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Vector-valued quasi-analytic functions and their
applications to partial differential equations
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The unique-continuation property of solutions of partial differential equa-
tions is closely related with the analyticity of solutions. So in this paper we
intend to study relations between the unique-continuation property of solutions
in some variables and the generalized analyticity of solutions in these vari-
ables. First we introduce various notions of generalized analyticity of vector-
valued functions, relative analyticity, relative quasi-analyticity, and those in
weak sense. Then we study the generalized analyticity of solutions of par-
tially elliptic or partially hypo-elliptic equations.

Only partial differential equations with constant coefficients are treated
here. In special cases the analyticity of solutions has been discussed even for
non-analytic coefficients. (For instance, see [5]). Generalization of our results
to the case of variable coefficients will be interesting but it seems to be
difficult.

The author expresses his sincere thanks to Professors E.T. Poulsen and
T. Yamanaka who read a part of the manuscript and gave suggestions.

§1. Quasi-analyticity of vector-valued functions.

In this chapter we consider generalized analyticity and unique-continuation
property of a family {f,(t)=/f.(t,ts -, t;)} of continuous functions defined
on a real domain 2"C R", whose range is in a locally convex linear space E.
We say that a family {f.(f)} has the unique-continuation property if any two
elements f,(-) and f4(-) which are equal on some open subset of 27, are identic-
ally equal on the whole domain £% and say that it has the strict unique-
continuation property if any two elements f,(-) and f4(-) whose difference f,(-)
—f5(+) has a zero point of infinite order, are identically equal on the whole
domain 27",

1. Relatively analytic functions. As is well known, an E-valued function
JS(-) defined on a complex domain D"CC™ or on a real domain Q"C R" is
called analytic if and only if f(.) has a power series expansion
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f(tv "t tn) = 2 ap;---pn(tl—ttl))pl (tn—'tgz)p" ’
Appp, € E .

in a neighbourhood of each point (#, ---, t2) € D™ or Q2™

E’ denotes the dual space of E. If E is sequentially complete and f(.) is
scalarly analytic (i.e., <f(-), u) is analytic for each u € E’) on a complex do-
main D", then f(.) is analytic. However, if f(-) is scalarly analytic on a real
domain Q% then f(-) need not be analytic on 2" when E is infinite-dimensional,
for the analyticity of each {f(-), ) on some complex neighbourhood of 2"
depending on u does not imply the analyticity of all {(f(-), #) on a fixed com-
plex neighbourhood of 0=

We consider the subspace of E/,

{u s E’|{f(+), uy is analytic on a complex domain D"}

which contains at least one element 0, and does not coincide with E’ if f(-)
is not analytic on D®. We give a generalization of the analyticity as follows.
DEFINITION 1. An E-valued continuous function f(-) defined on a complex
domain D" (or on a real domain 2") is called relatively analytic if the subspace
{us E’: {f(-), uy is analytic on D"} (or resp. the subspace {u < E’|{f(:), u) is
analytic on D"} for some complex neighbourhood D™ of £2") is total on E.

Relative analyticity is characterized as follows.

PROPOSITION 1. An E-valued continuous function f(-) defined on a complex
domain D™ is relatively analytic if and only if there exists some linear space F
containing E, endowed with a locally convex separated topology weaker than
that of E, such that f(.) is analytic on D™ as an F-valued function.

Proor. If f(-) is relatively analytic, then we put

G={uc E'|{f("), u> is analytic on D"}
and
F =the set of all linear functionals on G with

the weak topology o(F, G).

Then F is complete and {f(:), ) is analytic for any u € F’ =G, hence f(-) is
analytic as an F-valued function. Moreover FDOF, since G is total on E.
Conversely, if such a space F exists, F’ is total on E. Since F’ is contained
in {u e E’; {f(-), u> is analytic}, the subspace {u € E’|{f(-), ) is analytic} is
total on E. g.e.d.

A family of E-valued functions {f.(f)|t< D"} may be called uniformly
relatively analytic if the set N {u € E’|{f.(-), ) is analytic on D"} is total on

E, and called merely relatively analytic if all of its finite subset are uniformly
relatively analytic. It is easy to see that a relatively analytic family has the
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strict unique-continuation property. Note that even if each element of a family
is relatively analytic, the family has not necessarily the unique-continuation
property. (See Example 2.)

PROPOSITION 2. For a continuous n-parameter group of bounded linear
transformations {U,|t R*} on a Banach space E, the family {U,flf€E} is
uniformly relatively analytic in t.

PrOOF. For simplicity we shall prove our Proposition in case of a one-
parameter group. Since we have
lim (f, [ eUtudty =(fuy  for feB ueE,

k-+00 — 00

where U¥ means the transposed operator of U,, the set

{fw MU fudtluc B, k=12, -}
is total on E. Hence it suffices to show that (U.,f, jm e~ ¥u dty is analytic
in s for any f e E.

.1, [~ et urudty =" CULf, e U uydr
= j‘ - QUsaefy e uydt

= j.oo e =92 1], f, uddt .

Since |<U.f, up| < AeP" for some constants A and B, the last integral is con-
vergent uniformly in s when s is in a bounded complex domain. Hence the
above function is analytic in s. g.e.d.

Note that for a group {U,} on a locally convex linear space or for a semi-
group {U,]J0<t< o} on a Banach space, a function U,f is not necessarily
relatively analytic. We shall give such an example.

ExAMPLE 1. Let E be a Banach space C,[0, oo)={f]|f(x) is continuous in
10, o), lim f(x) =0} with the uniform norm | f|~=sup |f(x)|, or a locally con-

vex linear space C(—oo, co)=the set of all continuous functions in (—oo, co0)
with the topology of uniform convergence on every compact set in (—oo, co).
We consider the translation operator U,: f(x)—f(x+¢) on E. Let f(x) be a
non-zero continuous function in E with compact carrier. For any ge E’ we
have

{U,fo, g>=0  for sufficiently large ¢.

Hence if <{U,f,, g)> is analytic in ¢, it is identically zero. This means that the
subspace {u € E’|{U,f,, u) is analytic} = {0} is not total on E.
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EXAMPLE 2. Let E be a Banach space Cy(—oo, co)=the set of all con-
tinuous functions vanishing at +oco with the uniform norm. For bounded
continuous non-zero functions wu(x) and v(x), we consider groups of transfor-
mations U, : f(x) —u(x) f(x+t)/u(x+1) and V,: f(x) —v(x)f(x+1)/v(x+1). When
0 <e<u(x), v(x) < M, they are continuous groups of transformations on E.
We pick up a non-zero function fy(x) with a compact carrier in [—1, 1]. If
u(x) =v(x) for xe[—2, 2], then U,f,=V,f, for te[—1,1], and in general
Ufo# Vify for te[—1,1]. However, by virtue of Proposition 2, our func-
tions U,f, and V,f, are relatively analytic E-valued functions.

In Example 1, an element U, of the semi-group on the Banach space
C,[0, ©) is not a one-to-one operator, hence the family {U,f|f € C,[0, )}
naturally has not the unique-continuation property. However for any group
{U,} of transformations on a locally convex linear space E the family
{U.f|f € E} has evidently the unique-continuation property. Later we shall
introduce a weaker notion of analyticity applicable to groups of transforma-
tions. For that purpose we need the theory of quasi-analytic functions.

2. Scalar-valued quasi-analytic functions. For a multi-index p=(p;, b,

-+, pa), we denote DP = (—3« 768?;)?1(%_7;%)1’2 (Tl ma%f)p".

DEFINITION 2. Let {b,|¢=(qy, ¢5 -+, ¢o)} De a sequence of positive num-
bers with multi-indices. Then a family C{b,} of C*-functions on R" is de-
fined by

C{b} ={f®| fg}() | DY ()| < B'?b, for any compact

KC R™ and for some constant B= B(f, K)}.

C{b,} is the family of all analytic functions if b, is ¢!=gq;1g,!---¢,!. The
family C{b,} is called quasi-analytic if C{b,} has the unique-continuation pro-
perty. It is easily seen that a quasi-analytic family C{b,} has the strict
unique-continuation property. The following fundamental theorem (see [37])
is well known ;

THEOREM. Let the dimension n=1. A family C{b,} is quasi-analytic if
and only if

fw—m—g—lzl(ﬁ—drzoo for F(r):sup»gi.
1 7 q q

As special cases of the above theorem, we have the following two corol-
laries.
COROLLARY 1. A family C{b,} (n=1) is quasi-analytic if
1
> B, =00,

q

COROLLARY 2. A family C{b,} is quasi-analytic if
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W by= 0,0,y with B =00, 0<, 50,5

The following theorem concerning regularization by quasi-analytic mol-
lifiers is the main purpose in this section.

THEOREM 1. For an arbitrary positive continuous function H(x) e C(R™),
there exists a sequence {b,} satisfying (1) and exist {f,(:)|k=1, 2, -} T C{b,}
such that

2 1fe(Hlhi=1  fr()=0,
3) h(@) * &) € C{b,} for any h with |h()| < H({),
@ A(t) * £, — h(t) uniformly on every compact set, as k—oo.

For the proof, we need some lemmas.
LEMMA 1. Let {a,} be an increasing sequence of positive numbers such

that EJ— < oo with a, =1, and let ¢,(t) be functions defined for te< R™ with
az j

the properties
1
loeli =1, =0  for [t|> 4 k=12, .
and
o) =0, (=D =et)  for k=N (=a fixed positive integer = 3).
Put [i()=@ % @y - (). If @, and @, satisfy the Lipschitz condition |@,(-+h)
—O| = M,|h) for all t and h e R", then {f,()} converges uniformly to some
Sunction f(t) satisfying
ko1
f07" !tl; Z-‘, k:l’ 2’ cee
i=1 Qg

(2

® =R e 3

S
i=max(k+1,8+1) 43

with some constant M depending on ¢, and ¢,.
Proor. For k< N we have easily

® Fos®=FOI=[_Flt=9 (s

M,

<
T Qgyy

Put ¢ =@s* @, * - x @y Since @], =1, we have [|¢,, =1. Now fi=¢,*p,* @,
and therefore for k 23

|fk(t+s)+fk(t"5)—‘2fk(t)]
=|[feso+9—¢Ne— e Ngut—o—o)dodz

< M3|s|®2sup j f . | ¢ (t—0—1)| dzdo

< CM3i|s|?,
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where C depends on a, only. Using this estimate we get for k= N
@ Fen®—FD1=| [t 9D}

- _%«“{f"(t'*’s)"i“fk(t—s)'—sz(t)}§0k+1(3)dsl

2
< 5 CM3[ 151 pua(®) ds < ot = M,

2ai1, A4y

Since f,(t) =0 for |t|= ‘k/_,“ai, we have
=1 i

m k 1
fk+m(t):i§ {feriD—Srsi- @)} for [t = &a,
The statement of the lemma now follows from (6) and (7). q.e.d.

We denote ¢, * @, x -+« % () = % o).
j=1
LEMMA 2. For the function &(s) of one-variable such that &(s)=max (0, 1
—|s]), we put o(t)= 171[1 () A =C(ty ty -, to) and @) = ayp(a;t). Then each
=

derivative of f()= ; o (t) satisfies

1 ol 1
®) | D2f(H)| = 2''a,a, - aale( (e @ i, ai)
for [t|= Z ! )
i=1

where M is a constant independent of a, for k> 4.
Proor. We assume p,=max(p,, p,, -+, P,) without loss of generality.
Then for |p|=4n, we have p,=4. For the one-variable function

—ajsign s for |s| < apt

$i(s) =
0 for |s|> az!,

we put @y (1) = @y, (1, -+, 1) = $(t) IT axp(ait;). Then we have
ixj

p1+P2

Drf(t)=lim (—l)”"( * i) * ( * ¢;,2) *

i ol
* ( * Din) * Qipray * - * 0D«
J=p1+ e+ pp—1tl

Note that ¢,,*¢,, and ¢, * ¢, satisfy the Lipschitz condition. Applying
to (f};j Y (L) HE: P V4 pipias %+ @,(8), which coincides

202 2a,,

with (2%'a,a, -+ a,,)~*D?( * ©;), we have for |p|=4n
i=1
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| DPf(t)| <27'a,a, - alpIM/(t § 1 " 12 —1_)

i=max((pl+1,k+1) 0F  i=ht1 Qg
LA
for |t|= X —.
i=1
M’ depends only on ¢,,* ¢,, and ¢, * ¢,,. Therefore the inequality (8) holds
good for any p also.
LEMMA 3. For a monotone-decreasing sequence {e,} of positive numbers,
there exists a C«-function f(t) satisfying the following two conditions:
®» =0, =1
(ii) For any p=(p,, ---, pn), we have

i

sup | DPf()| < Mengyy -+ a 2%,  mz 3 1
il Zm i=1 a;

I

for some constant M, where {a,} is a sequence such that

© ﬁv—lm:oo, 1,20, < -
k=1 Qg

PrOOF. "Since the function f(¥) in Lemma 2 satisfies conditions (i) and (8),
it suffices to choose a sequence {a,} satisfying (9) such that

o) k
(10) tnSen fOren= 3 0, kp=max {klmz 3 a7’}
t=kpm+1 &F =1

Put 2, =min (—15‘—'1, fé"a), A,=¢;. Suppose that {a;|i < k;} is determined such
that, for m <,

LSO | kmi1 ]
11 — —=1.
b i=l§+1 a; <An, z=:§+1 a; 1

Then we define
k=LA 1], a=[A7+1]  for kA l=i<ku,,

and so by induction we obtain a sequence {a,}. We see easily that (11) is
satisfied for m =j, hence (11) is satisfied for all m. Moreover we have

5 =% % Lo$<m
— — = < <e <e
i=kj+1 a e =t +1 a; =p=i "= I=E =2
and
| i kmi1 g i
L=3 % oo
i=1 @  m=li=kp+1 @3 m=1

Hence (9) and (10) hold good.
LEMMA 4. Under the same assumption as in Lemma 3 there exists a non-
trivial function f(t) such that

sup | D(B)] < Mepd?a, - ayyy
tiZzm
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Proor. By Lemma 2 and Lemma 3 there exists a function f(f) such that

-

2|
=< Mey2P'a, - ayp for m> >
i=1

Q

1

sup | D2f(1)|
Itlzm

o lpl 1 .
= M27?q, ... alp.( > 12 + >} ——) in general.
i=[pl+1 i  i=1 G4
. 21 . . - i1
Hence, if m= > ——, our assertion is trivial. Let km:max{k]m> ET .
i=1 j=1 Gj

a;
Then without loss of generality we may assume that

12

1 =1 and ETI

A
—

R
%

—-

In fact, the function f(¢) constructed in the proof of Lemma 3 satisfies (12),

since k, = [A:L, 417> ;,éL,

m

1=

|
For |p|> iy (i. e.m= 1Zp)lail) we have
sup | D2f(®)| < M27a, = aip (1| ply= M4, - @y THIPL

< M47iq, ... a;pl%%;l-é Me,A%a, - app .

Proor OF THEOREM 1. For a double sequence

A= sup H@—s), k=012 and m=0,12, -,
k§1’st||§7’161+2

there exists a sequence {4; >0} such that
(m)

sup 2; -< o, for any m.
k k

—sup A 1 ;
We put Mm—skup T Apply Lemma 4 for ¢,= 1, Ch Ay For a function

Jf(@) in Lemma 4 and for m=[|s|+41], we have

D7 [ h(t—s) f(t)dt] < [H(t—s)| D2ty dt

= 5 Q42 Mera0, - apdrz4n £ Mln g,

=4PHMM,a,0, -+ g -

For an arbitrary constant K >0, we put B=4M max M, Then we have

Im|SK

{13 ﬁ?& Df’fh(swt)f(s)dsl = B4®'q,a, - ap .
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Moreover for a fixed k, we can choose f(x)=f;(x) such that

ay [ IHO—0f@ldx< 4, for [ylsk.

lw]2»~

The sequence {f,(x)|k=1, 2, ---} satisfies our requirements (3) and (4), by vir-
tue of and (14). g.e.d.

For future use we shall prove the following

COROLLARY TO LEMMA 2. For any e€> 0 there exists a non-zero positive
function f(t) with a compact carrier such that

15) [ DPf(E)| < M| p|®'(log]| p|)t+ow!
PROOF. Put a, = ck(log (k-+1))***, Then 21 < _I&&’ where K—- (T;é)m

< oo. Hence the function f(t) in Lemma 2 satisfies

+f x(log (1—1—x))1+5

f=0 for |tjz A,
and
(16) D7) S 27 ME a0, - ayy,  for K= 3 5 4
=1 T

The above inequality (16) implies evidently (15).

3. Vector-valued quasi-analytic functions. Now we return to the case of
E-valued functions for some locally convex linear topological space E. Let
f(®) be an E-valued continuous function defined on R". Then for any natural
number m the set {f(¢): |¢|<m} is compact in E, hence bounded in E. There-
fore we can choose a sequence {B;:1=1,2, .-} of convex circular bounded
sets in E, such that f(R")={f(): te R"}CUB;. Similarly, for any finite

number of E-valued continuous functions {f,(*): k=1, 2, ---, m}, we can choose
a sequence {B;} of convex circular bounded sets in E such that Cj SR U B;.
k=1 %

We consider a family {/,(#): a= A} of E-valued continuous functions defined
on R" If any finite subset { f,,(#): i=1, 2, -+, m} of {f,(): a= A} has the unique-
continuation property, then the family {f.(): « € A} itself has the unique-
continuation property. Hence it is sufficient to consider the unique-continua-
tion property on each subfamily {f.|/.(R") C\J Ep,;}, where Ejp, is the normed

space generated by B,;, for each sequence {B;} of convex circular bounded
sets in E. We give the limit inductive topology on \JEjp, and so the dual
i

(U Ejp) is the set of all linear functionals bounded on each B;,. Thus we are

led to the following definition, giving a weaker notion of quasi-analyticity.
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DEFINITION 2. A family {f,(!): « & A} of E-valued continuous functions
defined on R" is called relatively quasi-analytic in weak sense if for every
sequence {B,} of convex circular bounded sets in E there exists a total subset
FC (UEg,) such that for any ueF

a7 KSa®), ud: Jo(RY T Eg;} ©Clbg}

where C{b,} is a quasi-analytic family (depending on ).

Evidently a relatively quasi-analytic family in weak sense has the strict
unique-continuation property. We consider a case in which this notion is more
simply defined.

THE FIRST COUNTABILITY CONDITION OF MACKEY: For any sequence of
bounded sets {B;} in E, there exists a sequence {¢;} of positive numbers such
that the union e, B; is bounded in E.

(]

This condition is satisfied for instance by (F)-spaces. When E satisfies
the first countability condition of Mackey, a family {f,(t): a € A} of E-valued
continuous functions is relatively quasi-analytic in weak sense if and only if
the condition in is satisfied by Ejy for every convex circular
bounded set B in E, instead of \J Ej,.

§2. Unique-continuation of solutions of partial differential equations.

For a linear partial differential operator P(D) with constant coefficients,

as is well known, the following three conditions are equivalent to each other:
i) P(D) is elliptic.

(i) The family of solutions of the equation P(D)u=0 has the (strict)
unique-continuation property.

(iii) Al solutions of the equation P(D)u=0 are analytic.

Our main purpose in this section is to generalize the above theorem for
partial ellipticity.

4. Relative quasi-analyticity of solutions of partially conditionally elliptic
equations. We begin with a brief explanation of the concept of partially
conditionally elliptic operator as defined in [I]. Let P=P(D,, D,) be a linear
partial differential operator with constant coefficients on x=(x,, x5 -+, Xp)
eR™ y=(, Vs -+, ¥n) € R*. P is called partially conditionally elliptic in x
if any solution wu(x,y) of the equation Pu=0 analytic in y is analytic in x
also. This notion is characterized as follows.

THEOREM. P is partially conditionally elliptic in x if and only if the fol-
lowing two equivalent conditions are satisfied:

18) &1 = cQ+Inl+1671)  for P(§, =0,
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where &’ =Re(£) and &7 =1m (§).
19 PD,, D)= PO(Dx)+i§ P(D,Q:(D,), P, is elliptic

deg P, <deg P, and deg P;+deg@;<degPh,.

Now we state one of our main results.

THEOREM 3. The following three conditions are equivalent to each other:

(1" P is partially conditionally elliptic in x.

(ii") The family of solutions in Q™XR" of the equation Pu=0 has the
unique-continuation property in x.

(iii") The family {u: Pu=0} is relatively quasi-analytic in weak sense in
x, where {u(x)} are C(R™)-valued functions.

We use similar notations to those in [1]:

lDag!Z:f?‘J Inglz a=an integer} P—_—(Pn“',Pm)
Pl =a
and for a sphere K in R™ with radius »
lg, KI*= | |g(@)|%dx,
K

lDag, Kla: N ID;D#g’ KIO"VH"/“

oslv[+lpl=go+tea

where ¢, = max (deg P, [—g—]+1)
LEMMA 5. For a C>-solution v of Pv=0, we have
| D, K|, <C(o~|v, L|,4+|Dy, L|y),

where L is the sphere with radius v-+o having the common center with K, and
C is a suitable positive constant.
PrROOF. We cite the following inequality ([2, Lemma 7.5.17).

o | D%, K| < C/(o?| Py, L|+ X o'P| D2y, L})
|pi<po

for a<p,, 0<1, where p,=degP.
Hence we have

| Do, K|o < | D$*, Kla®+ 3 |DyDjjv, K|o®

bul+l gl=go+1
! lﬁ‘l>0q0
lD;D#v’ KIO-IDI'H.UI-]-
lvl+lgl=qp
< C/(o%| Dp-po+1Py, LH-[ E a'?'| Dztty, L)
?i<go

> |D,DiDEv, Lle%+ 3 |DiDgv, L|oWi+i#i-1

lvi+ipl=qo lvl+lpui=q
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= C’(oq"lD%"‘““jE Pi(D)Q4D,)v, L| +| .2 o'?'| DEty, L)
>0 D<o

+1Dy, L|s+0-|v, L|,
§C’(0‘1"| 2 le.D, Ll+ae® 3 |c,uDyDiD¢v, L|)

vi=qg lvl+] pl=q
+C’e7Y|v, L|,4 Dy, L|;+07|v, L|,,

where c,, c,, depend only on P. Hence our inequality is proved for a new
constant C.
Proor or THEOREM 3. (iii’)—(ii’). This implication is evident from the
definition of relative quasi-analyticity in weak sense.
@ii")—(@{"). Assume that P is not partially conditionally elliptic in x. We
put
P&, n) =P+ Jé‘% PP |pHI=1.

Then P, is not elliptic in x, or deg P, <deg P, by virtue of (19). If P, is not
elliptic in x, then there exists a null solution u,(x)=0 of the equation
P(Du(x) =0, such that u,(x)=0 for {x, N> >0, with respect to a character-
istic plane {x: {x, Ny=0} of P, (see [2]). Since |B(j)|=1, the null solution
uy(x) satisfies the equation Pu=0. Hence the family {u: Pu=0} has not the
unique-continuation property. If deg P,< deg P= p, the principal part of P is

Cai"'a‘mﬁl’"ﬁnéfl szv?l vgn IIBI > 0.
lal+|8l=p

Hence the hyperplane x, =0 is a characteristic plane. Since a null solution
with respect to the characteristic plane x;, = 0 exists, the family {u(x)=u(x, y):
Pu =0} has not the unique-continuation property.

@i’y —(iii’). The space E=C(R"™), which is an (F)-space, satisfies the first
countability condition of Mackey. Hence it suffices to show that the family
{u: Pu=0 and u(x) € Ep for any x € R™} is relatively quasi-analytic for any
convex circular bounded set B in E of the form

B={h(y) & CRM| | k()| = H(»)}

where H,(y) is a continuous positive function.

For a fixed function w(y) € (C¢) and a fixed solution u of Pu=0, u(x, y)
w(y) is infinitely differentiable in x, since P is partially hypoelliptic in x. Let
K, be a compact set in R”. Then for any pair of indices g, v there exists a
continuous function H,,(y) such that

sup | D& Dyuxw| = H,,(¥) for all ye R*.

e Ky

It is easy to see that in the above inequality we can replace all H,, with one
continuous positive function H if we take suitable constants C,, > 0, that is,
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sup | Dg Dyuxw| < C,,H(y) for all ye R™.
e K: 1

For a solution u(x, y) of the equation Pu=0 in Eg we put

v(x, ¥) = ux, y) * w(y) * [1(3),
where fi(y) is a function associated with H(y) in [Theorem 1. Then we have

sup |(DzDju *w) * D§fi] < C,,pxbg A

r&Ky,ly ISR

for some constants C,,,, and A. Note that v is also a solution of Pv=0. Let
K be a sphere in R™ with radius » and L be the sphere with radius r+o¢
(0 <6 £1) having the common center with K. Then we have by
for [y|=R,

1%, Klua=C* 2 (|2 )(-2)" " 1Dy, Ll

zcen2 (-7 = poge, L(5) "

lgi=ea lyl+lpl=qo

< —ZC * Z: aa"““ E C’ sup iDq(D;D u*u’) *fkl
Y Yy
o lgl=a

lvi+ipl=q xEL

<C(EE) Samn 5 sup DDy uxw)x(D5F|

q<o[ ly |+l glsSqy x€L
2C by
<Cl( > e A0 max Cuu.
|q|<a a'? e

Hence we have for a new constant C

|D2v, K|,<Co* > %1 <Cagagnmax

1d=a alql lgl=a alql -

By virtue of Condition (1) in §1, we have for any ¢’ with [¢’|=]|q|—

b ,
—qzb—q for a,. >«
alll = gla-1 9=
b b,
q q
a?l = g1 for g <a.
Hence max = max (bo, it )
lgl=e a‘ a Ipl=a a”

For |p|=a we have thus by Sobolev’s inequality

sup | D2v| < C| D2, K|,06~% < Ba(bya®+by,),

lz1=7—e

where B is a constant depending on K and on ¢. Thus v(x, 0) € C{b,+q!}.
By below the family C{b,+q!} is quasi-analytic. Since u(x, 0)
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=< u(x), w=*f >, and since {wx*f;: we(Cy), k=1, 2, ---} is total, u(x) is rela-
tively quasi-analytic in Ej.
ProprosITION (T. Yamanaka). For a sequence {a;} such that
0<a1§a2§a3--- ’
we put
b,=a,a, - a,, cq=by+q! @=1L2-).

al. =oco (i.e. the family C{b,} is quasi-analytic), then

zq\/cz_w

(i.e. the family C{c,} is quasi-analytic).
PrROOF. At first we shall verify that

12 a; _}' =
Put S,={ila,<i}, S,={ila;>i}). If 3 —1 —oo, we have
1SSy i
o 1 1
— = — =00.
231 a;+1 :igg a;+a; *
Hence it is done. Thus we may assume that 3>} 1 < oco. Then 3 = 00,
ic8y 45 i€y %i

and so S, is an infinite set. Let i, be an arbitrary index. Then there exists
an index {, such that

1, =22, LS.
We have

This implies the divergence of 3} since i, is arbitrary.

1
= 4t
Put d, = (a,+1)(a,+2) --- (a,+¢9), for ¢=1,2,3, -~.. By the equality

2
i=1 ai 1 ’

1
Zagg T
Since ¢, < d, for ¢=1,2,3, .-, we have
1 _
Day T
It is to be noted that, there exist two sequences {a;} and {a}} satisfying
0<a1—<_~az§."': 0<01§02§---, 2 1_::001 2 1 =00,
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nevertheless
1

2 a;+a; <o

Such an example was given also by T. Yamanaka.

COROLLARY TO THEOREM 3. If the solutions u(x)=u(x,y) of an equation
Pu=0 has the unique-continuation property in x, then it has the strict unique-
continuation property.

ExaMPLE 3. The wave equation (i————@z—-— —«—a—fm)u-—_o is parti-

ot? 0x} o0x2,
ally conditionally elliptic in x. If every point of ¢-axis is an infinite order
zero point of a solution u, then u is identically zero in the whole space. In
particular, if a solution u is zero in the double characteristic cone x}-+x2-+4 -+
+x2, <2, and if u is infinitely differentiable at the origin, then u is zero in the
whole space. The fact, that a solution u which is zero in the cylinder
x4+ - +x2, <r? is zero in the whole space, is a direct consequence of Holm-
gren’s theorem. Recently Lax-Morawetz-Phillips proved ([2, Theorem IVT)
that if a weak C!-solution u» with finite energy is zero in the double charac-
teristic cone x}+x2- --- +x2, < t% then u is zero in the whole space. It happens
that there exists a non-zero distribution solution # (with infinite energy) which
is zero in the double characteristic cone. In case of C«-coefficients, Kumano-

. 0* 0° 0? 0
g0 [3] showed that an equation of the form <73i‘_2 % axl +f ar +g)u
1 2

=0 has a non-zero C«~-solution which is zero in the cylinder x{+x3<1.

5. Relative analyticity of solutions in a bounded domain. When we con-
sider the unique-continuation property in R™ X 2" for a bounded domain
Q™ R* the situation is a little different from Theorem 3. In fact, the con-
dition i) does not imply the unique-continuation property. We shall only
prove the following

THEOREM 4. Let 2" be a bounded domain in R*. Then concerning follow-
ing three conditions, the implication i")—iii”)—ii”) holds good.

i) P=P,Dy)+ Jz;on(Dx)Qj(Dy), P, is elliptic,

deg P;+deg Q; < deg P, for 7>0.

(ii") The family {u(x, y) € C(R™ X 2™)|Pu =0} has the unique-continuation
property in x.

@iii”) The family {u(x) =u(x, y) € C(R™ X 2™)| Pu=0} is relatively analytic
in x.

Notice that (ii”) does not imply (i”). The implication (iii”) — (ii”) is evident
from the definition of relative analyticity. We shall show that (i”) implies

(iii”). Let f(t) be a function in [Corollary] to Lemma 2 for e¢=- 2(1:—"1)“’ (Do

=deg P,). For a solution u of Pu=0 in R™X 2" we put v(x)=<u,f),
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:fgnu(x, f(»dy. Then in a similar way to the proof of we
obtain the analyticity of v(x). In fact, since
| D2v, K|, = Cla™?| DE~Po, L]+ | DE 2 Po, f 3y, L o)
< C(o~?| Dy, L‘a+j§ | DE 20 PiQjth, [y L1 o)

<C'(c?|Dy 7w, Ll, 2 [KDgtv=pu, Dp=#=f 5y, L|o),

0=p=pg—1
we have for kp,/o >1

[ lalpo

k(po—1) kpo=[ 170 ]
| D50, Ky = AP0 30 (L2027 130, D83y Ll

lgT=0 o

é kao Z‘ kkp-(1+e)lqllq}(1+s)lql|v, L‘a/km
q

< C*E*Poly, L|sip -

§3. Unique-continuation of solutions with some growth conditions.

As is well known, the Cauchy problem of heat equation (0/0f—Au=0 is
solved uniquely when solutions of exponential order at co are considered. (On
the uniqueness of solutions of Kowalevskaja system, see Yamanaka [8]) Our
purpose in this section is to consider a generalization of the above fact, the
unique-continuation property of solutions of partially hypoelliptic equations
under some growth conditions.

6. Relative analyticity of solutions with some growth conditions of parti-
ally hypoelliptic equations. A linear partial differential operator P(D,, D,)
with constant coefficients is called partially hypoelliptic in x if any distribution
solution u(x,y) of the equation Pu=0 is infinitely differentiable in x as a
(Dy)-valued function. This notion is characterized as follows. (See [1])

THEOREM. P is partially hypoelliptic in x if and only if the following two
equivalent conditions are satisfied:

20) P&, 7)=0, & and n bounded= &’ bounded.
(§’=Re (), &"=Im(&))
(21) P(D,, Dy)= Po(Dx)+j§ Pi(Dx)Q;(Dy),

where P, is hypoelliptic and P; & P,. (P; K P, means Py(&")/Py(&")—0 as &’ —c0.)
Let E,={v(y)=CR™|v(y) is of exponential order at oo}, that is,
E,= ,}2 {v(y) € C(RM)|v(y) = O(exp (k]y[)}. Each subset {v(y)e CR")|v(y)=

O(exp (k|y|))} for any fixed k is a Banach space with respect to the norm |v|;
=sup |v(y)e *¥!|. We consider E, the limit inductive space of the sequence
v
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of Banach spaces above.

THEOREM 5. A linear partial differential operator P(D,, D,) with constant
coefficients is partially hypoelliptic in x if and only if the family {u(x,y)
€ CR™ X RM|Pu=0 and u(x,y)=0(xp C(|x|+|¥I)} is uniformly relatively
analytic in x as E,-valued functions.

COROLLARY. P=P(D,) is hypoelliptic if and only if all solutions u(x) of
Pu =0 satisfying u(x)=0(exp C|x|) are analytic functions.

A Dbetter result than this corollary was already given in [6].

For the proof of we need some lemmas.

LEMMA 6. For any fixed hypoelliptic operator P,, there exist some integer
vy and an operator S: L*— L? such that (4 is Laplacian)

S¥*=—4+1, and
Py>Q implies |S*Qu| < ||P,S* || +C*|v|
for ve(CY), h=12, -,
where C depends only on Q.
PrOOF. Since the space {Q|Q < P,} is finite-dimensional, there exist posi-
tive constants ¢ and k, such that
[QENAHE 1P| PyEN|  for any QK Py, |&| = kg.

We pick up an integer v > 1/¢, and define S= g-'(1+|&|2)¥F (9 means Fourier
transformation, and g-! the inverse), C= sup {A4-1€1H"A+1QEND}. Since
& 1=kQ

—1

(L1 &9 Q)] = max {(A+]&/[% 7 | PN, €M,

we obtain the required inequality by the Fourier transformation. g.e.d.
We put for an integer 2>y (S?=—4-+1)

J(x)=F'(exp (— & — -+ —&%)
g =F(exp (—nif— - —9¥)).
LEMMA 7. The following inequalities hold good.

(22)

le=D2f | < CPNY,
leDy gl <CN'Y,

23)

where N=(Ny, -, N,), N'=(N/, -, N1, Ni:[@ég‘i], Nj= ﬁé?‘l ], N!

= ﬁNi I, N'l= ﬂN;! and C, C’ are constants not depending on p, q.
i=1 j=1

PrROOF. We show only the inequality concerning f. The another is simi-
larly obtained. We have formally for a=(q, g, ---, a)
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EZ«'(e”Dgf) — _1 — j e(a-ié)ngf(x) dx
@my2 TE"
= (EHaFS)E+ia) = (E+iape=¢ria™

Since (E-+ia)Pe*¢+io% = [2 F(e2Def) exists and satisfies the above equality.
Let us estimate the norm of F(e**D2f).

249 le**D2f ||*= | F(e** D2 ) |I?

= [ |(e-riaperesomys g
Rm

— ﬁ j‘ °° I(Ej+ia)2pje'2($j+ia)2k|dE .
j=19¢ —c0

Put 0<a,< tan 717%' Then Re(¢;+ia)* >0 for fgﬁ« <a, (=12, -, m).
J
Since for §=Re (1+ia,)** we have
. ia\?*
Re (&,-+ia)* = Re (s-g.k(1+?j) )
2 g Re(I+iag* =g, for | 2-|Sa,

we have
|(&;+iay?1e €% < | & (14 ) | P10 e,

for l—g—;l_s_ao.

Hence it holds that

@) f 1°°a | (&;-+iayrie o™ | dg,

&y

= Waornf e ;.

Set s=¢&4 for pu= ?ijill . Since _zﬁk‘gl, we have
oo o % 1 o 2pj+l . 82k
(26) fo £3010-26¢ d§j=7fo s a—1g-25u ds
o N1
~2B8 o — J: .
§1+L s¥je-?Psds =1+ @By

On the other hand, it is easy to see that

21’fezia(1+ 7,}0«) | ’

(€ tiapie o™ | < a(14+ )

for‘—gj—zao.
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Hence

aQ

-]
@ § i g, < | a(1+ 0170) a

22}

4 o 4P

From (24), (25), and (27) it follows that

M w (a1 NP ()
e Dgfnzéjl;[l{‘a‘o“ (1+70) e
|
+(1+agi(1 +(Zg;v;ﬁ‘)}

= Jl'zlle !{A szj+(1+a0)2pj<max (1: 21—‘8>>2pj+1}

< CHPINI< CHP(N )2, q.e.d.

We use the following notations for functions u(x, y) and v(x, ¥):

Cu, vy, =[u-vde, Julh=[luldx

vy, =[u-vdy, Julp=/lul"dy.
LEMMA 8. Let u be a solution of Pu=0. Using the notation 'Q,=1,

(28 I<S™Po(f1), gyll<C EO . IéEdegPO(IK S*EPy(D - w), 'Q;8 )yl

+C* UKD - u, 'Q58 0yl »

where C is a positive constant independent of h.
PrROOF. Since

(SPPfD, g5y = B T (S" DT - Piu, g,
={SMf - Pow), g>y+| MZN%T(S’L(Daf - P{u), 2>y

= SUSHF - P, Qs B < S' DS - P, £y,

we have
(29) | <S*Py( 1), gylle = §Il<5”(f- Pu), 'Q;87lls
+ 3 L KSHDAf - POu), gl
jal>0 &
Since

Df - Piou = PE(Df - 1)~ 3 5 Df - Pesd,
181>0 IB :
it holds that

159
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(30) |a§ SMDS - P§u), grla=C Py JKs*p 2D - w), ghylla -

L
Similarly we have

(31) I <S™f  Pju), 'Q; 8>l < c”I a{go [<S*P®(Df - u), 'Qi80yllz s

where C’ and C” depend only on P.
By we have

(32) | {SPPEADS - w), gl £ S Py(D%f - u), gy +CHIKDY - u, g5,
and
(33) [KS*P (DS « u), *Q;8) | S |KS* ' Py(D%f - w), 'Q; )| +CH KD -u, 'Q;8)1 -

We calculate using [(32), and using (33). Then we can estimate
as follows.

[<S™Po(f10), £yllo = C7 % a§0(||<5 MIPY(DA ), *Qi ) | +CEIKDY - u, 'Q5851D)
+C”| pR( (S*1PDf - w), I +CLIKDf - u, g1D -
LEMMA 9. Every solution u of Pu=0 with |u(x, y)| < Ke®®+wD satisfies
I<(DEfu, DEgYyll. < KABHB 24y
where A= (M) = (i‘[ﬂ_{——l>
Proor. We have by Lemma 7 for N, N’ with N; = [2al+1] Nj= [2‘8’+1],
| j:III e D gl < | ;Il (eit+e HDfg|, = 2"B/PHIN'L,
and similarly
I jﬁl e/ Daf || < 2mB/IEHINT
Combining above two inequalities we have

KD, Dig>, 12 < [{f1uDgeldy} | Def|edx

< k*{[1e"Dgg|dy} [|em= Daf|2dx
— K*|ePv D g 3¢+ Daf |

é KZZZHB/ZIQH-Z(N/ !)222m3112]ﬁ|+2(N/ !)2
< (KAB“HBININ' 1),

Since ™= N1, py™ = N’], our assertion is proved.
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LEMMA 10. Let u(x) be a continuous function. If there exists an integer
k such that u(x) = e(x) is analytic for any ¢(x) (D (D¥)={f<(C")| carrier
of f is compact}), then u(x) itself is analytic.

Proor. Let T be the operator: (D¥)= ¢ —u* ¢ e A(R™), where A(R™) =
the limit inductive space of {A(U)—=the space of all analytic functions on U
with the topology of uniform convergence on every compact subset of U} and
U runs over all complex neighbourhood of R™. Then the transposed operator
‘T: A/(R™) 2 ¢ —ux¢d e (DY is defined on A’(R™). Since every element ¢ of
A(R™) is infinitely differentiable, the element ¢ of A’(R™) is also differentiable:

Drg e AI(R™),  (D?¢, ) =(—=1)"<¢, D¢} .

Hence we have u x D?¢ = D?(u x ¢) = (D*)’, which implies u * ¢ = (C) since p is
arbitrary. This means ‘T is an operator: A'(R™ —(C). By the closed graph
theorem ‘T is continuous from A’(R™) to (C). The scalar product {u, ¢ is
defined by u* ¢(0). Then u e A(R™)” = A(R™).

PrOOF OF THEOREM 5. At first we shall prove the sufficiency. By virtue
of Lemma 8, for a solution u of Pu=0 such that max|P{®u|< Kew=i+1v)), we

have (8; is a multi-index with |§;| < deg P,)

(34 I<S*Po(f1), &yl = C ”k}}m ﬁ}/}ghil (PDAH B 1), *Quy -+ ‘Qien &yl
FOM S 3B KD, Qe Qe

We denote Q.(D,)= 203 Li®»Dg. Let L=max|L®|, A= _(hi—tl_)dzﬁg}’oji and

n= me}x ﬂl)d_zg\er—’}_. Since Py(DFr+Prf.y)= %%EADW"-wmrﬁf. PPy, we

have by Lemma 9 for ¢= m?X deg Q,

[KS™Py( ), g>yllx§C" 2 X KDt P, Q- Qe &yl
kykp B1Bn.B

crs s %, KDP R0, Qo Quy

J=1 ky+kj B18

=Cc*3y = KA BIB1H--+ 18RI+ 181+ na [ gma gy

k1kp B1BrsB

+C”2 > X K,A.BIBN'{’""*-|Bil+lﬁl+quj2m2#nﬂ.

i=1 kykg BBy

Let k,=the number of Q,, | =the number of P{¥ with P® 0. Then 2 1

ky-kp
= kl, ; % ﬁl =["*1, So we have for p=deg P,, B=max(B, 1) and [ = max([l, 1),
e

| SHCPfw)y &y llo < B IHICH(hA DK AB 0w na [ gma s
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This implies that (P,(fw), gd,= P,(f{u-g>,) is an entire function, for v =2
and for k> 2y (mdeg P,-+maxndeg@,), since S*=—4+1. Then f{u,g), is
p

an entire function, since ’llﬂ Py&")>0. Hence (u, g), is analytic except zero
£ o0

point of f, especially in a neighbourhood of the origin. This implies the
analyticity of <u, g),: u(x+x,, y) is also a solution of Pu=0 for any x,&R™
and hence u(x+x,, ¥) is analytic in a neighbourhood of the origin.

If u is a solution satisfying |u(x, y)| < Ke*®+¥b then for any ¢ < (D¥)
(k=degree P)) ux* ¢ is a solution satisfying |u*¢|= K,e/*'*1?P hence ux ¢ is
analytic. By u itself is analytic.

Next we shall prove the necessity. Let E, ,=the space {v(x, y)eC(R™XR")
|v(x, y) is of exponential order at oo} with the limit inductive topology con-
cerning the sequence of norms [v|,=sup|v(x, y)e ¥#+¥D| and A(R™)=the
limit inductive space of {A(U)=the space of all analytic functions with the
topology of uniform convergence on every compact subset of U}, where U
runs over all complex neighbourhood of R™. Let u be a solution of Pu=0.
By the assumption there exists a total subspace F' of Ej such that

v(x):fu(x, »e(y)dy is analytic in x for any p = F'.

Since the linear mapping associated with fixed ¢: uev:fugody is a closed

operator, it is continuous from E,, to A(R™). This continuity means that for
any compact set K C R™ there exists a function @(x, y) with |@(x, y)elI=i+1vd]
—0 as |x|+4|y}—o0, j=1,2, - such that

sup

reK

22| = ¢ sup @, syucz, 1.

J z,Y

Put u(x, y) = %>+ for P(&, 7)=0. Then for & =Im (£), ” =Im (y),
sup le=*"*F p(n)| El [&:l=Clp) sup [@(x, y)e==*"-v7"].

We fix a compact set K/ C R". For any peint p& K’ there exists an element

¢, F such that F¢,(p)x0 since F' is total on E, and so we can choose
b, o+, bs such that

ﬁ%lgij(p)}>0, for any n e K’.
J= :

Hence we have
X 1&ssuple=®'?| E | F o, = Z Clg, ) sup|D(x, Ve v |
j=1 K i=1 . = Ty

for pe K.
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This means that the boundedness of 7 and &” implies the boundedness of &.
g.e.d.
In the same way as above, we can prove the following theorem.
THEOREM 6. Let 2™ be an arbitrary open domain in R™. The family
{u(x, y) € C(2™ X R™)|Pu=0, |u(x, y)| < Cx)eB for some constant B and C(x)
e C(82™} is relatively analytic in x if and only if P can be expressed in the
form

P(Dm D‘y): PO(DJ:)'{‘ ? PJ(Dz)Qj(Dy) s

where P, is elliptic and deg P, > deg P;.
ExaMPLE. Let P:—aaT——A, where A is a differential operator with con-

stant coefficients in n-dimensional x-space. Then a solution u(t, x) of the
equation Pu=0 in (—2, ) X R", such that |u(t, x)| < C(®)e?"*" and u(t, x)=0 for
t <0, is identically zero in the domain.

Ochanomizu University
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