Supplement to: Holomorphic imbeddings of symmetric domains

By Shin-ichiro IHARA

(Received Aug. 2, 1967)

There are some incomplete explanations in p. 274 (§ 2) of my previous paper [1], which I will supplement here. I wish to express my sincere thanks to Professor. I. Satake who has kindly indicated me the incompleteness together with valuable advices.

- 1. We used a property without proof, which can be formulated as follows: PROPOSITION. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ and $\mathfrak{g}'=\mathfrak{k}'+\mathfrak{p}'$ be Cartan decompositions of Lie algebras of hermitian type without compact factors, $\rho:\mathfrak{g}\to\mathfrak{g}'$ a homomorphism satisfying the analytic condition (H_2) w.r.t. complex structures H_0 and H'_0 of $(\mathfrak{g},\mathfrak{k})$ and $(\mathfrak{g}',\mathfrak{k}')$ respectively. Let further $\mathfrak{g}=\sum_{i=1}^e\mathfrak{g}_i$ $(e\geq 2)$ be a decomposition of \mathfrak{g} into the direct sum of simple ideals. Then there are regular subalgebras \mathfrak{g}'_i $(1\leq j\leq e)$ of \mathfrak{g}' such shat
- i) $\rho(\mathfrak{g}_i) \subset \mathfrak{g}'_i$, and the restriction of ρ to \mathfrak{g}_i satisfies the condition (H_2) w.r.t. the complex structures of $(\mathfrak{g}_i, \mathfrak{k}'_i)$ and $(\mathfrak{g}'_i, \mathfrak{k}'_i)$ compatible to those of $(\mathfrak{g}, \mathfrak{k})$ and $(\mathfrak{g}', \mathfrak{k}')$ respectively;
 - ii) $\lceil g_i', g_i' \rceil = 0$ if $i \neq j$.

PROOF. We may assume that \mathfrak{g}' is simple ([1], p. 273). Let H_{0i} be the projection of H_0 to \mathfrak{g}_i , and put $H'_{0i} = \rho(H_{0i})$. Since ρ satisfies (H_2) , we have $H_0 = \sum_{i=1}^e H_{0i}$, $H'_0 = \sum_{i=1}^e H'_{0i}$. Put

$$\mathbf{v}'_{i+} = \{ \alpha' \in \mathbf{v}'_{+} | \alpha'(H'_{0i}) = \sqrt{-1} \}.$$

$$\mathbf{p}'_{i} = \mathbf{g}' \cap \sum_{\alpha' \in \mathbf{v}'_{i+}} (\mathbf{g}'_{\alpha'} + \mathbf{g}'_{-\alpha'}),$$

 $\mathfrak{k}_i' = [\mathfrak{p}_i', \mathfrak{p}_i']$ and $\mathfrak{g}_i' = \mathfrak{k}_i' + \mathfrak{p}_i'$,

where \mathfrak{v}'_+ denotes the set of all positive non-compact roots, and $\mathfrak{g}'_{a'}$ the root space belonging to α' . Then \mathfrak{g}'_i is a regular subalgebra such that the restriction of ρ to \mathfrak{g}_i defines a homomorphism of \mathfrak{g}_i into \mathfrak{g}'_i satisfying (H_2) w.r.t. H_{0i} and H'_{0i} (cf. [1], Theorem 2). On the other hand, one knows ([2], p. 96) that

$$H_{0i}^{\prime}\!=\!2\sqrt{-1}\!\sum_{lpha^{\prime}\in\mathfrak{v}_{i+}^{\prime}}\!\widetilde{lpha}^{\prime}$$
 ,

544 S. Ihara

where $\widetilde{\alpha}'$ denotes the restriction of α' to the Cartan subalgebra $\mathfrak{g}'_{i} \cap \mathfrak{h}'$ of \mathfrak{g}'_{i} . Hence, if we denote by $c_{\alpha'}$ (>0) for each $\alpha' \in \mathfrak{v}'_{i+}$ the ratio of the Killing form of \mathfrak{g}' and that of the simple component of \mathfrak{g}'_{i} whose root system contains the restriction of α' , we have

$$H_{0i}' = 2\sqrt{-1} \sum_{\alpha' \in \mathbf{D}_{i+}'} c_{\alpha'} \frac{2H_{\alpha'}'}{\langle H_{\alpha'}', H_{\alpha'}' \rangle'} = 2\sqrt{-1} \sum_{\alpha' \in \mathbf{D}_{i+}'} c_{\alpha'}, \alpha'.$$

It can be easily seen that

(1)
$$0 = \langle H'_{0i}, H'_{0j} \rangle' = -2 \sum_{\substack{\alpha' \in \mathbf{v}'_{i+} \\ \alpha' \in \mathbf{v}'_{i+}}} c_{\alpha'}, c_{\beta'} \langle \alpha', \beta' \rangle'$$

if $i \neq j$. If α' and β' are positive non-compact roots of \mathfrak{g}'_{i} , then $\alpha' + \beta'$ cannot be a root, and so $\langle \alpha', \beta' \rangle' \geq 0$. Hence it follows from (1) that $\langle \alpha', \beta' \rangle' = 0$, and $\alpha' - \beta'$ cannot be a root. Therefore we see $[\mathfrak{p}'_{i}, \mathfrak{p}'_{j}] = 0$, and hence $[\mathfrak{f}'_{i}, \mathfrak{f}'_{j}] = 0$. Then we can see at once that $[\mathfrak{g}'_{i}, \mathfrak{g}'_{j}] = 0$, q. e. d.

2. Thus, if \mathfrak{g} has no compact factors, it is sufficient for finding all homomorphism $\rho: \mathfrak{g} \mapsto \mathfrak{g}'$ under the condition (H_2) to determine for each simple factor \mathfrak{g}_i a regular subalgebra \mathfrak{g}_i' such that $[\mathfrak{g}_i', \mathfrak{g}_j'] = 0$ if $i \neq j$ and that there is a homomorphism $\rho_i: \mathfrak{g}_i \to \mathfrak{g}_i'$ satisfying (H_2) ; in fact, the homomorphism $\rho = \rho \oplus \cdots \oplus \rho_e$ of $\mathfrak{g} = \mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_e$ into a regular subalgebra $\mathfrak{g}'' = \mathfrak{g}_1' \oplus \cdots \oplus \mathfrak{g}_e'$ of \mathfrak{g}' satisfies (H_2) . This procedure can be carried out by the results in §4 and §5 of [1]. If \mathfrak{g} contains a compact ideal, the reductions given in \mathfrak{g} . 274 of [1] are valid only modulo compact factors. They are, however, sufficient for our main purpose of determining holomorphic imbeddings between symmetric domains.

University of Tokyo

References

- [1] S. Ihara, Holomorphic imbeddings of symmetric domains, J. Math. Soc. Japan, 19 (1967), 261–302.
- [2] S. Murakami, Cohomology groups of vector valued forms on symmetric spaces, Lecture notes, Univ. of Chicago, 1966.