|”, we shall write t;ﬁ[a] to mean
that the sequence a satisfies ¢ in . In case that 6 = F,(p), we may write,
instead }; O0La(0), -+, a(k—1)]. If 0 =S(y), we write l-; @ to mean that 4 is true
in A. TN is the set of all sentences of L(y) which are true in A. For A, B <
M(y), A=%D, A= and A<B mean respectively, A is isomorphic to B, A is
elementary equivalent to B (i.e. T,%A="T,B) and A is elementary subsystem
of B (i.e. A =|B| and for any § = F(y), any a < |U|®, k= 6[a] is equivalent
to l-;ﬁ[a]). A function f from |%| to |®B]| is said to be elgmentary embedding
if f is injection and the image f(%) of A by f is elementary subsystem of B.

For Y S Fi(p), Ne M(p), 2 is satisfiable in % if there is an a [A|* such
that = 0[a] for all # =23 and Y is said to be finitely satisfiable if every finite
subset%I of X is satisfiable in . A is said to be k-saturated if for any a <k,
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ac|AlY XS F(uPa), if Y is finitely satisfiable in (¥, a), then Y is satisfiable
in (%, a). WA is said to be saturated if % is A-saturated. 9 is said to be special
if there is an elementary chain {%,},.5 of elementary subsystems of 9 such
that 9, is g"-saturated and U A, =A, when {A.}.5 is said to be a specializing
chain of . ks

§1. Normal operations on models.

A function U from M(g) to M(p') is said to be an operation on models
(0.p.m.) of type (g, ¢’). A binary function 7 is said to be an assignment trans-
formation (a.s.t.) associate to a given o.p.m. U of type (g, p/) if there is a.
unique natural number n and for any e M(y), «(®, *) is a bijection from
[U®)| to |A|™, when we shall denote (2, *) and n by z4(x) and d(z).

If z is an a.s.t. associate to an o.p.m. U, then for any ordinal number «,
and any A e M(y), we can define a bijection z¥ from |U®)|* to |A|¥“"« by

(ri(@)(0+d(zym+)) = (zy(al@+m))(j) ~ for a s |UW|“,

o+m<a, j<d(r), m<w, where ¢ is a limit ordinal. The definition of z¥
depends upon a but without any confusion we can use z¥ for any ordinal a.

A function F from S(g) to S(y’) is said to be an operation on sentences
(0.p.s.) of type (g, p'). A function F from F(yg) to F(y’) is said to be an
operation on formulas (0.p.f.) of type (g, p/) if there is a natural number
n (the least n denoted by d(F)) such that for any 6 € F(p), F(0) € F(¢') for
k<w. A function F from F*(yu) to F*(u’)is said to be a strong operation on
Sormulas (s.0.f.) of type (g, p/) if there is an n (the least n denoted by d(F))
such that for any a e £, if 0 € F,(pP «) then F(0) € F (' P na).

Suppose F is an o.p.s. (0.p.f. or s.0.f.) of type (¢, ¢/). F is said to be com-
mutable with A (v or 7) if for any 6, ¢ € S(u)(F(r) or F*(u)),

=FONQ) = (FO)NF (@) (—FE@V @)= FW@)V Fp) or —F(70)—7F0)) .

Suppose U is an o.p.m. of type (g, ¢/) and ¢ is an a.s.t. associate to U.

U is said to be normal with respect to an o.p.s. F of type (g, p) if for
any 6 < S(y) and %A = M(p), UI(: f is equivalent to = F(6).

20 P

(U, 7) is said to be normal with respect to an o.p.f. F of type (¢, ) if d(z)
=d(F) and for any 0 e F(¢), We M(p), a =|UAM|?, Uﬁ)ﬁ[a] is equivalent to
= F(O)zia)].

(U, 7) is said to be normal with respect to a s.o.f. F of type (g, p) if d(z)
=d(F) and for any ac £, 0 F,(i D), We M), a=|UWI*, be|UQ)|,

= O[a] is equivalent to E F@[c¥(a)]l

W a),b) (%, 7y (0))
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U is said to be weakly normal if U is normal with respect to some o.p.s.
of type (¢/, ).

(U, 7) is said to be (strongly) normal if U is normal with respect to some
o.p.f. (s.0.f.) of type (¢, p).

U is said to be (strongly) normal if there is an a.s.t. ¢ associate to U such
that (U, ) is (strongly) normal.

Then the following four propositions are immediate from the above de-
finitions.

ProprosITION 1.1.

(D) If U is strongly normal, then U ts normal.

A If U is normal, then U is weakly normal.

PROPOSITION 1.2.

(D) If U is normal with respect to two o.p.s.s F and G of type (¢, p),

—F(0)— G(0) Jor all 6 S().
AD If (U, ©) ts normal with respect to two o.p.f.s (s.0.p.s) F and G of type
(s 1),
—F(0)~ G(0) for all 6 F(u'), (F*(¢)).

By Proposition 1.2, weakly normal U and (strongly) normal (U, r) have
the unique corresponding o0.p.s and o.p.f. (s.0.f.) respectively if we neglect the
difference between logically equivalent formulas. So, we denote them by Fy
and Fy,o.

PROPOSITION 1.3.

(D) If U is weakly normal, then Fy is commutable with N, \V and 7.

L) If (U, ) is (strongly) normal, Fuy . is commutable with A, \V and 7.

PROPOSITION 1.4.

If U is normal, then LT%:’TI Sor any W € M(y) such that A= w and Uﬁ)<w
for any e M(y) such that N < .

LEMMA 1.5. Suppose (U, 7) is normal.

(D) If N<B, then UM) is elementary embeddable in UEB) by tg'o Ty = fygp-

A If A<B, B<LE, then W < B’ < UB), where

W = faue(UAN)) and B = fu(UD)).

Proor. () Let 0 € F(p'), aq, -+, Gy € | U |*, k<. Suppose U;—(_;x 6l a,,
+ @y ). Then EF@Ley(@), -, ey(ap-)]  Since A<D, t;F(e)[r%(aoi,
79(ax-)]. By the normality of (U, ), Ul;)ﬁ[rgl(ru(al)), o, Terg(as- )], So we
get Uia)ﬁ[fm(al), v, fun(ax-,)]. Hence fyy is an elementary embedding of U()
to U(B).

dn By () W <UE®) and B’ <UE). So it is sufficient to prove that [U’|
< |%’|. But this is obvious from the definitions. g.e.d.
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LEMMA 1.6. Suppose (U, 7) is strongly normal of type (¢, ') and d(z)=n
and k is a cardinal number. If W is nk-saturated, then U®N) is k-saturated.
Proor. Let F=Fy,,. Assume that U is ng-saturated. Let a<k,
acs|UM| ¥ S F (' Da). Suppose that X is finitely satisfiable in (U®), a).
Let /= {F(@); 0 2}. Then Y’'c F,(uPna). Let {8, ---, 0,} is an arbitrary
finite subset of 2. Since 2 is finitely satisfiable in (U), @) there is a
be|UM)| such that (U(;——)’a)ﬁj[b] for all j<m. By the strong normality of
U, ), l:* F(0)[ty(b)] for all j=<m. Therefore 3/ is finitely satisfiable in
(A, 79 (@)
O, 7¥(a)). Since A is nk-saturated, 2’ S F(pPna) and na <nk, 3’ is satis-
fiable}in (U, t¥(a)) (see [11] Lemma 2). So there is an e |%A|™ such that
E  F(@)[e] for all 9= X. Hence U(t;’a)ﬁ[r;(e)] for all ¢ . This shows

e @) (
thaiI 2 is satisfiable in (U(¥), @). Therefore U®) is x-saturated. q.e. d.

THEOREM 1.7. Suppose that U s strongly normal of type (p, p').

(1) IfNe M(y) is saturated, then U®N) is saturated.

D) If We M(p) is special, then URN) is special.

Proor. (I) is obvious from Proposition 1.4 and Lemma 1.6. (II) Let ¢ be
an a.s.t. associate to U such that (U, zr) is strongly normal. Let d(z)=n,
Fy,»=F. By Proposition 1.4, it is enough to consider the case that A= w
(see [3] Corollary 6.2.2). Let {¥:},«q be a specializing chain of %. Define
W, for £ < f]ﬁ):ﬁ by %:c:fﬁ,ﬁx(U@Ix)) if kZzw and %;::fmn(xﬂ)ﬂ(U@[n(xH))) if
£ < w, where fy o iS ty'ory,. Then by Lemma 1.5 and Lemma 1.6, {;}.<5a is
an elementary chain of elementary subsystems of U®) such that A is x*-

saturated for < W). In order to show that {;},.<Fa5 is a specializing chain
of UM), we only need to prove that U)= U ;. By Lemma 1.5, UQ)

k<U(A)
> \U_Aj (see [17] Theorem 1.9). Let a be an arbitrary element of U().

£<UE,

Then t4(a) € [A|™ But |A]= U [%,], so there is a £ <3 such that ry(a) A, |™
<
In case k& < w, ty4(@)E |Wnern | ™ because | A, | S [Wpesn|. Let £/ =k for £ = w and

£’ =n(k+1) for £ <w. Then zyla)= |, |" Hence vl ery(@) € |UQ)|. But
a= Til(fm,c(f%_tfc" (zgl@))) = fﬂ,;'ax(fii' o7y(a)) and fm'm(fs—l,lc' ory(a)) = |Ar|. Hence
U= \J_ A Therefore U®N) is special. g.e.d.

£<U(A)

§2. Examples of normal operations on models.

In this section, we shall find some normal operations on models. Especially
example 3 (n-direct powers and n-conjunctive formulas) will illustrate the
ideas of this paper.
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ExAaMPLE 1 (Reduct). Let g, p¢’ be two types such that g/ & g. Then the
operation U defined by U®) = ¢’ for W M(p), is a strongly normal opera-
tion. For a.s.t. z and F,», we can take identity map on || and F*(g).

ExampLE 2 (Relativization). Let g, ¢/ be two types such that p/ & ¢ and
D(p)y=a+1, R(p) 0 u(a)=1 where D(¢')=a. Then the operation U defined
by U®M)=%A,, where %, is the py’-system such that U, =B, Bedeca, B=R,,
Be =R: "\(R)M&) for E<a and A=C{A, Redecar,- For Fy, we use Fy(f)=
Q)P (v,)— 0P, where §P« is the relativization of ¢ by P, (see [16]). Then
U is weakly normal.

REMARK. In Example 2 we must define 7,0 =S(y’) for p/-system whose
universe is empty set.

It is well known that relativization preserves saturated models and special
models (see [14] Theorem 3.7 and [18] Theorem 4.2). But in our definition of
a.s.t. 7, we require that zy is bijection for %< M(y), and this is not true if
we take 74 as inclusion map from R, to A. So, in order to extend Theorem
1.7 to include relativization we must modify the definition of a.s.t. and need
more complicated treatments.

To describe the next two examples we require some preliminaries.

Let n<w, j<n. For § = F*(y), define 6»” by the result of proper simul-
taneously substitution of v, by vVunu.; and cg by cey; for m< o, §= £2. Then
obviously if 0 € F(¢PD «a), then 6P e F,,(pP na).

EXAMPLE 3 (n-direct power and n-conjunctive formulas). Fix a natural
number n. Let U®)=A" for A< M(y) and ry(a)=a for a=|UQ)|. Define
F@= N6 if 6 is atomic, and F(@,N0,)=F@)NF(@,), F@,V 0,)=

i

F(6,) VF 02), F(70)="7F(0), F(Y0n)0Wmn)=0nm) *** (VWansn-)F(OWn)),
F((Av)0wn) = @Qvan) -+ QUaman-)F (@), then (U, 7) is strongly normal with
respect to I (see [15], this information is due to C. C. Chang and H. J. Keisler).

Hence U is strongly normal. Any 6 € F(g) and ¢ & S(p) such that 6= R(F)
and ¢ € R(F) are called n-conjunctive formulas and n-conjunctive sentences.

ExXAMPLE 4 (n-direct sum and n-disjunctive formulas). Suppose n < w and
p is a type such that p(i) >0 for all 1= D(y) (for convenience’s sake). For
A=A, R:>iepo, define nW = (A" nR;)iepqo Where {a,, -+, Quqy-» € nR; if and
only if for some j<mn, {ayj), -+, Gupr,(J)) € R; for (ay, -, ay(i)—1>e(An)#(i),
1€ D(y). n¥ is called the n-direct sum of A. Define U by U®N)=nA, and ¢
by ty(a)=a for a=|U®)|, for A= M(y). Define F by F(@):'\// 6P if @ is
atomic and other cases are the same as Example 3. Then (U, Jz-sn is strongly
normal with respect to F, so U is strongly normal. Any element in R(F)
F()(R(F)N S(w)) is called as n-disjunctive formula (sentence).

REMARK. We can treat Example 3 and 4 more generally as a generalized
power defined on n (see [4)).
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§ 3. Preservation theorems.

We shall consider in this section a generalized form of preservation theo-
rems. At first, we consider functions whose domain is M(y) and whose range
is the collection of subclasses of M(y) (P(M(p))). Weglorz called this type of
function an operation, but we use this term by another meaning. So we call
them operators (see [12]).

A function O from M(y) to P(M(y)) is said to be an operator on models
of type p (o.r.m.). For o.r.m. O of type pu, let 4(0) be the set of sentences
¢ such that if );H, then !;0 for all B O®). This definition of 4(0) is due

to Weglorz (see [12]).
Weglorz also defined perfect o.r.m. O by the following :

O is perfect if and only if T, N 4(0)< T, implies that there are A, >,
B, >B such that B, = OQ,) for any A, B M(y). This definition is very natu-
ral if we conside- classical proofs of some preservation theorems (see [107],
[5]. But we shall use the following stronger definition of perfect o.r.m. to
represent the key method of special models and saturated models in preser-
vation theorems (see [6], [7], [8).

DEFINITION 3.1. Suppose O is an o.r.m. of type g O is perfect if T,A
NAO)s T, B implies B OQ) for any special models A and B such that
A=FB or A< w or B< w.

From now on, we assume that U is an o. p. m. of type (g, ¢/) and O is an
o.r.m. of type p/. Then U'o0oU is defined by B (U o0 U)Y) if and only
it U®B)e o). Hence U?'oOol is an o.r.m. of type p. For 4S S(y),
F)={F@); 0 < 4}.

THEOREM 3.2. Suppose that U is strongly normal, O is perfect, A and B
are special such that =B or A< w or B<w. TAN Fy(40) S T,B is equiva-
lent to UEB) € O(UMA)).

ProoF. It is obvious that U(®B)e O(U®X)) implies T, AN Fy(4(0)) & T,8B.
Suppose T, XN\ Fy(d(0)) € T,B. Then clearly T,U) N 4(0) < T, UEB). Since
U is strongly normal, by Proposition 1.4 and Theorem 1.7, U®) and U(B) are
special and ﬁ(ﬁ_f):UT?B) or U <o or UMB) < w. Since O is perfect, U(B) e
o). q.e.d.

For 4 S S(y), let 4’ be the logical closure of 4.

THEOREM 3.3. Suppose that U is strongly normal and O is perfect. Then
AU 000 U)=Fy(4(0)))".

PrROOF. It is obvious from the definition and assumption that (Fy(4(0)))’
C AU o0olU). Let 6 be an arbitrary element of A(U*c0olU) and I'={¢;
¢ € Fy(4(0)), —0—¢}. Suppose that I'\U {760} is consistent. Let B be one
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of its models and [I'"={7¢; ¢ € Fy(4(0)), E 7¢}. Since 4(0) is closed under
B

disjunction and F, is commutable with disjunction, ['/\U {f} is consistent.
Let % be a model of ['"\U{f#}. Then k6O, 760 and T, AN Fy(4(0)) S T, 8.
q B

Let %, B, be two special models such that %, =, B; =B and ‘212531 or Y <w
or B, <w (see [T4]). Then 0, =76 and T, N Fy(4(0)) € T.B,. By Theorem
Ay B

3.2, UB)e o). Since =6 and e dU?o0U), l;ﬁ. This is a con-
A1

tradiction. Hence ['\J {776} is inconsistent. By the compactness theorem and
the fact that I' is closed under conjunction, § € (Fy(4(0)))’. This means that
AU o0 U)=Fy(4O))). q.e.d.

COrROLLARY 3.4. (Keisler [4], Theorem 4.1 and Corollary 4.2).

(D) If N and B are special of same power, then the following two condi-
tions are equivalent :

(i) Ar=B"

(i) Ewvery n-comjunctive sentence true in U is also true in B.

(Ihy The following two conditions are equivalent:

@ If i;(? and N* =B, then };0.

(i) @ is equivalent to some n-conjunctive sentence.

ProOOF. In Theorem 3.3, take O as isomorphism and U as n-direct power.
q.e.d.

§4. Interpolation theorem.

In this section, we shall get a generalized form of the Craig-Lyndon inter-
polation theorem using normal operations and perfect operators on models.
Throughout this section we fix U,, U,, V,, V,, U as strong normal operations
on models of type (¢, i), (¢ts, 1), (/s o), (o, 1), (@', p), respectivelyZ such
that U=U,oU,;= V,o V, (i.e. the following diagram commutes)

M)

/V x
U

M(p") = M(p)

M(p,)

and Fy = Fy,oFy,=Fy,0Fy,.

Moreover O, O’ are operators on models of type y, ¢/. O < 0’ means that
for any A, Be M(y), if U®B)=OWUQ)), then there are ', B’ & M(y’) such
that U,(N)=U,A), V,(B)=V,(B) and B’ = O’'A).



572 N. MoTOHASHI

(.e.
D) pi ! ——U—l—— U,
U . u, |
%\\ W —U,Q) — U
U1®D - U) N0 10
If ‘t 0 then 3 Vl
V.(8)—~ UB) B — VB ues)

i
v
B3 — V®

B

THEOREM 4.1 (interpolation theorem). Suppose that O is perfect and OS0’,
d< R(Fy), pe R(Fy) and 8 € 4(0") or ¢ & 40").

If —0— ¢, then there is a ¢ € Fy(4(0)) such that —0—¢ and —¢—o.

PrOOF. Suppose —f0—¢. Let 4 be the set of sentence ¢ € F;(4(0)) such
that —60—¢. Suppose that 4\J {7¢} is consistent. Then by the same method
in the proof of Theorem 3.3, we can get two special models %, and B, in M(y")
such that %,=%B, or A, < w or B, < w and %izﬁ I: 7, TN, N Fy(4(0)) € T, B,.

2

Since O is perfect, by Theorem 3.2, U(B,) = O(U(’JXQ)) Since 0 € (0, there are

A, B, € M(p’) such that U,Q)=U,Q%,), V.(B,)= V,(B,) and B, = O'(A,). Since

0= R(Fy), =0 and U,,)=U,®), we get t= 6. Since ¢ < R(Fy), )_ 7¢ and
Az

ViB)=V.(B,), we get £ 7¢. If < 40", then rzﬁ by 1:0 and ?B e 0'(W).
B1
Since —f#—¢, =¢. This contradicts = 7¢. If goeA(O’) smce —f—¢ and
By B
=0, =¢. Hence =¢ by B,=0’'(N,). This contradicts k= 7¢. Therefore
B1 B3

A A
AIU{7]g0} is inconsistent. By the compactness theorem and the fact that 4
is closed under conjunction, there is a ¢ = 4 such that —¢ —¢. Hence —0-— ¢,
#——g[)—wp, g[) e FU(A(O)) q.e.d.
ReEmARkK. Let U, U,, U,, V,, V, be reducts with some natural conditions.
If we take O and O’ as isomorphisms, then we get Craig’s interpolation
theorem. If we take O and O’ as [-homomorphism and /'’-homomorphism
for appropriate generalized atomic formulas I°, I'/ (see [5], [9], [10]), then
we get Lyndon’s interpolation theorem.
University of Tokyo
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